

a

 ESTEC
Keplerlaan 1 - 2201 AZ Noordwijk - The Netherlands
Tel. (31) 71 5656565 - Fax (31) 71 5656040

EMCS-SUM4_0.doc

f D O C U M E N T

mdocument title/ titre du document

EGSE BASED ON SCOS
2000

THE EGSE & MISSION
CONTROL SYSTEM

prepared by/préparé par Serge Valera

reference/réference TOS-EMG/01-1029/bm/sv
issue/édition 4
revision/révision 0
date of issue/date d’édition 2004-03-09
status/état Issue
Document type/type de document Software User Manual
Distribution/distribution

jal73
 SPIRE-ESA-DOC-002291

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 2 of 72

s

A P P R O V A L

Title
titre

EGSE based on SCOS 2000 issue
issue

4 revision
revision

0

author
auteur

Serge Valera date
date

2004-03-09

approved by
approuvé by

 date
date

C H A N G E L O G

reason for change /raison du changement issue/issue revision/revision date/date

SCOS 2000 – Release 2.1.1 1 0 8th June 2001

Compliance to “SCOS 2000 Release 2.3e including
ESOC patches 1, 2 and 3” with EGSE modules
version 2.3eP3.

2 0 10th January 2003

Finalisation of 2.3eP3 updates 2 1 24th January 2003

Language changes for compatibility with
Herschel/Planck Central Checkout System (TTA
WO8)
Correction of SCOS/EGSE gateway interface
(ESTEC patches patch 1, 2, 3)

3 0 23rd July 2003

Add-ons for 2.3e P4 updates 3 1 1st September 2003

Finalisation of 2.3e P4 installation procedure 3 2 23rd September 2003

Add-ons for 2.3e P5 updates 3 3 15th October 2003

Final P5 updates 3 5 04th March 2004

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 3 of 72

s
C H A N G E R E C O R D

Issue: 4 Revision: 0

reason for change/raison du changement page(s)/page(s)

Issue 3.0 – New language grammar to facilitate transfer of procedures
to the Herschel/Planck Central Checkout System.

Section 1.1 bullet 3,
Section. 2 and 2.3 and 2.4.2.3,
All the section 5

Issue 3.1 – Add-ons of P3 to P4 installation procedures

Issue 3.2 – Correction of 2.3eP4 installation procedure; Logica patch
TBD installation procedure.

Issue 3.3 to 3.5 – Includes:
• The Herschel/Planck TC history/OOL server (i.e. Logica

patch 05122002)
• Enhancement of the SCOS gateway for tracing incorrect

messages received from EGSE routers.
• Enhancement of the TCO and EGSE subsystems to allow

MISCconfig definition of the EPOCH used by a mission.
• Update of the algorithm used to timetag incoming TM to

comply with Herschel instrument OBT timing scenario (refer
to MISCconfig variable EGSE_TM_FILING_TIME_TYPE = 3).

• Update of TC History to display the TC userrequestid.
• Update of MON Alphanumeric Display to display

hexadecimal values with leading “0”.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 4 of 72

s

T A B L E O F C O N T E N T S

1 INTRODUCTION .. 7
1.1 Scope ..7
1.2 Applicable and Reference Documents ...8
1.3 List of Acronyms..8
1.4 Overview ..9

1.4.1 The Space System Model...10
1.4.2 The EMCS kernel...13
1.4.3 The Test and Operation Procedure Environment ...13
1.4.4 The SCOE ..14

1.4.4.1 The MS-Windows EGSE Router ...15
1.4.4.2 The MS-Windows TM Front End ..15
1.4.4.3 The MS-Windows TC Front End ...15

2 INSTALLING THE SCOS EMCS OPERATIONAL ACCOUNT...16
2.1 Pre-requisites ..16
2.2 Installation Procedure...16
2.3 Known problems with the SCOS EGSE 2.3 P5 version. ...18

2.3.1 Errors shown in SCOS Desktop Footer window..18
2.3.1.1 CORBA::SystemException..18
2.3.1.2 Connecting NCTRS..18
2.3.1.3 MISCconfig variables ..19

3 INSTALLING THE SCOS EMCS DEVELOPMENT WORKSPACES...20
3.1 Pre-requisites ..20
3.2 Installing the SCOS EMCS release 2.3e P5 sources. ...20

4 CONFIGURING THE SCOS EMCS..21
4.1 The Mission Information..21

4.1.1 The minimum EGSE data set...21
4.1.2 The mergeDATA facility ...22
4.1.3 The setSCOSdata facility ...22

4.2 MISCconfig EGSE specific variables..23
4.3 Environment variables for the TCL scripts of TOPE...25

5 STARTING THE EMCS...26
5.1 Starting the SCOS EGSE tasks ..26
5.2 Starting the External Interfaces and TOPE procedure environment ..27

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 5 of 72

s
6 TOPE LANGUAGE DEFINITION ..28

6.1 Sending Commands to the Unit Under Test and/or SCOEs...28
6.1.1 Time format Parameter values. ..32
6.1.2 Acknowledgement report access functions ..33
6.1.3 Get/Set the Transfer Mode (AD/BD)...34

6.2 Fetch a parameter ...35
6.3 Subscribe to a parameter ..37
6.4 Subscribe to a set of parameters ...38
6.5 Unsubscribe to parameters ...39
6.6 Wait For a condition to become true ..39
6.7 Wait For Time Interval...40
6.8 Watchdog ...40
6.9 Log a message ..41
6.10 Open log file ...41
6.11 Close log file ..42
6.12 Miscellaneous functions ...42

7 EGSE SPECIFIC FUNCTIONS / DATA STRUCTURES...44
7.1 EGSE Message Format ..44
7.2 The EMCS Request acknowledgement Policy...46
7.3 SCOE Request ..49
7.4 SCOE command Verification Report...50
7.5 SCOE Observation Report ...52
7.6 Sending TC Packets ...53
7.7 Sending TC Packet Verification Report...54
7.8 TM Packet Report. ...56
7.9 Processing data messages coming from the EGSE Router. ...57

7.9.1 SCOS internal archives ..57
7.9.2 Specific processing performed on incoming data ..57

7.9.2.1 Time Stamping. ..57
7.9.2.2 Checksum Verification...58
7.9.2.3 Request Verification processing...59
7.9.2.4 SCOE observation messages processing..59
7.9.2.5 TM Packets processing...60
7.9.2.6 Re-distributing unknown reports into proper SPID archives...61

APPENDIX A MS-WINDOWS TM FRONT END USER MANUAL...62

APPENDIX B CONVENTIONS...63

APPENDIX C LIMITATIONS AND KNOWN BUGS ...64

APPENDIX D HOW TO INSTALL SUSE FOR SCOS EMCS...66

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 6 of 72

s
APPENDIX E CCS MIGRATION GUIDELINE...70

APPENDIX F HOW TO UPDATE THE TOPE SYSTEM TO AVOID THE TUBA DEBUGGER
TO STEP INTO CERTAIN PROCEDURES...72

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 7 of 72

s

1 INTRODUCTION

1.1 Scope

This User Manual details the specific EGSE aspects of the EGSE version of SCOS 2000 prepared
by the Agency and delivered to the Herschel/Planck Instrument developers for support in
developing their EGSE.

This manual complements the generic SCOS2000 documentation and contains:

• A recommendation for installing the LINUX SUSE 7.3 (refer to Appendix D).

• The installation procedure in a standalone mode of the SCOS EGSE Release 2.3e P5 version
delivered by ESTEC/TOS-EMG (refer to section 2).

• The complementary to SCOS instructions to configure the EGSE for a given mission, a given
test session (refer to section 3).

• The instructions to start the SCOS/EGSE system and the TOPE procedure execution
environment (refer to section 5).

• The TOPE language reference manual (refer to 6)

• A description of the EGSE specific functions, the layout of messages sent to and received from
the SCOE system (refer to section 7).

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 8 of 72

s

1.2 Applicable and Reference Documents

See all SCOS2000 R2.3e Documentation

[A1] ESTEC/TOS-EMG/98.015/PSH EGSE Gateway ICD.

[R1] ECSS-E70-31 ECSS - Ground Systems and Operations. Monitoring and Control Data Definition
Standard.

[R2] ECSS-E70-32 ECSS - Ground Systems and Operations. Procedure Definition Language.

[R3] ECSS-E70-41 ECSS - Ground Systems and Operations. Telemetry and Telecommand Packet
Utilization.

[R4] SOE-EMCS-SUM-0001 SCOS-2000 2.3e EMCS SUM

[R5] S2K-MCS- ICD-0001-TOS-GCI-
Issue51+MIB

SCOS-2000 Database Import ICD Issue 5.1

[R6] S2K-TER_TN-002 S2K EGSE Extensions Technical Note, issue Draft 1B from 15.02.2002.

[R7] TCL/TK version 8.3 Reference Manual

[R8] S2K-MCS-SUM-0002-TOS-GCI Scos2000 Configuration and Installation Guide.

[R9] S2K-MCS- ICD-0005-TOS-GCI Scos2000 Command Injection Service ICD.

1.3 List of Acronyms

AIT Assembly, Integration and Test

CCS Central Check-Out System

COTS Commercial off the shelf

EGSE Electrical Ground-Support Equipment

EMCS EGSE and Mission Control System

EXIF SCOS External Interface services

MIB Mission Information Base

PLUTO Procedure Language for Users in Test and Operations

SCOS Satellite Control System

SSM Space System Model

TCL Tool Command Language

TOPE Test and Operations Procedure Environment

TOPE/CCS Version of TOPE customised for the CCS.

TTA Test Technology Activities

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 9 of 72

s

1.4 Overview

Within the PROBA spacecraft development, a common EGSE and Mission Control System has
been designed and developed based on the SCOS2 system. This system has been used to test and to
operate PROBA.

The EMCS system presented in this document is based on the PROBA approach, but uses SCOS
2000 in place of SCOS 2. The following picture gives an overview of the EMCS.

The EMCS is made of:

• Its kernel: the SCOS system and its internal Mission Information Base.

• The SCOE system.

• The Test and Operation Procedure environment.

• The Space System Model.

System
SCOE

TM/TC
F.E.

Instrument
SCOEInstrument

SCOEInstrument
SCOE

SCOE

TM
distribution

to users
Stimulation &
Measurement

EMCS Kernel

MIB

SSM

SCOS

Parameters
commands

events

TM &
TC

Stimulation &
Measurement

+
TM &TC

TM & TC

Test & Operation
Procedure

Environment

System
SCOE

TM/TC
F.E.

Instrument
SCOEInstrument

SCOEInstrument
SCOE

Instrument
SCOEInstrument

SCOEInstrument
SCOE

SCOE

TM
distribution

to users
Stimulation &
Measurement

EMCS Kernel

MIB

SSM

SCOS

Parameters
commands

events

TM &
TC

Stimulation &
Measurement

+
TM &TC

TM & TC

Test & Operation
Procedure

Environment

Test & Operation
Procedure

Environment

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 10 of 72

s
1.4.1 THE SPACE SYSTEM MODEL

The concept of Space System is introduced within the ECSS-E-00 standard. The Space System
Model is an information system that contains mission information required by the EMCS and any
user of the EMCS. The SSM will be specified within the ECSS-E-70-31 Monitoring and Control
Data Definition Standard.

The remaining part of this section presents the concept of the Space System Model required to
understand the changes that have been made to the SCOS system to be used as the kernel of the
EMCS.

The Space System can be decomposed into a hierarchy of System Elements as for example:

HERSCHEL Space System

2à HERSCHEL Spacecraft
3à DHS

4à Onboard Software
5à Application Process 1
5à …

2à HERSCHEL Ground Segment
3à EMCS

4à SCOS
5à …

4à System SCOE
5à SCOE TC Front End
5à SCOE TC Controller
5à …

Within the overall set of System Elements (SE), some participate actively to the monitoring and
control of the Space System and need to be addressable. These SEs are the application processes of
the spacecraft plus the ground processes like the TM/TC Front Ends, Ground station controllers,
SCOE applications…

For these addressable SEs, a SE identifier, unique reference within the overall Space System is
defined. This SE Id has an enumerated value taken within the range 0x0000 to 0xFFFF.
• Mapping the concept of Application Processes introduced in the PUS, for those SEs that

represent onboard application processes, the SE Id correspond to the APID used to identify the
destination of TC packets sent to the Spacecraft and the source of TM packets received from
the Spacecraft. As such, the SE Ids values 0x0000 to 0x07FF are reserved for onboard
application processes.

