
Herschel IA User’s Manual
V0.4, 21 January 2005

Herschel Interactive Analysis

A Basic User’s Manual

V0.4, 21 January 2005

A.P.Marston & H. Siddiqui,
Herschel Science Center

1

jal73
 SPIRE-ESA-DOC-002290

Herschel IA User’s Manual
V0.4, 21 January 2005

2

1 The Herschel Common Science System and Interactive Analysis (IA)
 7

1.1 Brief Overview.. 7
1.2 Availability of IA and Operating Systems.. 8
1.3 Related Documentation... 8
1.4 Versioning... 8
1.5 Previous Versions of IA User’s Manual ... 8
1.6 What’s New .. 9
1.7 List of Contributors:.. 10

2 HCSS Downloading and Installation ... 11
2.1 Introduction... 11
2.2 Platform... 12
2.3 Pre-Installation Requirements... 12
2.4 User Installation Procedure... 13

2.4.1 Known Installation Problems.. 14
2.5 IA Property Initialization .. 14

3 Introduction to Working in IA: Using Jconsole 15
3.1 Introduction... 15
3.2 Running IA under Jconsole:.. 16

3.2.1 File Menu.. 18
3.2.2 Console Menu ... 18
3.2.3 Edit Menu.. 18
3.2.4 Run Menu.. 19
3.2.5 Help Menu .. 19

3.3 Standard Settings for Jconsole .. 22
3.4 Using import.py to customize Jconsole.. 23
3.5 Programming Loops in Jconsole... 23
3.6 Multiline Statements with Jconsole .. 24
3.7 Errors and Exceptions in IA.. 25

3.7.1 Overview of the different libraries used in an IA session......................... 25
3.7.2 The error back trace mechanism... 26

3.7.2.1 The way Jython presents error messages .. 26
3.7.2.2 The way JAVA presents error messages .. 27

3.7.3 The HCSS exception and logging mechanism.. 27
3.7.3.1 Exceptions as thrown from HCSS classes .. 28
3.7.3.2 The HCSS logging mechanism... 28

4 Some IA Basics & Beginning Jython... 30
4.1 Basics .. 30
4.2 Lists and Dictionaries ... 31

4.2.1 Setting up and Accessing Lists ... 31
4.2.2 Slicing Lists and Arrays.. 32
4.2.3 Setting Up and Using Dictionaries ... 32
4.2.4 Nested Dictionaries... 33

4.3 Augmenting Values and Arrays.. 34

Herschel IA User’s Manual
V0.4, 21 January 2005

4.6 Blocks and programming loops .. 35

3

4.4 Printing to the screen and files.. 34
4.5 Defining and Using Functions .. 35

4.7 Classes and Methods... 35
4.8 Writing Scripts – Programming in IA... 37
4.9 Some Useful Extra Items .. 37

5 Handling Arrays and Other Datasets.. 39
5.1 Introduction... 39
5.2 Getting started... 40
5.3 Types of Array Datasets.. 40
5.4 Creating a Simple 1D Array Dataset .. 41
5.5 Dataset attributes... 42
5.6 Simple 1D Array Manipulation .. 42

5.6.1 1D Array Arithmetic ... 42
5.6.1.1 Addition, subtraction and concatenation: ... 42
5.6.1.2 Multiplication:... 43
5.6.1.3 Array length: ... 43
5.6.1.4 General Application of Functions:.. 43

5.6.2 Logical Operations.. 43
5.6.3 Type Conversion... 44

5.7 Dealing With Complex Arrays ... 44
5.8 Creating and Accessing Multi-Dimensional Array Datasets 45
5.9 Creating and Viewing a Table Dataset ... 46
5.10 Creating and Accessing a Composite Dataset .. 46

6 IA Numeric: Basic Functions for Herschel IA................................... 48
6.1 Introduction... 48
6.2 Getting Started .. 48
6.3 Functions and Lambda Expressions.. 49
6.4 Filtering... 50
6.5 The 'where' and 'get' methods ... 50
6.6 Advanced Tips .. 52
6.7 Vectors and Matrices .. 53
6.8 Function Library ... 53

6.8.1 Basic Functions... 54
6.8.2 Discrete Fourier Transform... 54
6.8.3 Convolution... 55
6.8.4 Boxcar and Gaussian Filters ... 56
6.8.5 Interpolation Functions ... 56
6.8.6 Basic Fitter Routines... 58

6.9 Example Programs .. 59
7 IA Plot: Basic Plotting of Data... 61

7.1 Introduction... 61
7.2 What do I need to make a simple XY plot? .. 62

7.2.1 Introducing PlotXY... 62
7.2.1.1 Using PlotXY to Plot One Numeric1d Array Against Another............ 62
7.2.1.2 Using PlotXY to Plot Columns in a TableDataset................................ 63

Herschel IA User’s Manual
V0.4, 21 January 2005

4

7.3 How to setup your PlotXY properties... 65
7.3.1 How to modify properties ... 65
7.3.2 Plot properties ... 66
7.3.3 Layer properties .. 66
7.3.4 Axes properties. .. 68
7.3.5 How to use properties. .. 68

7.4 How to use PlotXY in IA scripts .. 69
7.4.1 What about these Layers? .. 71
7.4.2 What can I do with Axis? ... 73

7.4.2.1 Log Axes, Labels and Gridlines.. 74
7.4.2.2 Multiple Axis Labels... 74

7.4.3 How can I annotate and decorate my plot?... 77
7.4.4 How can I make my plots more colourful?... 78

7.5 Creating File Output and Printing a Plot Without Displaying.......................... 79
7.6 Handling Units in Plots... 79
7.7 What about a complete example? ... 81

8 Display: Handling Images with Herschel IA 82
8.1 Introduction... 82
8.2 Using ImageDatasets .. 83
8.3 How can I display my image?... 84
8.4 Display in more detail. .. 86
8.5 How can I use Operations on my images?.. 87

8.5.1 Clamping (or clipping) an Image.. 88
8.5.2 Cropping an Image.. 88
8.5.3 Histogram of an Image.. 88
8.5.4 Rotating an Image ... 89
8.5.5 Scaling an Image... 91
8.5.6 Translating an Image... 92
8.5.7 Transposing an Image ... 92

8.6 How can I display my own numeric2d datatypes? ... 93
8.7 How to Use Different Layers.. 94
8.8 How to place annotations on the image .. 94

8.8.1 Annotations from the Command Line in your IA session 95
8.8.2 Annotations using the annotation toolbox .. 96

8.9 Sample JPEG Image and Extended Example Demo Script 98
9 Other IA Packages: What is Available? ... 99

9.1 Introduction... 99
9.2 Overview of JavaDocs Documentation for IA Packages................................ 100
9.3 Package view .. 101
9.4 Class view ... 101
9.5 Tree view .. 105
9.6 Deprecated view.. 105
9.7 Index view... 105
9.8 IA Packages And Documentation... 105

9.8.1 herschel.ia.dataflow .. 105
9.8.2 herschel.ia.dataset ... 106

Herschel IA User’s Manual
V0.4, 21 January 2005

5

9.8.3 herschel.ia.demo ... 106
9.8.4 herschel.ia.doc... 106
9.8.5 herschel.ia.help ... 106
9.8.6 herschel.ia.image... 106
9.8.7 herschel.ia.inspector.. 107
9.8.8 herschel.ia.io ... 107
9.8.9 herschel.ia.jconsole ... 108
9.8.10 herschel.ia.numeric ... 108
9.8.11 herschel.ia.plot .. 108
9.8.12 herschel.ia.task.. 108
9.8.13 herschel.ia.ui ... 108

10 Import and Export of Tabular ASCII and FITS Files 109
10.1 Introduction... 109
10.2 Getting Started with ASCII Import/Export... 109
10.3 Basic ASCII Table Import/Export Tool Usage... 110

10.3.1 Import Parsers ... 110
10.3.2 Comma-Separated-Variable Parser... 111
10.3.3 Fixed-Width Parser ... 111
10.3.4 Export Formatters ... 112
10.3.5 Comma-Separated-Variable Formatter ... 112
10.3.6 Fixed-Width Formatter ... 112
10.3.7 Table Template ... 113

10.4 Example of How to Import/Export ASCII Tables in IA................................. 113
10.5 Overview of FITS IO.. 115
10.6 Getting Started With FITS IO... 115

10.6.1 Basic FITS IO Tool... 115
10.6.2 Parameter Name Conversion and FITS Header...................................... 116

10.6.2.1 FITS product header ... 116
10.6.3 Caveats.. 117

11 Using Time in the IA Environment.. 118
11.1 Introduction... 118
11.2 Time Definitions ... 118

11.2.1 System time in IA (FineTime) .. 118
11.2.2 International Atomic Time (TAI) and FineTime 119
11.2.3 Coordinated Universal Time (UTC) ... 119
11.2.4 DecMec Time.. 120

11.3 Time in HK Data... 120
11.4 Time conversion.. 121

11.4.1 Time conversion in HCSS .. 121
11.4.2 CucConverter .. 121

12 Setup and Use of Databases ... 123
12.1 Introduction... 123
12.2 Starting Up A Database: ... 124

12.2.1 Unix... 124
12.2.2 Windows ... 124

12.3 Schema Initialization .. 125

Herschel IA User’s Manual
V0.4, 21 January 2005

6

12.4 Using an existing database and Schema Evolution... 125
12.4.1 Initializing a schema on an old database... 127
12.4.2 Schema Tool commands ... 127

12.5 Initializing a Database For IA Use.. 128
12.6 Quick Database Creation .. 128
12.7 Providing Database Access for an IA Session.. 128

12.7.1 Properties File Setup for Database Access ... 128
12.7.2 Using the Propgen Tool.. 129

12.8 Browsing a Database... 130
12.9 Getting Data Frames From a Database ... 130

12.9.1 Command Line Access to Data Frames.. 131
12.9.2 From Database to ASCII File ... 132
12.9.3 Downloading Dataframes from a Database Using a GUI....................... 133

12.10 Accessing Housekeeping (HK) Data .. 135
12.10.1 Accessing HK Information For a Given Obsid................................... 135
12.10.2 Accessing HK Data For a Given Time Period.................................... 136

12.11 Removing a Database ... 139
Appendix A: Example User’s Property File... 140
Appendix B: Listing of Currently Available IA Classes............................ 143

Herschel IA User’s Manual
V0.4, 21 January 2005

Herschel IA Chapter 1

1 The Herschel Common Science
System and Interactive Analysis
(IA)

Chapter 1 Contents

1.1 Brief Overview
1.2 Availability of IA and Operating Systems
1.3 Related Documentation
1.4 Versioning
1.5 Previous Versions of IA User’s Manual
1.6 What’s New

1.1 Brief Overview

The Herschel Common Science System (HCSS) is being developed by the Herschel
Science Center (HSC) and Herschel Instrument Control Centers (ICCs) to provide the
complete software system for the Herschel Observatory mission. The intention is to
provide a common system that is able to handle test data, observation planning, mission
planning and instrument data from observations within one common development. An
important element of this common development is Interactive Analysis (IA).

IA handles computed, stored or simulated data and has access to much of the software
developed for other purposes within the HCSS (e.g., Quick Look Analysis, which runs on
real-time data or replayed data streams from a database).

Branches of the HCSS have also been developed for handling instrument-specific tasks.
So software packages for HIFI, PACS and SPIRE also reside within the HCSS
framework and are available within IA.

Since the Herschel IA uses Java programming, it is very flexible and Java programs can
be imported into a session. However, the basic IA system is a fully-fledged standalone

7

Herschel IA User’s Manual
V0.4, 21 January 2005

8

system that is being developed to specifically deal with data from the Herschel
spacecraft.

1.2 Availability of IA and Operating Systems

IA is available free of charge as part of the HCSS and can be downloaded for use on
networked or individual desktop/laptop machines. Current operating systems supported
by IA include

• Solaris 2.8+
• LINUX (Red Hat 8.0+, SuSE 9.1)
• Windows (2000, XP)

For download and installation instructions see Chapter 2.

1.3 Related Documentation

In earlier versions of the IA User’s Manual, “HowTo” documents were available in
parallel. Earlier HowTo documents for users are now incorporated into the current User’s
Manual. Developers of IA packages have also produced Javadocs which currently
provide some basic information on some of the underlying libraries and programs that
comprise the IA system.
NOTE: Users should be aware that these are NOT fully fledged help documents and are
probably most useful to system developers or advanced users only.

Currently in development is a “User’s Reference Manual” that contains a command
dictionary for all available IA programs/classes.

1.4 Versioning

IA is still very much a system under development and this manual will be updated with
the regular user release updates of the system. The first version of this manual is
associated with User Release v0.3 of the HCSS. Version numbering of the manual will be
matched to that of the user release. So the first manual is version 0.3.

1.5 Previous Versions of IA User’s Manual

V0.3, 22 July 2004 (A. Marston & H. Siddiqui)
V0.3.1, 22 December 2004 (A.Marston)

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

Herschel IA User’s Manual
V0.4, 21 January 2005

9

1.6 What’s New

The following new sections were added in v0.3.1
Section 2.4.1 on updating Versant databases and schema evolution
Section 2.6.3 on known installation problems.

Updates were included in the following places
Section 2.5.2 Windows installation instructions updated.
Chapter 4 typo edits

The following was added in v0.4
Introduction: Added full list of contributors.
Chapter 1: Changed chapter 1 to allow for description of updates. Added list of
contributors.

Chapter 2: Updated installation information. Provided pointer to HCSS installation.

Chapter 3:Section 3.2.5 was added providing short descriptions on new components
added to the Jconsole environment (i.e., session and dataset inspectors).
Figure 3-1 was updated to the new view of Jconsole and Figures 3-2, 3-3 and 3-4 were
added in section 3.2.5.
Added section 3.7 on error and exception handling in IA.

Chapter 4: Augmented discussion on classes and methods in section 4.7.
Clarified last paragraph in section 4.9
Added section on script writing in IA (section 4.8).

Chapter 5: Changed required imports section.
Added components on complex and multi-dimensional datasets.
Basic numeric arithmetic moved into chapter 6.

Chapter 6: Changed required imports section.
Added basic numeric arithmetic from chapter 5.
Added two figures illustrating fitting capabilities.

Chapter 7: Updated introduction to reflect new setup of the HCSS.
Extended PlotXY introduction in section 7.2. First example split into two.
Added sections 7.2.1.1 and 7.2.1.2 on handling arrays and datasets in PlotXY.
Updated all examples to present system.
Added section 7.4.2.1 and 7.2.2.2 to better illustrate command axes adjustment.

Chapter 8: Updated required imports section.
Included new subsections on the use of each of the Image operations.
Updated use of numeric2d arrays.
Examples rewritten and extended to include new information on Image and Image
operations.

Herschel IA User’s Manual
V0.4, 21 January 2005

10

Chapter 9: Updated import information with regard to IA startup.
Added subsections on “inspector” and “help” packages.

Chapter 10: Updated information regarding required package imports.
Updated introduction to highlight current FITS usage.
Examples updated.

Chapter 11 (NEW): Chapter added on time usage within the HCSS and time conversions.
This is based on the original user HowTo document, heavily revised.

Chapter 12 (previously chapter 11): Revised package imports needed for using databases
and examples. Reworded and typo corrected sections 1 to 6.
Significantly revised (made clearer?) sections on getting Dataframes and Housekeeping
(HK) data into an IA session.

Appendix B: Updated listing of classes (including links) available in IA packages.

1.7 List of Contributors:

The following people have contributed to the creation of this manual.

Jorgo Bakker
Helen Bright
Jon Brumfitt
Nicola de Candussio
Steve Guest
Rik Huygen
Tanya Lim
Andrea Lorenzani
Anthony Marston
Wim de Meester
Craig Porrett
Hassan Siddiqui
Michael Wetzstein
Ekkehard Wieprecht
Peer Zaal
Rob Zondag

Herschel IA User’s Manual
V0.4, 21 January 2005

Herschel IA Chapter 2

2 HCSS Downloading and

Installation

In case of any problems during installation please email hcss_help@rssd.esa.int

Chapter 2 Contents
2.1 Introduction
2.2 Platform
2.3 Pre-Installation Requirements
2.4 User Installation Procedure

2.4.1 Known Installation Problems
2.5 IA Property Initialization

2.1 Introduction

In this chapter we explain how to download and install the Herschel Common Science
System (HCSS) software. For local area networks this is likely to be done by a system
manager. The system can then be run by anyone on the network. However, personal
versions (e.g., for laptops) can also be set up by a user.

It is hoped that an installation wizard for HCSS will be made available in the near future
which will allow initial installations or upgrades. For most users, the only additional
software that will need to be installed deals with the Versant databases. If you are not
worried about using databases for now then the User Installation Procedure is probably
all you need to follow at present.

This chapter describes how to set up a basic user (or user-as-developer) HCSS
environment. A key component of the HCSS is its interaction with local and remote
databases storing test data and (later) observations. Upgrading your installation to allow
for database interactions is discussed in Chapter 12 of this manual. Chapters 3 and 4
introduce the user to IA/Jython and do not require database interactions.

11

mailto:hcss_help@rssd.esa.int

Herschel IA User’s Manual
V0.4, 21 January 2005

12

2.2 Platform

The reference platform used for Unit and System testing the HCSS software, prior to
release, is now SuSE 9.1 (previously used RedHat 8.0) running on an Intel processor.

Note that this OS version is LSB (Linux Standard Base) v1.3 so theoretically one should
be safe using another Linux distribution providing it has been certified LSB v1.3, see:
LSB certified products for more information.

Current platforms also include Solaris and Windows (2000, XP Pro).

2.3 Pre-Installation Requirements

The following third-party software is required to be installed prior to run (or develop
software for) the HCSS. This software is not included in the downloadable HCSS
compressed TAR-file.

o In many cases users will not require any additional software in order to
install and run the HCSS.

o ALL USERS: You will need access to Java JRE (Java Runtime Environment),
which can be downloaded from: http://java.sun.com/j2se . A Java runtime
environment is usually available as standard on most modern computer systems. Java
version 1.4 or above is required for use in IA. The reference platform build is version
1.4.2_06. You can check your version using the terminal command

>> java -version

o For database usage: Versant Database System (see notes on Versant in
the full installation instructions) will need to be installed. This will allow setting up
databases and accessing databases. Not needed if you are not using HCSS databases.
The setup and use of databases within IA is described in Chapter 12.

o For users of TestControl: If you are using HCSS in a Herschel instrument
testlab environment for ILT/AIV tests then you will also need TclBlend. This can be
downloaded from: http://sourceforge.net/projects/tcljava

o For users who want to become involved in the development of HCSS, the
following should be installed. [NOTE: development of IA/Jython scripts can be done
with the HCSS Users software needs noted above.]

o Java JDK (Java Development Kit), which can be downloaded from:
http://java.sun.com/j2se

o Versant Database System (see notes on Versant below)
o JavaCC, which can be downloaded from:

https://javacc.dev.java.net/servlets/ProjectDocumentList
o CVS (client/server version), which can be downloaded from:

http://ccvs.cvshome.org/servlets/ProjectDownloadList

http://www.opengroup.org/lsb/cert/cert_prodlist.tpl
http://java.sun.com/j2se
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Install.html
http://sourceforge.net/projects/tcljava
http://java.sun.com/j2se
https://javacc.dev.java.net/servlets/ProjectDocumentList
http://ccvs.cvshome.org/servlets/ProjectDownloadList

Herschel IA User’s Manual
V0.4, 21 January 2005

13

o TclBlend (only needed if you are developing the TestControl package),
which can be downloaded from: http://sourceforge.net/projects/tcljava

o Together (optional), can be downloaded from: www.borland.com/together

Note: the exact version numbers of the applications listed above, can be obtained
from:

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion

Please note that you may/will need system administrator support and/or privileges in
order to install one or more of the component(s) listed above.

All other third-party libraries required (see the HCSS reference platform specification for
a complete list), can be redistributed and are included in the downloadable HCSS TAR-
file, which is sufficient for a HCSS user installation.

For those who are considering HCSS development, the full third-party packages may be
required (including its Javadoc, sample code, etc.). A compressed TAR-file containing
these libraries (matching the latest reference platform set) can be downloaded from the
HCSS ftp area: ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/refPlatformDownloads
Alternatively you can download all libraries from the supplier site (most of the URLs can
be found in the HCSS reference platform specification).

You must now configure your environment to include the above listed packages in your
PATH and CLASSPATH environment variables, following the installation instructions
provided by the suppliers. In addition, developers should include the JavaCC library
'javacc.jar' in their CLASSPATH, because of the way that the HCSS 'jake' tool invokes
JavaCC.

2.4 User Installation Procedure

Installation of the HCSS/IA system is relatively straightforward and has recently been
simplified for both UNIX and Windows users.

Download the pre-built HCSS release from our Herschel FTP server. This can be done
using

1. web-browser
2. ftp-client

Once downloaded, some environmental properties need to be set up. Much of this is now
handled automatically by running a script either in Windows or UNIX.

Follow either of the above links for the complete (and most up to date) set of installation
instructions for the downloading and installation of IA for either operating system.

http://sourceforge.net/projects/tcljava
http://www.togethersoft.com/
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/refPlatformDownloads
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Install.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Install.html

Herschel IA User’s Manual
V0.4, 21 January 2005

14

2.4.1 Known Installation Problems

The CLASSPATH for the HCSS system can come close to or exceed the limit available
on most Windows machines which leads to some HCSS components not running
properly. This and other known problems are discussed in.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Install.html#KnownInstallationProblems

For the most recent releases of the HCSS, the grouping of external libraries into a single
loadable jar file has alleviated this problem completely. Windows users should update
their CLASSPATH using the batch file provided in the build available at

%HCSS_DIR%\config\setHcssExtLibs.bat

where HCSS_DIR is the directory where the HCSS installation resides.

2.5 IA Property Initialization

The HCSS environment that has been set up can be configured to user specifications.
This can, for example, change the database being used for interactions or change the
memory allocation to Jconsole (the prime interface for running the HCSS and IA). For
those new to the HCSS it is not necessary to adjust these properties unless database
interactions are to be immediately attempted. Later, with more sophisticated interactions,
users will want to make changes to their properties. Storage of user properties is in the
.hcss/myconfig file. Changes can be made to properties while working within the
HCSS – no restart is required for the updated properties to be made available. This can be
useful when, for example, you are changing the database with which you wish to work.