• The remaining values 0x0800 to 0xFFFF are available for identifying other SEs from the Space
System.

Related to the commanding and monitoring function, Different types of SEs exist:
• SEs like onboard application processes, which are processing requests (i.e. commands) and/or

generating reports (i.e. TM).
• SEs like the TC Front End, which carry requests/reports from one SE to another.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 11 of 72

s
The EMCS makes use of the type of SE to determine:
• those SEs that can process requests (type = APID). Activities (like telecommands, procedures,

stimuli) can be defined within the SSM and attached to the SE that will execute them.
• those SEs that are routing requests and reports to their final destination (type = Router).

Activities cannot be attached to them.
Other types of SEs can be defined within the SSM, which the EMCS may use to perform specific
processing.

The SCOS2000 system has been updated to control any SE that can process requests,
independently of whether they are representing an onboard application process or a ground
process.

The following table proposes a distribution of SE ids taking into account:

• the CCSDS constraint that 11 bits are used within the header of TM/TC packets to represent
onboard application processes (i.e. 0 to 0x7FF),

• the current EMCS allocation of Ids for the existing EMCS SEs.

This table resides in the SSM.

SE Identifier
Hexadecimal decimal Type

SE Name

Spacecraft Application Processes

0x0000 to
0x07FF

0 to 2047 Apid Reserved for Spacecraft Applications Processes

0x0800 2048 Router Reserved (Spacecraft Identifier in MIB)

EMCS/SCOS2000 Tasks

0x1000 to
0x1FFF

4099 to
8191

Undef. Reserved for SCOS2 Tasks

EMCS Clients

0x2000 to
0x2FFF

8192 to
12287

Undef. Reserved for EMCS Clients (e.g. TOPE)

Ground Station Specific Application Processes

0x4000 to
0x4FFF

16384 to
20479

Undef. Reserved for Ground Station application processes

SCOE Application Processes

0x8000 to
0x8FFF

34816 to
36863

Undef Reserved for "SCOE" related application processes.

0x8000 to 32768 to
34815

Apid Alternative routing of Spacecraft application processes via

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 12 of 72

s
SE Identifier
Hexadecimal decimal Type

SE Name

0x87FF 34815 “EGSE_8000”.

0x8800 to
0x880F

34816 to
34831

Undef. Reserved for TC Front End.

0x8800 34816 Router Alternative routing of Spacecraft Application processes via TC
Front End

0x8801 34817 Apid TC Front End Controller

0x8810 to
0x881F

34832 to
34847

Undef. Reserved for TM Front End

0x8810 34832 Apid TM Front End > VC0

0x8811 34833 Apid TM Front End > VC1

0x8812 to
0x8816

34834 to

34838

Apid. Reserved for VC2 to VC6

0x8817 34839 Apid TM Front End > VC7

0x8818 34840 Apid TM Front End Controller

EGSE Gateway/Router Tasks

0xF000 to
0xFFFF

61440 to
65535

Undef. Reserved for EGSE Gateway/Router

Within the SSM, activities and reports can be attached to any SE. Activities initiated from the Test
and Operations procedure execution environment may:

• either be implemented as a procedure, and as such be executed by the procedure execution
environment,

• or not be implemented as a procedure, and as such passed to the EMCS kernel for
execution.

ESA has initiated the development activity for a SSM data repository based on the Oracle DBMS.
This Oracle based SSM is not currently available. Users of the current EMCS have to populate the
Mission data using the ASCII files interfaces provided by SCOS2000 and updated to support
specific EGSE command and control mechanisms.

Within SCOS, a facility is available to load the ASCII files into the internal SCOS MIB database.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 13 of 72

s
1.4.2 THE EMCS KERNEL

The EMCS kernel is an updated version of the SCOS2000 that supports functions required for use
as an EGSE kernel including:
• Capability to route commands to the spacecraft using the ground station or via the SCOE.
• Capability to monitor and control ground processes (e.g. SCOE applications)
• Capability to initiate commands and to process TM that are not predefined within the

database.

1.4.3 THE TEST AND OPERATION PROCEDURE ENVIRONMENT

The ECSS-E-70-32 Procedure Definition Language standard comprises the specification of a
common procedure language for Test and Operations (PLUTO).

ESA has initiated the development activity of software packages supporting the PLUTO standard
and offering end users the capabilities to prepare test and operation procedures, and to execute
them in the context of SCOS 2000.

As the PLUTO compliant software is not yet available, a procedure environment based on the
TCL-TK language has been prepared and delivered to the Herschel/Plank instruments team. This
system, called TOPE, interface the EMCS kernel, initiating commands (TC or SCOE command),
following their execution by the ground segment and the onboard application processes using
reports sent back by SCOS and monitoring the state of the space system using TM and ground
parameters.

TCL is a simple (free) programming language, made up of commands with parameters. TCL
provides usual programming constructs such as:

• Variables
• Control structures
• String manipulation.
• I/O, including files on disk, network sockets, and devices such as serial ports.
• simple facilities for socket communication over the Internet.
• File management: reading and writing file attributes, copying, deleting, creating directories,

etc.
Sub-process invocation: you can run other applications with the exec

command and communicate with them while they run.
Lists: TCL makes it easy to create collections of values (lists) and

manipulate them in a variety of ways.
Time and date manipulation.
Events: TCL allows scripts to wait for certain events to occur, such as an

elapsed time or the availability of input data
Extension mechanism to add features (e.g. get parameter, send command,

retrieve database info. etc).
TK extension to add graphical user interfaces.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 14 of 72

s
The TOPE system user manual is given in section 6. For information about TCL/TK, see
http://www.scriptics.com

1.4.4 THE SCOE

The SCOE system complements the EMCS kernel. The EMCS Kernel (SCOS) interfaces the
SCOE using TCP/IP.

For PROBA, a generic facility (called EGSE Router) has been developed by ESTEC/TOS-EMG to
allow an easy integration and remote control of SCOE equipment. This facility has been developed
for MS-Windows platforms. In the remaining of this section, an overview of this EGSE Router is
made. The TM/TC Front Ends are also ESA developments.

Note:

1. The MS-Windows based EGSE Router and the TM/TC Front Ends are not used within the
Herschel/Planck project.

2. A LINUX based EGSE Router has been developed by SRON (NL) institute for Herschel.

3. The SCOS to LINUX based EGSE Router interface is compliant to the ESTEC setup.

4. The LINUX based EGSE Router to SCOE interface does not comply to the ESTEC setup.

Instrumentation

Instrument
control

Stimulation
&

Measurement

DHS
Simulator

TM/TC

DHS bus

TM

Router

TC SCOS
Gateway

SCOE SYSTEM

SCOE SYSTEM

power

Local GUI

Instrument
S/WInstrument

S/W

Instrument
ApplicationInstrument

Application

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 15 of 72

s
1.4.4.1 The MS-Windows EGSE Router

A main facility residing on the SCOE, called Router, provides a core facility for building of
SCOE/EGSE equipment in which the system builder can:

• incorporate specialised hardware interfaces to the space equipment
• incorporate software applications that communicate with the hardware, with each other and

with the outside world.

The Router provides:
• location transparency
• client management
• Multiple clients per connection
• Data transparency
• Message delivery via call back procedure (asynchronous) or polling (synchronous).

The Router is written in Delphi. It uses Microsoft Distributed COM, acts as an ActiveX server and
supports multiple languages (e.g. Borland Delphi, C++, LabView, Java) i.e. any language
supporting ActiveX. For those systems that cannot interface the Router using DCOM, another
facility, called Gateway, is provided that allows connectivity using TCP/IP networks.

The EMCS Kernel (SCOS) currently makes use of the Gateway to connect to the Router
environment.

1.4.4.2 The MS-Windows TM Front End

The TM Front End provides functions necessary to extract, archive and distribute (CCSDS)
telemetry packets from a digital data stream connected to:
• hardware that interfaces to on-board equipment directly (as in the case of an on board data

handling interface simulator)
• operational TM/TC links via base-band equipment.

Appendix A contains a definition of the Front End commands.

1.4.4.3 The MS-Windows TC Front End

The TC Front End provides transformation of requests for command packet transmission into a
digital (CCSDS) data stream.
The complete ground-space protocol uses an embedded COTS product: TC ENCODER SHELL
from De lande long Consultants. This product has to be purchased by users wishing to utilise the
TC front end.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 16 of 72

s

2 INSTALLING THE SCOS EMCS OPERATIONAL
ACCOUNT.

The procedure given in this section is valid for the “SCOS EMCS release 2.3e P5 version”
delivered by ESTEC TOS-EMG.

The SCOS EMCS releases 2.3e P”5 version has been prepared for Herschel/Planck instrument
users.

The following procedure allows installing the SCOS operational environment in the standalone
mode. For installing SCOS in the client/server mode, the official SCOS configuration and
installation manual shall be used.

2.1 Pre-requisites

• Linux SUSE 7.3 is installed on your machine. Refer to Appendix D for installing
SUSE 7.3.

• The COTS are already installed. If not, follow the SCOS2000 Configuration &
Installation Guide procedure (refer to [R8]).

• The C-Tree is not anymore delivered on R2.3e COTS CDROM. Users need a
license. Discussion on-going with ESOC.

• The ILOG licensing discussions are still on going between ESOC and ILOG.
Temporary licenses can be obtained from ESOC waiting for the output of on-going
discussion.

2.2 Installation Procedure
Login as root

If it is the first time you install the SCOS R2.3e, create user (using Yast2) sops23e with /home/sops23e (tcsh
shell).

If you wish to install the SCOS2.3e P5 in parallel with previous P3 (or P4) version, create a directory called
/home/sops23e/P3 (or P4), move all /home/sops23e into this new delivery (except the dot files and the
Kdesktop directories. The P5 version is untar into a directoy P5_sops23e. Moving from one version to another
can simply be achieved by moving all the content of this P3/P4 or P5 directory within the top /home/sops23e
parent directory.

Another approach is to use the <automount> linux facility.

 If a previous version of SCOS has already being executed on the machine, you may need to remove all SCOS
related /tmp files:

rm /tmp/*
Login as sops23e

cd /home/sops23e

Copy the content of the EGSE 2.3eP5 CDROM into the /home/sops23e

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 17 of 72

s
The bin and lib directories contain binaries and libraries for LINUX. To run on SUN, you need to install the
SCOS development environment and recompile (refer to clause 3

tar xvfz P5_sops23e.gz

rm P5_sops23e.gz

The tar extracts the P5 data in the P5_sops23e directory. If you are installing on top of another SCOS version,
move your previous version to a safe area prior to move the full content of the P5_sops23e into
/home/sops23e.

<don't forget to move previous version if existing>

cd P5_sops23e

mv * /home/sops23e

verify link CORBAcfg/omni. The default setup is pointing to /opt/omni.

verify link ILOG/views31 Replace it to point to your ilog views directory.

e.g.: rm ILOG/views31

 ln -s /opt/ilog3.1/views311 ILOG/views31

Configure SCOS for your machine as follows:

cd /home/sops23e/Installation

On Linux, update the rhosts file:

vi rhosts

On Linux, however the file contains the + sign, you need to explicitly add your machine
name.

Copy the cshrc file in your home directory:

cp cshrc ../.cshrc

Update the s2k.hosts:

vi s2k.hosts
1. Update all occurrences of primehostname by your machine name
2. Update all occurrences of primehostaddress by the related IP address.

Update the session.dat file. Add your machine.

vi session.dat

Update the cmd_host_file. Add your machine. You may also remove all others machines references.

vi CMD_HOST_FILE

Create a link into the admin directory for your machine, as follows :

cd /home/sops23e/admin

ln -s s2k.env.standalone s2k.env.<machine name>

The 2.3eP5 delivery is configured for H/P. For other than H/P users, don’t forget to recompile the
egse-ws/EGSE subsystem with the mission needs (refer to [R6]) and to install related binaries and
library into /home/sops23e.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 18 of 72

s
Refer to section 2.3 for known problems with the 2.3e P5 delivery.

The SCOS EMCS 2.3e P5 system should be ready for use,
logout and login again as sops23e.

In case any problem occurs when starting the SCOS tasks (e.g. NAME, PDSEV, MISC, Releaser), verify that the setup
is complete using the table 5 of the section 2.2.1 of the SCOS2000 Configuration & Installation Guide, S2K-MCS-
SUM-0002-TOS-GCI 3.2 rev. 2.

Prior starting using SCOS, don’t forget:

• to configure the MISCconfig file (refer to clause 4.2) and

• to update the MISCconfig satellite_name, spacecraft_id.

• to import the MIB ASCII data (refer to clause 4.1).

2.3 Known problems with the SCOS EGSE 2.3 P5 version.

This list of problems is not an exhaustive list.

2.3.1 ERRORS SHOWN IN SCOS DESKTOP FOOTER WINDOW

The Desktop footer window is the window that appears on the bottom of your screen when you
start the SCOS DESK task. This window shows the last few messages (information, warning or
alarms).

2.3.1.1 CORBA::SystemException

When starting the FARC and DDSS tasks, the following alarm is raised:

Caught CORBA::SystemException trying to reach Name Service

The error badly states that the redundant MISC server cannot be reached. This message is not
adequate for standalone SCOS configuration (as the default EGSE configuration proposed in this
document). A software correction shall be made to remove the raising of this message. There is no
further impact to expect on the SCOS system due to this error message.

2.3.1.2 Connecting NCTRS

When the EGSE is configured to use NCTRS (i.e. MISCconfig variable EGSE_MODE = 0 or 1)
and NCTRS is not running, the following alarm is raised:

Could not connect to: NCTRS_A on host …

To start the NCTRS simulator, starts the TCSIM, ADMSIM CLCWSIM.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 19 of 72

s
2.3.1.3 MISCconfig variables

Some MISCconfig variables refer to environmental variables (e.g. $scosii_homedir) to define
directory paths. Others make use of absolute path (e.g. /home/sops23e/…)

In case a need appears to update MISCconfig variables, it is not recommended to replace absolute
paths by relative paths using environmental variables. This is due to some SCOS subsystems that
do no support expansions of environment variables.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 20 of 72

s

3 INSTALLING THE SCOS EMCS DEVELOPMENT
WORKSPACES.

This section complements the SCOS-2000 Configuration and Installation Guide (refer to [R8]). It
describes the steps to be performed to install the “SCOS EMCS release 2.3e P5 version”
delivered by ESTEC TOS-EMG.

3.1 Pre-requisites

• Obtain from ESA/ESOC, the SCOS2000 development license.

• Receive from ESTEC TOS-EMG, the SCOS EMCS release 2.3e P3 development CDROM.

• Prepare the SCOS EMCS development account following instructions given in [R8].

3.2 Installing the SCOS EMCS release 2.3e P5 sources.

• P5_linlib.gz

This file contains all development workspaces.

It should be noted that within the rel-ws of this 2.3e P5 version, the EGSE subsystem is obsolete.
The 2.3e P5 EGSE subsystem is located within the egse-ws.

As said above, the 2.3e P5 version of SCOS EMCS is prepared for H/P. In order to configure
SCOS for other missions, the EGSE subsystem needs to be configured and recompiled (refer to
[R6]).

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 21 of 72

s

4 CONFIGURING THE SCOS EMCS.

4.1 The Mission Information

4.1.1 THE MINIMUM EGSE DATA SET

The SCOS EGSE system requires a number of generic MIB data definitions to properly function.
These data can be found in the directory:

/home/sops23e/data/MIN_EGSE_v2

A given mission needs to adapt the MIN_EGSE for its mission. Especially the following files shall
be updated to comply with the TM/TC packet header structures:

tcp.dat make a new entry for the mission specific TC packet header. The
STANDARD entry can be removed.

pcdf.dat make new entries for the mission specific TC packet header parameters. The
STANDARD entries can be removed.

pcpc.dat possibly add new entries for the mission specific TC packet header
parameters. Remove non-used entries.

ccf.dat update the ZLOADTT command to make use of the mission specific TC
packet

cdf.dat update the ZBINTC command parameters to comply with the mission TC
packet header

cpc.dat Update the parameter definitions related to the ZBINTC command to
comply with the mission TC packet header

dpc.dat update the ZREJTM and ZVERIFT6 definitions to comply to the mission
TM packet header.

pcf.dat update the ZTMxxxxx and ZV6xxxxx definitions to comply to the mission
TM packet header.

plf.dat update the ZTMxxxxx and ZV6xxxxx definitions to comply to the mission
TM packet header.

vdf.dat Update the version entry.

All parameter and command names given in the MIN_EGSE ASCII files start with the letter "Z".
This convention allows an easy identification of the minimum data definition. In case a mission

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 22 of 72

s
requires changing all these identifiers, some of these identifiers are referred in the
resources/MISCconfig file and need to be changed accordingly.

Furthermore, the SCOS generic system makes use of a number of predefined TM packets. These
packets are identified by their SPIDs.

The SPIDs 1 to 100 have been reserved for the SCOS EGSE generic setup. A number of these
reserved SPIDs are already in use and can be found in the HFAconfig, TMDcacheSetUp,
ASCII/tpcf.dat files contained within the MIN_EGSE directory. These SPID definitions are also
referred in the resources/MISCconfig file.

If needed, a mission may assign other SPIDs than the reserved ones to the required generic TM
packets by updating consistently the MIN_EGSE definitions and the MISCconfig ones.

4.1.2 THE MERGEDATA FACILITY

When generating its own data, it is recommended to keep separated those data being part of the
MIN_EGSE from those data that are mission specific (e.g. data related to a given instrument).

The data/mergeDATA facility allows merging several sets of data files (e.g. MIN_EGSE and
Instrument1) into a new set of data files. For this purpose, a mission data directory (e.g.
Instrument1) shall comply with the structure of the MIN_EGSE directory and be located within the
$scosii_homedir/data directory.

The output of the mergeDATA facility is a new directory that can be directly used by SCOS or
subject to another merge with for example another instrument data set.

Attention: It shall be acknowledged that using the mergeDATA facility, TOPE procedures
that are defined within the two original sets of data files are copied into the new “merged”
set of data files. When updating TOPE procedures, only the new “merged” data procedures
are updated, resulting in a need to manually copy the new TOPE procedures that have
been modified into their original data set if the need appears to use the new version of the
TOPE procedures.

4.1.3 THE SETSCOSDATA FACILITY

The data/setSCOSdata facility allows setting SCOS for using a given MIB database defined
within the data directory. This facility requires as argument the name of the new MIB directory to
use and:

• sets the data/ASCII link to point to this MIB directory,

• sets the TOPE procedure directory (i.e. /home/sops23e/TCL/TC) to point to the MIB TC
directory that should contain all TOPE procedures.

• copies the HFAconfig and TMDcacheSetUp into the hfiles and TMD directories.

• imports all MIB ASCII files within SCOS (i.e. performing automatically the IMPORT task
of the SCOS task launcher)

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 23 of 72

s
When using the setSCOSdata consistently, no data is lost and switching from one database to
another one is possible.

Attention: Prior to switch databases, it shall be noted that new MIB definitions might
conflicts previously ones resulting in erroneous SCOS archives. If this is the case, it is
recommended to archive the hfiles directory and remove all archives contained within the
hfiles directory prior to use the setSCOSdata facility.

In case of errors or warnings when importing the data, a log file ($scosii_homedir/Import.log) can
be analysed.

4.2 MISCconfig EGSE specific variables

The following variables are those EGSE specific ones. Some of these variables need to be changed
to comply with a specific test configuration.

Name Description Default value

EGSE_MODE Configure the SCOS/EGSE to make use or
not of ESOC ground station.
0: TC Releaser only connects to the
NCTRS.
1: TC Releaser connects both to the
NCTRS and to the EGSE Router
2: TC Releaser only connects to the EGSE
Router.

1

NCTRS_EGSE_TC_SERVER If EGSE_Mode = 1 or 2,
Host name of the SCOS gateway (i.e. the
SCOS application that connects using
TCP/IP the EGSE gateway of the EGSE
Router)

localhost

NCTRS_EGSE_TC_SERVER_PORT Port number of the SCOS gateway (for
connection to the TC Releaser)

2222

EGSE_EGW_SERVER Host name of the EGSE gateway of the
EGSE Router.

localhost

EGSE_EGW_SERVER_PORT Port number of the EGSE gateway. 9876
EGSE_BINCMD_NAME Name of the "binary command" that can be

used with caution to upload commands that
are not defined within the MIB.
This command is defined within the EGSE
minimum MIB. When such command is
not authorised (e.g. for a given test
configuration), the command shall be
removed from the MIB before importing
within SCOS .

ZBINTC

EGSE_VER_SCOE_PKTID SPID of the SCOE Command verification
report

22

EGSE_VER_SCOE_APPDATA_OFFSET Byte offset of the Token (APID/SSC) in the
SCOE command verification reports
(Template 2 and Template 5)

22

EGSE_SEND_CHKSUM_ERROR_PKT Flag identifying whether TM packets that
fail the checksum verification are archived

1

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 24 of 72

s
Name Description Default value

(= 1) or not (= 0).
Refer to section 7.9.2.2.

EGSE_STREAM_ID_FOR_CRC_ERROR Only valid when
EGSE_SEND_CHKSUM_ERROR_PKT
= 1,
Data stream containing the TM packets that
failed the checksum verification.
Refer to section 7.9.2.2.

65534

EGSE_TM_FILING_TIME_TYPE Incoming TM data Time stamping strategy:
1: EMCS time,
2: Ground Station/ SCOE time,
3: OBT time (without any correlation,
meaning the OBT field value shall be
relative to the mission epoch, see
TCO_MISSION_EPOCH MISCconfig).
Refer to section 7.9.2.1

1

EGSE_TM_OBT_THRESHOLD Incoming TM OBT sanity check threshold.
If the delta between the OBT in the packet
and the current time is more than the
threshold it is ignored and the current time
is used. In the TM Packet history the packet
is shown as type PR, rather than PG.
A warning is given for every “insane”
packet.
Refer to section 7.9.2.1

60

EGSE_ VER_TC_GS_PKTID System SPID to use to store ground station
request verification reports.
Refer to section 7.9.2.3.

23

EGSE_VER_TC_REP_PKTID System SPID to use to store Service 1 TC
verification contained within TM packet
reports.
Refer to section 7.9.2.3.

24

EGSE_VER_TC_REP_APPDATA_OFFSET Byte offset of the request token of Service
1 TC verification contained within TM
packet reports.

16

EGSE_DUPLICATE_GS_UL Flag identifying whether a UL
acknowledgement flag is to be simulated
when receiving UL report from the TC
Front End (refer to BD mode).
0: do not generate a pseudo report.
1: For each GS_UL ack report received
from the EGSE, inject a GS_UL and a
GS_OB ack into SCOS.

1

EGSE_WRAPPER_PKTID_3 System SPID value used by SCOS to file
unknown SCOE observation messages.
Refer to section 7.9.2.4.

20

EGSE_WRAPPER_PKTID_6 System SPID value used by SCOS to file
unknown TM packets.
Refer to section 7.9.2.5.

21

EGSE_PIC_FILE_3 Location and name of the Template 3
specific MIB PIC file

$SCOSII_ASCII_MIB/
pic3.dat

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 25 of 72

s
Name Description Default value

EGSE_PIC_FILE_3 Location and name of the Template 3
specific MIB PID file

$SCOSII_ASCII_MIB/
pid3.dat

EGSE_PIC_FILE_6 Location and name of the Template 6
specific MIB PIC file.

$SCOSII_ASCII_MIB/
pic.dat

EGSE_PIC_FILE_6 Location and name of the Template 6
specific MIB PID file

$SCOSII_ASCII_MIB/
pid.dat

IMPT_DST_FILE Name of the ASCII file containing the
System Element routing configuration data.
Refer to section 6.1, VIA argument.

dst.dat

OOL_PACKET_APID System SPID to use to store OOL event
packets (default value is 3000).
Note that this value might be changed to
comply with H/P SPID allocation strategy
(TBC)

3000

PDS_SERVER_TC PDS server for TC packets.
Default is localhost

localhost

PDS_SERVER_EV PDS server for EV packets.
Default is localhost

localhost

HPR_TC_DIR Herschel packet retrieval configuration /home/sops23e/HPR
HPR_OL_DIR Herschel packet retrieval configuration /home/sops23e/HPR
HPR_IPC_PORT Herschel packet retrieval configuration 2209
TCO_MISSION_EPOCH Mission Epoch (default is 1/1/1970) 1958-01-

01T00:00:00.000000

4.3 Environment variables for the TCL scripts of TOPE

The following variables do not need to be updated. If really needed for a given mission setup, the
EXIF_runtime.env and s2k.env file shall be revised.