Properties can be set in the $HOME/.hcss/myconfig file with the use of the HCSS tool
“Property Generator”. Property setting allowing the use of databases is discussed in
Chapter 12 (also see property generator user manual).

After the initial download, the Property Generator tool is useful to run everytime you
download and install a new build, as it will inform you of added properties that are not
defined in your property files.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Install.html

Herschel IA User’s Manual
V0.4, 21 January 2005

Herschel IA Chapter 3

3 Introduction to Working in IA:

Using Jconsole

Chapter 3 Contents
3.1 Introduction
3.2 Running IA under Jconsole:

3.2.1 File Menu
3.2.2 Console Menu
3.2.3 Edit Menu
3.2.4 Run Menu
3.2.5 Help Menu

3.3 Standard Settings for Jconsole
3.4 Using import.py to customize Jconsole
3.5 Programming Loops in Jconsole
3.6 Multiline Statements with Jconsole
3.7 Errors and Exceptions in IA

3.7.1 Overview of the different libraries used in an IA session
3.7.2 The error back trace mechanism

3.7.2.1 The way Jython presents error messages
3.7.2.2 The way JAVA presents error messages

3.7.3 The HCSS exception and logging mechanism
3.7.3.1 Exceptions as thrown from HCSS classes
3.7.3.2 The HCSS logging mechanism

3.1 Introduction

An IA session is typically initiated within a console window. This window will include
full help and history for the session. Individual commands can be input to the console
using Jython commanding, which is discussed later in this chapter. Alternately, the
console allows for the construction and running of complete algorithms based on the
Jython language or even sections/individual lines of algorithms. Since no separate
compilation is required, individual lines or sections of algorithms can be checked for
validity very quickly. IA scripts that use GUIs can also be started from within Jconsole.

15

Herschel IA User’s Manual
V0.4, 21 January 2005

16

In this chapter we discuss how the IA console is initiated, illustrate its capabilities and
provide some simple Jython interactions to illustrate its use. We discuss some more
detailed IA/Jython capabilities in Chapter 4.

3.2 Running IA under Jconsole:

The majority of IA users can expect to be working within an IA console. After installing
the HCSS, the user can start the console by inputting the following at any terminal
prompt.

> jconsole

[For Windows users, open a command window and type in the same thing.]
Note that some feedback from the IA session is provided to the terminal window from
which it was started. This includes information on the settings used on jconsole startup
and information on database access (basically feedback on where interactions occur with
systems outside the immediate IA session). The jconsole shell performs the following
tasks:

a. Loads a customized Jython environment (imports a set of libraries and
defines a set of variables).

b. Keeps a history of successful Jython statements.
c. Implements a set of basic editing functions (copy and paste).

It is an extension of the standard Jython shell. Here, we provide some basic startup
information

After inputting the jconsole command, information on preloaded elements in the IA
session appear in the terminal window. Following this feedback, a separate three-paned
console window should appear (see Figure 3-1).

Herschel IA User’s Manual
V0.4, 21 January 2005

Help Menu
icons

Run
Menu

File Menu
icons

Figure 3-3-1: The Jco

The jconsole wind
window is given to
IA/Jython comman
then type in

IA>> print

Followed by <Ente
the “IA>>” prompt

The bottom right of
commands (includi
highlighted in red c
obtained using the
the error is shown i

IA>> sign

After hitting <Ente
red. Click on this u

Edit Menu
icons

icons

EDIT/DEBUG WINDOW

COMMAND
HISTORY
WINDOW

COMMAND LINE
WINDOW

nsole window set up.

ow has three components to it. An interactive command line
 bottom left of the console with a “IA>>” prompt. Individual
ds can be run here. Click in the bottom left window with your mouse,

 5 + 3

r>. The answer should be provided on the next line, prior to receiving
 back again.

 the console contains a command history window that lists the
ng those inside algorithms) used in the current session. Any command
aused an error. Some information on the error that occurred can be
mouse to click on the command highlighted in red. A response with
n the command line window to bottom left. Try the following

5

r> the user will see the history window has a command highlighted in
sing the left button of the mouse.

17

Herschel IA User’s Manual
V0.4, 21 January 2005

The top pane of the console is available for the user to develop his/her own algorithm
using the available IA/Jython commands. Click in this window, type in a similar print
command to the above example. Hitting return will not run this simple script. To run the
one line, click in the grey margin to the left of the line you have typed. An arrow should

appear beside the line. Now go to the line of icons and click the single arrow (). This
will run your one line algorithm and the result will appear in the lower left command line
window (again). If you wanted to “print” a string it needs to be in quotes (e.g., print
“Hello World”).

Now that we have a brief introduction to the three windows of jconsole we will
consider each of the menu and icon items in turn.

3.2.1 File Menu

Each of the File menu items has an associated icon except for exit. These are the first 5
icons on the bar under the menu headings.

New – creates a new window for algorithm development. New history and/or
command line windows are not created.

Open – allows a file to be opened in the top window (ASCII – IA/Jython files are
stored in ASCII format).

Save and Save As and – for saving the current algorithm shown in the top
window.

Close – close the file in the top window pane. Only closes the window showing the
current algorithm.
Exit – exits from the jconsole session.

3.2.2 Console Menu

Execute Line by Line – this requests the input of an IA script file and runs it line by line
Execute – this does a similar thing, except it runs the whole script in one go
Execute in the background – this does the same as execute, but runs the script in the
background (useful for scripts that take time since the jconsole window becomes
unavailable while executing a script remaining in the foreground).
Save history and Save history as... – saves a history of successful commands from this
session using jconsole.

3.2.3 Edit Menu

18

Herschel IA User’s Manual
V0.4, 21 January 2005

Each of the Edit Menu functions has an associated icon at the top of the jconsole panel
(middle section of icons).

Import history – allows the import of the history of a saved jconsole session.

Undo and Redo and – allows edits (cut/paste or deletion from the keyboard) to
be undone or redone.

Cut and Paste and – the usual cut and paste using the mouse to select and
position text.

3.2.4 Run Menu

The next three icons at the top of the jconsole window relate to the Run menu.

Run – runs a single line of script. Click mouse in grey column alongside line of an
IA command in the top window that you want executed – the Run command from the
pulldown menu (or clicking on the Run icon) will execute this line only.

Run selection – select a set of commands by dragging the mouse over them. Pull
down to Run selection (or click the icon) to run these IA commands only.

Run all – using pulldown or icon, this allows all IA commands in the top pane of
jconsole to be run in sequence.

3.2.5 Help Menu

The last four icons at the top of the jconsole window relate to various forms of help that
are also available under the Help pulldown menu.

Dataset Inspection – allows the user to view datasets (notably tables) currently
available in the IA session in a separate dataset inspection window. See Figure 3-2.

19

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 3-2: To view the contents of table or composite datasets, double click on the Datasets item that
appears in the left hand column of the dataset inspection window. Clicking on the appropriate table
allows its contents and associated meta data to be viewed.

Session Inspection – allows the user to view the classes (programs) and functions
available in the current IA session. . See Figure 3-3. Further classes and functions can be
made available by importing “packages” (see Chapter *).

20

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 3-3 An example session inspector window. A click on the nodes shown in the far left of the
first column “opens” the folder [in this case “classes”] to show commands currently available in the
IA session. Clicking on one of these commands [in this case “AsciiTableTool”] shows the methods
available with that class, e.g. AsciiTableTool.load(“table1.txt”) uses the load method of the program
to read in an Ascii table while AsciiTableTool.save(“table2.txt”, iatable) saves a table in IA called
iatable into an Ascii file called table2.txt.

Log Window – provides a listing of the feedback from running commands by the
system, including error messages. These appear in a separate Log window. The log can
be saved when exiting from jconsole.

Access to On-line Help Documentation – clicking this icon allows access to full
set of current on-line (website) documentation in a separate window. See Figure 3-4.

21

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 3-4: On-line documentation is available from within an IA session.

3.3 Standard Settings for Jconsole

Jconsole comes with a predefined memory specification of 64MB minimum size and
256MB maximum size. The settings are specified in the startup script for jconsole. This
script is located in the $HCSS_DIR/bin directory (named jconsole or jconsole.bat for
Windows). These settings can be modified by editing the jconsole script.

a. Change –Xms64m to your minimum amount of memory.
b. Change –Xmx256m to your maximum amount of memory.

Make sure that the environment variable HCSS_PROPS is properly defined (see Chapter
2).

Make sure HCSS_PROPS contains the specification of the standard var.hcss.dir
property (this should be the property defined in your $HOME/.hcss/myconfig file IF you
have set up your own environment and are not using a local network installation). And be
sure that var.hcss.dir points to the HCSS build directory.

There are several properties for jconsole that are set up during initialization (see under
Set Up in the Jconsole HowTo document). These can be used to determine such things as

22

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/jconsole/index.html

Herschel IA User’s Manual
V0.4, 21 January 2005

23

window size. However, window size can be adjusted in the usual fashion by clicking and
dragging corners and/or sides of the jconsole window.

3.4 Using import.py to customize Jconsole

One useful user controlled file for changing the settings of jconsole is the use of an
import.py file. This should be placed in the user’s home directory.

The import.py file allows a number of packages to be installed in the jconsole session
during startup and is composed of statements such as

import herschel.ia.numeric

which imports the numeric package of the HCSS system therefore allowing the
commands defined in that package to be used in your current IA session. [NOTE: this
particular package is currently loaded automatically on startup of an IA session]

This can save time when running your own standard IA session. The import of HCSS
software packages is noted in several places in this manual and is shown in all the sample
IA scripts. However, a later chapter discusses the IA software packages currently
available within the HCSS environment.

3.5 Programming Loops in Jconsole

Earlier in the chapter we tried some basic commands to illustrate the components of the
Jython window. One particular capability of jconsole is allowing block support for
Jython. Suppose we want to take a basic print command typed in the command line
window.

IA>> a = 5
IA>> print a
5

Now simply input

IA>> for i in (1,2,3): <Enter>

This will return a “…..” response in the command line [NOTE: the colon at the end of the
line is important for starting the block]. The command is incomplete. Input a “print i”
command. A further “…..” is returned. Hit Enter once more – the command is now
complete.

The whole session should look like (please note the indent prior to the print statement on
line 2):

IA>> for i in (1,2,3) <Enter>
..… print i <Enter>

Herschel IA User’s Manual
V0.4, 21 January 2005

24

..… <Enter>
1
2
3
IA>>

We could have added a number of commands to this “for” loop. The block statement
continues until a blank line is produced. The history of the window is now available. The
up arrow will prompt back

IA>> for i in (1,2,3):
print i

You can edit this block statement by using the LEFT and RIGHT keys and
deleting/adding characters.

Blocks within blocks (nested “for” or “if” loops) are also possible. Basic rules about the
use of blocks follow Jython syntax.

1. Each statement in a block must begin in the same column;
2. Each of the Jython key statements and clauses (class, def, for/else, if/elsif/else,

try/except/else, try/finally and while/else) denotes the beginning of a new block;
3. A new block must be indented at least one space from the enclosing block;
4. The end of a block is marked by having the next statement after the end of the

block must begin in the same column as the enclosing blocks.

For example

for x in (1,2,3):
 print x # outer block
 for y in (4,5,6):
 if y = 5: #inner block
 print y #inner-inner block
 print x*y #inner block
 #insert inner block statement here
 #insert outer block statement here

As usual, end with a blank line! Note the end of each “for” loop is determined by where
the indentation ends.

3.6 Multiline Statements with Jconsole

Jconsole also improves on many Jython interpreters in that it allows multiline
statements.
To continue a statement onto a second or third line requires only an input of “\” at the end
of a line in jconsole.

Herschel IA User’s Manual
V0.4, 21 January 2005

25

When including file statements such as

[“a”,
“b”]

or

(1 +
2)

either convert to a single line or add a “\” to the end of the first line, e.g.,

(1 + \
2)

3.7 Errors and Exceptions in IA

Here we explain how errors are generated within IA and how these are reported back to
the user. Following from this howto the user should be able to:

• understand error messages as might show up (i) while running an application, or
(ii) during an IA session.

• report the error to the custodian of a HCSS module in case an not will described
exception occured, i.e. which cannot be handled by the user

3.7.1 Overview of the different libraries used in an IA session

The base routines for IA are written in JAVA, but IA user development uses the more
friendly Jython. Typical user development is expected to take place in the console panel
with plots and images appearing in separate windows. Within an IA session one can run
commands from the Jconsole tool that enables the execution of IA/Jython commands,
saves and loads scripts, and provides command history support. This tool often provides
the core of a user’s IA session.

http://www.jython.org/
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/jconsole/index.html

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 3-5: The global structure within an IA session .

Figure 3-5 shows the overall library structure for an IA session. Errors, as thrown by
Jython and or JAVA classes, have the same back trace mechanism (however, they differ
in the way they present error messages to the user, as shown in the next section).

Interpretation of these error messages allows the user to the class from which the
exception/error originated from.

3.7.2 The error back trace mechanism

Here is described the difference in the way Jython and JAVA libraries present error
messages.

3.7.2.1 The way Jython presents error messages
An example of how Jython presents error messages:

IA> array =[1,2,3,4,5]
IA> print array[5]

Traceback (innermost last):
File "<string>", line 1, in ?
IndexError: index out of range: 5

26

Herschel IA User’s Manual
V0.4, 21 January 2005

27

3.7.2.2 The way JAVA presents error messages
Most IA packages use JAVA classes. If JAVA classes are run within an IA session and
an error occurs, an exception is thrown which is propagated upwards to the Jython level.
An example:

IA> dbl = Double("wrong arg")
Traceback (innermost last):
 File "<string>", line 1, in ?
 java.lang.NumberFormatException: For input string: "wrong
arg"
 at
java.lang.NumberFormatException.forInputString(NumberFormatException.ja
va:48)
 at
java.lang.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:120
7)
 at java.lang.Double.valueOf(Double.java:202)
 at java.lang.Double.<init>(Double.java:277)
 at
sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
 at
sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructor
AccessorImpl.java:39)
 at
sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingCon
structorAccessorImpl.java:27)
 at
java.lang.reflect.Constructor.newInstance(Constructor.java:274)
 at
org.python.core.PyReflectedConstructor.__call__(PyReflectedConstructor.
java)
 at
org.python.core.PyJavaInstance.__init__(PyJavaInstance.java)
 at org.python.core.PyJavaClass.__call__(PyJavaClass.java)
 at org.python.core.PyObject.__call__(PyObject.java)
 at org.python.pycode._pyx6.f$0(<string>:1)
 at org.python.pycode._pyx6.call_function(<string>)
 at org.python.core.PyTableCode.call(PyTableCode.java)
 at org.python.core.PyCode.call(PyCode.java)
 at org.python.core.Py.runCode(Py.java:1136)
 at org.python.core.Py.exec(Py.java:1158)
 at
org.python.util.PythonInterpreter.exec(PythonInterpreter.java)
 at
herschel.ia.jconsole.jython.Interpreter.exec(Interpreter.java:261)
 at
herschel.ia.jconsole.jython.Interpreter.exec(Interpreter.java:244)

3.7.3 The HCSS exception and logging mechanism

Next to the standard JAVA exception handling mechanism the HCSS is using, it also has
a logging mechanism which forwards info, error and warning messages to the user.

Herschel IA User’s Manual
V0.4, 21 January 2005

3.7.3.1 Exceptions as thrown from HCSS classes
In case an error occurs inside the HCSS, for example due to a missing or wrong defined
configuration variable, the information as part of the exception thrown should explain the
user what did cause this exception. In this way the user should be capable to adjust its
input arguments and/or property settings. For example:

assume the user has set the configuration variable:

var.database.devel = "idonotexist@iccdb.sron.rug.nl"

when trying to access this database in a IA-session by:

>> IA: from herschel.hifi.generic.task import *
>> IA: tm = AccessPacketTask()(obsid=8, apid=1026)

Here, a query is done on the database as set by the above property and the exception as
thrown reads:

Traceback (innermost last):
 File "<string>", line 1, in ?
 java.lang.RuntimeException: java.lang.ClassNotFoundException:
 Exception in constructor of
herschel.access.db.LocalConnection: herschel.access.LocationException:
 Failed to get store herschel.store.api.StoreException:
 Failed to create store for idonotexists@iccdb.sron.rug.nl:
herschel.store.api.StoreException: {
 VException(7001:UT_DB_NOT_FOUND: DB directory not found) }
 at herschel.hifi.generic.task.AccessPacketTask.execute
(AccessPacketTask.java:151)
 {full trace back list}

In cases where the information as passed by the Exception thrown is not sufficient (for
example a NullPointerException without any textual explanation), then there is a problem
with the current system and the user is encouraged to provide feedback to the HSC
regarding the lack of exception handling information (currently, this is best achieved
through the SPR/SCR system).

In the above example the "access" package might improve its exception notification by
adding information to the LocationException, including a hint for the user that the
database is not existing and that the user should check whether "var.database.devel"
is properly defined.

3.7.3.2 The HCSS logging mechanism
The logging mechanism allows (HCSS) classes to pass errors, warnings and/or info to the
end-user. To enable the error logging mechanism, go to the Help menu or click on the

 icon (see also 3.2.5).

28

Herschel IA User’s Manual
V0.4, 21 January 2005

29

For the HCSS end-user this mechanism will be used more often , especially when HCSS
software is fully matured. The difference between the two is that exception handling is
more often used by the developer for debugging purposes, whereas the logging
mechanism is intended to be used by the end-user to get insight in the behaviour of an
(HCSS) application or class. The logging mechanism enables the developer to includes
messages when an exception is thrown and on how the class internally handles possibly
thrown exceptions.

To give an example why, next to the exception mechanism, the logging mechanism was
introduced: suppose we have a layered HCSS component (i.e. within an instance of a
class there are calls to instances of other classes and these will call others on their turn),
deep within this component an exception occurs and at a higher level this exception is
caught again. In such a scenario the end-user of the component will not be aware of the
fact that this exception occurred. However, by use of the logging mechanism the
developer of the component can pass a message (an error, warning or info ; depending on
how severe this exception was) next to the exception thrown, as well the developer is able
to pass relevant information to the user when the exception is caught.

More detailed information on the logging mechanism: herschel.share.log.api.Log (link to
HCSS javadoc)

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/herschel/share/log/api/Log.html

Herschel IA User’s Manual
V0.4, 21 January 2005

Herschel IA Chapter 4

4 Some IA Basics & Beginning

Jython

Chapter 4 Contents
4.1 Basics
4.2 Lists and Dictionaries

4.2.1 Setting up and Accessing Lists
4.2.2 Slicing Lists and Arrays
4.2.3 Setting Up and Using Dictionaries
4.2.4 Nested Dictionaries

4.3 Augmenting Values and Arrays
4.4 Printing to the screen and files
4.5 Defining and Using Functions
4.6 Blocks and programming loops
4.7 Classes and Methods
4.8 Writing Scripts – Programming in IA
4.9 Some Useful Extra Items

4.9.1 Handling Arrays and Other Datasets

4.1 Basics

The Herschel IA is a development that is based on programs written in Java or Jython.
Jython is a Java implementation of the Python language. The syntax is therefore well
defined and there is plenty of documentation freely available.

Variables don’t have to be declared (integer x, xmax etc. is not required). They appear
when you assign to them and disappear when you don’t use them anymore. Assignment
is done by the = operator and equality testing is via the == operator. You can also assign
several variables at once.

IA>> x, y, z = 1, 2, 3
IA>> a = b = 123

Comments on a line can be added after a hash (#) mark.
Blocks are indicated by identations and only through indentations (and can be handled
within jconsole – see Chapter 3). No begin/end braces are required.

30

http://www.jpython.org/

Herschel IA User’s Manual
V0.4, 21 January 2005

31

#Examples

IA>> if x < 5 or (x > 10 and x < 20):
IA>> … print “The value is OK”

IA>> if x < 5 or 10<x<20:
IA>> … print “This value is OK”

IA>> for i in [1,2,3,4,5]:
IA>> … print “This is iteration number”, I

The first two examples are identical.

The above “for” loop goes through values in a list indicated in the square brackets. A
simpler way – particularly for large numbers of iterations – is to use the inbuilt range
function.

#The following prints from 0 to 99

IA>> for value in range(100):
IA>> … print value

Note how values start from 0 and end one below the value assigned to the range function.
Currently, the print output is going to the command line window of Jconsole.

4.2 Lists and Dictionaries

Lists and dictionaries are important data structures available in Jython.
Lists are simple arrays written in a specific order.
Dictionaries are like lists that can be accessed via a key (or label). To access an element
you use a key or “name”. This is what is used to look up the value of an element.

4.2.1 Setting up and Accessing Lists

Lists are formulated within square brackets, which can be nested. E.g.,

IA>> name = [“Rolf”, “Harris”]

(note – strings of characters need to be placed inside quotation marks)

IA>> x = [[1,2,3],[y,z],[[[]]]]

You can access lists by individual names or groups

IA>> print name[0], name[1] # prints “Rolf Harris”

IA>> print name[0:2] # gives list in brackets [‘Rolf’, ‘Harris’]

Herschel IA User’s Manual
V0.4, 21 January 2005

32

IA>> print name[:2] # ditto

In the first instance the parts of the “name” list are picked up individually, in the second
part a range of list components is picked out (0 to 2) and in the last case all components
up to name[2] are picked out. Notice how in the last two cases the command is
interpreted as going up to but not including the number range being given. We can try the
same with the list “x”.

IA>> print x[0] # gives the first element in the list “[1,2,3]”

Try printing the other elements of the list (x[1] and x[2]) to see if you get what you
expect!

4.2.2 Slicing Lists and Arrays

The last two examples using the list “name” (above) are also examples of slicing. Slicing
of this type can also be performed with numerical and string arrays. For instance,

IA>> y = [“The”, “quick”, “brown”, “fox”, “jumped”, “over”,\
“the”, “lazy”, “dog”]
IA>> print y[1:4] # prints the list [‘quick’, ‘brown’, ‘fox’]

Again – the end integer value given for the slice is not included, so the above example
only gives the values for y[1], y[2] and y[3].

• Choosing y[:4] means “take every element from the beginning of the list up to
element 4, not including element 4.”

• We can also to have y[4:] which means “take every element from number 4 up
to the end” – note that this will include element number 4.

• Lastly, negative numbers mean count from the end of the list – y[-3] means take
the third element from the end of the list.

4.2.3 Setting Up and Using Dictionaries

A dictionary has a set of {key: value} pairs. E.g.,

IA>> person = {“Alice” : 111, “Boris”: 112, “Clare”: 113,\
“Doris”: 114}
IA>> print person.get(“Alice”)
111

…so we “get” the associated value within the dictionary “person”. To see all the “keys”
use

Herschel IA User’s Manual
V0.4, 21 January 2005

33

IA>> print person.keys()

and to get all the values

IA>> print person.values()

The use of the empty brackets at the end indicate that we are not passing a parameter on
to “keys” or “values” in order to get a printout of their current settings. In fact, no
parameters are allowed for these commands, but we still need the brackets.

Also note how the commands “keys()” and “values()” are applied/work on the dictionary
“person”. We will see this frequently when running IA code in the future.

If we want to change the dictionary then we need to write something like

IA>> person[‘Alice’] = 222

Here, the value associated with Alice in the dictionary called person has been changed to
the number 222.

4.2.4 Nested Dictionaries

Dictionaries can hold other dictionaries too. So advanced data structures can be made.

Let’s set up a dictionary called abc

IA>> abc = {"John": 12345, "Jerry" : 23456, "Joe" : 34567}

We will now put this inside another dictionary called dict

IA>> dict = {"Alice" : 111, "Boris" : abc, "Charlie" : "angel"}

Note here that we have NOT got inverted commas around the value abc since we want it
to point to our dictionary abc and not be a string.
So now we can look at the value of “Boris”

IA>> print dict.get(“Boris”)

Which should simply give us the dictionary abc printed on our screen.
Whereas,

IA>> print dict.get(“Charlie”)

Simply prints the string we gave as the value (we know it’s a string since it has inverted
commas around it).

If we now want to get the value of “John” we would need to do

Herschel IA User’s Manual
V0.4, 21 January 2005

34

IA>> print dict.get(“Boris”).get(“John”)

First we get the dictionary abc which is pointed to by the key “Boris”, then we look for
the key “John” inside. This returns the value 12345.

4.3 Augmenting Values and Arrays

Jython allows a full range of augmentation assignment operators (including +=, -+, *=,
and /=). These all behave in a similar fashion.

IA>> a = 5

IA>> a += 2 # adds 2 to the value of a

IA>> a *= 3 # multiplies a by 3

We can add to arrays too.

IA>> b = [1]
IA>> b += [2] # now b = [1, 2]

Note that here we have appended an element to the end of the list.

4.4 Printing to the screen and files

We have already seen how a print command can produce a result

IA>> print 1, 2, 1+2
1 2 3
IA>> print a
[1, 2]

(… following on from the above augmentation example).

We can also print to a file.

IA>> file = open(“output.txt”, ‘w’) # ‘w’ allows write access
IA>> print >> file, 2 # puts the number 2 into output.txt

Or

IA>> print >> file, a # puts the array “a” into output.txt

For printing an array/list to a file.

Herschel IA User’s Manual
V0.4, 21 January 2005

35

Note that it is not necessary to close access to a file within your IA session. If you want to
overwrite the original text file then reopening the file will remove the contents.

4.5 Defining and Using Functions

Here we name a piece of code, call it with some parameters and have it return a result.
Functions are set up with the keyword def. e.g.,

IA>> def square (x):
IA>> …return x*x

IA>> print square(2) # prints the result of 4

In actual fact, IA has a sophisticated numeric functions package that can allow squaring
of values and arrays of various types (double, integer etc.). Numeric functions available
in IA are discussed in Chapter 6.

If you want to call a function without arguments then the () brackets are required.

A useful thing to know is that functions are values in Jython. So taking an example from
the previous section

IA>> print person.values()

Could be changed to

IA>> pvalue = person.values
IA>> print pvalue()

4.6 Blocks and programming loops

Programming loops can be done in Jython with the use of blocks. These were discussed
in Chapter 3.5, where their use within the jconsole environment was illustrated. Blocks
are used with “for” loops, while/else loops and conditional (if/elif/else) statements.

4.7 Classes and Methods

In this section we introduce some jargon used in Jython programming and IA, which are
object-oriented languages.

Herschel IA User’s Manual
V0.4, 21 January 2005

For non-object oriented programming thinkers, classes are like programs that contain
callable subroutine components (referred to as methods) that will be applicable to an
object (typically an array). This is probably best illustrated with an example The
following is an example that can be placed in the top pane of jconsole. Remember to
keep proper/accurate indentation.

class Basket:
 # always remember the self argument
 def __init__(self, contents=None):
 self.contents = contents or []
 #this bit does a logical or – if a parameter is passed to it,
 #it becomes the contents, otherwise
 #we get an empty basket!
 def add(self, element):
 self.contents.append(element)
 #this adds the “element” to the contents (self.contents)
 def print_me(self):
 result = ""
 for element in self.contents:
 result = result + " " + `element` #NOTE use upper left

#keyboard single inverted
#commas around element.

 print "Basket contains: "+result

We have created a class called “Basket” and it has two associated methods “add” and
“print_me” (following “def” in the above example).

Try placing the above within the top pane of jconsole. Here we create an object to work
on, called “self” – which is customary. This is initiated by the def __init__ command
(by the way, that’s two underscores on either side of init).

Leave a blank line at the end of the script when placing it within the edit pane of
jconsole. Now hit the double arrow icon to load this into your IA session.

Once created, we can run the class by typing Basket() in jconsole via the command
window (bottom left).

Now try the following in the command line window.

IA>> a = Basket()
#this line sets up an empty basket which we have called “a”
IA>> a.add(“saw”)
#this line adds the item “saw” to the basket. It runs the “add”
#method on the object “a”.
IA>> a.add(“hammer”)
#…and now we have added “hammer”…
IA>> a.print_me()
prints the contents of the basket we called “a”, which
should be ‘saw’ and ‘hammer’. This runs the “print_me” method
#on the object “a”

We could equally have started our basket with one item

36

Herschel IA User’s Manual
V0.4, 21 January 2005

37

IA>> a = Basket(“saw”)

Basically we have object.method(arg1, arg2)
In the above case “a” is the object and we have the methods “add” and “print_me”.
__init__ is a special method that is said to be a constructor setting things up in the first
place. The constructor (initial call to the routine) creates an instance of the object (in the
above case it creates a basket we can put things in).

4.8 Writing Scripts – Programming in IA

Scripts take individual IA statements and combine them to make more complex routines.
The user can edit a script directly in the edit/debug window of Jconsole. A series of IA
commands/instructions can then be input and then run in the IA environment.

Following on from our Basket example. If the class Basket has already been created we
can create a script that uses it. For example, we can place the following in our Jconsole
edit pane.

a = Basket()
a.add("saw")
a.add("hammer")
a.add("chisel")
b = Basket()
b.add("bread")
b.add("cheese")
b.add("milk")
a.print_me()
b.print_me()

Now if we hit the “Run all” button then we create two baskets the contents of which will
be printed to the command window (bottom left).

This script can be saved using the “File” pulldown menu or save icon (default is “.py”
extension).

4.9 Some Useful Extra Items

• Some arguments can be optional and can be given a default value. E.g.,

IA>> def spam(age=32)

Here, spam can be called with zero or one parameters. If zero parameters then it
will be called with the default parameter of age=32. If a parameter is given with
the call then that will be assigned to “age” instead.

Herschel IA User’s Manual
V0.4, 21 January 2005

38

• Backquotes (top left of keyboard) convert an object to its string representation (so

the number 1 can be converted to string “1”).

• The + sign can be used to append string lists.

• One change to make printing easier. We can change to the special method
__str__ so that our last function starts with the line

def __str__(self):

Instead of

def print_me(self):

Now we can use

IA>> print a

to show our basket contents rather than

IA>> a.print_me()

Most useful classes and functions are put into modules or packages. These are then
imported into a given environment or program with the line(s), e.g.,

import math
from math import sin, cos

This is the means by which classes and functions are brought into the IA environment
from within already existing packages. The above two lines show how to import the math
package and how to just import sin and cos classes from the math package into your
current IA session.

A basic set of packages most relevant to users is loaded when an IA session is started.
Other packages can simply be imported into a user’s session (or included in an
import.py file that automatically imports packages when IA is started – see Chapter 2).

Herschel IA User’s Manual
V0.4, 21 January 2005

Herschel IA Chapter 5

5 Handling Arrays and Other

Datasets

Chapter 5 Contents

5.1 Introduction
5.2 Getting started
5.3 Types of Array Datasets
5.4 Creating a Simple 1D Array Dataset
5.5 Dataset attributes
5.6 Simple 1D Array Manipulation

5.6.1 1D Array Arithmetic
5.6.2 Logical Operations
5.6.3 Type Conversion

5.7 Dealing With Complex Arrays
5.8 Creating and Accessing Multi-Dimensional Array Datasets
5.9 Creating and Viewing a Table Dataset
5.10 Creating and Accessing a Composite Dataset

5.10.1 IA Numeric: Basic Functions for Herschel IA

5.1 Introduction

This chapter aims to familiarize the user with the IA Datasets and Algorithms concepts.
This is not an exhaustive reference to all the functionality provided, the full set of
available dataset capabilities are discussed in the herschel.ia.dataset package.

There are three types of basic datasets:

• array datasets (arrays of numbers, strings, etc. in 1D, 2D, 3D, 4D or 5D)
• table datasets (x rows by y columns of numbers, strings etc.)
• composite datasets (combines multiple connected arrays/tables in a single

dataset.

In this chapter, we discuss how to formulate and use each dataset type.

39

Herschel IA User’s Manual
V0.4, 21 January 2005

40

5.2 Getting started

All classes and methods associated with handling datasets and numeric functions are
automatically loaded when the IA session is started in this manner.

The IA numeric package currently contains many functions and is discussed in more
detail in Chapter 6. Here we include the use of portions of it to help illustrate how
datasets may be handled.

5.3 Types of Array Datasets

Numeric array datasets can have up to 5 dimensions and have the types noted in Table 5-
1.

Table 5-1: Dataset types available in IA

Name type Dimensions

 1 2 3+

BoolNd boolean yes yes yes
ByteNd byte yes yes yes
ShortNd short yes yes yes
IntNd int yes yes yes
LongNd long yes yes yes
FloatNd float yes yes yes
DoubleNd double yes yes yes
ComplexNd Complex yes yes yes
StringNd1) String yes NO NO
5.10.1.1 not strictly numeric

In order to create an array dataset we only need to do something like the following.

IA>> a = Int1d()

This provides us with an empty integer array. We can now add elements to this by

IA>> a.append(2)

Or

IA>> a.append(Int1d([1,2,4,5,6]))

Herschel IA User’s Manual
V0.4, 21 January 2005

41

To append a whole 1D integer array.

Alternately, we could have created the array in one go….

IA>> a = Int1d([1,2,4,5,6])
The following show various ways in which numeric 1D arrays can be created in the IA
environment.

y = Double1d([1.0,2.0,3.0,4.0]) # Create from a Jython array
y = Double1d(4) # [0.0,0.0,0.0,0.0]
y = Double1d(4, 42.0) # [42.0,42.0,42.0,42.0]
y = Double1d.range(4) # [0.0,1.0,2.0,3.0]

5.4 Creating a Simple 1D Array Dataset

Let's start by creating a simple dataset. Let's assume that we want to create a dataset
containing one component: a 1D array of real numbers (which are held as doubles in an
array we will call ‘x’).

Type in the following steps (without the comments preceded by ‘#’):

IA>> x=Double1d.range(10) #’range’ creates a 1D array of integers
 #with the values 0, 1, 2…9 Putting
 #Double1d in the front converts the array
 #values to doubles.
IA>> s=ArrayDataset(data=x,description="range of real values")
#this actually creates the array dataset with data being the
#array x of values 0.0, 1.0, 2.0…9.0 and some associated
#information, a description.

This creates an object x, corresponding to a 1D array of 10 real numbers from 0...9, and
writes that to a dataset object, s, which also contains a description of the dataset. In this
example, a simple description is also written to the dataset. The range command produces
ten integer numbers from 0 to 9. This is placed in a 1D array of real numbers (doubles)
by the first line.

Now let's look at the contents of the dataset s:

IA>> print s

If you want to be specific and print individual components of the dataset, you may do so
using the special description and data attributes:

IA>> print s.description #just print the description that
 #you attached to the array
IA>> print s.data # print only the data contained in the array

And even individual elements of the data component:

Herschel IA User’s Manual
V0.4, 21 January 2005

42

IA>> print s.data[2] #view the data value
 #of the third element in the array

5.5 Dataset attributes

In the previous section, we have seen that ArrayDataset, s, possesses at least 2
attributes: description and data. They have in addition a third attribute not so far
illustrated, meta. The description and meta attributes are common across all dataset
types.

The description attribute is used to store a human-readable text that helps the user to
understand the role of the dataset.

The meta attribute stores a map of keyword-value pairs of data that can be used to
identify that data in database (for example) - the so-called meta-data. Examples of
metadata include the observation date of the current observation; the name of the source;
the coordinates of the source, etc. These are basically the IA equivalent of FITS
keywords. The allowed data types for meta-data elements are String, Double Boolean,
Long, and Date (e.g., StringParameter, DoubleParameter etc.). See the JavaDoc on the
class MetaData for more information on the allowed types.

The following code snippet shows how to add parameter information (in the form of
strings or doubles) to the meta attribute:

IA>> s.meta["observation"]=StringParameter("NGC 4151")
IA>> s.meta["principal investigator"]=StringParameter\
("Anthony Marston")
IA>> s.meta["ra"]=DoubleParameter(182.836)
IA>> s.meta["dec"]=DoubleParameter(39.405)

5.6 Simple 1D Array Manipulation

Datasets can be manipulated using basic arithmetic and numeric functions, e.g., addition,
subtraction etc. We can also do explicit type conversion with relative ease.

5.6.1 1D Array Arithmetic

All arrays currently support the following arithmetic operators:
+, -, *, /, % (modulo), **

5.6.1.1 Addition, subtraction and concatenation:
Arrays and constant values can be added and subtracted in a similar way, i.e.,

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/herschel/ia/dataset/MetaData.html

Herschel IA User’s Manual
V0.4, 21 January 2005

43

IA>> a = s + b
IA>> a = s – b

if b is another numeric 1D array of the same dimension as s then a is just an array of
#the differences between each element of the two arrays.
#if b is a constant then that value would be subtracted from each array element of s.

Note that s and b need to be numeric arrays. In Jython, the above leads to concatenation.

For example:
Adding Jython arrays

[0,1,2,3] + [4,5,6,7] # [0, 1, 2, 3, 4, 5, 6, 7]

Adding numeric arrays

Double1d([0,1,2,3]) + Double1d([4,5,6,7]) # [4.0,6.0,8.0,10.0]

Concatenate two numeric arrays

Double1d([0,1,2,3]).append(Double1d([4,5,6,7]))
[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0]

Adding Jython arrays to numeric arrays

[0,1,2,3] + Double1d([4,5,6,7]) # [4.0,6.0,8.0,10.0]
Double1d([0,1,2,3]) + [4,5,6,7] # [4.0,6.0,8.0,10.0]

5.6.1.2 Multiplication:
IA>> m = 100 * s

#simply multiplies the size of each element of the array s by 100.

5.6.1.3 Array length:
IA>> print len(a)

#prints the length of array ‘a’.

5.6.1.4 General Application of Functions:
We can apply more sophisticated functions such as MIN (get minimum of an array) or
SIN (to get an array which has the sine of each array element value as an output), e.g.,

IA>> smin = MIN(s)
IA>> print smin

The available numeric functions and their use are discussed in Chapter 6.

5.6.2 Logical Operations

The following relational operators are also provided, which return a Bool1d array:

Herschel IA User’s Manual
V0.4, 21 January 2005

44

<, >, <=, >=, ==, !=

For example:

y = Double1d([0,1,2,3,4])
print y > 2 # [false,false,false,true,true]

5.6.3 Type Conversion

We can change between the various 1D array types (integer, long, double etc.) in a
straightforward manner. As is illustrated by the following

IA>> i = Int1d([1,2,3]) # [1,2,3]
IA>> r = Double1d(i) # [1.0,2.0,3.0]
IA>> c = Complex1d(r) # [(1.0,0.0j),(2.0,0.0j),(3.0,0.0j)]
IA>> b = Byte1d(r) # [1,2,3]

5.7 Dealing With Complex Arrays

The numeric library has a Complex class and a ComplexNd class for N-dimensional arrays
of complex numbers.

z = Complex1d([1,2,3,4],[4,3,2,1]) # set up complex array
print z # [1.0+4.0j,2.0+3.0j,3.0+2.0j,4.0+1.0j]
print z.real() # print real part
print z.imag() # print imaginary part
print z.conjugate() # [1.0+-4.0j,2.0+-3.0j,3.0+-2.0j,4.0+-1.0j]
print z * z # [-15.0+8.0j,-5.0+12.0j,5.0+12.0j,15.0+8.0j]

Complex numbers in the numeric package are constructed using the Complex constructor
(with an upper-case 'C'):

z1 = 2 + 3j # Jython complex (2+3j)
z2 = Complex(2,3) # Numeric Complex (2.0+3.0j)

The following example illustrates that these may be mixed in expressions:

z = Complex1d([1,2,3,4],[4,3,2,1])
x = 3 + 4j # Jython complex
print z + x # Add x to each element

In other respects, Complex1d arrays are used in much the same way as Double1d arrays.
Their main use at present is for discrete Fourier transforms.

Herschel IA User’s Manual
V0.4, 21 January 2005

45

5.8 Creating and Accessing Multi-Dimensional Array
Datasets

Creating and manipulating multi-dimensional arrays occurs in a similar way to the 1D
case. The IA numeric library supports arrays of up to 5 dimensions. For example, to
create a Double2d array:

x = Double2d([[2,4,6],[1,3,5]])

Multi-dimensional arrays are conceptually arrays of lower-dimensional arrays. For a two-
dimensional array, the first subscript selects a row and the second subscript selects an
element within that row (the column). Note that this is the opposite order to some other
computer languages, but it is the same behaviour as in the Java programming language.

For example:

print x[1,:] # Get row 1 i.e. [1.0,3.0,5.0]
print x[1,2] # 5.0, the element in row 1, column 2

Individual elements or slices can be set as follows:

x[1,2] = 22 # Set an element in place
x[0,1:3] = 42
print x # [[1,42,42], [5,6,22]]

Array-style operations can be applied to multi-dimensional arrays, in the same way as for
one-dimensional arrays:

x = Double2d([[2,4,6],[1,3,5]])
print x + 1 # Add a scalar to each element
print 1 + x
print x + x # Add two arrays element-by-element
print SQRT(x) # Map a function over the elements
print MEAN(x) # A function returning a scalar
print SIN(x[1,:]) * 2 + 1 # An expression

It is possible to set a row to a copy of a 1d array of the same length:

x[0,:] = [5,6,7] # Set a row to (a copy of) a Jython array
x[1,:] = Double1d([9,7,6]) # Set a row to a Double1d array

Advanced tip: It is possible to use the Java API to modify a row in-place, without
copying the array:

x[1,:].mApply(SQUARE)

Herschel IA User’s Manual
V0.4, 21 January 2005

46

5.9 Creating and Viewing a Table Dataset

What is often required is to store data in a tabular format with N columns. The
TableDataset provides such a means. A TableDataset is made up of a number of
columns. Each column contains an ArrayDataset. Each ArrayDataset can have up to 5
dimensions. In the following example, a TableDataset is created with 3 columns each
containing a 1D dataset, one being a sequence of numbers from 1 to 100, the second
being the sine value of each of the numbers in the first column, and the final column
containing the values in the first column multiplied by 100. The column names are x, sin
and y respectively. Note that TableDataset type requires all column lengths to be the
same.

IA>> x=Double1d.range(100)
IA>> t=TableDataset(description="This is a table")
#this sets up the table
IA>> t["x"]=Column(x)
#this creates our first column and just has the data, x
IA>> t["sin"]=Column(data=SIN(x),description="sin(x)")
#we have applied the SIN function from the numeric package here
#we have also added a description for the second column
IA>> t["y"]=Column(data=x*100,description="x*100")
#Ditto the third and final column

The following steps show how the data can be viewed (plotting the data graphically is
discussed in Chapter 7):

IA>> print t
IA>> print t.meta
IA>> print t["y"] # print a column by name
IA>> print t[2] # print a column by index
IA>> print t[2].data
IA>> print t[2].data[4]
print element with index=4 in the last(!) column
IA>> print t[2].description

And modified:

IA>> print t["y"].data[0]
IA>> t["y"].data[0]=999.
IA>> print t["y"].data[0]

5.10 Creating and Accessing a Composite Dataset

The ArrayDataset and TableDataset types enable the user to create arrays and tables
of primitive data types easily. However, they do not allow arbitrary structures of data, or
data within data, to be constructed. Examples of complex datasets are grouped
observations (making a map with an offset reference position, for instance), which could
have 1D and 2D array data together with a table which might contain (for example)
calibration data. Such complex structures can be built using the CompositeDataset.

Herschel IA User’s Manual
V0.4, 21 January 2005

47

Example 5.1, below, creates a CompositeDataset containing in turn an ArrayDataset, a
TableDataset, a few StringParameters, and another nested CompositeDataset. It
also illustrates how we can access the components of the composite dataset.