Variable Description Default Value

EXIF_ML_DIR Directory where ML looks for its components. Local directory
EXIF_TOPE_EDITOR Path and filename of the editor which is used by

TOPE
./ML.TCL

EXIF_POLL_TIME Interval between two polls for Telemetry data in
milliseconds

100

TOPE_DIR Directory where TOPE looks for Testcase scripts ../TC
TOPE_LOG Directory where TOPE creates Log files $TOPE_DIR

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 26 of 72

s

5 STARTING THE EMCS

Prior to using the EMCS, the system has to be configured, mission data has to be prepared and the
corresponding MIB ASCII files be imported (refer to section 0).

The MISCconfig file has to be updated to reflect the mission computer setup (EGSE Router
address, Printers, etc.)

5.1 Starting the SCOS EGSE tasks

To start the SCOS system, run the s2.start facility. This facility starts the SCOS tasks launcher (see
below). Select the EGSRsrv button and start the associated tasks.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 27 of 72

s
5.2 Starting the External Interfaces and TOPE procedure

environment

To start the external interfaces and TOPE task launcher, select the EXIF button (from the SCOS
task launcher) and start the task.

To start the TOPE debugger procedure environment, select the TOPEenv button and start the task.

NOTE:

In case other TOPE clients are required, for each new client, you need to start a new
EXIF_Chi task.

The TOPEi buttons allow starting instances of the TOPE execution environment in normal
mode;

The TOPE_DBG button allows starting the TUBA TCL debugger.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 28 of 72

s

6 TOPE LANGUAGE DEFINITION

The TOPE system is based on TCL/TK. The SCOS interfacing functions have been developed on
top of the TCL/TK. The TOPE language offers to the end users, the capability to define their test
procedures.

Users may make use of any TCL/TK low-level functions.

The section only introduces the SCOS related functions of the TOPE language.

It shall be noted that the language constructs presented in this section are not compatible with the
TOPE language used prior to Issue 3.0 of this document.

6.1 Sending Commands to the Unit Under Test and/or SCOEs.

tcsend <CommandName> <Arguments> <Parameters>

<CommandName>

<Arguments> all arguments clauses are optional. If not given, the EMCS kernel default
value is used.

via <string>

This option is not
supported in TOPE/CCS

Encoding and Routing information. Up to 3 values separated by “.” can be
given as following:

Server name : EGSE or NCTRS

EGSE encoding style: TC or SCOE (has to be consistent with the
MIB definition of the command header)

EGSE Destination: a value from 0x0000 to 0xFFFF.

If no value is given, the Default for the Via is taken from the MIB
definition (DST table)

Note that if the Server name is NCTRS, the Via 2nd and 3rd values have no
meaning.

Note that if the EGSE encoding style is SCOE, the EGSE destination value
is optional; the EGSE destination is retrieved from MIB by SCOS (the field
APID of the command is used).

If no value is given, the command will be sent using the MIB information
related to the APID of the command (refer to DST table).

Note that for a TC routed to the TCFE, the coding style has to be TC and
the EGSE Destination has to be set to the ID of the TCFE:
EGSE.TC.0x8800

mapid <number>

This option is not
suppo rted in TOPE/CCS

If this argument is not given, the default value calculated by SCOS-2000 is
used (MISCconfig variable CMD_MAP_ID, CCF_MAPID for high-priority
commands).

The MAPID value is relevant only in case of a command that is sent to
NCTRS or EGSE using the TC encoding style (Template 4).

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 29 of 72

s
vcid <number>

This option is not
supported in TOPE/CCS

Virtual Channel ID. If this argument is not given, SCOS-2000 will use its
default value (MISCconfig variable CMD_VC_ID).

VCID makes sense only in case of a command which is sent to NCTRS or
EGSE using TC encoding style (Template 4).

checks {

<staticPTVflag>

<dynamicPTVflag>

<CEVflag>

}

Flag to indicate if the PTV and or the CEV checks are required. Allowed
values are:

Static PTV Flags: SPTV / SPTV_OFF

Dynamic PTC Flags: DPTV / DPTV_OFF

CEV Flags: CEV / CEV_OFF

ALL (default value) meaning {SPTV DPTV CEV}

NONE meaning {SPTV_OFF DPTV_OFF
CEV_OFF}

ack {<ACKflags>} List of flags for reporting command execution verification by application.
Allowed values are:

 ACCEPT START PROGRESS COMPLETE

ALL meaning {ACCEPT START PROGRESS COMPLETE}

 NONE meaning no acknowledgement reports.

If the Ack clause is not present, the default acknowledgement flags defined
in the MIB (CCF_ACK and PCDF_VALUE where PCDF_TYPE="K") are
used.

referby <Varname> Name of the TCL variable, which is used for acknowledgement report
notification.

Whenever an acknowledgment report arrives, this variable is assigned to a
TCL list structure. The attributes of this list are extracted with a family of
access functions, which are described in 6.1.1.

If the variable <Varname> is first used within a tcsend statement. it is
initialised with an empty TCL list when the tcsend is invoked.

userrequestid
<UserreqID>

End user identifier of the TC request.

If the userrequestid is not used, the default value is 0.

releasetime <time> The absolute time when the command should be released in the form

YYYY.DDD.HH.MM.SS.UUUUUU

If the releasetime clause is not present, the command is released by the
SCOS system ASAP, where the Command Injection Handler defines the
release time.

executiontime

<time>

When this clause is added to the sendTC, an onboard schedule command is
build (i.e. LOADTT, PUS service 11,4). The TC to load within the onboard
schedule is associated the <time> given as a parameter corresponding to the
required start of execution of the related TC by the onboard schedule.

If the executiontime clause is not present, the command is not time -tagged.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 30 of 72

s
ilocktype<interlockT
ype>

This option is not
supported in TOPE/CCS

The interlock type of the command. Allowed values are:

NONE (default value)
LOCAL
GLOBAL
SUBSYS_LOCAL
SUBSYS_GLOBAL

ilockstage <stage>

This option is not
supported in TOPE/CCS

Stage for the interlock. Allowed values are:

UV_GS_ACCEPT (default value)
UV_GS_UPLINK
UV_SC_ONB_ACCEPT
EV_ACCEPT
EV_COMPLETE

 nowait By default, tcsend waits automatically until the stage UV_GS_RECEIVE is
reached. If an error occurs in any of these stages, the tcsend command fails
with a TCL exception.

Using the nowait option allows disabling the automatic wait.

The use of the nowait option allows reproducing the behaviour of previous
to P4 version of the TOPE system.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 31 of 72

s
Parameters The command parameters are lis ted at the end of the command with a list

for each parameter: Each command parameter has the following form:

{ <name> <value> [<format>] [RAW | ENG | DEFAULT] }

<name> Parameter name
<value> Parameter value
<format> Format of the value

The default <format> is ST (string). The string format can be used to pass
any parameter to SCOS. The SCOS system automatically translates strings
into the expected format and generates an error in case of incompatibility
(refer to [R9])

The following list of formats is given for completeness with EXIF interfaces. Using
specific EXIF types implies type compatibility check performed at TOPE level.

 LO long (32 bits signed)
 UL unsigned long
 FL float IEEE standard single precision floating point
 BO boolean
 ST string
 BS binary string
 TI time (refer to section 6.1.1)

 SH short (16 bits signed integer)
 US unsigned short
 CH char (length 1 char only)
 OC octet (length 1 octet only)

Values of parameters defined as Binary String within the MIB can be
passed according to the following convention:

1. {BINPARAM “xyz” “BS”} The binary string consists of 3
bytes containing the ASCII character codes of the x, y, and z
characters).

2. {BINPARAM “00FF10” “ST”} The string “00FF10” is treated
as a sequence of 2-digit hexadecimal numbers. 3 bytes with the values
0, 255, 16 will be encoded in the command.

RAW/ENG Parameter is defined as RAW (the default) or
ENGineering value.
DEFAULT Use MIB default for this parameter.

If this option is given, a dummy value (preferably ““ (i.e.
null)) must be specified, and the <format> must be
omitted. Example usage: tcsend TC1 {PARAM1 ””
DEFAULT} This syntax can be used to make the usage of
the MIB default explicit, and resolve ambiguities if the
command has several parameters with the same name.

Return value: On success, the return value of tcsend is a unique id of the request, which is
assigned by the system.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 32 of 72

s
On failure On failure, a TCL exception is thrown (which may be catched using the

standard TCL command catch if desired). E.g.:

if {[catch {tcsend TC001 referby tc1}]} {

 putlog “tcsend has failed”

}

When a command is initiated by TOPE, the command with all its arguments and parameters is
traced within the log.

When the command is received by SCOS, a first message is immediately returned and logged as
following:

<date&time> TC accepted by SCOS.
or

<date&time> TC rejected by SCOS : Error code <SCOS returned code >

In case of error, the string message passed in the exception is also logged.

Other command execution reports may arrive from SCOS. Each report is logged using the
following syntax:

<date&time> TC <Varname> <requestId> multiplexId <multiplexId> - <stage>
<status> [completed] <updateTime>

6.1.1 TIME FORMAT PARAMETER VALUES.

Parameter values of type Absolute time shall comply with the following format:

“YYYY.DDD.HH.MM.SS.mmmmmm”.

Parameter values of type Relative time shall comply with the following format:

“[+|-]HH.MM.SS.mmmmmm”.

The relative time format may be abbreviated as follows:

• The leading “HH” and “MM” fields may be omitted. Thus “MM.SS.mmmmmm” and
“SS.mmmmmm” are allowed.

• If the “HH” and “MM” fields have been omitted, the microseconds field may also be
omitted. A plain number (containing no “.”) is parsed as a number of seconds.

• Trailing zeros in the microseconds field may be omitted. Thus “+10.20.30.1”,
“+10.20.30.100”, and “+10.20.30.100000” are the same (10 hours, 20 minutes, 30 seconds,
and 100 milliseconds).

Note: Time values are handled as strings in TCL. As such, they cannot be used within arithmetic
expressions.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 33 of 72

s
6.1.2 ACKNOWLEDGEMENT REPORT ACCESS FUNCTIONS

The variable specified in the “referby” clause of tcsend will be updated every time an
acknowledgement report is received from the EMCS.

The value of the updated variable is a TCL list containing the various properties of the report,
which can be accessed using the following functions:

getrequestid <report> Request Id (number) for identifying the command request, which matches the
value returned by tcsend.

getmulitplexerid <report>

This function is not supported in TOPE/CCS

Unique Id (number), generated by the multiplexer, set in first call of
acknowledgement callback

getstage <report> Stage of the verification. Updated in every call of the acknowledgement
callback. The possible values are:

PTV_DYNAMIC
PTV_STATIC
MCS_RELEASE
UV_GS_RECEIVE
UV_GS_UPLINK
UV_ONB_ACCEPT
EV_APP_ACCEPT
EV_START_EXEC
EV_PROGRESS_0
EV_PROGRESS_1
EV_PROGRESS_2
EV_PROGRESS_3
EV_PROGRESS_4
EV_PROGRESS_5
EV_PROGRESS_6
EV_PROGRESS_7
EV_PROGRESS_8
EV_PROGRESS_9
EV_END_EXEC

getstatus <report>

Status of the verification. Possible values are:

IDLE
PENDING
PASSED
FAILED
UNVERIFIED
UNKNOWN
TIMEOUT
SUPERSEDED
 UNCERTAIN_FAILED
UNCERTAIN_PASSED
AFFECTED
SCC
NOT_APPLICABLE

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 34 of 72

s
getstagehistory <report> This is a character array (string) where the index is the value of verification

stage (getstage).

Executing the tcsend statement, all stages are set to "-", so the whole array is
"----------".

At each call of the acknowledgement call-back the corresponding array
element in the stagehistory is set with a shorthand character for the status:

IDLE I
PENDING P
PASSED S
FAILED F
UNVERIFIED U
UNKNOWN X
TIMEOUT T
SUPERSEDED E
UNCERTAIN_FAILED N
UNCERTAIN_PASSED V
AFFECTED A
SCC ““ (i.e. null value)
NOT_APPLICABLE ?

getstage returns at any time the current status of all of the verification stages,
in a representation, which matches the TC history display of SCOS.

Example:

tcsend cmd1 referby vCmd1
waitfor vCmd1 –until {[getcompleted $vCmd1]}
putlog [getstagehistory $vCmd1]

getcompleted <report> Flag for indicating if the command has been completed (1) or not (0). This
means that no more reports will be sent from SCOS.

If <report> is empty, then 0 is returned.

getupdatetime <report> Time of the report.

getuserrequestid <report> Returns the user-defined request id, which has been specified with the
“userrequestid” option of tcsend.

tostring <report> Returns a printable summary of the report. Example usage:

putlog [tostring $myRequest]

6.1.3 GET/SET THE TRANSFER MODE (AD/BD)

Note: The H/P CCS system only operates in BD mode. The get/set transfer mode functions are not
supported by the TOPE/CCS.