#Example 5.1 – Example of how to create a composite data set

x=Double1d.range(10)
#x is an array of doubles that is one dimensional (0.0, 1.0…9.0)
s=ArrayDataset(data=x,description="range of real values")
#s in an array dataset which has added description
t=TableDataset(description="This is a table")
#This sets up an empty table with a description
t["x"]=Column(x)
#the array 'x' is added to the table and given a
#column heading "x"
t["y"]=Column(data=x*4,description="x*4")
#each of the array elements of 'x' is multiplied by 4
#and becomes the data in the table column labeled "y".
#The table column also has a description added to it.
c=CompositeDataset()
#c is an empty composite dataset.
c.description="This is a composite dataset. It contains\
 three datasets!"
#we add a description to c
c.meta["author"]=StringParameter("Jorgo Bakker")
#we add the author's name as a string parameter
c.meta["version"]=StringParameter("2.0")
#we input a version number as a string parameter
c["mySimple"]=s
#we put the arraydataset s into the composite dataset c
#and give it a name mysimple so that we can refer to it
c["myTable"]=t
#we do the same for the table
c["myNest"]=CompositeDataset("Empty nested composite\
 dataset")
#this just shows you can add a composite dataset into another
#composite dataset (nesting)

print c # view contents of the complex dataset.
tab = c[“myTable”] # gets our TableDataset back. Now called “tab”.
print tab # we see that it has two columns called “x” and “y”
print tab[“x”] # prints out what is in the “x” column.
print tab[“x”].data # to just print out the data values.

Herschel IA User’s Manual
V0.4, 21 January 2005

Herschel IA Chapter 6

6 IA Numeric: Basic Functions

for Herschel IA

Chapter 6 Contents

6.1 Introduction
6.2 Getting Started
6.3 Functions and Lambda Expressions
6.4 Filtering
6.5 The 'where' and 'get' methods
6.6 Advanced Tips
6.7 Vectors and Matrices
6.8 Function Library

6.8.1 Basic Functions
6.8.2 Discrete Fourier Transform
6.8.3 Convolution
6.8.4 Boxcar and Gaussian Filters
6.8.5 Interpolation Functions
6.8.6 Basic Fitter Routines

6.9 Example Programs

6.1 Introduction

This document describes how to use the IA numeric library from the interactive Jython
environment (jconsole). For further details of the functions provided, or use of the
library from Java programs, please see the API documentation for herschel.ia.numeric.

The purpose of the numeric library is to provide an easy-to-use set of numerical array
classes (programs) and common numerical functions. The library also supports arrays of
booleans and strings.

6.2 Getting Started

The IA numeric packages are loaded and available to the user on starting an IA/jconsole
session. Basic setup and arithmetic manipulation of array datasets of various types are
discussed in Chapter 5.

48

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/numeric/package-summary.html

Herschel IA User’s Manual
V0.4, 21 January 2005

49

6.3 Functions and Lambda Expressions

In IA, functions can be applied very simply as follows:

print SQRT(16) # 4.0 (applied to a scalar)
y = Double1d([1,4,9,16])
print SQRT(y) # [1.0,2.0,3.0,4.0]

As shown by this example, functions on scalars (such as SQRT) are implicitly mapped
over each element of an array. Functions may be combined with arithmetic operators to
perform complex operations on each element of an array:

t = Double1d([1,2,3,4])
print SIN(1000 * t * (1 + .0003 * COS(3 * t)))
[0.6260976237441638,0.5797470124743422,0.8629107307631398,
#-0.9811675382238753]

The names of functions in the numeric library have ALL LETTERS capitalized. This
is to avoid ambiguity as Jython already defines certain functions, such as 'abs', which are
not applicable to our numeric arrays.
There are various types of functions in the numeric library:

y = Double1d([1,2,3,4])

SQRT(4) # double->double
SQRT(y) # double->double (mapped)
REVERSE(y) # Double1d->Double1d
MEAN(y) # Double1d->double

It is possible to define new functions as lambda expressions in Jython and apply them to
numeric arrays. For example:

y = Double1d([1,2,3,4])

f = lambda x: x*x + 1 #take the given array, call it ‘x’ and
 #return the value x^2 +1 to an array called f.
print f(y) #[2.0,5.0,10.0,17.0]. Each element of y was
 #taken -> x then each element was squared
 #plus 1 added.

However, in this case, it much easier and faster to do this with array operations.

print y * y + 1

Lambda expressions are not as fast as the standard Java functions provided by the
numeric library, but this is often not a problem. Where performance is an issue, new
functions can be defined in Java (see the JavaDoc of the herschel.ia.numeric library).

More complex functions (equivalent to subroutines) can be created using the def
command, which is discussed in Chapter 4.5.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

Herschel IA User’s Manual
V0.4, 21 January 2005

50

6.4 Filtering

The numeric library provides operations, such as 'filter', which allows the selection of
array elements based on a given criterion (e.g., element with values between 3 and 6)
There is no 'map' operation because mapping is implicit with the array style of processing.

Using the filter method (returns a Double1d)

u = Double1d.range(10)
print u.filter(lambda x: x>3 and x<6)

Note: The Jython filter operation can be used but returns a Jython array:

print filter(lambda x: x>3 and x<6, u)
__class__ returns org.python.core.PyList
print filter(lambda x: x%2==1, u)

Jython list comprehensions can be used but also return Jython arrays:

print [x for x in u if x>3]
print [x*x for x in u if x>3 and x<6]
print Double1d([x*x for x in u if x>3 and x<6])
#this last now provides us with a numerical array

6.5 The 'where' and 'get' methods

If you wish to select elements of an array based on a given criterion then this section
indicates how you can filter data, find out where in a sequence data of a certain type
resides (e.g., where the maximum value of an array occurs) and how to get the data that
fits your selection.

For example, the 'where' method returns the array indices of elements that satisfy a
predicate often given as a lambda function, whereas 'filter' returns the actual elements
themselves. Using the modulo function (%) we can find where within an array odd values
occur.

y = Double1d([2,6,3,8,1,9])
print y.where(lambda x: x%2==1) # [2,4,5] indices of odd elements

Now return the actual elements, which can be done in three ways

print y[y.where(y%2==1)] # [3.0,1.0,9.0]
print y.filter(lambda y: y%2==1) # [3.0, 1.0, 9.0]
print y.get(y%2==1) # [3.0,1.0,9.0]

Predicates support standard jython operators such as not, and and or:

Herschel IA User’s Manual
V0.4, 21 January 2005

51

y = Double1d([1,2,3,4])
print y.where(lambda x: x<3 and x>1) # [1]

Java/C-style logical operators '!', '&&', and '||' are not allowed.

It can be useful to have the indices, rather than the values, when there are two or more
arrays with a predicate applied to one of them. For example:

x = Double1d([5,6,7,8])
s = y.where(lambda i: i%2==1)
print x[s] + y[s] # [6.0,10.0]

The 'where' function can also be used to set values:

s = y.where(lambda x: x%2==1)
y[s] = 0 # Set all matching elements to 0
print y # [0.0,2.0,0.0,4.0]
y[s] = [9,8,7] # Set matching elements using an array of values
print y # [9.0,2.0,8.0,4.0]

The 'get' method enables you to grab individual elements or a subset of element values
from an array. Along with getting individual elements there are three other forms. One
enables you to select element values based on a Bool1d mask:

y = Double1d([5,7,8,9])
mask = Bool1d([0,0,1,0])
x = y.get(mask) # x == [8.0]

The second form enables you to select on a set of indices, contained in a Selection
object:

indices = Selection(Int1d([2,3]))
x = y.get(indices) # x == [8.0,9.0]

The third form enables you to select elements from a range, specified by a Range object:

range = Range(2,4)
x = y.get(range) # x == [8.0,9.0]

It is possible to combine 'get' calls to perform the same operation as a compound IDL
WHERE execution. Let's set up a few arrays first:

a = Double1d([1, 2, 3, 4, 5, 6])
b = Double1d([2, 3, 4, 5, 6, 7])
c = Double1d([3, 4, 5, 6, 7, 8])

The following operations on the three arrays are the equivalent of the IDL WHERE
statement 'where(a ge 2 and b lt 6 and c gt 5)':

q = (a >= 2) & (b < 6) & (c > 5)
x = a.get(q),b.get(q),c.get(q) # x == ([4.0], [5.0], [6.0])

Herschel IA User’s Manual
V0.4, 21 January 2005

52

6.6 Advanced Tips

The underlying array operations and functions are very fast, as they are implemented in
Java. The overhead of invoking them from Jython is relatively small for large arrays.
However, the advanced user may find the following tips useful to improve performance
in cases where it becomes a problem.

The arithmetic operations, such as '+', have versions that allow in-place modification of
an array without copying. For example:

y = Double1d.range(10000)
y = y + 1 # The array is copied
y += 1 # The array is modified in place

Copying an array is slow as it involves allocating memory (and subsequently garbage
collecting it). For simple operations, such as addition, the copying can take longer than
the actual addition.

Function application also involves copying the array. This can be avoided by using the
Java API instead of the simple prefix function notation. For example:

x = Double1d.range(10000)
x = SIN(x) * COS(x) # this operation involves three copies
x = x.apply(SIN).multiply(x.mApply(COS)) # only one copy

Note that the mutating mApply is not used for the application of SIN, otherwise x would
be modified, with the result that COS(x) would actually evalulate COS(SIN(x)).

When writing array expressions, it is better to group scalar operations together to avoid
unnecessary array operations. For example:

y = Double1d([1,2,3,4])
print y * 2 * 3 # 2 array multiplications
print y * (2 * 3) # 1 array multiplication
print 2 * 3 * y # 1 array multiplication

It is better to avoid explicit loops in Jython over the elements of an array. It is often
possible to achieve the same effect using existing array operations and functions. For
example:

sum = 0.0
for i in y:
 sum = sum + i * i # Explicit iteration

sum = SUM(y * y) # Array operations

Herschel IA User’s Manual
V0.4, 21 January 2005

53

6.7 Vectors and Matrices

The Double1d class provides a dotProduct method for scalar multiplication of vectors:

x = Double1d([1,2,3,4])
y = Double1d([1,3,5,7])
print x.dotProduct(y) # 50.0

Similarly, the Double2d class provides special methods for matrix multiplication and
transposition:

x = Double2d([[2,4,6],[1,3,5]])
y = x.transpose()
z = x.matrixMultiply(y)

Hence, it is important not to use the Jython '*' operator for matrix multiplication.
However, the '+' operator performs element-wise addition as required.

It is also possible to multiply a matrix by a vector as follows:

a = Double2d([[1,2,3],[7,5,4],[7,4,9]])
x = Double1d([4,1,7])
print a.matrixMultiply(x) # [27.0,61.0,95.0]

Other matrix functions are provided by the class MatrixFunctions. At present, the only
operation provided is 'solve' for the solution of matrix equations. For example:

Solve the matrix equation: A.X = Y

x1 = matrixSolve(y)(a)
print x1 # [
 # [0.12903225806451615,0.38709677419354843],
 # [0.2580645161290323,-0.22580645161290328],
 # [0.4516129032258064,0.3548387096774193]
 #]

6.8 Function Library

The numeric package includes a library of basic numeric processing functions, which will
continue to grow as development of the library progresses.
The functions that are currently available are outlined below. For further details,
reference should be made to the JavaDoc documention and demo programs.

Herschel IA User’s Manual
V0.4, 21 January 2005

54

6.8.1 Basic Functions

Basic double->double functions applicable to double, Double1d, Double2d and
Double3d arrays:

ABS, ACOS, ASIN, ATAN, CEIL, COS, EXP, FLOOR, LOG, LOG10, ROUND,
SIN, SQRT, SQUARE, TAN

These are applied in the form

IA>> b = SIN(a)

b will be an array of the same dimension as a or a single value if a is single valued.

Array functions on Double<n>d returning a double:

MIN, MAX, MEAN, MEDIAN, RMS, SIGMA, SUM, INDEX

IA>> b = MIN(a) #’b’ has the minimum value of the array ‘a’.

Double1d->Double1d functions:

REVERSE

6.8.2 Discrete Fourier Transform

A Discrete Fourier Transform is provided for Complex1d arrays. This uses a radix-2 FFT
algorithm for array lengths that are powers of 2 and a Chirp-Z transform for other
lengths. Future releases might support multi-dimensional arrays, if required, and
optimized transforms of real data.

Window functions are provided for reducing 'leakage' effects using the Hamming or
Hanning window.

Example 6.1 shows the generation of a frequency modulated signal, followed by a FFT
both with and without windowing:

#Example 6.1: FFT of a modulated signal , with and without HAMMING
#smoothing
#First add in some extra packages.
from herschel.ia.numeric.function.Complex1dFunctions import *
from herschel.ia.numeric.function.FFT import *
from herschel.ia.numeric.function.WindowFunctions import *

ts = 1E-6 # Sampling period (sec)
fc = 200000 # Carrier frequency (Hz)
fm = 2000 # Modulation frequency (Hz)

Herschel IA User’s Manual
V0.4, 21 January 2005

55

beta = 0.0003 # Modulation index (Hz)
n = 5000 # Number of samples

pi = java.lang.Math.PI # define pi

t = Double1d(range(n)) * ts
[0.0E-6, 1.0E-6, 2.0E-6…] 5000 element array holding time values

signal = SIN(2 * pi * fc * t * (1 + beta * COS(2 * pi * fm * t)))
#create the modulated signal with modulation frequency fm and carrier
frequency fc.
#t is the array we created above for the time elements.

spectrum = CABS(FFT(Complex1d(signal)))
#spectrum holds the complex absolute value (CABS) of the FFT of the
signal.
#We need to handle these arrays as Complex1d rather than Double1d.

freq = Double1d(range(n)) / (n * ts)
#The frequency values for the spectrum.

Repeat with apodizing
spectrum2 = CABS(FFT(Complex1d(HAMMING(signal))))

6.8.3 Convolution

Convolution is currently supported for Double1d arrays. A direct convolution algorithm
is used, although a future release might implement Fourier convolution to improve the
speed for large arrays and large kernels. An example of its use is given in Example 6.2.

#Example 6.2: Example of the use of the convolution algorithm

from herschel.ia.numeric.function.Complex1dFunctions import *
from herschel.ia.numeric.function.FFT import *
from herschel.ia.numeric.function.WindowFunctions import *
from herschel.ia.numeric.toolbox.filter.Convolution import *
x = Double1d.range(100)
Create array [0.0, 1.0, 2.0….99.0]
kernel = Double1d([1,1,1])
#provide kernel for the convolution
f = Convolution(kernel)
#create the convolution
y = f(x)
#apply it to the array x – result is in array y

This illustrates a general approach with the numeric library i.e. general function objects
may be instantiated using parameters to create a customized function which can then be
applied to one or more sets of data.

The constructor of the Convolution class allows optional keyword arguments to be
specified, to further customize the function:

Herschel IA User’s Manual
V0.4, 21 January 2005

56

• The 'center' parameter allow selection of a causal asymmetric filter for time

domain filtering or a symmetric filter for spatial domain filtering.
• The 'edge' parameter controls the handling of edge effects, as well as allowing a

choice between periodic (circular) and aperiodic convolution.

The following examples show construction of filters using these options:
(NOTE: make sure you have input the first 4 lines of example 6.2 before trying these out)

Use zeroes for data beyond edges, causal

f = Convolution(kernel, center=0, edge=ZEROES)

Circular convolution, causal

f = Convolution(kernel, center=0, edge=CIRCULAR)

Repeat edge values, causal

f = Convolution(kernel, center=0, edge=REPEAT)

Use zeroes for data beyond edges with centred kernel

f = Convolution(kernel, center=1, edge=ZEROES)

Circular convolution with centred kernel

f = Convolution(kernel, center=1, edge=CIRCULAR)

Repeat edge values with centred kernel

f = Convolution(kernel, center=1, edge=REPEAT)

6.8.4 Boxcar and Gaussian Filters

Finite Impulse Response (FIR) filters and symmetric spatial domain filters can be defined
by instantiating the Convolution class with appropriate parameters. In addition, special
filter functions are provided for Gaussian filters and box-car filters:

from herschel.ia.numeric.toolbox.filter.Convolution import *
f = GaussianFilter(5, center=1, edge=ZEROES)
f = BoxCarFilter(5, center=0, edge=ZEROES)

These filters are subclasses of Convolution and hence inherit the use of similar keyword
arguments.

6.8.5 Interpolation Functions

Interpolation functions are provided for a variety of common interpolation algorithms.
Example 6.3 illustrates the use of the currently available interpolation functions. The
plotting package available for displaying the different interpolation forms (PlotXY) is
discussed more fully in Chapter 7.

Herschel IA User’s Manual
V0.4, 21 January 2005

57

#Example 6.3: Interpolation functions in IA

from herschel.ia.numeric.function import *
create the array x [0.0, 1.0, 2.0, ….9.0]
x = Double1d.range(10)
create array y which contains the sine of each element in x
y = SIN(x)
u contains values at which to interpolate
u = Double1d.range(80) / 10 + 1

Linear interpolation
interp = LinearInterpolator(x,y)
this sets up the interpolation, linear x-y fit
Interpolate at specified values
print interp(u)
a = interp(u)
prints out the values interpolated at each position noted in array u
NearestNeighbour and CubicSpline interpolation may be performed
in the same way:

Cubic-spline interpolation
interp_c = CubicSplineInterpolator(x,y)
b = interp_c(u)
Nearest-neighbour interpolation
interp_n = NearestNeighborInterpolator(x,y)
c = interp_n(u)

p = PlotXY(x,y, "original values")
p.addLayer(u,a, "linear", 8, java.awt.Color.red)
p.addLayer(u,b, "cubic spline", 8, java.awt.Color.blue)
p.addLayer(u,c, "nearest neighbour", 8, java.awt.Color.green)

The result of example 6.3 are illustrated in Figure 6-1.

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 6-1: Illustration of various forms of interpolation.

6.8.6 Basic Fitter Routines

A more complete package of advanced data-fitting routines is available and will be more
fully discussed in the next version of the User Manual. Here, we discuss some basic
fitting routines available within IA.

A least squares polynomial fitter is provided by the numeric library. Example 6.4
shows how a polynomial can be fitted to data.

#Example 6.4: Use of fitter routines in Herschel IA.

from herschel.ia.numeric.function import *
Create some data
x = Double1d([3,4,6,7,8,10,11,13])
y = Double1d([2,4,5,6,5,6,7,9])

Create a polynomial fitter of degree 3
fitter = PolynomialFitter(3)

Fit the data
poly = fitter.fit(x,y)

58

Herschel IA User’s Manual
V0.4, 21 January 2005

#and print the fit results
print poly
#..and also get the Chi-squared. The fitter has already been applied
#and we can use the getChiSquared() method to determine the fit
print "Chi-Squared = ", fitter.getChiSquared()
#The fitted polynomial can then be applied as a function to interpolate
#between the fitted points:
Interpolate at 'n' uniformly spaced x values
n = 100
u = MIN(x) + Double1d.range(n + 1) * ((MAX(x) - MIN(x)) / n)
polyu = poly(u)

Now we can plot the data (x vs y) and the polynomial fit (u vx polyu)
plot = PlotXY()
#set up the plot space
plot.addLayer(x, y, "data", 8, java.awt.Color.blue)
#plot x against y in blue. Linetype = 8 --> a line.
plot.addLayer(u, polyu, "fit", 8, java.awt.Color.green)
#overlay a second plot showing the polynomial fit in green.

The final plotted display should look like Figure 6-2

Figure 6-2: Example polynomial fit.

6.9 Example Programs

59

Herschel IA User’s Manual
V0.4, 21 January 2005

60

The HCSS distribution includes a number of Jython example programs that demonstrate
not only basic arrays functions but also use of filters, fitters, Fourier transforms, etc.
These are:

numeric_whatisnew.py Example of the newest components of the numeric package.
numeric_demo.py Example of how to use the 1D functionality.
numeric_2D_demo.py Example of how to use the 2D functionality
convolution_demo.py Example of how to use the convolution functionality
polyfitter_demo.py Example of how to perform polynomial fitting

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_whatisnew.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_2D_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/convolution_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/polyfitter_demo.py

Herschel IA User’s Manual
V0.4, 21 January 2005

Herschel IA Chapter 7
 7 IA Plot: Basic Plotting of Data

Chapter 7 Contents

7.1 Introduction
7.2 What do I need to make a simple XY plot?

7.2.1 Introducing PlotXY
7.2.1.1 Using PlotXY to Plot One Numeric1d Array Against Another
7.2.1.2 Using PlotXY to Plot Columns in a TableDataset

7.3 How to setup your PlotXY properties
7.3.1 How to modify properties
7.3.2 Plot properties
7.3.3 Layer properties
7.3.4 Axes properties.
7.3.5 How to use properties.

7.4 How to use PlotXY in IA scripts
7.4.1 What about these Layers?
7.4.2 What can I do with Axis?
7.4.3 How can I annotate and decorate my plot?
7.4.4 How can I make my plots more colourful?

7.5 Creating File Output and Printing a Plot Without Displaying
7.6 Handling Units in Plots
7.7 What about a complete example?

7.1 Introduction

This chapter describes how to do basic 2D plots in IA. It is not intended to elaborate on
the complete set of functionalities, for this please refer to the related API documentation
for the herschel.ia.plot package. The basic concept is presented in order to support your
first steps for simple visualization of two-dimensional data.

Three classes are described in this chapter: the PlotXY class, which is the representation
of a two-dimensional plot, and its related classes Axis and Layer which represent the
different building blocks from which the plot is constructed.

Depending on how you work with plots, either writing scripts or designing your plots
interactively, we recommend different approaches. For writing scripts you have to use the

61

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/plot/package-summary.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/plot/package-summary.html

Herschel IA User’s Manual
V0.4, 21 January 2005

62

command line interface. This way the plot is completely defined by written commands. If
you design your plots interactively it will be easier to use the graphical interface to
manipulate plot properties which allows for button and pulldown menu selection of plot
properties such as fonts, labels, line types and colours.

The plot package (herschel.ia.plot) is automatically loaded on starting an IA session.

Lastly, PlotXY requires a property file PlotXY.props be placed in your .hcss directory. At
a system prompt in (only) the first session that you start with PlotXY in IA you should
first input

touch ${HOME}/.hcss/PlotXY.props

before starting your plotting, or simply add a dummy text file using your favourite editor.

7.2 What do I need to make a simple XY plot?

The 2D plotting package currently works on two types of data:

Numeric1d data which is a one-dimensional array of numbers of any type. Two numeric
arrays are input, one as x-data and the other as y-data.

TableDatasets which contain Double1d data placed in columns. The default behaviour for
plotting is that the first column is taken as the x-axis and the following columns as data
that is to be overlaid on the same plot.

7.2.1 Introducing PlotXY

The class used for 2D plotting is called PlotXY. This produces a plot whose properties
can be changed via command line input or through a properties GUI. Multiple plots can
be added in “layers” to an initial base plot and the default scales for a given plot will
automatically adjust to allow all points in all layers of a plot to be visible, although the x
and y ranges for a plot can also be set by the user.

7.2.1.1 Using PlotXY to Plot One Numeric1d Array Against Another

Example 7.1 illustrates how to plot one-dimensional arrays as well as a TableDataset
that contains two columns “X” and “Y”.

#Example 7.1 for PlotXY.

n = Double1d.range(20)/10
#n is set up to be an array with the range of numbers = 0..19 divided
by 10

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/numeric/Numeric1d.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/dataset/TableDataset.html

Herschel IA User’s Manual
V0.4, 21 January 2005

63

#Placing the Double1d element in front turns the integers created by
the
#range command into doubles. So we should have an array of 20 numbers
#going from 0 to 1.9

e = EXP(n)

#e is an array which contains the exponent of all the x array
components

p = PlotXY(x = n, y = e, title="plot example", layername = "Layer1")

#this plots the exponent and gives a title to the plot. It
#identifies the layer (“Layer1”) and “p” identifies the plot window.
#We can refer to the layer at later times if we, e.g.,
#want to change plot colors.

layer1 = p.getLayer("Layer1")

#here we get the layer ("Layer1") inside the plot (called "p")

layer1.setSymbol()

#here we set the default symbol for the points on the plot layer

layer1.setSymbolSize(3)

#...and change their size.

p.close()

This removes the plot window.

The result of running this example is shown on the left side of Figure 7-1.

7.2.1.2 Using PlotXY to Plot Columns in a TableDataset

Following on from Example 7.1, we can see how we might do a similar plot using
columns of data from a table (in TableDataset format). Example 7.2 shows how to
construct a TableDataset and then plot values from in using PlotXY.

#Example 7.2 for PlotXY.

#Example of plotting columns from a TableDataset.
#Now we attempt to do a similar plot to that produced in example 7.1
#but using a Tabledataset.

t = TableDataset()

#create a table - empty to start

t["X"] = Column(n)

#now we have put a column in the table "t" and give the
#column a name "X"

Herschel IA User’s Manual
V0.4, 21 January 2005

#The values placed in this first column are in the array "n" –
#see first line.

t["Y"] = Column(e)

#similarly for the next column

pp = PlotXY(dataset = t, linetype = PlotXYCompositeRenderer.RECTANGLE)
pp.setSymbolColor(Color.blue)

#now we plot the dataset, and tell it to use blue for the
#lines created. In this case the first column of the table is
#plotted on the x-axis by default and
#the second column is plotted along the y-axis.
#NOTE: the layer name is not needed. PlotXY picks up the column
#name for reference instead.

The output from this example is shown next to that of example 7.1 in Figure 7-1.

Figure 7-1: The two plots produced from examples 7.1 and 7.2. Note that the first graph has an x-axis
with only the index plotted.

A special way of constructing a plot is possible. It uses the notation variablename =
variablevalue for any subset of possible variables when starting PlotXY: The following
elements can be defined when first constructing a plot.

PlotXY(TableDataset dataset, String title, String layername, int width,
int height, Color lineColor, int linetype, int plotting_depth, boolean
useAsComponent, boolean plotIsVisible)

So we can construct a plot with:

p=PlotXY(dataset = t, plotIsVisible= 0)

In this situation, although the plot (labeled p) is produced it is not made visible. This
could be useful if you wish to add a number of later layers/components to the plot before
making it visible.

Or

64

Herschel IA User’s Manual
V0.4, 21 January 2005

65

p=PlotXY(title = "I am empty and small", width = 100, height = 50)

which produces a small window area of 100 by 50 pixels which contains a title and in
which a plot can later be placed. All the variables that are not specified in this second
startup method can be specified by plot properties. These are discussed in the next
section.

7.3 How to setup your PlotXY properties

Plot properties allow the definition of items such as colours, linetypes etc. with your
personal preferences. To setup your personal properties try the following:

- Construct a plot object p in jconsole,
e.g., p = PlotXY(title= “Empty plot”, width=100, height=50)

- Type the command “p.props()”
- Define your properties in the window that comes up and save them as default.

The description can be found in the next section.

or

- Find the property defaults file PlotXY.defaults in the directory
var.hcss.dir/lib/herschel/ia/plot.

- Rename this file to PlotXY.props
- Copy PlotXY.props into the folder .hcss in your home directory (this is also

where your configuration file for HCSS resides – myconfig).

Then
Add the path ${HOME}/.hcss/PlotXY.props to your HCSS_PROPS system variable
source your login file

If you have done this PlotXY uses properties that can be modified according to your
needs.

7.3.1 How to modify properties

Properties can be manipulated with a graphical interface.

Do the following:
construct a plot object with any constructor, for example

p=PlotXY(dataset = ds)
type the command “p.props()”

Now the graphical interface for manipulation of the plot properties appears (see Figure
7-2). It consists of the register cards, Plot properties, Layer and Axes properties.

Herschel IA User’s Manual
V0.4, 21 January 2005

66

The buttons at the bottom have the following functions:

cancel:
makes the property frame invisible. The same happens if you use the window close
button in the right corner of the frame.

refresh props:
reads in the properties of the visible register card (plot, layer or axis). This button is
useful if you have the plot property gui visible and change properties from the
commandline. Refresh updates the gui afterwards.

save as default:
saves the properties of the visible register card as default and thus updates the
PlotXY.props file in the ~/.hcss directory. Note that if you set a property for a layer or an
axis as default, the property set will be uses for all layers and axis and not only for the
one you have chosen in the moment of pressing the button.

apply:
applys the properties of the visible register card to the plot object.

7.3.2 Plot properties

Most of the properties are self explanatory. Simply change them, hit apply and see the
result. Clicking on the plot properties tab offers a section called "preferred layer layout
(colour & symbol)". There you can specify the layout of any number of layers. This setup
is used if you call an addLayer method that does not specify color and linetype. This
functionality allows you to construct plots with multiple layers with predefined layout.

Use it as follows:
to add a new layer layout, right click in the white space below the defined layouts.
to remove a definition, right click into the white space at the right or left of an existing
definition.

• to change the colour of an existing layout click into the coloured square.
• to change the linetype choose it from the pulldown list

7.3.3 Layer properties

The layer properties pane is used to define default layer properties or to manipulate the
properties of already constructed layers (see Figure 7-3).

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 7-2: The PlotXY properties graphical interface.

Figure 7-3: Graphical interface for PlotXY layers

67

Herschel IA User’s Manual
V0.4, 21 January 2005

7.3.4 Axes properties.

The axes properties pane (see Figure 7-4) is used in the same way as the layer properties.
Axis properties are also straight forward with one exception and that is tickunits:

Any number > 0 sets the tickunits to this number
0 removes tickunits from the axis
an empty field or any number < 0 resets tickunits to autoselection.

Figure 7-4: The Axes properties pane for PlotXY properties.

7.3.5 How to use properties.

The result of property setup procedure (with a defined set of properties) is the following
Example 7.3:

68

Herschel IA User’s Manual
V0.4, 21 January 2005

69

#Example 7.3: command line control of properties

#This is a continuation from Examples 7.1 and 7.2.

pp.props()
#allows graphical interface property setup
pp.getLayer("Y").remove()
#removes layer containing plot of "Y" from example 7.2
l2 = pp.addLayer(n, n*n, "layer2")
#overlays on the graph a plot of x versus x-squared and calls it
#”layer2”. l2 is the name of this overlay plot
l2.setSymbolSize(5)
#sets the symbol size for overlay plot l2
l3 = pp.addLayer(n, 2*n*n, "layer3")
#adds another layer to the plot "p"
l3.setSymbolSize(7)
#…and changes symbol size on this plot too!

The result of running Example 7.3 is shown in Figure 7-5.

Note that if addLayer is used that defines neither colour nor linetype, the current set of
default properties are used for subsequent layers If you have a look at the predefined
layer colours and linetypes you see that come as default in IA, the first definition is dark
red colour and lines, the second layer is defined to have blue colour and rectangles.

If colour and linetype are specified in the constructor, they are used as specified.

pp.addLayer(n, 8*n*n, "layer4", PlotXYCompositeRenderer.LINE, \
Color(250,100,0))

NOTE: the “\” symbol provides continuation of the command onto the second line.
The result of the above command line is shown in Figure 7-6. In this case we have also
illustrated how you can create your own colour through a mixture of red, green and
blue hues (values up to 256). In this case, the result is an orange colour for our third plot
layer. According to the default layer layout the symbols would otherwise have been green
ovals.

7.4 How to use PlotXY in IA scripts

In jython scripts you have to access all the properties from the commandline (either
bottom left of jconsole for interactive work or in the upper pane of jconsole when
doing script development).

There is one general rule to do so.

a. get the object (layer = p.getLayer(layername) or axis =
p.getAxis("axisname"))

b. use the methods provided by the object (layer.setSymbolColor(color))

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 7-5: Plot obtained using example 7.3

Figure 7-6: Adding in 4th layer gives the orange curve (see text).

70

Herschel IA User’s Manual
V0.4, 21 January 2005

71

7.4.1 What about these Layers?

Any plot is built up from layers. Even a simple 2D plot as we've created above has one
layer that contains the data from the one-dimensional array or the second column from
the TableDataset. If you need to plot multiple sets of data you add one layer for each
additional set of data. This can be done step by step on the command line or
automatically by the PlotXY command that creates a new layer for each column in a
TableDataset.

As stated before the manipulation that you need to do on layers should be done through
the layer object. One such command is the setSymbolSize() that we have used above.

Let's create a simple plot again with two layers and do some basic manipulations on the
individual layers. Example 7.4, plots two curves, one is the analytical function exp the
other curve has added noise.

In the first three lines we generate some noise on top of the exponential function. [NOTE:
Please do not take the above as an example of the proper way to add noise to a function,
the 'noise' here is just to illustrate the layer concept.] The layer is added to the plot with
the addLayer() method as done on line 7.

Line 6, 8 and 9 just illustrate how to set a plot to a scattered plot. Line 11 switches back
to a line plot.

Figure 7-7 shows the results obtained from running Example 7.4 .

Example 7.4: Working with layers from the command line.

r=java.util.Random()
#bring in a Java utility to produce random numbers between 0 and 1.
rn=[r.nextDouble() - 0.5 for i in range(20)]
#gives a set of 20 random double (real) numbers between -0.5 and 0.5
#the array e was defined in a previous example, but lets recreate it...
n =Double1d. range(20)/10
e = EXP(n)
#"e" is an array of 20 numbers which are e^0.5, e^1.0, e^1.5 etc.
en=e+rn
#adds the random numbers to the array "e" -> noise on the data
p=PlotXY(x = n, y = e, layername = "e")
#plots array "e" and gives the layer a name.
layer_e = p.getLayer("e")
#gets the layer so we can do something with it
layer_e.setSymbol()
#provides points with the default symbol.
p.addLayer(n, en ,"en")
#adds a layer called "en" to the plot
layer_en = p.getLayer("en")
#now get the layer
layer_en.setSymbol()
#get default symbols for the points plotted again

Herschel IA User’s Manual
V0.4, 21 January 2005

72

layer_en.setSymbolColor(java.awt.Color.red)
#now sets the symbol's colour to red
layer_en.setSymbolSize(3)
#change the symbol size for "en"
layer_en.setLine()
#...and now draws a line between the values and changes
#it to a line plot

Some of the more useful methods that work on layers are listed in Table 7-1: Listing of
methods of layer manipulation..

Table 7-1: Listing of methods of layer manipulation.

l = p.getLayer(layer) get the Layer object to do direct manipulations on the specified layer
l.update([x,] y) update the specified layer with the new datapoints
l.setLegend(text) changes the legend (and thus the layername) of the layer

l.addAnnotation(text) write a text comment into the layer at the point choosen by the left
mouse click

l.addAnnotation(text,
x, y) write a text comment into the layer at the point defined by x and y

Methods to change the appearance of the datapoints:
l.setLine() change the plot to a line plot for the specified layer
l.setSymbol() change the plot to a scatter plot for the specified layer
l.setSymbolColor(col
or) set the colour of the symbols and lines for the specified layer

l.setSymbolSize(size) set the size of the symbols for the specified layer (only for scatter
plots)

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 7-7: Plot showing the manipulation of layers from the command line. The above plot comes
from the script given in example 7.4.

The Layer provides a much larger number of methods to specify the appearance of
datapoints in layers. Next to simple line and scatter plots, lines and symbols can be
combined and symbols can be circles, rectangles, triangles, squares etc. which can be
filled or not with a specified colour. Lines can be solid or dashed with their own colour.
Find the possible predefined symbols in PlotXYCompositeRenderer and access them for
example by linetype = PlotXYCompositeRenderer.RECTANGLE.

We are not going into detail for all these methods but you should try them out with the
API documentation for Layer lying next to you.

7.4.2 What can I do with Axis?

As with Layers most manipulations of both X and Y axes can be done through the Axis
object.

73

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/plot/Layer.html

Herschel IA User’s Manual
V0.4, 21 January 2005

74

7.4.2.1 Log Axes, Labels and Gridlines

Lets continue with example 7.4 and make some changes to the axes illustrating how we
can adjust labels, gridlines and change axes to a logarithmic scale.
Example 7.5

#Example 7.5. This is an extension to the script in example 7.4

axis_y = p.getAxis("y-Axis")
#this grabs the y-axis. NOTE: y-Axis is the default label
#but this should be whatever label has been applied
#(e.g. using "setLabel")
axis_y.setExp(1)
#this sets the axis NOTATION as exponential, TRUE = 1
axis_y.setLog()
#this sets the axis with a log scaling
axis_y.setLabel("log(exp(x/10))")
#now we change the axis label
axis_x = p.getAxis("x-Axis")
#get the x axis
axis_x.setLabel("index")
#..and change its label
axis_x.showGridLines(0)
#this removes x axis gridlines, FALSE = 0
axis_y.setRange(0.5, 10)
#...and finally we adjust the range of y values that we
#want the plot to have.

Figure 7-8 shows the results from running example 7.5.

7.4.2.2 Multiple Axis Labels

More than one label is possible per axis. A second (or subsequent) axis label for x or y is
placed on the opposite side to the first axis label. This is illustrated in example 7.6 which
continues on from example 7.5.

#Example 7.6. Extending example 7.5 to show how multiple axes may be
placed on the same plot.
layer=p.getLayer("en")
#get the layer we want to change
layer.addyAxis()
#add a new y axis
layer.setxRange(-0.5,2.5)
#restrict the range of the plot to x values between –0.5 and 2.5
layer.setyLog()
#make the new axis a log plot
layer.setyLabel("new Y axis")
#add a label to this new axis
layer.setyRange(0,100)
#restrict the range of y in the plot
layer.update(en/2)

Herschel IA User’s Manual
V0.4, 21 January 2005

#update the en layer so that it is half the value it was
#before and replot
layer.setyAutoRange()
#now put the plot in a situation where the new y axis value range
#is automatically calculated.
p.setyRange(0,10)
#set the y range for the main plot to be 0 to 10.

The result of running this example is shown in Figure 7-9.

Figure 7-8 The results from running example 7.5.

75

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 7-9: Example of a second Y axis label relevant to the red line plot.

Some of the more useful methods that work on axes are listed in Table 7-2. For a complete
reference of the methods that can be used to manipulate and tune the appearance of the
axes please consult the API documentation of Axis.

Table 7-2: Useful ways of manipulating axes from the command line

a = p.getAxis(axis) get the Axis object to do direct manipulations on the
specified axis

a.setLinear() re-establish a linear scale for the specified axis

a.setAutoRange() adjusts the range of the specified axis so that all datapoints
will be shown

a.setRange(lower, upper) set the range of the specified axis to values between lower
and upper

a.showGridLines(flag) show grid lines for the specified axis if flag is true, hide
the grid lines if flag is false

a.setLabelFont(font|size) set or resize the font used for labeling the specified axis
a.setTickLabelFont(axis,
font|size)

set or resize the font used for labeling the tickmarks of the
specified axis

76

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/plot/Axis.html

Herschel IA User’s Manual
V0.4, 21 January 2005

77

7.4.3 How can I annotate and decorate my plot?

There are quite a number of methods that we can use to make our plot more appealing
and informative. A number of these methods were already mentioned in the sections on
layers and axes, but we are going to put them into practice here. We continue with
example 7.5 and add proper names for layers, annotate some datapoints and put a title on
top of the figure (see Example 7.6). The example below, example 7.7, also shows how to
extract the Layer objects from the plot in order to manipulate them directly.

#Example 7.7...again following on from examples 7.5 and 7.6

layer=p.getLayer("en")
#get the layer we want to change
layer.setLegend("exp+noise")
#change the legend for this layer to say what we want
layer.addAnnotation("noise on top of exp()", 1, 2)
#place some annotation at position 1, 2
layer=p.getLayer("e")
#get a layer with another label "e"
layer.setLegend("exp")
#...and change its legend
layer.setSymbol(PlotXYCompositeRenderer.LINE_TRIANGLE, 5, 5, 0)
#change its symbol
p.moveLegend(PlotXY.EAST)
#move the plot legend to the right side
p.setTitle("Example of a layered plot")
#give the plot a title

p.saveAsPNG("plot-05.png")
#save it as a PNG file for importing as a picture into documents etc.
#alternatively....
p.saveAsJPG("plot-05.jpg")
#to save as a JPEG file.

Note that we changed the legend for both layers in line 2 and line 5. Changing the legend
also changes the layer name which means that we need to use the new layer name in
order to access or manipulate layers from the plot. The final plot is shown in Figure
7-10.

For the "exp+noise" layer we put an annotation at a specific point (user coordinates) in
the plot. There is an equivalent method that reads the mouse position after a left mouse
click and places the text at that position. Please check the detailed package
documentation of PlotXY (see HCSS Javadocs) for methods to change the font and the
size of an annotation.

For the "exp" layer we have changed the appearance of the datapoints to a line with
triangles on top of it. Please refer to section What about these Layers? for information on
basic manipulation methods for layers.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 7-10: The results after running example 7.7 in the text.

7.4.4 How can I make my plots more colourful?

Colours can be set for a number of parts within a plot. Methods can normally take a
colour at creation time e.g. when adding a layer to the plot you can specify the colour to
be used for its datapoints or for individual layers, labels etc. the colour can be specified
with dedicated commands.

To specify a colour as an argument you have to pass a Color object. The easiest way to
do this is to use their default names as e.g. Color.blue. Note that you first need to
import Color as illustrated in the introduction. An example for changing the symbol
colour in example 7.6.

layer.setSymbolColor(Color.green)

The default names for colours are: black, blue, cyan, darkGray, gray, lightGray, green,
magenta, orange, pink, red, white and yellow (all preceeded by Color.). Another easy

78

Herschel IA User’s Manual
V0.4, 21 January 2005

79

way to use a custom colour is to specify the red, green, blue value in ranges from 0-255.
Color(red, green, blue). So we could also do the following to get a similar green
colour.

layer.setSymbolColor(Color(0,250,20))

7.5 Creating File Output and Printing a Plot Without
Displaying

Sometimes you do not want to plot to the screen, but would rather write your plots
directly to files.
1. Generate plot using the full constructor;
the p=PlotXY(plotIsVisible=0) is equivalent to p=PlotXY(),
p.setPlotIsVisible(0)
#i.e. generate a plot and then set it to invisible. This works,
#but will cause window flashes
Better is to completely render the plot. The last value of “0”
#indicates that the plot will not be made visible when it is created.

 p=PlotXY(data,data.copy().power(2),"Title","TestLayer1",700,500,\
java.awt.Color.black,7,0,0,0)

To save the plot directly to file you can then use:

#2 Save as JPG , where filename could contain the full directory path
p.saveAsJPG("filename")
#3 or save as PNG , where filename could contain the full directory
path
p.saveAsPNG("/home/mypath/filename")

4. or save in the format of the default printer, with the specified
filename (you may include the path) and page orientation
p.print("filename", "landscape")

7.6 Handling Units in Plots

The status is not definitive. The methods and example below gives you an idea of the
current direction:
The methods for viewing and setting units on Axis objects are:
a.showUnits(boolean) show/hide the Units on the specified axis
a.scaleUnits(Units) scale specified axis with the ratio oldUnits/newUnits
a.setUnits(Units) set new Units on the specified axis

a.setUnits(Units,boolean) set new Units on the specified axis, with or without scaling if
the units have the same dimensions

Herschel IA User’s Manual
V0.4, 21 January 2005

80

An example script is shown in example 7.8. Step through this line by line to see what is
happening. The final graphic is shown in Figure 7-11.

#Example 7.8 – Using units in plots.

from nT.quantity import *
#You need to import the package that knows handles units
d=Double1d.range(100)
#we set up our range of numbers 0…99 in array “d”
ux=Frequency()
#we are going to have frequency on the x axis
ux.setPreferredUnits(Frequency.MEGAHERTZ)
#the frequency will be in Megahertz
uy=Length()
#we will use a length on the other axis
uy.setPreferredUnits(Length.CENTIMETERS)
#units will be centimetres
x=Column(d.copy().power(1),ux,"A frequency")
#now create a column – to be put into a table – which has
#data from our d array (to the power 1) and has frequency units
#and a description of "A frequency" associated with it
y=Column(d.copy().power(2),uy,"A length")
#now create a column – to be put into a table – which has
#data from our d array (to the power 2) and has length units
#and a description of "A length" associated with it
ds=TableDataset()
#x and y values are now placed in columns of a TableDataset
ds.addColumn(x)
ds.addColumn(y)
p=PlotXY(ds,"Sample Units Manipulation",Color.red)
#plot is made
p.getyAxis().showUnits(1)
p.getxAxis().showUnits(1)
#units for both axes are displayed

#2 scale units (and the Plot) with scaleUnits
p.getyAxis().scaleUnits(Length.METERS)

#3 set new units with setUnits
p.getyAxis().setUnits(Frequency.KILOHERTZ)

#4 Set Units work also as scaleUnits (for backward compatibility) if
the kind
of units are the same: scale units (and Plot) with setUnits
p.getyAxis().setUnits(Frequency.HERTZ)

#5 to avoid setUnits doing a rescaling we can use the flag
allowScaling=False(or 0)
p.getyAxis().setUnits(Frequency.KILOHERTZ, 0)

#6 Hide/show the units with showUnits
p.getyAxis().showUnits(0)
p.getyAxis().showUnits(1)

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 7-11: Illustration of how units can be used in PlotXY. This is the output from example 7.8.