The default transfer mode used by the TOPE/EXIF system is given by the MISCconfig variable:

CMD_PKT_UPLN_MODE.

The following settransfermode and gettransfermode commands allow changing this MISCconfig
default behavior.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 35 of 72

s
settransfermode <mode>

<mode> Allowed values are “AD” and “BD”.

The success of this operation can be verified using gettransfermode (see below).

gettransfermode

Returns the current transfer mode of the external command handler. Possible return values are
“AD” and “BD”.

6.2 Fetch a parameter

fetch <ParameterName>

<ParameterName> Telemetry Parameter Name

Return value TCL list containing the properties of the parameter. These can be extracted using
the access functions (see below).

On failure, a TCL exception is raised.

e.g. set vP001 [fetch P001]

A set of access functions is provided for extracting the parameter’s attributes:

Function name Return value

getname <parval> Returns the name of the parameter or null if <parval> is empty.

getrawvalue <parval> Returns the raw (i.e. uncalibrated) value of the parameter or null if <parval> is
empty.

If the rawvalue is invalid (function israwvaluevalid returns false and getrawvalidity
returns non-zero), “” (i.e. null) is returned.

getextractedvalue <parval> Returns the raw (i.e. uncalibrated) value of the parameter or null if <parval> is
empty. Unlike getrawvalue, this function returns the raw value independent of its
validity.

israwvaluevalid <parval> Returns 1 (logical true) it the raw value of the parameter is valid. It returns 0 (logical
false) if the parameter is invalid or <parval> is empty.

getrawvalidity <parval> Returns the validity of the raw value of the parameter. This is a bitset represented by
an integer number. Any non-zero value indicates that the value is not valid.
Predefined constants are provided reflecting the meaning of each individual bit:

VAL_STATE_OFF State validity evaluates to 0
VAL_POWER_OFF System element is not powered
VAL_ROUTE_OFF Transport device route is off
VAL_MISC Spare (not used)
VAL_TRANSIENT Telecommand scheduled for param
VAL_TRANSPORT_ERROR_1..
VAL_TRANSPORT_ERROR_8 Transport error
VAL_EXPIRED Value has expired(packet not arrived)
VAL_UNKNOWN_STATE State parameter is invalid

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 36 of 72

s
Function name Return value

VAL_UNKNOWN_COMMAND Unknown condition
VAL_UNKNOWN_CRITERIA Unknown applicability criteria
VAL_CALIBRATION Calibration failed
VAL_TOO_EARLY Time predates mission
VAL_UNKNOWN_PKT Packet not configured in the cache
VAL_UNINIT Value has not been initialized
VAL_PKT_RETRV Packet retrieval error
VAL_MIB_ERROR Error in MIB (SDB) data
VAL_SYSTEM_ERROR General system error
VAL_FIELD_UNKNOWN Field unknown in packet definition
VAL_FIELD_ABSENT Field absent from given packet
VAL_UNKNOWN_TYPE Unknown type name
VAL_UNKNOWN_OP Unknown operator
VAL_UNKNOWN_CONV Unknown conversion
VAL_OVERFLOW An overflow occurred - data may have

been lost
VAL_DIVIDE_BY_ZERO Divide by zero
VAL_OL_PARSE An error occurred parsing OL expression.

Example usage:

set g123 [fetch G123]
if {[getrawvalidity $g123] & $VAL_TOO_EARLY}…

Notes:

1) This function and the VAL_xx constants are intended for in-depth
investigations. The israwvaluevalid function can be used for general purpose.

2) The “validity” panel of SCOS’ TQD display shows a checkbox for
each of these possible invalidity conditions.

getengvalue <parval> Returns the engineering (i.e. calibrated) value of the parameter. It returns ““ (i.e.
null) if <parval> does not have an engineering value.

If the engineering value is invalid (function isengvaluevalid returns false and
getengvalidity returns non-zero), ““ (i.e. null) is returned.

isengvaluevalid <parval> Returns 1 (logical true) it the enginnering value of the parameter is valid. It returns 0
(logical false) if the value is invalid or <parval> is empty.

getengvalidity <parval> Returns the validity of the engineering value of the parameter as a bit-set. For
details, see getrawvalidity.

getdefaultvalue <parval> Returns the engineering (i.e. calibrated) value of the parameter if it exists, otherwise
the raw value.

If the default alue is invalid (function isdefaultvaluevalid returns false and
getdefaultvalidity returns non-zero), ““ (i.e. null) is returned.

isdefaultvaluevalid <parval> Returns 1 (logical true) it the default value of the parameter is valid. It returns 0
(logical false) if the value is invalid or <parval> is empty.

getdefaultvalidity <parval> Returns the validity of the default value of the parameter as a bit-set. For details, see
getrawvalidity.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 37 of 72

s
Function name Return value

getoolstate <parval> Returns the OOL state of the parameter. Possible return values are:

NOMINAL

WARNING

ALARM

SCC

getsccstate <parval> Returns the SCC (Status Consistency Check) of the parameter. Possible return
values are:

SCC_ UNINIT

SCC_INIT

SCC_DISABLE

SCC_OFF

gettimestamp <parval> Returns the time stamp of the parameter.

isvalid <parval>

This function is not supported in TOPE/CCS

returns 1 (true) if the raw and the engineering value are valid.1

tostring <parval> Returns a human-readable representation on the parameter attributes

validitystr <validity> Converts a validity value (as returned by getrawvalidity,..) into a human-readable list
of strings.

Example:
set varP1 [fetch P1]
if {[israwvaluevalid $varP1] && [getrawvalue $varP1] > 10} …

6.3 Subscribe to a parameter

subscribe <ParameterName> referby <Varname> ?whenever <UpdateMode>?

<ParameterName> Telemetry Parameter Name

<Varname> Name of a TCL variable, which is used for carrying all attribute values of the
Parameter as returned by SCOS. See the definition of fetch.

<UpdateMode> UPDATE: parameter has been updated due to TM packet arrival, or because a

1 Thus this function is only useful with parameters, which have an associated engineering value.
(Rationale: If this function would ignore the validity of the engineering value if there is no engineering value, it would
return true in a scenario where the engineering value is invalid but has never arrived due to a “whenever CHANGE”
subscription.)

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 38 of 72

s

This function is not supported in TOPE/CCS

contributing parameter has been updated. The latter can be

• A source parameter if the parameter is synthetic

• A validity parameter

• A limit applicability parameter

• A calibration selection parameter

CHANGE: value has changed

The default is UPDATE.

An error will be raised if the <ParameterName> was already subscribed in a previous call of
subscribe.

6.4 Subscribe to a set of parameters

subscribeset <ParameterNames> referby <Varname> ?whenever <UpdateMode>?

<ParameterNames> TCL list expression containing the names of the parameters.

E.g. {G123 G124} or [list G123 G124] are possible ways to construct such a list.

<Varname> Name of a TCL variable, which is used for set notification.

<UpdateMode>

The whenever clause is not supported by the
TOPE/CCS

See subscribe (single parameter).

subscribeset is an advanced command, allowing subscrib ing multiple parameters at one time.
Whenever one or several parameters from the specifed set are updated, the following happens:

1. For each updated parameter, the TCL variable <Varname>_<ParameterName> will be
updated with a parameter value. The same access functions as with fetch and subscribe are
applicable.

2. <Varname> will be set to a TCL list containing the names of the parameters from previous
step.

An error will be raised if any of the parameters was already subscribed in a previous call of
subscribe(set).

Example:

subscribeset {ZZ001 ZZ002 ZZ003} referby vSet
waitfor vSet
foreach x $vSet {
 putlog “$x has been updated!”

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 39 of 72

s
 set varname “vSet_$x”

TCL trick: [set x] returns value of x !
 set parval [set $varname]
 putlog [tostring $parval]
}

6.5 Unsubscribe to parameters

unsubscribe <ParameterList> |-all

<ParameterList> List with names of previously subscribed parameter(s)

-all Cancel all currently active parameter subscriptions.

Example:

subscribe ZZ00A referby vP
waitfor vP
unsubsribe ZZ00A
set example:
subscribeset {ZZ001 ZZ002 ZZ003} referby vSet

waitfor vSet
unsubscribe {ZZ001 ZZ002 ZZ003}

6.6 Wait For a condition to become true

waitfor <Varname> ?-until <Expression>?

<Varname> The name of a TCL Variable.

<Expression> TCL code fragment, which is evaluated every time <Varname> is updated.

Waits until <Varname> is set, then evaluates the <Expression>. If the <expression> is True, go to
next statement, else wait for a new value to be set to <Varname> is evaluated.

If the –expression keyword and the expression are omitted, waitfor waits exactly once.

Examples:
tcsend cmd1 referby vCmd1
waitfor vCmd1 –until {[getcompleted $vCmd1]}
subscribe P1 referby vP1
waitfor vP1 –until {[israwvaluevalid $vP1] && [getrawvalue $vP1] > 10}

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 40 of 72

s
Waits until a valid raw value of P1 is greater than 10.

6.7 Wait For Time Interval

waittime <time>

<time> The amount of relative time to wait.

<time> must be a positive delta time. (The syntax of time values is described in
6.1.1.)

Examples for waiting 1 second:

waittime 1

waittime 1.000000

waittime +00.00.01.000000

waittime waits until the specified amount of time has elapsed.

Note: processing of events will take place while waittime is executed.

6.8 Watchdog

watchdog <wdName> triggeredby<Var-List> <condition> <Action>

<wdName> Name of the Watchdog

<Var-List> List of Variables to be waited for

<Condition> Pre-Condition of the Watchdog

<Action> Action to be evaluated

The watchdog will be triggered when any of the variables that are listed in <Var-List> changes.
Then, if the condition evaluates to true, the action will be executed.

The watchdog function behaves as following:
IF <wdName>_lock THEN exit ;# avoid watchdog code being called twice
ELSE SET <wdName>_lock 1
IF <Condition> THEN <Action>
SET <wdName>_lock 0

Example:
subscribe P1 referby vP1 whenever CHANGE
subscribe P2 referby vP2 whenever CHANGE
watchdog wd1 triggeredby {vP1 vP2} {[getrawvalue $vP1] == 0xFF} \
{puts "WD1: P1 Eng [getengvalue $vP1]"}

Notes:

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 41 of 72

s
• The watchdog function is not available on TOPE/CCS!

• As an alternative to watchdog, the standard TCL command trace can be used to
reach the same goal2. The trace command is described in the TCL manual pages.
Example:
proc mywatchdog {n n2 op} {
 # there must be 3 formal parameters, see manual page!
 set paramVal [set ::$n]
 if {! [israwvaluevalid $paramVal]}{
 putlog “WD: [getname $paramVal]: Raw is now
invalid!”
 }
}

subscribe P010 referby p1
subscribe P010 referby p2
trace variable p1 w mywatchdog
trace variable p2 w mywatchdog
other actions

6.9 Log a message

putlog <string>

<String> String to be logged. A time stamp is added to the log line

Example:

putlog OK.

Results in output

2001.015.16:59.59.000: OK.

If no user-defined logfile is currently active (see openlog, closelog below), the text is written to the
standard logfile.

6.10 Open log file

openlog <filename> [w | a]

<filename> Opens the Log file <filename> where the output of all subsequent putlog calls will
be written (in addition to the Logging Window).

2 In fact, trace is more general. The implementation of watchdog uses trace internally.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 42 of 72

s
[w / a] w: Open a new file or an existing file in overwrite mode. [default]

a: Open an existing file in append mode

This function is not available in TOPE/CCS !

6.11 Close log file

closelog

The log file is closed. After the log file has been closed, putlog output will be written to the
standard log again.

This function is not available in TOPE/CCS !