7.7 What about a complete example?

You can find all examples contained in a single jython script that can be downloaded and
run from within jconsole here.

81

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/howto-do-basic-2dplotting.py

Herschel IA User’s Manual
V0.4, 21 January 2005

Herschel IA Chapter 8

8 Display: Handling Images with

Herschel IA

Chapter 8 Contents

8.1 Introduction
8.2 Using ImageDatasets
8.3 How can I display my image?
8.4 Display in more detail
8.5 How can I use Operations on my images?

8.5.1 Clamping (or clipping) an Image
8.5.2 Cropping an Image
8.5.3 Histogram of an Image
8.5.4 Rotating an Image
8.5.5 Scaling an Image
8.5.6 Translating an Image
8.5.7 Transposing an Image

8.6 How can I display my own numeric2d datatypes?
8.7 How to Use Different Layers
8.8 How to Place Annotations on an Image

8.8.1 Annotations from the Command Line in your IA session
8.8.2 Annotations using the annotation toolbox

8.9 Sample JPEG Image and Extended Example Demo Script

8.1 Introduction

This chapter describes how to use imageDatasets to store your image data, display your
image and do some basic operations on your images. It is not intended to elaborate on the
complete set of functionalities available for image manipulation. For this the reader is
referred to the API documentation for the image package.

Please note that the image functionalities of the HCSS are still under
development. This means that the interface is likely to change in the future.

Note: A number of classes that are used with the IA image display need to
be imported before use or they will produce a strange NameError message.
You can simply do this with the following statements in Jconsole:

82

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/image/package-summary.html

Herschel IA User’s Manual
V0.4, 21 January 2005

83

from nT.quantity import FluxDensity
from nT.quantity.constant import *
from nT.quantity import Angle
from java.awt import Font

The above imports are required for running the examples provided in
this chapter.

The image package herschel.ia.image is automatically loaded when
starting the default version of IA.

8.2 Using ImageDatasets

An ImageDataset is a special type of dataset composed of :

• the image : described as a Double2d (2D real number array)
• the errors of the image : described as a Double2d (2D real number array)
• a mask : described as a Bool2d (2D boolean array)

The ImageDataset also holds information to do coordinate conversions (using the World
Coordinate System, WCS) and information of the wavelength at which the image was
taken.

When constructing an ImageDataset, you should usually first construct a WCS object
for the coordinate information, and the Double2d's and Bool2d needed for the image.

Example 8.1 shows how to construct an ImageDataset with WCS coordinates associated
with it, an image of 60x40 pixels, all errors set to 0.0 and with one pixel masked out (the
pixel 55, 35).

#Example 8.1.
myWcs = Wcs(crpix1 = 29, crpix2 = 29, crval1 = 30.0, crval2 = -22.5)
#The first line sets up a coordinate system for our example. Pixel
#(29,29) is indicated as having RA = 2h00m (crval1) and
#Dec = -22d30m (crval2)
myIm = Double2d(60, 40)
#Here we have created the array space for the image.
for i in range(0,60):
 for j in range(0,40):
 myIm.set(i, j, i + j)

#The above three lines fill the 2D array with values i + j
myMask = Bool2d(60, 40).not()
#Now we set up the mask image, which has “true” values for all
#positions.
myMask.set(55, 35, 0)
#…and indicate one "bad" pixel at position (55,35)
myQuant = FluxDensity(1.0, ASTRONOMICAL.JANSKYS.milli())
#The flux associated with one count in the image (equivalent to BSCALE
#in a FITS image.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/image/Wcs.html

Herschel IA User’s Manual
V0.4, 21 January 2005

84

myImage = ImageDataset(description="test image", image = myIm, mask =\
myMask, quantity = myQuant, wcs = myWcs)

#Creates the image Dataset itself
myImage2 = ImageDataset(wcs = myWcs)
#Make another image "myImage2" for displaying and apply the same WCS to
#it
myImage2.importFile("ngc6992.jpg")
#Import the JPG file of NGC6992. The import will get the image and
#apply the coordinates. There is no mask or error file.

In the first line, a WCS (World Coordinates Class) object is created. The center pixel is
set to (29, 29) which is a projection of the sky coordinate with right ascension 2h00m00s
and declination -22d30'00''. For more information consult the WCS documentation

In the second to fifth line, a Double2d is constructed which describes the image and the
pixel values are set to i + j (where i is the x coordinate and j is the y coordinate).

The sixth and seventh line describe the mask. The mask for all pixels is set to true in line
6 and in line 7, pixel (55, 35) is masked out.

In line 8, the quantity for the pixels is set.

Line 9 constructs the ImageDataset. When the errors are not explicitly set, all errors are
set to 0.0.

Instead of constructing a new ImageDataset, you can also import an image (.jpg, .png,
.bmp, .tiff, .xpf, .gif, or .pnm) into the ImageDataset. NOTE: At present, the imported
image can NOT be a FITS file. The image file ngc6992.jpg is provided here. This should
be placed in the same directory that jconsole/IA is started from so that it can be most
easily accessed.

8.3 How can I display my image?

Let's display the images produced in Example 8.1.

myDisplay = Display(myImage)
myDisplay2 = Display(myImage2)

The labels “myDisplay” and “myDisplay2” allow us to refer to the displays and their
contents separately.

The result of these two commands is shown in Figure 8-1. In each display, the image
itself is shown in the window. The masked out pixels are shown as black pixels.

At the top right, there is a second, smaller, frame where an overview of the image is
shown. On this overview, axes are also drawn. For this image, North is down and East is
to the right.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/image/Wcs.html

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 8-1: Display of image created in IA (top) and of imported JPEG file (bottom) from Example
8.1. The pixel position (x and y, the pixel value and the WCS coordinates of the mouse position are
shown along the bottom of the image, together with zoom capabilities. NOTE: THE PIXEL
POSITION IS CURRENTLY DISPLAYED AS Y, X.

85

Herschel IA User’s Manual
V0.4, 21 January 2005

86

Under the window where the overview is located, there is another frame which shows a
zoomed in version of the area located under your mouse.

Directly under the image, you can see a color bar. It is possible to click on the colorbar
and move your mouse to change the slope of it.

At the bottom of the window, you can see a statusbar. Using the four icons you can zoom
in, zoom out, zoom to fit the window and return to the normal zoom (1x). Beside the
icons, you can see the currently displayed magnification, the pixel coordinates at which
the mouse is pointing, the pixel value and the concurrent sky coordinates (based on the
WCS information provided).

When you click with the right mouse button on the image, you get a menu. Here, you can
open a window that allows changes to the color table ('Edit colors'), open a window
where you can edit the cut levels ('Edit cut levels'), zoom in on the place where the
mouse is located ('Zoom in'), zoom out, create a screenshot or print the image.

8.4 Display in more detail.

From here on, we will elaborate on myDisplay2. On a display object, you can do a lot of
things. Not all of the possibilities are described here. For an overview of all methods,
have a look in the Display javadoc.

Some of the more useful methods are listed below :

getImageCoordinates(ra, decl)
Returns the image coordinates
corresponding with the given sky
coordinates

getSkyCoordinates(x, y) Returns the sky coordinates corresponding
with the given pixel coordinates

getIntensity(x|ra, y|dec) Returns the intensity of the pixel at the
given (Sky or Image) coordinates

setColorTable(colortableName,
intensityName, scaleName) Set the colortable of the image

setCutLevels(min, max) Set the cut levels between min and max
setZoomFactor(zoomFactor) Zoom by the given zoomfactor

addAnnotation(annotation, x|ra, y|dec) Adds an annotation to the image on the
given coordinates

The following Example 8.2 shows how some of the above can be used from the
command line in Jconsole.

#Example 8.2: Illustration of Display options
myDisplay2.setZoomFactor(2)

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/image/Display.html

Herschel IA User’s Manual
V0.4, 21 January 2005

#sets the zoom factor on the second of our displays
print myDisplay2.getSkyCoordinates(434, 236)
#prints output to the console of the sky coordinates at pixel (434,236)
print myDisplay2.getIntensity(434, 236)
#Prints the intensity of the pixel at this position
myDisplay2.setCutLevels(50, 250)
#sets min and max intensity levels for display
myDisplay2.addAnnotation("Annotation", 506, 300)
#provides an annotation at coordinate (506,300)

The result can be seen in Figure 8-2.

Figure 8-2: Results from Example 8.2 showing the get sky coordinates, zoom and annotation features
of Display.

8.5 How can I use Operations on my images?

At the moment of this writing, there are only a few operations available on
ImageDatasets :
At the moment of this writing, there are only a few tasks available on ImageDatasets :

• Clamp : Clamps the high and or low values of an image.
• Crop : Crops the images to a smaller image.
• Histogram : returns a TableDataset with the histogram of the image.

87

Herschel IA User’s Manual
V0.4, 21 January 2005

88

• Rotate : Rotates the image.
• Scale : Magnifies or compresses the image size.
• Translate : Translates the image.
• Transpose : Transposes the image.

8.5.1 Clamping (or clipping) an Image

We can set the minimum and maximum values for our display by the use of the clamping
command. All pixels with values at or below the “low” parameter value are given the
“low” parameter value. Similarly, all pixels with values at or above the “high” parameter
value are allocated the “high” parameter value. An example of its use is given below.
Here we create a clamped image in an ImageDataset called “im_clam” and then display it

im_clam = Clamp()(image=myImage2, low=40.0, high=100.0)
Display(im_clam)

This could also have been done on one line without the necessity of creating
theImageDataset of the clamped image.

Display(Clamp()(image=myImage2, low=40.0, high=100.0))

8.5.2 Cropping an Image

The size of an image can be reduced through cropping. The parameters, “x1”, “y1” define
the top left hand corner and “x2”, “y2” define the bottom right hand corner of the
cropped image. The following illustrates its usage. A cropped image is created, then it is
displayed.

im_crop = Crop()(image=myImage2, x1=100, y1=50, x2=300, y2=250)
Display(im_crop)

8.5.3 Histogram of an Image

A histogram of the pixel values of an image can be obtained in a table by using the
Histogram() command. In order to obtain the table for display requires the following

im_hist = Histogram()(image=myImage2)

This produces a table with pixel values in one column and frequency in the second. In
order to display this we can use PlotXY (see Chapter 7).

vals = im_hist[0].data
freq = im_hist[1].data
p = PlotXY(x=vals, y=freq, title="Histogram example")

Herschel IA User’s Manual
V0.4, 21 January 2005

p.setxLabel(im_hist[0].description)
p.setyLabel(im_hist[1].description)

The histogram values are placed in two arrays to be plotted against each other (vals and
freq), PlotXY does the plotting and the last two commands uses the column descriptions
in the table for axis labels to our plot. The final histogram is shown in Figure 8-3.

Figure 8-3: Histogram plot of the image of NGC6992 (Veil nebula) stored in the ImageDataset
“myImage2”.

8.5.4 Rotating an Image

The following input line provides an example of how an image may be rotated.

rot = Rotate()(image=myImage2, angle=30.0)
Display(rot)

This example rotates the image over 30.0 degrees (clockwise) then displays the rotated
image. The result is shown in Figure 8-4.

89

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 8-4: Illustration of how an image is rotated by +30 degrees (clockwise) using the IA display
package.

When rotating the image, several types of interpolation are possible. By default linear
interpolation is used. There are four types of interpolation possible.

• Rotate.INTERP_BILINEAR (the default – interpolates one pixel to the right
and one below)

• Rotate.INTERP_NEAREST (direct pixel copying)
• Rotate.INTERP_BICUBIC (uses interpolation via a piecewise cubic

polynomial)
• Rotate.INTERP_BICUBIC2 (variant of bicubic interpolation that can give

sharper results than bicubic)

In order to use the different interpolation schemes requires the
“interpolation” parameter to be defined. The following illustrates this point.

b = Rotate()(image=myImage2,angle=50.0,\
 interpolation=Rotate.INTERP_NEAREST)
Display(b)

To use the bicubic interpolations also requires a declaration of the number of subsample
bits to be used. More bits gives more accuracy but at extra computational costs. The

90

Herschel IA User’s Manual
V0.4, 21 January 2005

default bit subsampling is 16. An example of using bicubic interpolation with 32 bit
subsampling is

b = Rotate()(image=myImage2,angle=50.0,\
 interpolation=Rotate.INTERP_BICUBIC, subsampleBits=32)
Display(b)

8.5.5 Scaling an Image

The size of an image can be magnified in the x and y directions independently using the
Scale() command. It can be used in a similar way to the Rotate() command (see section
8.5.4) and has the same set of interpolations available to it. The following magnifies in
the x direction by a factor of 0.5 and in the y direction by a factor of 2. This in then
displayed.

s = Scale()(image=myImage2, x = 0.5, y = 2, \
 interpolation=Scale.INTERP_BICUBIC, subsampleBits=32)
Display(s)

This provides a very elongated image (see Figure 8-5).

Figure 8-5: An example of independent x and y axis magnification of images using Scale().

91

Herschel IA User’s Manual
V0.4, 21 January 2005

92

8.5.6 Translating an Image

An image can be translated in x and y pixels (fractional pixels allowed) or by an angle (in
degrees) in ra and dec (or sky coordinates).

Pixel translation:

im_trans_pix = Translate()(image=myImage2, x= 50.4, y = -5.3)
Sky coordinate translation:

im_trans_sky = Translate()(image=myImage2, ra=Angle(0.02, \
 ANGLE.DEGREES), dec=Angle(-0.05, ANGLE.DEGREES))

The angle can also be expressed in radians (ANGLE.RADIANS). An alternate form for
the angle is degrees/minutes/seconds or hours/minutes/seconds.

Ddmmss:

Angle(dd, mm, ss, 0)
Where dd = integer number of degrees, mm = integer number of minutes and ss=double
number of seconds of arc.
Hhmmss:

Angle(hh, mm, ss, 1)
This is similar, but now the first number is interpreted as being hours rather than degrees.

So to translate an image 10 minutes (of time) in RA requires the following

im_trans_sky = Translate()(image=myImage2, ra=Angle(1, 0, 0, 1))

8.5.7 Transposing an Image

Images can be transposed in a number of ways.

• FLIP_VERTICAL (flips top and bottom)
• FLIP_HORIZONTAL (flips from side to side)
• FLIP_DIAGONAL (bottom left to top right)
• FLIP_ANTIDIAGONAL (top left to bottom right)
• ROTATE_90 (clockwise rotation)
• ROTATE_180
• ROTATE_270

An example of how to use this command is

im_pose = Transpose()(image=myImage2, type=Transpose.FLIP_DIAGONAL)

This command flips the image so that pixels to bottom left appear at top right a flip
around the image axis going from topleft to bottom right of the image (antidiagonal
works on the opposite diagonal).

Herschel IA User’s Manual
V0.4, 21 January 2005

8.6 How can I display my own numeric2d datatypes?

In many cases, you may have constructed your own 2D array, possibly with a datatype
other than Double2d (e.g., Int2d) that you want to display. This can be done by simply
feeding the datatype to Display. Example 8.3 provides an illustration of how to input a
2D array of Int2d (of 16 by 18 pixels) and displays it. A zoom factor of 20 is also used.

#Example 8.3: Using Display with 2D integer arrays

image = Int2d(15, 17)
#image created of 2D integer array 15x17
for i in range(0, 15):
 for j in range(0, 17):
 image.set(i, j, i + j)
#loop around placing 'intensity' values into the array

d = Display(image, zoomFactor = 20, cutLevels = (0, 30))
#display the image with appropriate min/max levels and zooming

Figure 8-6 shows the results from running Example 8.3.

Figure 8-6: Example 8.3 – display of image created from user-supplied numeric 2D array.

93

Herschel IA User’s Manual
V0.4, 21 January 2005

8.7 How to Use Different Layers

It is possible to show different layers of an image. This can be done by adding a layer to
the existing image, but it can also be done by displaying a cube of numeric3d datatype
(like an Int3d, Double3d, ...).

The example in Figure 8-7 is an elaboration of the first example. It has been created using
the command

myDisplay.addLayer(myImage2)

We add myImage2 to myDisplay. The screenshot shows that there appears a slider in the
statuspanel, where you can switch between the different layers. The settings of the new
layer will be the same as the settings of the old layers (cut levels, annotations, zoom
factor, ...).

Figure 8-7: The use of layers in Display. Swapping between layers is performed using the slider at
bottom right.

8.8 How to place annotations on the image

It is possible to add annotations to the image. This can be done in two different ways :

94

Herschel IA User’s Manual
V0.4, 21 January 2005

95

1. Using the command line from your IA session
2. Using the annotation toolbox

Once the annotations are on the image, it is possible to use the mouse to select an
annotation, move it around and change the size of the annotation.

8.8.1 Annotations from the Command Line in your IA session

It is possible to add annotations to the image from the IA prompt.

The following is possible :
• Text annotations : Using addAnnotation(...), setAnnotationFont(...) and
setAnnotationFontColor(...) methods.
• Greek text annotations : Using addGreekAnnotation(...),
setAnnotationFont(...) and setAnnotationFontColor(...) methods. The
addGreekAnnotation method translates the normal characters to greek characters (a
becomes alpha, b beta, c gamma, ...). Numbers are not adapted.
• Figures as annotations : Using addEllipse(...), addLine(...), addPolygon(...),
addPolyLine(...) and addRectangle(...) methods. The addPolygon and addPolyLine
methods need an array of doubles as parameter. In this array, the coordinates of the points
should be added in this way : polygon([x1, y1, x2, y2, ...], ...)

Example 8.4 illustrates how to place annotations onto displays.

#Example 8.4: command line addition of annotations to images

myDisplay2.addAnnotation("Veil nebula", 321, 224)
#Places annotation at position (331, 224) on image 'mydisplay2'
myDisplay2.setAnnotationFont(321 , 224, Font("Dialog", 0, 64))
#change font type and size for the image 'mydisplay2'
myDisplay2.setAnnotationFontColor(321, 224, Color(0, 0, 255))
#annotation color changed
myDisplay2.addEllipse(500.0, 308.5, 38.0, 37.0, 3.0, Color(0, 0, 0))
#ellipse added with center at (500, 308.5) width=38, height=37
#linewidth = 3.0 and black color.
myDisplay2.addGreekAnnotation("a = 12.34, d = +30.30", 100, 500)
#adds a position label with greek letter notation at position (100,500)
myDisplay2.setAnnotationFont(100, 500, Font("Dialog", 0, 64))
#change font of annotation of at (100, 500)
myDisplay2.setAnnotationFontColor(100, 500, Color(0, 0, 0))
#…and change its color to black too
myDisplay2.setAnnotationFontColor(100, 500, Color.white)
#…but white is more visible.

The result is shown Figure 8-8.

Herschel IA User’s Manual
V0.4, 21 January 2005

8.8.2 Annotations using the annotation toolbox

It is much easier to add the annotations using an annotation toolbox. The annotation
toolbox can be shown using :

a = myDisplay2.annotationToolbox(_interpreter)

The _interpreter variable is needed to give the toolbox the needed information about
the variables that are defined in the jconsole session. Thanks to this, the toolbox will be
able to generate the jython code that is needed to reconstruct all annotations. If the
_interpreter variable is not given, the annotation toolbox will not give the sourcecode.

It is also possible to fire up the annotation toolbox by clicking with the right mouse
button on the image. A popup will appear where you can select 'Annotation toolbox'. If
you fire up the annotation toolbox using the popup menu, the jython code can not be
generated.

The annotation toolbox is shown in Figure 8-9.

Figure 8-8: Output from the use of Example 8.4 illustrating how annotations can be added in various
forms.

96

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 8-9: The annotation toolbox made available for “myDisplay”

The icons in the annotation toolbox appearing in Figure 8-9 have the following usage
(from left to right and from top to bottom) :

• Select annotation
• Select all annotations in a region
• Draw a line
• Draw a rectangle
• Draw an ellipse
• Draw a polyline
• Draw a polygon
• Draw with the free hand on the image
• Add a text annotation
• Remove the selected annotation(s)
• Remove all annotations

Letting the mouse linger over an icon also displays its function.

The polygon and polyline methods will enable you to select points on the image which
should be used as a corner of the polygon using the mouse. Double clicking the mouse
will end the selection procedure.

The following three buttons change the view of the annotation :

• Change the thickness of the line

97

Herschel IA User’s Manual
V0.4, 21 January 2005

98

• Change the color of the annotation
• Change the font of the text annotation

The lower part of the annotation toolbox is only visible if the _interpreter variable is
given with the annotationToolbox(...) method. The jython code needed to regenerate
all annotations is given there. If you change the size of a text annotation, this will not be
reflected in the jython code.

8.9 Sample JPEG Image and Extended Example Demo
Script

The JPEG file of NGC6992 used as an example throughout this chapter is available here
(ngc6992.jpg).

An extended example demo script is available here (Example1.py).

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/image/imageExample1.py

Herschel IA User’s Manual
V0.4, 21 January 2005

Herschel IA Chapter 9

9 Other IA Packages: What is

Available?

Chapter 9 Contents

9.1 Introduction
9.2 Overview of JavaDocs Documentation for IA Packages
9.3 Package view
9.4 Class view
9.5 Tree view
9.6 Deprecated view
9.7 Index view
9.8 IA Packages And Documentation

9.9.1 herschel.ia.dataflow
9.9.2 herschel.ia.dataset
9.9.3 herschel.ia.demo
9.9.4 herschel.ia.doc
9.9.5 herschel.ia.image
9.9.6 herschel.ia.io
9.9.7 herschel.ia.jconsole
9.9.8 herschel.ia.numeric
9.9.9 herschel.ia.plot
9.9.10 herschel.ia.task
9.9.11 herschel.ia.ui

9.1 Introduction

To use the various packages within HCSS the user needs to import the packages into the
HCSS session. This can be done automatically using the import.py file, editable by the
user, for packages that are used frequently. Whether in the import.py or via a jconsole
command line, all packages are imported via command lines of the type

from herschel.ia.numeric import *

There are several packages available within the HCSS. In this chapter we provide an
overview of the main IA packages only. There are also a number of external library sets
that are imported into IA when it is initiated (these will be described in a later update to

99

Herschel IA User’s Manual
V0.4, 21 January 2005

the manual). A full listing of classes (programs) available in the HCSS system is given in
Appendix B.

A number of IA packages have already been discussed in some detail. The IA numeric
package was discussed in Chapter 5, the IA plot package in Chapter 7 and the IA display
package is described in Chapter 8. Illustrations of how to use parts of several other HCSS
packages are also shown in earlier chapters.
Most packages also have sub-packages containing classes that presently require separate
import statements, e.g.,

from herschel.ia.numeric.function import *
from herschel.ia.numeric.function.fit import *

The contents of these sub-packages are also briefly described in this chapter.

9.2 Overview of JavaDocs Documentation for IA Packages

The javadoc is normally started up as three frames in a web browser as illustrated in
Figure 9-1. The upper left frame contains the packages index which is a clickable list of
all packages in the system. The title in that frame represents the HCSS build number for
which this documentation is valid. The lower left frame contains the classes index which
is a clickable list of all classes. The selection of classes shown in this frame depends on
the package that was selected in the packages index frame. The Main frame contains
overview information on the system and packages or shows the javadoc for a selected
class.

Figure 9-1: Web browser page of JavaDocs top level frame

Click in the Packages index frame to select a package and update the Classes index frame
to show those classes for the selected package. Click the Classes index frame to show the
javadoc of a particular class in the Main frame.

100

Herschel IA User’s Manual
V0.4, 21 January 2005

The Main frame contains a kind of navigation bar at the top where the view in this frame
can be selected. The figure above shows the overview of all the packages. Other views
are: Package, Class, Tree, Deprecated, Index, and Help. These views will be explained in
more detail below. In the overview the Package and Class views are disabled, they
become available when a package or class is selected. Figure 9-2shows the slightly
expanded navigation bar for the Class view.

Figure 9-2: Navigation bar on the “class view” of JavaDocs

Note that the navigation bar provides the possibility to browse through packages and
classes with NEXT and PREVIOUS and provides direct access to the specific parts of the
class documentation e.g. constructors (start class/program) or methods (which can be
thought of as sub-routine components of programs that can be applied). It is also possible
to switch between FRAMES and NO FRAMES. With NO FRAMES only the Main frame of the
javadoc will be shown and index frames become unavailable.

9.3 Package view

Each package has a page that contains a list of its classes and interfaces, with a summary
for each. This page can contain four categories: Interfaces summary, Classes summary,
Exceptions and Error summary. Not all categories are always present. At the end there is
the package description and possible links to specific and/or related documentation.

Figure 9-3 shows the herschel.ia.dataset package which contains a number of
interface and classes e.g. Dataset and TableDataset. You can see that the Classes index
frame provides a clear separation of interfaces and classes and the Main frame shows the
interface and class summaries and provides a brief package description with links to
package specific info at the bottom (The image of the Main frame has been manipulated
to shows the categories available without too much cluttering the picture). You can
navigate to the interface and class detailed documentation by clicking the names in the
summary tables or in the Classes index frame.

9.4 Class view

Each class and interface has its own separate page in the Main frame. Each of these pages
has three sections consisting of a class/interface description, summary tables for
constructors and methods, and detailed descriptions of constructors, methods and
attributes. The information shown in the class view is restricted to the public API
(Application Programming Interface).

101

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 9-3: Package description page in JavaDocs

102

Herschel IA User’s Manual
V0.4, 21 January 2005

Each summary entry contains the first sentence from the detailed description for that
item. The summary entries are alphabetical, while the detailed descriptions are in the
order they appear in the source code. This preserves the logical groupings established by
the programmer.

Figure 9-4 is taken from the Main frame of the TableDataset class and shows the class
description together with its hierarchy. You can see that the TableDataset implements a
number of interfaces and also has one known sub-class i.e. SpectrumDataset. The second
part of the figure shows a more detailed description of the class usage. This description is
provided by the programmer in the source code.

Figure 9-4: The class view of TableDataset showing a brief description and a short example of its
usage.

Scrolling down in the Main frame brings you to the summary section which is shown in
the Figure 9-5. The constructor summary shows all public constructors for this class with
their specific argument list. To see detailed information on the constructor click the name
of the constructor that you need. Constructors are methods that create objects of a
particular type. The code example in the description section above shows you how to
create a TableDataset on the jython command line.

103

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 9-5: Page showing the constructor mechanism (how to create a TableDataset) and the
associated set of methods (what you can do with the TableDataset you created)

The method summary shows all public methods for this class in alphabetical order. For
detailed information on a specific method, click its name. In this method summary there
are a number of things to note. The return values of the methods are in the left column
while the method signature and a summary line is in the right column. The summary line
can be preceded with a deprecation note. Deprecation means that this method should not

104

Herschel IA User’s Manual
V0.4, 21 January 2005

105

be used anymore because it is marked to be removed from future releases. The
deprecation comment normally provides the alternate or new method to be used instead.
An overview of all deprecated methods in the whole system is available from the
navigation bar at the top of the Main frame.

Sometimes method names can start and end with two underscore characters like in
'__getitem__' above. These methods are special constructs which allow you to use the
specific jython syntax to access and manipulate objects from this class.

9.5 Tree view

There is a Class Hierarchy page for all packages, plus a hierarchy for each package. Each
hierarchy page contains a list of classes and a list of interfaces. The classes are organized
by inheritance structure starting with java.lang.Object. The interfaces do not inherit from
java.lang.Object. When viewing the Overview page, clicking on "Tree" displays the
hierarchy for all packages. When viewing a particular package, class or interface page,
clicking "Tree" displays the hierarchy for only that package.

9.6 Deprecated view

The Deprecated API page lists all of the API that have been deprecated. A deprecated
API is not recommended for use, generally due to improvements, and a replacement API
is usually suggested. Be warned that deprecated APIs may be removed in future
implementations.

9.7 Index view

The Index contains an alphabetic list of all classes, interfaces, constructors, methods, and
fields.

9.8 IA Packages And Documentation

The following short paragraphs outline the packages currently available within the
Herschel IA system. A full listing of the classes (programs) available in these packages is
given in Appendix B. To go to the on-line JavaDocs (fairly terse documentation on the
packages), click on the appropriate heading.

9.8.1 herschel.ia.dataflow

herschel.ia.dataflow – a package for handling processing threads. Particularly useful for
Quick Look Analysis (QLA) and Standard Product Generation (SPG). It can be used in
interactive sessions too. Allows the user to connect scripts from process modules as is
typically required for a set of data reduction steps

Herschel IA User’s Manual
V0.4, 21 January 2005

106

Sub-packages:
herschel.ia.dataflow.data.process …classes for handling the processes used in a
dataflow session.
herschel.ia.dataflow.example.indicator_control.monothread …classes used to illustrate
the control of a dataflow.
herschel.ia.dataflow.example.indicator_control.multithread …ditto but for multiple
threads.
herschel.ia.dataflow.template …class to allow template dataflow to be created.
herschel.ia.dataflow.util …contains a class for identifying dataflows.

9.8.2 herschel.ia.dataset

herschel.ia.dataset – a package for dealing with TableDataset, ArrayDatasets and
CompositeDatasets. These datasets contain information to which an algorithm can be
applied. The package contains classes that deal with the set and handling of these datasets
and also the handling of products (which can contain multiple datasets). An example
product may be one that contains several tables plus metadata that describes the table
contents which might have similarities to FITS header information.
Sub-packages:
herschel.ia.dataset.demo – contains classes that demonstrate the use of datasets and
construct a user-defined SpectrumDataset.

9.8.3 herschel.ia.demo

herschel.ia.demo – package containing classes for use in an IA demo of end-to-end
processing. See sub-package herschel.ia.demo.endtoend and demo script.

9.8.4 herschel.ia.doc

herschel.ia.doc – currently a place holder for a documentation package.

9.8.5 herschel.ia.help

This package contains the utilities and classes needed for providing the help facilities in
an IA/Jconsole session. Access to the on-line help is discussed in Chapter 3 of this
manual.

9.8.6 herschel.ia.image

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/productgeneration_demo.py

Herschel IA User’s Manual
V0.4, 21 January 2005

107

herschel.ia.image – package containing classes for handling images. The Display
capabilities from this package were discussed in Chapter 8. The following classes exist in
the package.

• Display – an image display implementation based on JSKY. User gets
800x600 window for image. Can handle, 1D, 2D and 3D image
representations. Allows standard display capabilities such as annotation,
rescaling, coordinate display.

• Histogram – currently a basic histogram capability. The histogram is
based on the values taken from an imageDataset.

• ImageDataset – a special form of a composite dataset that presents an
image. Has layers which are image data, mask data, error data. World
Coordinate System (WCS) information is held as metadata in the
ImageDataset.

• Layer – constructs a layer of an ImageDataset.
• Rotate – allows rotation of an ImageDataset. Four different types of

interpolation are possible. The WCS coordinates of the image are also
rotated with the image.

• Scale – allows the scale of an image to be changed. Four different types of
interpolation are possible.

• Translate – moves an ImageDataset. The WCS is also adapted.
• WCS – associates a WorldCcoordinate System to an ImageDataset

Sub-package:
herschel.ia.image.gui – classes that handle GUIs. These should ONLY be called from
within the Display program.

9.8.7 herschel.ia.inspector

This package contains the classes and utilities for providing the dataset and session
inspectors available in Jconsole (see Chapter 3).

9.8.8 herschel.ia.io

herschel.ia.io – This is a package that provides a means of accessing local archives where
Products can be saved or loaded from. Products are combinations of data and information
and can be likened to the contents of a single FITS file.

Sub-packages:
herschel.ia.io.fits – A FITS implementation that can write Products to a FITS file and
read such FITS files back into the system. Allows the production of a FITS archive.
herschel.ia.io.ascii – Allows the input/output to and from ASCII files from within the IA
environment.
herschel.ia.io.dbase – Allows data/products to be put into objects that can be stored in
databases (Versant databases are currently available for use with the HCSS). See Chapter
12 for information about the setup and use of databases with IA.

Herschel IA User’s Manual
V0.4, 21 January 2005

108

9.8.9 herschel.ia.jconsole

herschel.ia.jconsole – Package containing the classes used in running jconsole, a GUI
for running/editing of IA/Jython scripts. Allows control of the jconsole setup and access
to classes that setup the components of the GUI interface (in herschel.ia.jconsole.gui).

9.8.10 herschel.ia.numeric

herschel.ia.numeric – This package is discussed in some detail in Chapter 6.
Sub-packages:
herschel.ia.numeric.function – Provides the numeric classes currently available within
Herschel IA. These include such functions as FFT, fitter, interpolation and matrix
functions.
herschel.ia.numeric.function.fit – Provides the classes that allow data fitting of various
types.
herschel.ia.numeric.function.util – Provides further mathematical functions, including
hyperbolic functions and exponentiation.

9.8.11 herschel.ia.plot

herschel.ia.plot – This package provides access to the IA plotting utilities available with
IA (callable from jconsole). This includes PlotXY and access to plot properties. The use
of the plotting capabilities in Herschel IA is discussed in Chapter 7.

9.8.12 herschel.ia.task

herschel.ia.task – This package provides the tools needed to create an IA “task” which a
user can then incorporate when constructing his/her own IA software package. This can
be used by a user to set up a script which has an associated “signature” (parameter setup).
In setting up a task, parameter checks can be performed and a history of the processing
can be made.

9.8.13 herschel.ia.ui

herschel.ia.ui – Provides the programs dealing with the GUI interfaces available within
Herschel IA. The setup and use of GUIs and incorporating JAVA

Herschel IA User’s Manual
V0.4, 21 January 2005

Herschel IA Chapter 10

10 Import and Export of Tabular

ASCII and FITS Files

Chapter 10 Contents

10.1 Introduction
10.2 Getting Started with ASCII Import/Export
10.3 Basic ASCII Table Import/Export Tool Usage

10.3.1 Import Parsers
10.3.2 Comma-Separated-Variable Parser
10.3.3 Fixed-Width Parser
10.3.4 Export Formatters
10.3.5 Comma-Separated-Variable Formatter
10.3.6 Fixed-Width Formatter
10.3.7 Table Template

10.4 Example of How to Import/Export ASCII Tables in IA
10.5 Overview of FITS IO
10.6 Getting Started With FITS IO

10.6.1 Basic FITS IO Tool
10.6.2 Parameter Name Conversion and FITS Header
10.6.3 Caveats

10.1 Introduction

This chapter describes how to read and write tabular ASCII and FITS data files within
IA. Illustrations are provided that run in the jconsole environment. It should be noted
that FITS files created outside of the IA environment can NOT currently be
imported.

10.2 Getting Started with ASCII Import/Export

Assuming you have successfully started jconsole, then the following packages should
already be available within the standard IA setup

 # ascii tools

herschel.ia.io.ascii

109

Herschel IA User’s Manual
V0.4, 21 January 2005

110

 # table dataset handling
herschel.ia.dataset

10.3 Basic ASCII Table Import/Export Tool Usage

The tool to read and write tabular ASCII files is called AsciiTableTool. In your
jconsole session, you may have multiple instances of this tool -each with a different
configuration to suit the format of the input/output tables being used.

In general

 create the ascii tool with default settings

ascii=AsciiTableTool()

import a table from an ascii file. Take the tool and use it to load a
table labeled “table.input” in your current directory. It is called “table”
within the IA environment and can be viewed with the command “print table”
within IA.

table=ascii.load("table.input")

export a table to an ascii file. Take the IA table (called “table”) and using the tool (ascii)
apply the method (save) to save into a file called “table.output” in your current directory

ascii.save("table.output",table)

You can change the behavior of the tool to allow various formatting changes with the
following attributes:

parser=yourParser Changes the line parsing behavior at import.
formatter=yourFormatter Changes the line formatting behavior at export
template=yourTemplate Specifies how to interpret raw cell data.

e.g.
ascii.parser=CsvParser

indicates to use the CsvParser
ascii.formatter=CsvFormatter(delimiter = `&`)

which indicates that we want to use a non-standard delimiter (ampersand rather than a
comma).

10.3.1 Import Parsers

A parser controls how to break-up a line into table cell data. All parsers share the
following attributes:

Herschel IA User’s Manual
V0.4, 21 January 2005

111

ignore=expression
Lines containing expression are ignored. By default the expression
skips lines starting with a hash, possibly preceded by whitespace:
"^\\s*#"

skip=value First number of lines can be skipped by specifying a value>0.
Default is 0.

trim=0|1 Whether to strip lines from leading and trailing spaces, default is 0
(false).

Example:
#skip first 20 lines of the table – read or write.

ascii.parser.skip=20
#indicate whether to remove leading and trailing blank spaces or not.

ascii.parser.trim=1

10.3.2 Comma-Separated-Variable Parser

The Comma(Character)-Separated-Variable Parser named CsvParser breaks up a line
into cells using a delimiter symbol. The delimiter character can be part of one or more
cell-data itself.

In addition to the common attributes of any parser, a CsvParser gives you control over the
following extra attributes:

delimiter=character The character used to distinguish cells within a line of data. Default
is a comma (,).

quote=character The character used if cell-data contains a delimiter character.
Default is a double quote (").

Example:
use a CSV parser overriding default settings. This example skips 2 lines and makes
the delimiter symbol a semi-colon. The * character is used to indicate cells containing
the delimiter symbol.

ascii.parser=CsvParser(skip=2,delimiter=';',quote='*')

10.3.3 Fixed-Width Parser

The FixedWidthParser breaks up a line into cells by interpreting every cell to be of a
fixed number of characters.

In addition to the common attributes of any parser, a FixedWidthParser gives you control
over the following extra attributes:

Herschel IA User’s Manual
V0.4, 21 January 2005

112

sizes=array An array n elements, where n is the number of columns, and each element
specifies the width of that cell.

Example:
use a FixedWidth parser that expects 3 columns in the table with widths
#10, 20 and 10 characters respectively – and in that order.

ascii.parser=FixedWidthParser(sizes=[10,20,10])

10.3.4 Export Formatters

A formatter controls how to format a row of cells into a line of ascii. All formatters share
the following attributes:

commented=0|1 States whether comments will be allowed in the output or not,
default=0 (false).

commentPrefix=string Prefix used for all comments, default="# ".

header=0|1
Whether to precede the actual data with header information,
default is 0 (false). This header may contain name, type, units
and description of each column

Example:
#First indicate that a header is to be added to the output table

ascii.formatter.header=1
#Indicate that comments will be allowed in the output

ascii.formatter.commented=1
#Indicate how comments are prefixed in the table

ascii.formatter.commentPrefix="$$$ "

10.3.5 Comma-Separated-Variable Formatter

Please read its counterpart CsvParser (section 10.3.2) for parameters and defaults.

#The default comma(character) separated variable formatter has a ’,’ delimiter
#and a ‘#’ quote.

formatter=CsvFormatter()
#The delimiter and quote can be changed – the & symbol is useful for
#creating latex tables

formatter=CsvFormatter(delimiter='&', quote='<')

10.3.6 Fixed-Width Formatter

Herschel IA User’s Manual
V0.4, 21 January 2005

113

Please read its counterpart FixedWidthParser for parameters and defaults.

#Take default width for table cells
formatter=FixedWidthFormatter()
#Set the width of 3 columns of cells to specific sizes
formatter=FixedWidthFormatter(sizes=[5,12,3])

10.3.7 Table Template

Many tabular ascii files contain only raw data. Though the human eye may interpret cell-
data being a string or a rational number, the computer needs some more information.
The TableTemplate allows you to specify such information. The only mandatory
argument for a table template is the number of columns that are expected. Its optional
attributes are:

names=array Specifies names that will be attached to the columns.

types=array
Specifies the types of all columns. If not specified, the template
assumes that all columns are of type String. Allowed types are:
"Boolean","Integer","Float","Double" and "String".

units=array Specifies the units of all columns. Uses SI units, and units that are
accepted for use with SI.

descriptions=array Specifies comments for all columns.

Example:
#The following table template indicates a table with 4 columns with associated names
#character/number types and associated units

ascii.template=TableTemplate(4,\
 names=["Frame","Energy","Foo","Bar"], \
 types=["Integer","Double","Double","Double"], \
 units=["s","eV","N m -1","kg L-1"])

10.4 Example of How to Import/Export ASCII Tables in IA

Section 10.3 introduced the various import and export capabilities of the AsciiTableTool.
We can put these together to illustrate how a user can import and export Ascii tables of
virtually any type. Example 10.1 provides an illustration of how to handle ASCII tables
in the IA environment. A number of ASCII tables are created and reimported. These can
be viewed by opening them with the Jconsole window (or within any other text editor).
In order to run the program the user will also require an input file, which is given below
and can be downloaded from here.

#file “ascii_demo_data.txt” for use in example 10.1

Herschel IA User’s Manual
V0.4, 21 January 2005

114

sample file, using default settings of AsciiTable object
table=AsciiTable().load("table-default.txt")
Frame,Counts,Valid,Comments
Integer,Double,Boolean,String
s,eV,,
,,,
1,1.0,true,
2,5.0,true,
3,0.0,false,incomplete data
4,0.0,false,missing data
5,1.234567E-8,true,

Example 10.1 – Handling ASCII tables

--- import a table that complies to default settings
ascii=AsciiTableTool()
table=ascii.load("ascii_demo_data.txt")

--- export a table using defaults settings:
ascii.save("table.out1",table)

--- export using Fixed Width format, with header info:
ascii.formatter=FixedWidthFormatter(sizes=[8,16,8,30])
ascii.save("table.out2",table)

--- importing it back requires Fixed Witdh parser
ascii.parser=FixedWidthParser(sizes=[8,16,8,30])
table=ascii.load("table.out2")

--- export using Fixed Witdh format, only raw data:
ascii.formatter.header=0
ascii.save("table.out3",table)

--- importing a raw "fixed width" table that has only data. So we
have to
define the template ourselves:
ascii.template=TableTemplate(4,names=["Frame","Counts","Valid",\
 "Comments"], types=["Integer","Double","Boolean","String"])

table=ascii.load("table.out3")

--- saving current state of AsciiTableTool:
ascii.save("table.template")

--- quick save table with default settings, equivalent to
#"table.out1":
AsciiTableTool().save("table.out4",table)

-- reloading state:
mine=AsciiTableTool("table.template")
table=mine.load("table.out3")
mine.save("table.out5",table)

--- saving with comments
table.description="Sample description can be found here"
mine.formatter.header=1

Herschel IA User’s Manual
V0.4, 21 January 2005

115

mine.formatter.commented=1
mine.formatter.commentPrefix="; "
mine.save("table.out6",table)

10.5 Overview of FITS IO

In the next few sections we describe how to write and read Products (which contains one
or more datasets, a history of how it was created and meta-data describing the contents –
the latter two are typical FITS header components) to and from FITS files within the IA
environment.

FITS stands for Flexible Image Transport System, a format adopted by the astronomical
community for data interchange and archival storage.

10.6 Getting Started With FITS IO

Assuming you have successfully started JIDE, the facilities needed to create products as
well as to create FITS files should already be available in your session.

10.6.1 Basic FITS IO Tool

The tool to write and read Products to and from FITS files is FitsArchive. In your
jconsole session, you may have multiple instances of this tool -each with a different
configuration.

In general, we can set up a FITS file for archiving, export IA products to it and retrieve
back a product from a FITS file.

For example:
create the FITS Archive with default settings

fits=FitsArchive()

export a product to a FITS file

fits.save("product.fits",product)

import products from a FITS file

product=fits.load("product.fits")

[NOTE: At present, the program is unable to load FITS files that were not created by the
Herschel IA system]

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/dataset/index.html

Herschel IA User’s Manual
V0.4, 21 January 2005

116

10.6.2 Parameter Name Conversion and FITS Header

The current implementation of the FITS archive converts long, mixed-case parameter
name, defined in the meta data of your product, into a FITS compliant notation. The latter
dictates that parameter names must be uppercase, with a maximum length of eight
characters. Clearly, we do not want to force all our parameters to have names that fit
within such a FITS specific restriction.

The FITS Archive uses lookup dictionaries that convert well known FITS parameter
names into a convenient and human readable name. Currently the following dictionaries
are in use:

Common keywords widely used within the astronomical community. Taken from
HEASARC,

Standard FITS keywords, and

HCSS keywords containing keywords that are not defined in the above dictionaries.