6.12 Miscellaneous functions

getstageorder <Stage>

This function returns the order number for a command stage:

PTV_DYNAMIC 0

PTV_STATIC 1

MCS_RELEASE 2

UV_GS_RECEIVE 3

UV_GS_UPLINK 4

UV_ONB_ACCEPT 5

EV_APP_ACCEPT 6

EV_START_EXEC 7

EV_PROGRESS_0 8

EV_PROGRESS_1 9

EV_PROGRESS_2 10

EV_PROGRESS_3 11

EV_PROGRESS_4 12

EV_PROGRESS_5 13

EV_PROGRESS_6 14

EV_PROGRESS_7 15

EV_PROGRESS_8 16

EV_PROGRESS_9 17

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 43 of 72

s
EV_END_EXEC 18

any other argument -1

It can be used to wait for a minimum stage:
Example:

tcsend Cmd13 referby vCmd13
waitfor vCmd13 {[getstageorder [getstage $vCmd13]] >=
 [getstageorder EV_APP_ACCEPT]}

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 44 of 72

s

7 EGSE SPECIFIC FUNCTIONS / DATA STRUCTURES

7.1 EGSE Message Format

The EGSE Messages are those messages exchanged between two ground applications using the
ESA EGSE Router protocol. These messages have the structure compliant to [A1] as described
below:

Reference Field Octets/Bits size

EGSERouter Byte Array Message Format
[A1]

 DstID 2 octets
 SrcID 2 octets
 Token 4 octets

Time 8 octets
 Msg_Type 1 octet
 Spare 1 octet
 S/C id 2 octets = 0x66 for

PROBA

 Application Data Any

The DstID field contains the unique identifier of the EGSE ground application to which the
message is sent (The Destination Application).

The SrcId field contains the unique identifier of the EGSE ground application, which has sent the
message (The Source Application).

The Token field contains the unique identifier of the message given by the sending application and
used whenever required, to report on the processing of the message.

The Time field contains the time in which the message has been issued. The format of the Time
field is:

The time field format is compliant to the SUN OS time format.
It is of 8 bytes lengths (2 long unsigned integers) encoded as:

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 45 of 72

s
Byte 0, 1, 2, 3 Unsigned integer equal to the cumulative

seconds from the 1970-01-01T00:00:00
epoch.

Byte 4, 5, 6, 7 Remaining Microseconds.

The Msg_Type field contains a unique identifier of the type of messages and identifies the
structure of the Application Data part of the message.

The following messages types are used in the context of exchange of request and/or report
messages required for the control and monitoring of any EGSE ground applications:

Msg_ Type Description Definition

1 SCOE Command Template 1

2 SCOE Command Verification Report Template 2

3 SCOE Observation Report Template 3

4 Sending TC Packet Request Template 4

5 Sending TC Packet Verification Report Template 5

6 TM Packet Report Template 6

7 TM Frame Reports Template 7

Other Msg_Types may be defined to allow other types of messages to be exchanged between
applications.

The following sections give the complete definition of the Application Data structures for the
Msg_Types 1 to 6.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 46 of 72

s

7.2 The EMCS Request acknowledgement Policy

The Packet Utilisation Standard introduces 4 types of acknowledgements that users can request to
follow the execution of the command by the onboard application processes:
• the Acceptance of the command by the Application Process,
• the Starting of execution of the command,
• the Progress of stages of execution of the command,
• the Completion of execution of the command.

The EMCS makes use of command verification reports allowing the processing of commands to be
followed not only when they are executed by the onboard application processes but also when they
are processed by the EMCS kernel, the NCTRS and the SCOE.
• Any SE (onboard application process and ground process) that can process requests can make

use of the acknowledgement facility to report on the status of the execution of request sent to
them. The 4 types of acknowledgements introduced by PUS can be used. PUS service type 1
subtypes 1 to 8 can be generated using Template 2 for SCOE commands and Template 6 for
TC packets reporting.

• 3 acknowledgement requests (GS_Ack "ground station acceptance", UL_Ack "uplinked",
ONB_Ack "onboard acceptance") and 6 associated acknowledgement reports (service type 9 to
14) have been added to follow the ground TC front ends progress in sending telecommands.
The ground station and the EGSE TC Front End applications use these new types of
acknowledgements.
• The GS Ack is returned by the Ground Station/SCOE TC FrontEnd when a telecommand is

received.
• The UL_Ack is issued by the Ground Station/SCOE TC FrontEnd when a telecommand

issued in BD mode has been sent to the spacecraft.
• The ONB_Ack is issued by the Ground Station/SCOE TC FrontEnd when the Spacecraft

confirms the reception of a telecommand issued in AD mode.

The resulting acknowledgement policy is as following.
When defining commands the MIB, users may request the following verifications to be performed
and acknowledgement reports to be issued:

Check Meaning Comment
Static PTV
condition

Static Pre-Transmission verification.

Dynamic PTV
condition

Dynamic Pre-Transmission verification.

GS_Ack
requirement
UL_Ack
requirement

These 3 acks are system acknowledgments. The EMCS
kernel requests them. Users can only use the associated
reports.

A pre-requisite to this
requirement is that the
routing application process
(e.g. TC Front End) is able
to issue these reports.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 47 of 72

s
Check Meaning Comment
ONB_Ack
requirement

 to issue these reports.

Acceptance_Ack
requirement

The user may require the Acceptance_Ack related
reports (Acceptance ack/nack) to be issued by the
application process.

Start_Ack
requirement

The user may require the Start_Ack related reports
(Start ack/nack) to be issued by the application
process.

Progress_Ack
requirement

The user may require the Progress_Ack related reports
(Progress ack/nack) to be issued by the application
process.

Completion_Ack
requirement

The user may require the Completion_Ack related
reports (Completion ack/nack) to be issued by the
application process.

A pre-requisite to this
requirement is that the
application process is able
to issue these reports.

CEV condition Confirmation Execution verification. The users may
require a condition to be verified to declare the
command successfully executed. This condition is
verified by SCOS.

Note: SCOS2000 implements the Acceptance, Start, Progress, Completion reporting mechanism
using the PUS service 1 or using TM conditions. The CEV is either computed using the Completion
report or via TM. Both should be available.

When commands are initiated by the TOPE the following reports are generated according to the
final destination of the commands and the capability of the application process to report on the
state of execution of commands,

TOPE EMCS Conditional Reporting

Initiate Command à

 ß ECH ack/nack Always generated by the External Command
Handler.

 ß SPTV ack/Nack User decision according to MIB definition
and TCSPACON setting.

 ß DPTV ack/Nack User decision according to TCSPACON
setting.

 ß GS ack/Nack Always delivered.
 ß UL ack/Nack Always delivered
 ß ONB ack/Nack Always delivered (Only in AD mode)
 ß Acceptance ack/Nack User decision according to the application

process capabilities.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 48 of 72

s
 ß Start ack/Nack User decision according to the application

process capabilities.
 ß Progress ack/Nack User decision according to the application

process capabilities.
 ß Completion ack/Nack User decision according to the application

process capabilities.
 ß Completed Notification Sent by the ECH after Completion Ack or

after any Fail condition

Note: the order in which the acknowledgement reports are received by the EMCS kernel cannot be
guaranteed.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 49 of 72

s

7.3 SCOE Request

The SCOE command template is used to send commands to a SCOE. The request format is similar
to the PUS format where:
• The CCSDS and PUS Secondary header is removed and replaced by specific EGSE headers.
• The PUS Application Data structure remains (see below the Template 1 Parameters structure).
• The Parameters structure format depends of the Service Type/Subtype compliant to PUS. The

MIB database contains the definition of the Parameter structure.

TEMPLATE 1: SCOE command

Field Bit size Value

à

 DstID 2 octets

 SrcID 2 octets

 Token 4 octets

 Time 8 bytes

 Msg_Type 1 octet = 1
 Spare 1 octet = 0
 S/C id 2 octet = 0x66 – PROBA

à

 Service Type 8 bits

 Service Subtype 8 bits

 Ack 8 bits Bit 0,1,2,3 (not used)

Bit 4 = Completion_Ack requirement

Bit 5 = Progress_Ack requirement

Bit 6 = Start_Ack requirement

Bit 7 = Acceptance_Ack requirement
 Parameters any

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 50 of 72

s

7.4 SCOE command Verification Report

Senders of SCOE commands may require the destination application to return a set of verification
reports to the sender.

For this purpose, the "ack" field of the request message expresses the requirements for verification
reports.

For each required report, the destination application will return a verification report as described
below.

TEMPLATE 2: SCOE command Verification Report

Field Bit size Value

à

 DstID 2 octets

 SrcID 2 octets

 Token 4 octets

 Time 8 bytes

 Msg_Type 1 octet = 2
 Spare 1 octet = 0
 S/C id 2 octet

à

 Service Type 8 bits 1
 Service Subtype 8 bits 1 to 8 depending of type of

acknowledgement
 SCOE command Token 4 octets Value of the related "SCOE command

Token"
 Step Number3 Only for Service subtype = 5 or 6
 Code4 8 bits

 Parameters

The meaning of the different Service subtype is as following:

Subtype Meaning

3 Reporting progress at step level is currently not supported by the EMCS server.
4 This code is currently not supported by the EMCS server.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 51 of 72

s
1 Successful Acceptance
2 Failed Acceptance
3 Successful Start
4 Failed Start
5 Successful Progress
6 Failed Progress
7 Successful Completion
8 Failed Completion

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 52 of 72

s

7.5 SCOE Observation Report

The EGSE Application Process can send any sort of feedback report message to SCOS following
an approach similar to the PUS Telemetry packet.

An EGSE Application Process can send to SCOS observation report messages using the [A1]
service “smData”.

A smData message has the following structure:

TEMPLATE 3: SCOE Observation Report

Field Bit size Value

à

 DstID 2 octets

 SrcID 2 octets

 Token 4 octets

 Time 8 bytes

 Msg_Type 1 octet = 3
 Spare 1 octet = 0
 S/C id 2 octet

à

 Service Type 8 bits See PUS
 Service Subtype 8 bits See PUS
 Parameters any See Note 1.

Note: When creating an observation report message, the MsgDataàParameters structure is similar
to the PUS source data structure of report packets.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 53 of 72

s

7.6 Sending TC Packets

To send TC Packets to the Spacecraft using the EGSE requires the use of an EGSE TC Front End.

The following template is used.

TEMPLATE 4: SendingTC Packet

Field Bit size Value

à

 DstID 2 octets ID of the TC Front End SE
 SrcID 2 octets

 Token 4 octets
 Time 8 bytes

 Msg_Type 1 octet = 4
 Spare 1 octet = 0
 S/C id 2 octet

à

 Ack5, 6 8 bits Bit 0 = 0 (not used)

Bit 1 = ONB_Ack requirement (AD mode only)

Bit 2 = GS_Ack requirement

Bit 3 = UL_Ack requirement

Bit 4 to 7 (not used.)
 Channel 8 bits VC number
 MAPID7 8 bits Multiplexed Access Point Identifier

 Service 8 bits AD = 0; BD = 2;
 TC Packet any Full CCSDS/PUS TC Packet.

5 When commands are sent in BD mode, the UL_Ack requirement asks for a report to be issued when the TC packet
has been completely sent to the Spacecraft (ack report) or partially or not sent (nack report).
6 When commands are sent in AD mode, the UL_Ack requirement asks for a report to be issued when the TC packet is
confirmed (ack report) or not confirmed (nack report) in accordance to the TC packet protocol (i.e. as result of the
processing of the CLCW).
7 Currently, the correspondence (as made for PROBA) between the Service type/subtype of commands and MAPID is
hardcoded within the SCOS to SCOE interface.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 54 of 72

s

7.7 Sending TC Packet Verification Report

The TC Front End reports to SCOS the status of the processing of commands sent to the Spacecraft
using the GS_Ack, UL_Ack and ONB_Ack reports (see also 8).

The EMCS kernel injects the Template5 message as Telemetry packets (using the SPID 10005 /
EGSE_VER_TC_GS_PKTID)

The TC Front End reports have the following structure.

TEMPLATE 5: Sending TC Packet Verification Report

Field Bit size Value

à

 DstID 2 octets

 SrcID 2 octets

 Token 4 octets

 Time 8 bytes

 Msg_Type 1 octet = 5
 Spare 1 octet = 0
 S/C id 2 octet

à

 Service Type 8 bits 1
 Service Subtype 8 bits 9 to 14 depending of the required

acknowledgement and its state.
 EGSE Command Token 4 octets As set with the corresponding sending TC

packet request.
 Code 8 bits

 Parameters any

Subtype Meaning

9 Successful GS

10 Failed GS

8 SCOS2000 can also require the spacecraft to send telecommand verification reports as defined in the PUS.
These TC verification reports will come directly from the Ground Segment TM Front End (or Ground Station) and be
processed in a conventional way.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 55 of 72

s
11 Successful UL

12 Failed UL

13 Successful Onboard Acceptance

14 Failed Onboard Acceptance

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 56 of 72

s

7.8 TM Packet Report.

When the EGSE TM Front End receives TM from the spacecraft, it encapsulates the TM Packet
into a report message as following.

TEMPLATE 6: TM Packet Report

Field Bit size Value

à

 DstID 2 octets

 SrcID 2 octets

 Token 4 octets

 Time 8 bytes

 Msg_Type 1 octet = 6
 Spare 1 octet = 0
 S/C id 2 octet

à

 TM Packet any Full CCSDS/PUS TM Packet.

Nota: TM packets received by the TM Front END and sent to the EMCS Kernel may contain any housekeeping or
scientific reports. It may also contain Service Type 1 reports.

The Service Type 1 reports are injected with the Packet ID 10006 (EGSE_VER_TC_REP_PKTID) known by the
SCOS-2000 verifier.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 57 of 72

s

7.9 Processing data messages coming from the EGSE Router.

7.9.1 SCOS INTERNAL ARCHIVES

The SCOS/EGSE system stores any received message (i.e. Templates 2, 3, 5, 6) into SCOS
internal packets. Each internal packet is identified by a given SPID.

Some SPID numbers (from 0 to 100) are reserved for SCOS kernel specific needs. This number
allocation can be changed for a given mission by update of the MISCconfig file and the minimum
EGSE data set (refer to section 4.1.1).

The SCOS/EGSE determines what SPID to use according to a given combination of the value of
key fields extracted from the received messages:

• the Msg_Type field of the EGSERouter Byte Array Message Format (i.e. Template
number)

• the APID,

• the service type and subtype,

• the PI1 and PI2 fields.

The PI1 and PI2 are fields that can be located anywhere within the packet for a given Template
number, service type and subtype (refer to [R5], section 3.3.2.4.2 Packets identification
criteria).

All SCOS archives are stored within the $scosii_homedir/hfiles directory. A given SPID archive is
made of an index file and a data file. The structure of the data file is made of

• a header that is used by SCOS for retrieval purpose, and

• a body that contain the incoming data report (refer to MIB ASCII files plf.dat and vpd.dat).

7.9.2 SPECIFIC PROCESSING PERFORMED ON INCOMING DATA

The SCOS/EGSE system process any message received from the EGSE Router. Specific functions
are performed according to the Msg_Type, Service Type and Subtype of the received messages.

7.9.2.1 Time Stamping.

The SCOS system time stamps any message prior to store it within its internal archives. The EGSE
is configurable to allow time stamping according to a given AIT test configuration.

Time stamping is made according to the value of the MISCconfig variable
EGSE_TM_FILING_TIME_TYPE as following:

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 58 of 72

s
• When EGSE_TM_FILING_TIME_TYPE = 1, the time stamping is made using the time of

reception of the message on the local machine on which SCOS is running (i.e. EMCS
time).

When EGSE_TM_FILING_TIME_TYPE = 2, the time stamping is made using the time
field value of the EGSERouter Byte Array Message Format (refer to section 7.1)

• When EGSE_TM_FILING_TIME_TYPE = 3,

o For all TM packet messages that contain a time field, the time stamping is
calculated by correlating the related OBT time.

Refer to [R6] to configure SCOS for a given mission dependent time correlation
algorithm.

o For any other messages, the time stamping is made using the time field value of the
EGSERouter Byte Array Message Format (refer to section 7.1).

o An sanity check is performed on the calculated OBT If the delta between the OBT
in the packet and the current time is more than the threshold (given by MISCconfig
variable EGSE_TM_OBT_THRESHOLD) it is ignored and the current time is used.
In the TM Packet history the packet is shown as type PR, rather than PG. A warning
is given for every “insane” packet

7.9.2.2 Checksum Verification

The EGSE can be configured to verify the checksum of received TM packets, using the
MISCconfig variables:

• EGSE_SEND_CHKSUM_ERROR_PKT

o When EGSE_SEND_CHKSUM_ERROR_PKT = 0, a TM packet failing the
checksum verification is not archived.

o When EGSE_SEND_CHKSUM_ERROR_PKT = 1, a TM packet failing the
checksum verification is archived within the SCOS data stream given by the
EGSE_STREAM_ID_FOR_CRC_ERROR variable.

• EGSE_STREAM_ID_FOR_CRC_ERROR: the SCOS data stream to use to archive TM
packets that fail the checksum verification.

Note 1: When archiving TM packets that fail the checksum verification, the SCOS EGSE tries to
retrieve the SPID key according to the procedure given in section 7.9.2.5. If the SPID is found, the
TM packet is archived within this SPID. When archiving such packet, the packet is flagged as non-
valid resulting in all contained parameters are as well flagged non-valid.

Note 2: For missions that do not use the CRC checksum and the related PEC field at the end of the
CCSDS TM packets, the SCOS EGSE system can be configured accordingly. Refer to [R6].

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 59 of 72

s
7.9.2.3 Request Verification processing

This function is called for the following message types:

• “SCOE Command verification”, i.e. Msg_Type = 2

• “Sending TC Packet verification”, i.e. Msg_Type = 5

• “PUS Service 1 TM Packet”, i.e. Msg_Type = 6, Service Type = 1 and Service Subtype is
between 1 and 8.

The Request verification function performs the following:

1. Call the SCOS TC verifier related function.

2. Store the received message within SCOS internal packets using System specific SPIDs:

System-SPID = EGSE_VER_SCOE_PKTID for SCOE for messages of type
“Command verification”.

System-SPID = EGSE_VER_TC_GS_PKTID for messages of type “Sending TC
Packet verification”.

o System-SPID = EGSE_VER_TC_REP_PKTID for messages of type “PUS Service 1
TM Packet”.

Within the EGSE Minimum database:

o a set of parameters are defined related to these system specific SPIDs. They are
prefixed by one of “ZV2”, “ZV5” and “ZV6”.

o Within the tpcf.dat file, these SPIDs are identified as EGSE_T2_VER,
EGSE_T5_VER, EGSE_T6_VER.

3. Search within the MIB ASCII pid.dat and pid3.dat files whether a given request verification
report message having a specific structure to process is also required to be stored within a
mission dependent SPID.

Note 1: This function is new in the SCOS Release 2.3e p3 version and allows processing
reports that for a given APID, Service Type, Service subtype makes use of a Code and
parameters fields.

Note 2: This function does not cover all capabilities covered by the PUS standard for uniquely
identify the presence and structure of the Service 1 related code and parameters.

7.9.2.4 SCOE observation messages processing

This function is called for the “SCOE Observation” type of messages, i.e. Msg_Type = 3.

For such message, the following key fields are used to identify the mission specific SPID to use:

• SrcID, i.e. the APID of the application that has issued the message.

• Service Type and Subtype.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 60 of 72

s
• Depending of the content of the pic3.dat ASCII file, the PI1 and PI2 fields.

If an entry can be found for these key fields within the pid3.dat ASCII file, the message is stored
within the related SPID.

If no entry can be found within the pid3.dat table, the message is “rejected” and filed within the
system specific SPID called EGSE_WRAPPER_PKTID_3.

Within the EGSE Minimum database, parameters identified with a prefix “ZO”, are defined to
support a first analysis of these rejected messages.

When the cause of the reject is that the MIB database does not contain the declaration of the SPID
related to the received message, users may update the MIB with the new definition and run the
SCOS task launcher PDS_DISP (refer to section 5.1) to read the EGSE_WRAPPER_PKTID_3
archive and copy the rejected report into its own SPID archive (refer to section 7.9.2.6).

Within the tpcf.dat file, the rejected SCOE observation SPID is identified by EGSE_T3_UNKN.

Note: When storing the SCOE observation message within the SCOS SPID related archive, the
body of the internal packet is filled with the full SCOE observation message as defined within
section 7.5.

According to the record length of the SPID related file (refer to its definition within the HFAconfig
file), it may happen that padding bits are added at the end of the body.

7.9.2.5 TM Packets processing

This function is called for the (other than service 1 related) “TM Packet” type of messages, i.e.
Msg_Type = 6.

For such message, the SCOS conventional key fields of TM Packets are used to identify the
mission specific SPID to use:

• The APID contained within the CCSDS header of the TM Packet.

• The Service Type and Subtype of PUS data field header

• Depending of the content of the pic.dat ASCII file, the PI1 and PI2 fields.

If an entry can be found for these key fields within the pid.dat ASCII file, the message is stored
within the related SPID.

If no entry can be found within the pid.dat table, the message is “rejected” and filed within the
system specific SPID called EGSE_WRAPPER_PKTID_6.

Within the EGSE Minimum database, parameters identified with a prefix “ZTM”, are defined to
support a first analysis of these rejected messages.

When the cause of the reject is that the MIB database does not contain the declaration of the SPID
related to the received packet, users may update the MIB with the new definition and run the
SCOS task launcher PDS_DISP (refer to section 5.1) to read the EGSE_WRAPPER_PKTID_6
archive and copy the rejected report into its own SPID archive (refer to section 7.9.2.6).

Within the tpcf.dat ASCII file, the rejected TM packet SPID is identified by EGSE_T6_UNKN.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 61 of 72

s
Note: When storing the TM Packets within the SCOS SPID related archive, the body of the
internal packet is filled with the full TM Packet including CCSDS and PUS headers and PEC
fields.

According to the record length of the SPID related file (refer to its definition within the HFAconfig
file), it may happen that padding bits are added at the end of the body.

7.9.2.6 Re-distributing unknown reports into proper SPID archives

When valid SCOE observation messages or TM packets are received by SCOS but do not have any
correspondence with a MIB defined SPID, they are “rejected” according to the scenario introduced
in sections 7.9.2.4 and 7.9.2.5.

A specific function is available within the EMCS that allows unknown messages that have been
filed in the EGSE_WRAPPER_PKTIDs area to be re-distributed within their proper archive files
after new entries have been added to the MIB and loaded within SCOS.

The procedure for such re-distribution of archive data is the following:

1. Shutdown the EMCS kernel (i.e. SCOS)

2. Create new MIB report definitions (i.e. new SPID entries for SCOE Observation Messages or
TM Packets). Don’t forget updating the HFA and TMD config files.

3. Import the updated MIB into SCOS.

4. Start the server and DESK processes of SCOS.

5. Start the PDS_DISP task.

The PDS_DISP task verifies whether the original SPIDs of the messages that have been filed under
the EGSE_WRAPPER_PKTID_3 and EGSE_WRAPPER_PKTID_6 SPIDs archives have been
properly defined within the MIB. If this is the case, the corresponding messages are copied within
their proper archive.

A log is made within the Event log and within the $HOME/PDSdispatch.log.

Note: in the current version, the unknown message archives are not cleaned. The PDSadmin tool
can be used to delete messages from the unknown message archives.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 62 of 72

s

APPENDIX A MS-WINDOWS TM FRONT END USER
MANUAL

For the purpose of demonstrating the functioning of the EMCS, a demonstrator of a simple TM
Front End SCOE has been delivered together with the EGSE Router. This demonstrator allows
replay of archived PROBA TM frames. The following tables detail the commanding and control of
this EGSE TM Front End. The MIB ASCII files delivered with the EMCS contains the data
required for operating this front end.

The TM Front End is made of up to 8 system elements. 3 of them have been configured for
PROBA:

0x8810 TM Front End : VC0

0x8811 TM Front End : VC1

… …

0x8817 TM Front End : VC7

Commands can be sent to any TM Front End Virtual Channel Controller to require TM packets to
be sent to any client. Filtering mechanisms have been encoded to allow filtering by APID.

The TM Front End Controllers commands are:

Activate sending of VC<n> TM Packets related to
APID <apid>
Destination 0x881<n>
Type, Subtype 8, 1
TMr_Id SE Id that shall receive

the TM (Uint 16 bits)

TMFE VC<n>APON

Apid A valid S/C APID (Uint
16 bits)

Deactivate sending of VC<n> TM Packets related
to APID <apid>
Destination 0x881<n>
Type, Subtype 8, 2

TMFE VC<n>APOF

Apid A valid S/C APID (Uint
16 bits)

Activate sending of all VC<n> TM Packets TMFE VC<n>ALLON
(same as VC<n>APON with APID = 0xFFFF)
Deactivate sending of all VC<n> TM Packets TMFE VC<n>ALLOFF
(same as VC<n>APOF with APID = 0xFFFF)

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 63 of 72

s

APPENDIX B CONVENTIONS

B.1 Unsigned Integer values format convention

Hexadecimal values are always prefixed by the two characters "0x". Example 0x8000 is equal to
the decimal value 32768

B.2 Bit/Octet Numbering Convention

The following convention is used to identify each bit in a forward-justified N-bit field.

The first bit in the field to be transmitted (i.e. the most left-justified bit when drawing a figure) is
defined to be “BIT 0”; the following bit is called “Bit 1” and so on up to “Bit N-1”.

When the field is used to express a binary value (such as an integer), the Most Significant Bit
(MSB) shall be the first transmitted bit of the field (i.e. “Bit 0”).

An octet (i.e. a byte) is 8-bits length.

A short word is 16-bits length (i.e. 2 octets).

A word is 32-bits length (i.e. 4 octets).

A long word is 64-bits length (i.e. 8 octets)

The above convention for identifying a bit is also used for identifying each octet in a forward-
ordered N-octet field.

N-BIT Data Field

Bit 0 Bit N - 1

MSB

N-octets Data Field

Most Significant Octet

Octet 0 Octet 1 Octet N-1

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 64 of 72

s

APPENDIX C LIMITATIONS AND KNOWN BUGS

C.1 resolved.

C.2 TC verification across TOPE sessions

Usually, the state of TOPE is not preserved across sessions. However, when the TOPE is stopped
after sending a request and before receiving all acknowledgements; restarting TOPE may imply
that previous request acknowledgment are received. This behaviour is not consider faulty.

C.3 Tope TCL/Tk and MISCconfig variables

The TOPE environment must not override MISCconfig variables else TOPE crashes. This is due to
the fact that the MISCcfgBase issues warnings via the C++ cerr stream when a MISCconfig
variable is overridden. The use of the C++ I/O streams (cin, cout, cerr) is not compatible with the
C language I/O used in TCL/Tk.

C.4 Known Limitations of TUBA

The co-operation of TUBA with TOPE is implemented as follows.
• Starting several procedures inside TUBA does not mean that they run in parallel. The first

procedure will be stopped until the second one terminates. If the second procedure is executed
step by step and the last statement is reached, actually two statements will be executed: the last
one of the second procedure and the next statement of the first procedure.

• TUBA patches the TCL command “source”. When the user selects a file in the TOPE windows
and clicks on the run button, the modified source command looks for the first statement in this
file and sets a breakpoint. Then the original source is executed. This behaviour does not work
properly if the first command is the definition of a TCL procedure:
(proc procname { parameter[s] } { body })
because TUBA jumps over procedure definitions. Thus the current TOPE implementation
shows a message dialog with the information that a TCL command should be inserted as the
first command in the file.
• Under certain circumstances TUBA performs a step into operation although the user has

selected step over.

TUBA debugging sessions cannot be restarted. This feature has been disabled because restarting a
debugging sessions causes trouble on the CORBA communication layer with SCOS.

C. 5 Display of Time Parameters

Time parameters make use of the defined epoch to convert the raw value into a meaningful time.
The algorithm used works correctly for all raw values which result in a time after 1970 (the UNIX
epoch). For times before 1970 the date is shown as very large (e.g. for 1958 epoch and a raw value

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 65 of 72

s
of 0 the date is shown as 2094 rather than 1958). This problem will only occur for uninitialised
parameters; once the parameter is initialised to current time the display will be correct.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 66 of 72

s

APPENDIX D HOW TO INSTALL SUSE FOR SCOS EMCS.

Installing SUSE 7.3 at ESTEC – For internal use only.
This procedure deviates from the ESOC internal procedure given below.

SuSE 7.3 Professional version
Select “Installation” (as opposed to “Manual Installation”) à option write lilo to boot)

Language: English (GB)
Keyboard: English (US)
Time Zone: Global/GMT
Hardware Clock: GMT

New Installation
Software selection: “Default” “Default” includes the software categories “KDE Desktop” and
“Help & Support” (as opposed to “Default with office”)

 + category “Development”
 + acroread
 - fetchmail
 + acct

- iproute2
- dhcpcd
- finger-server
- i4l
- i4lfirm
- yast2-config-adsl
- yast2-trans-adsl

 - talk-server
- SuSEfirewall
- personal-firewall

 - apmd
 + xrpm + prerequisites for xrpm: python (e.g. python-tkinter) libraries and blt
 + lincvs

+ pcl-cvs
+ pdksh
+ tcl-devel

 (We leave the packages ppp, sunpppd, wvdial and fam in, though not needed nor wanted, due to dependencies with other
packages)

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 67 of 72

s

Installing SUSE 7.3 at ESOC – For internal use only.

SuSE 7.3 Professional version
Select “Installation” (as opposed to “Manual Installation”)

Language: English (GB)
Keyboard: English (US)
Time Zone: Global/GMT
Hardware Clock: GMT

New Installation
Discard suggested partitioning
Expert disk partitioning: ReiserFS for new file systems
we leave unmodified the existing ext2 file systems for /home and /local

/dev/sda1 root 6GB ext2 RedHat 6.2
/dev/sda2 root 6GB ReiserFS SuSE 7.3
/dev/sda3 Extended 22GB
/dev/sda5 /home 20GB ext2
/dev/sda6 /local 1.4GB ext2
/dev/sda7

swap
512MB swap

Software selection: “Default”9 (as opposed to “Default with office”)

 + category “Development”
 + acroread

 - fetchmail
 + acct

- iproute2
- dhcpcd
- finger-server
- i4l
- i4lfirm
- yast2-config-adsl
- yast2-trans-adsl

 - talk-server
- SuSEfirewall
- personal-firewall

 - apmd
 + xrpm + prerequisites for xrp m: python libraries and blt
 + linkcvs

+ pcl-cvs
+ pdksh
+ tcl-devel
10

Monitor configuration: 1280x1024 24-bit 75 Hz
Ethernet and Sound card recognized and configured by the installer
DHCP disabled in the configuration of the Ethernet Interface
Standard DEVLAN IP and DNS parameters
Lilo configuration for dual boot SuSE 7.3 – RedHat 6.2:

9 “Default” includes the software categories “KDE Desktop” and “Help & Support”
10 We leave the packages ppp, sunpppd, wvdial and fam in, though not needed nor wanted, due to dependencies with other
packages

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 68 of 72

s
disk=/dev/sda
 bios=0x80
boot = /dev/sda
vga = 791
read-only
menu-scheme = Wg:kw:Wg:Wg
lba32
prompt
timeout = 80
message = /boot/message

 image = /boot/vmlinuz
 label = suse
 root = /dev/sda2
 initrd = /boot/initrd
 append = "enableapic vga=0x0317"

 image = /boot/vmlinuz.suse
 label = failsafe
 root = /dev/sda2
 initrd = /boot/initrd.suse
 append = "disableapic ide=nodma apm=off"
 optional

 image = /boot/memtest.bin
 label = memtest86

 other = /dev/sda1
 label = redhat
 table = /dev/sda

Disable the display of user names on the KDE login screen:

KDE Control Center / System / Log-in Message: show users “none”

Configure NTP daemon and initial ntpdate command during boot:

Yast2 / System / rc_Config_Editor / Base_Admin / SuSE Configuration / Time Synchronisation:
XNTPD_INITIAL_NTPDATE = “devntp1a devntp1b”

Yast2 / System / rc_Config_Editor / Base_Admin / Start Variables / Start Network / start_xntpd
START_XNTPD = “yes”

Edit /etc/ntp.conf with the ntp server names
System Start-up customization:

Yast2 / System / rc_Config_Editor / Start Variables / Start_Administration

START_GPM = “no”
START_ACCT = “yes”
START_INETD = “yes”
START_SSHD = “no”

Other options in rc_config_editor submenus11:

Beautify_ETC_HOSTS = “no”
Check_ETC_HOSTS = “no”
Create_YP_CONF = “no”
Use_NIS_FOR_AUTOFS = ”no”

Inetd Configuration:

Disable “time” for both TCP and UDP
Disable “talk” and “ntalk”
Disable “finger”
Enable “in.ftp”
Enable shell “in.rshd –L”

Standard Maintenance accounts
Maintenance trusted host entry

11 The tree organization of the Yast2 registry is too complicated. Use the search function to located the following options

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 69 of 72

s
Known Problems:

Mouse Pointer
The mouse pointer tended to disappear within the X screen test and tune dialog and,
occasionally, on the desktop after login. Problems disappear after re-running Sax2 and
letting the auto-detection of the mouse work. This gave

protocol = IMPS/2
device = /dev/psaux
Z axis mapping = “4 5”

for a Microsoft wheel-mouse.
Halt & Reboot accounts

Halt and reboot accounts were installed with the halt and reboot commands as login shells.
The behavior of these accounts differs from Solaris in that the specified login shell is only
executed, and consequently the machine shutdown, when the user opens a shell after having
obtained a normal KDE desktop. This is not acceptable for a shutdown procedure and some
investigation is still needed on how to implement this function perhaps customizing the
Shutdown button on the login screen.
The halt and reboot accounts do work via switch user “su”.

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 70 of 72

s

APPENDIX E CCS MIGRATION GUIDELINE

E.1 Use common subset of TOPE commands

Due to the H/P CCS user requirements, the set of commands supported by the TOPE/CCS differs
from the set described in this manual.

The TOPE instrument language statements and clauses that are not available on the CCS are
flagged within this document (i.e. “not supported by TOPE/CCS”).

When preparing instrument procedures that need to run on the H/P CCS during system tests, the
following differences should be acknowledged.

E.2 Parallel/Multiple Procedures

Inside an instance of TOPE, TOPE/IEGSE uses a kind of “cooperative” multitasking model with a
single event loop (this is a consequence of the architecture). This has seve ral consequences:

• TOPE/IEGSE procedures can use global variables to communicate with each other. It is
also possible that one procedure sets a variable, which is used by the next procedure, after
the first has terminated.
These “spillovers” do not (and sha ll not) work on TOPE/CCS. Thus they are to be avoided.
(It is also considered bad programming style if one procedure depends on variables set by
another procedure, because it may lead to errors, which are hard to find.)

• Since there is only one event loop, updates of variables might be lost by a procedure. For
example:
procedure A executes waitfor. Then procedure B is started, until B hits another waitfor.
Now all incoming TM/TC verification traffic will be visible to procedure B only. In the
worst case, this may have the consequence that procedure A waits forever, even after B has
terminated, because A has missed some updated it is waiting for.

The TOPE/CCS uses individual processes for each procedure. This implies that procedures run
truly parallel.

Recommendation è Use different instances of TOPE/IEGSE for procedures, which shall run
in parallel on the CCS!

E.3 connect SCOE

In the SCOS-based IEGSE system, the connection between SCOS and the SCOE is established
automatically. This is a feature of the protocol used.

On the HP/CCS system, connections must be established explicitly. Therefore the
connect/disconnect command pair is provided:

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 71 of 72

s
connect SCOE1

… do the job

disconnect SCOE1

E.4 attach/detach SCOE

The CCS requires that a test procedure attach to a SCOE before commanding it. This attaching is
an exclusive lock, i.e. at most one procedure can be attached to a SCOE at a given point in time.
Thus the command “attach <SCOEname>” must be inserted before the first tcsend to a SCOE:

attach SCOE1

… do the job

detach SCOE1 ; # optional

Note: attach is required for SCOE commands but not for S/C commands.

E.5 Telemetry update mode

1. The TM update policy used on the CCS is similar, but not identical to “whenever
UPDATE”:

• For parameters originating from a packet, the “referby” variable will only be
updated by TOPE/CCS if a source packet has arrived. It will not be updated due to
an update of a validity parameter, SCC state, limit applicability, or calibration
selection parameter.

• For synthetic parameters, the update policy is identical: An update notification will
be received whenever one of the parameters in the OL expression is updated, or the
validity parameter, SCC state, limit applicability, or calibration selection parameter
is updated.

2. The “whenever CHANGE” is currently not available on the TOPE/CCS. However, waiting
for a change of the raw value, for instance, is straight- forward:

set oldraw [getrawvalue $param]
waitfor param –until {[getrawvalue $param] != $oldraw}

EGSE based on SCOS 2000
issue 4 revision 0 - 2004-03-09

TOS-EMG/01-1029/bm/sv
page 72 of 72

s

APPENDIX F HOW TO UPDATE THE TOPE SYSTEM TO
AVOID THE TUBA DEBUGGER TO STEP INTO
CERTAIN PROCEDURES.

1. Identify what procedures are to be excluded from Stepping-In.
2. Edit $scosii_homedir/tcl/tuba/TOPE.ses adding the procedure names to the section

"_exclusions".

The wildcard character "*" can be used; e.g. "Fire*" will exclude all procedures which
name starts with "Fire".

If the procedures are in a TCL namespace and the complete namespace should be excluded,
the "::<namespace>::*" syntax can be used; e.g. "::TOPE::*" will exclude all procedures
defined in the top- level TOPE namespace.