For example the following Meta data is transformed into a known FITS keyword:
JCONSOLE

product.meta["softwareTaskName"]=StringParameter("FooBar")

10.6.2.1 FITS product header
HIERARCH key.PROGRAM='softwareTaskName'
PROGRAM = 'FooBar '

Example
A full demonstration of FITS IO is available in example 10.2. The script creates a
product with several (nested) datasets, stores it into a FITS file, and then retrieves it
again.

#Example 10.2: FITS IO from within Herschel IA
first we will get some unit definitions for our example
from nT.quantity.constant.ENERGY import ELECTRON_VOLTS
from nT.quantity.constant.TEMPERATURE import KELVINS
from java.lang.Math import PI

--- construction of a product. note this is only for demonstration
purposes. For more infomation, please see the dataset and numeric
chapters of the manual (chapters 5 and 6).
points=50
x=Double1d.range(points)
x*=2*PI/points
#Create an array dataset that will eventually be exported
s=ArrayDataset(data=x,description="range of real\
values",quantity=ELECTRON_VOLTS)

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryHeasarc.map
http://heasarc.gsfc.nasa.gov/
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryStandard.map
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryHcss.map

Herschel IA User’s Manual
V0.4, 21 January 2005

117

#provide some metadata for it (header information)
s.meta["temperature"]=LongParameter(long=293,\
description="room temperature",quantity=KELVINS)

#create a tabledataset for export
t=TableDataset(description="This is a table")
t["x"]=Column(x)
t["sin"]=Column(data=SIN(x),description="sin(x)")

c=CompositeDataset(description="Composite with three datasets!")

c.meta["exposeTime"]=DoubleParameter(double=10,description="duration")
c["childArray"]=s
c["childTable"]=t
c["childNest"]=CompositeDataset("Empty child, just to prove nesting")

p=Product(description="FITS demonstration",creator="demo.py")
p.creator="You?"
p.modelName="demonstration"
p.meta["sampleKeyword"]=\
StringParameter("Example keyword not in FITS dictionaries")

p.meta["observationInstrumentMode"]=StringParameter("UnitTest")
p["myArray"]=s
p["myTable"]=t
p["myNest"]=c

--- demonstration of the FITS archive
fits=FitsArchive()
save it ...
fits.save("demo.fits",p)
... load it back into a new variable...
n=fits.load("demo.fits")
... and show it!
print n
print n["myArray"]
print n["myNest"]
print n["myNest"]["childNest"]

10.6.3 Caveats

The current implementation can not yet read fits files that are generated by any
other package than herschel.ia.io.fits within the Herschel IA system. This is
expected to change so that FITS files can be imported from and exported to other
software packages.

A FITS header card is limited to 80 characters. Within those limitations the FitsArchive
will try to store the abbreviated FITS keyword, parameter value, and in the comment area
optionally a quantity and description. The latter two might be truncated due to these
limitations. Also a StringParameter with a long value can be truncated.

For more information see the FITS IO general documentation

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/index.html

Herschel IA User’s Manual
V0.4, 21 January 2005

Herschel IA Chapter 11

11 Using Time in the IA

Environment

Chapter 11 Contents

11.1 Introduction
11.2 Time Definitions

11.2.1 System time in IA (FineTime)
11.2.2 International Atomic Time (TAI) and FineTime
11.2.3 Coordinated Universal Time (UTC)
11.2.4 DecMec Time

11.3 Time in HK Data
11.4 Time conversion

11.4.1 Time conversion in HCSS
11.4.2 CucConverter

11.1 Introduction

This note describes which and how Time is defined within HCSS and how to deal with it.
Unfortunately, there are several ways in which time can be represented. The standard for
the HCSS/IA is a FineTime – which is the number of microseconds since the beginning
of 1 January 1958. This provides the kind of accuracy needed to represent time on a
space mission.
However, there are several other time representations and it is often the case that
conversions between times/dates is necessary. This chapter indicates how to deal with
times within IA.

11.2 Time Definitions
11.2.1 System time in IA (FineTime)

There are many ways to access the system time within IA. See also the description of the
class Date for a discussion of slight discrepancies that may arise between "computer
time" and coordinated universal time (UTC).
Two possibilities are:

To get the current time in milliseconds :

The difference, measured in milliseconds, between the current

118

Herschel IA User’s Manual
V0.4, 21 January 2005

119

time and midnight, January 1, 1970 UTC.

print java.lang.System.currentTimeMillis()

To get the number of milliseconds since
January 1, 1970, 00:00:00 GMT represented by a Date object.

d = java.util.Date()
#printing this gives the current time and date at the location of the
#system on which the java is being run.
print d

#We can also get the number of milliseconds since Jan 1, 1970 using
#this Java Date
print d.getTime()

Note that while the unit of time of the return value is a millisecond, the granularity of the
value depends on the underlying operating system and may be larger.

If we want to get the number of milliseconds since 1 January 1970 for any other date then
we can use the java Date capability.

#Format of date is year (in units of true year – 1900), month (number
0…11), day, hour, minute, second
#So the following gives us the number of milliseconds between the
beginning of 1 January 1970
and 3:15:00 pm on 23 October 2004.

d = java.util.Date(104, 9, 23, 15, 15, 0)
print d # should indeed show we have 3:15pm on 23 October 2004
print d.getTime() # provides the number of milliseconds between this
 #date and 1 Jan 1970.

11.2.2 International Atomic Time (TAI) and FineTime

TAI is an international standard measurement of time based on the comparison of many
atomic clocks. TAI is the basis for Coordinated Universal Time (UTC). Finetime is based
on TAI as measured from 00:00:00 1 January 1958.

11.2.3 Coordinated Universal Time (UTC)

UTC, World Time, is the standard time common to every place in the world. UTC is
derived from International Atomic Time (TAI) by the addition of a whole number of
"leap seconds" to synchronise it with Universal Time 1 (UT1), thus allowing for the
eccentricity of the Earth's orbit, the rotational axis tilt (23.5 degrees), but still showing the
Earth's irregular rotation, on which UT1 is based.

Herschel IA User’s Manual
V0.4, 21 January 2005

120

11.2.4 DecMec Time

The commands DPUSelectTime and DPUWriteTime are selecting and setting a start time
which is written to the TMP1 and TMP2 fields of the Dec/Mec headers. It is possible to
construct an absolute time by adding counters (CRDC) to the start time considering an
offset between setting and writing the start time.

This offset is expected to be a number with an uncertainty depending on the system load.
It might require a calibration file. Currently this offset is not considered.

In case the commands and are not given the TMP1 and TMP2 fields are zero. To avoid
software confusions the time will be related to a fixed date (1.Jan 1970, 0:00).

During construction of the SpuBuffer the time is computed from the TMP1, TMP2
entries in the Dec/Mec header and the CRDC counter. This time is used during
construction of the DataFrameSequence and the associated Tables holding the spu
science data.

Between the Dec/Mec time and the packet time (see PusTmBinStruct) we have an offset.
Therefore the association between HK and science data will be within an accuracy of 2
seconds.

11.3 Time in HK Data

The most convenient method of obtaining timestamped HK information is the use of the
“herschel.binstruct” package. The use of this is illustrated in Chapter 12.10 where HK
data is obtained from a database and then read/converted for use within the IA
environment.

When dealing with HK time information directly, it is important to know that telemetry
packets contain the time as defined within the “PUS Data Field Header”. The field
represents the on-board reference time of the packet, referenced to TAI, expressed in
spacecraft time units – CCSDS Unsegmented Time Code (CUC) units. CUC units are
multiples of 1/65536 sec from 1 January 1958 in TAI time. CUC units cannot be
expressed in whole microseconds but can be converted to the FineTime standard (see
below).

CUC time is written for HK by the data processing unit (DPU).

Current PusTmBinStruct methods related to time :
long getTime()
Returns the packet time of the Pus telemetry packet.

boolean isTimeSynchronized()
Returns true if the telemetry packet is synchronized, false otherwise.

Herschel IA User’s Manual
V0.4, 21 January 2005

121

java.util.Date getTimeAsDate()
Returns the packet time as a Date object.

FineTime getTimeAsFineTime()
Returns the packet time of the Pus telemetry packet as FineTime.

11.4 Time conversion
11.4.1 Time conversion in HCSS

It can often be the case that we need to convert between FineTime (TAI) and Date
(UTC). Coordinated Universal Time is expressed using a 24-hour clock and uses the
Gregorian calendar. FineTime represents a TAI time (epoch 1958), whereas the Java Date
class is used to represent UTC, by resetting the system clock whenever a leap second
occurs and don’t need to handle leap seconds. In order to convert between Java dates and
the FineTime standard requires the use of the DateConverter() class. Long integers can
also be directly converted to FineTimes and are interpreted as representing the number of
microseconds since 00:00:00 1 January 1958. Example 11.1 illustrates how we can create
a FineTime from a long integer and convert back and forth between FineTime and Java
Dates.

#Example 11.1 – time conversion of Date to FineTime (and back)
from herschel.ccm.util import *
from herschel.share.fltdyn.time import *

#FineTime to Date
#Enter a time in seconds (a long integer – put letter “l”
#at the end of the number)
c = FineTime(1436094449715400l)#convert to a FineTime
#Prints corresponding date and time
print DateConverter.fineTimeToDate(c)

#Date to a FineTime
d = java.util.Date() #gets today’s date and time
#prints corresponding FineTime
print DateConverter.dateToFineTime(d)

11.4.2 CucConverter

Converts between Spacecraft Elapsed Time, in CCSDS Unsegmented Time Code (CUC)
format and FineTime (TAI). This implementation is for the Herschel CUC format, which
is corrected on-board the spacecraft to TAI (epoch 1 Jan 1958). This representation uses
32-bits for seconds and 16 bits for fractional seconds. CUC times are multiples of
1/65536 sec and cannot be expressed as an exact multiple of 1 microsecond (the
resolution of FineTime). However, the following relations hold for 'coarse' and 'fine'
values in the allowed range:

Herschel IA User’s Manual
V0.4, 21 January 2005

122

long coarse(FineTime t)
Return the number of whole seconds since the epoch 1 Jan 1958.
long cucValue(FineTime t)
Return the number of 1/65536 fractional seconds since the epoch 1 Jan 1958.
int fine(FineTime t)
Return the fractional part of the number of 1/65536 seconds since the epoch 1 Jan 1958.
FineTime toFineTime(long cuc)
Return a new FineTime constructed from a 48-bit CUC time.
FineTime toFineTime(long coarse, int fine)
Return a new FineTime constructed from CUC coarse & fine fields.

For example:
d=CucConverter.toFineTime(50000000000000l)
Converts the long integer – representative of a CUC time –
#into a FineTime. The FineTime is stored in d.
e = CucConverter.coarse(d)
#provides the number of whole seconds since 1 Jan 1958
#and stores it in e.

Herschel IA User’s Manual
V0.4, 21 January 2005

Herschel IA Chapter 12
 12 Setup and Use of Databases

Chapter 12 Contents

12.1 Introduction
12.2 Starting Up A Database:

12.2.1 Unix
12.2.2 Windows

12.3 Schema Initialization
12.4 Using an existing database and Schema Evolution

12.4.1 Initializing a schema on an old database
12.4.2 Schema Tool commands

12.5 Initializing a Database For IA Use
12.6 Quick Database Creation
12.7 Providing Database Access for an IA Session

12.7.1 Properties File Setup for Database Access
12.7.2 Using the Propgen Tool

12.8 Browsing a Database
12.9 Getting Data Frames From a Database

12.9.1 Command Line Access to Data Frames
12.9.2 From Database to ASCII File
12.9.3 Downloading Dataframes from a Database Using a GUI

12.10 Accessing Housekeeping (HK) Data
12.10.1Accessing HK Information For a Given Obsid
12.10.2Accessing HK Data For a Given Time Period

12.11 Removing a Database

12.1 Introduction

If you want to work with databases, which is one of the main ways in which test and
(later) observational data are to be stored within the HCSS, then you will need to have a
Versant Database System available to you. For most large sites your system manager will
have installed a Versant license which allows the setup and use of databases at your home
institution. You can also install a database capability on your own computer/laptop. Unix
and Windows versions are available.

Most users will not need to set up a database but rather just access for reading stored data.
In this case, sections 12.2 and 12.3 may be skipped.

123

Herschel IA User’s Manual
V0.4, 21 January 2005

124

Note for Versant in general: Versant is commercial software and procurement has been
done centrally for Herschel, please contact the Herschel software administrator at your
institute for more details on how to proceed.

Alternatively you can contact the following people:

HIFI:

o Albrecht de Jonge
o Peer Zaal

PACS:

o Ekkehard Wieprecht for PACS/MPE
o Wim de Meester for PACS/KUL

SPIRE:

o Steve Guest

Some notes on Versant database setup are available in Chapter 2.4. For further
information please also consult the Known issues with Versant Databases document.

12.2 Starting Up A Database:

12.2.1 Unix

The following commands create a database within the HCSS and make it available for
use. They should be executed at a terminal prompt.

>> makedb <dbname> #initializes directory and log files
>> createdb <dbname> # creates db itself

Database names should be given in the format
tony_hcss@lin-sron-02.sron.rug.nl.

The database now being used should be in the properties file (use “propgen” to check this
out – Just put “propgen” on the command line and hit the “General” tab at the top. The
database currently in use is on the second line down. Change if needed).
Now we can fill the database.

12.2.2 Windows

mailto:A.R.W.de.Jonge@sron.rug.nl
mailto:peer@sron.rug.nl
mailto:ewieprec@mpe.mpg.de
mailto:wim@ster.kuleuven.ac.be
mailto:S.Guest@rl.ac.uk
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/devel/versant.html
mailto:tony_hcss@lin-sron-02

Herschel IA User’s Manual
V0.4, 21 January 2005

125

The Unix setup will also work under windows, once the Versant database software has
been installed. Alternately, a database can be created using a “wizard”.

• Go to
"Start->Programs->Versant Develop Suite->Administration Console"
and then click
"File->Create Database".

In the wizard that comes up on the screen, specify dbname and server where
dbname and server are the name of the database and the database server, which
must match those specified in your properties if the database is to be used.

12.3 Schema Initialization

The database you have created will need a schema associated with it. On Unix or
Windows machines the same command can be used.

o schema_tool -ni dbname@dbserver # Dummy run without
making changes (optional)

o schema_tool -i dbname@dbserver # Initialize schema and set
schema version

This has two effects: firstly, it creates schema definitions for all persistent classes and,
secondly, it places a schema version object in the database, so that its schema version can
easily be identified. This allows proper schema evolution if and when the structure of
HCSS databases change in the future.

If you use multiple databases, then each database must be initialized in this way.

It is essential to apply a schema to a new database. This indicates how the component
layout of a database. This is achieved simply by running the command

schema_tool –i (see below).

12.4 Using an existing database and Schema Evolution

On occasions, new database formats need to be created for the HCSS. In such cases, it is
necessary to perform a schema evolution on old databases to update for use in current IA
environment For development purposes, it may of course be acceptable to simply create a
new database, if there is no data to be preserved.

Schema Evolution is supported for databases created by versions of the HCSS back to
HCSS-v0.1.3 (build number 168) although, in principle, it should be possible to go back
to HCSS build number 162.

Herschel IA User’s Manual
V0.4, 21 January 2005

126

Schema evolution is necessary when a new version of the HCSS is installed that has a
higher schema version than the database. The schema version of the CCM can be found
by examining the file '%HCSS_DIR%/doc/SCHEMA_VERSION' in the HCSS
distribution and is displayed against releases in the HCSS download web page. The
schema version of the database and the currently installed CCM can be examined by
using the '-v' option of the schema tool.

The procedure when installing a new HCSS release with an existing database is as
follows:

Install the new HCSS release, then check whether the schema are compatible as
follows:

>> schema_tool -v dbname # Check the schema versions

If the class (CCM) schema version is the same as the database schema
version, no schema evolution is needed.

a. On a Unix system, to update the schema by any number of schema versions, evolve
the database as follows:

Stop all applications accessing the database

Put the database in single user mode using 'dbinfo -1'

Backup the database

Check the firewall allows the schema evolver to open a ftp connection to
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/schemaToolData/.

>> schema_evolver dbname@server # Evolve the database

Put the database back in multi-user mode using 'dbinfo -m'

b. When using Windows, or if the class(CCM) schema version is only one greater
than the database schema version, evolve the database as follows:

Stop all applications accessing the database

Put the database in single user mode using 'dbinfo -1'

Backup the database

>> schema_tool -en dbname@server

Herschel IA User’s Manual
V0.4, 21 January 2005

127

 # Dummy run without making changes (optional)

>> schema_tool -e dbname@server

Evolves the database

You can put the database back in multi-user mode using 'dbinfo -m'

If the HCSS installation has more than one database, each database must be evolved in
this way to the same schema version.

12.4.1 Initializing a schema on an old database

Databases that were created with old versions of the HCSS (build numbers 168 to 240)
should be initialized to schema version 1 as follows:

Install HCSS build number 241

Use the terminal command:

>> schema_tool -i dbname@server

If the HCSS installation has more than one database, each database must be initialized.

Further schema evolution can then occur through installation of old HCSS builds that
progressively had higher schema versions.

12.4.2 Schema Tool commands

The schema tool can be invoked using one of the following commands:

>> schema_tool [options] database

>> schema_evolver database

For more information about the operation of the schema tool, see schema tool user
manual.

The schema tool should only be used after having downloaded and installed a new HCSS
build that has a different schema version then the HCSS build used until now

Note: changes have been made to the HCSS installation procedure to include schema
evolution for databases. The 'schema_tool', allows you to evolve the schema of an
existing HCSS database to the current HCSS schema version:

Herschel IA User’s Manual
V0.4, 21 January 2005

128

12.5 Initializing a Database For IA Use

In order for a new database to be used, the database itself needs to be
initialized. This can be done with the same command in either Windows
or Unix. At a terminal prompt, go to the directory where the new
database is stored and then input the command

>> initv <dbname>

12.6 Quick Database Creation

Based on the chapter information above, the following four lines placed at a terminal
prompt will create a new database in most circumstances.

>> makedb <dbname> #initializes directory and log files
>> createdb <dbname> # creates db itself
>> schema_tool –i <dbname> #maps schema so that it can be adapted

#(if necessary) at a later date.
>> initv <dbname> # initializes the database ready for use

where <dbname> has the format name@server.

12.7 Providing Database Access for an IA Session

Database access can be changed during an IA session without the need to exit jconsole.
After editing properties or saving changes made using the properties tool (propgen), the
user can use the new settings immediately within an ongoing IA session.

There are two methods for changing properties to allow database access.

12.7.1 Properties File Setup for Database Access

There are two ways of setting up your properties to allow access to a particular database
during an IA session. First, the file hcss.props (on Windows) or the file myconfig (on
Unix) can be edited.

On Windows, the hcss.props file is usually in the top directory of the user (e.g.,
C:\Documents and Settings\<username>).
On Unix, the myconfig file is in the directory ~<username>/.hcss.

The following three lines should be placed in the file being edited if they are not already
there.

var.database.server = servername

Herschel IA User’s Manual
V0.4, 21 January 2005

var.database.devel = dbname@${var.database.server}
hcss.access.database = dbname@${var.database.server}

where servername is the name of the server where the database is located (e.g. lin-sron-
02.sron.rug.nl) and dbname is the name of the given database to be used in the IA
session.

12.7.2 Using the Propgen Tool

Alternately, the propgen tool can be used to indicate the server and database to be used.
The propgen tool can be started from a terminal prompt assuming the HCSS system has
been installed and it has been setup to run on the system.
At a terminal prompt, the command

> propgen

will start up the propgen tool (see Figure 12-1). Using the tabs at the top of the propgen
screen, the user should click on the tab marked “General”.

Now edit the variables var.database.server (input servername) and var.database.devel
(input dbname@${var.database.server}) at the top of the tabbed page.

Figure 12-1: The propgen window. Most properties that can be changed using the property generator
are created automatically in the IA environment. The first screen “General” allows the identification
of a default database and server name to be set up.

129

Herschel IA User’s Manual
V0.4, 21 January 2005

130

12.8 Browsing a Database

In order to know what you might want from out of a database, you need to be able to
browse through the database contents. The TestExecutionBrowser program allows the
user to do just that. Input of the following short example 12.1 allows the user to view the
database connected to. The first two lines import the packages developed in IA that allow
database access. These need to be imported into our session before using the browser to
display the contents of the database.

#Example 12.1
from herschel.access import *
from herschel.access.util import *

Used in this mode, the browser is not set up to allow mouse selection
ObservationChooser.showTestBrowser(TelemetryAccess("TmSourcePacket"))

Successful execution of this command will bring up a separate window displaying
information on the data contained in the database. This includes information on the script
used to create data, the observation ID (scroll to the far right of the window) and the time
(local) for when the data was placed in the database.

At a future date, a filtered display of a database is expected to be possible (see bottom left
of current TestExecutionBrowser window). It is also expected that selection and
download following a mouse click will become available.

12.9 Getting Data Frames From a Database

Once connected to a database and knowing the date or observation id of your data (see
previous section), we can retrieve both data frames and housekeeping data from the
database. In this section we discuss the basic means for obtaining dataframes from a
database. Here we are handling RAW dataframes for which there is no directly
associated meta-data, although housekeeping data for is available from the period of time
during which the data was taken (see next section).

There are two main methods for obtaining dataframes.
 Command line access
 Through a DataSelector GUI

When accessing dataframes it is particularly useful to use the navigation property
available in IA. This speeds up the accessing of dataframes in a database. In order to do
this, start the propgen tool (see Section 12.7.2) and then go to the “Access” tab. Near the
bottom of the window, change navigation value from false to true (click on the cell
containing the word “false” and pulldown to “true”).

Herschel IA User’s Manual
V0.4, 21 January 2005

131

12.9.1 Command Line Access to Data Frames

The basic idea for command line access is to

• Create a means to access data frames
• Indicate which data you want to get (e.g., by observation identification, obsid)
• Go search for it in the database
• Actually get the frames and put them into an array (or table).

Example 12.2 illustrates how the above is done within an IA environment. In this
example, an observation made up of several frames is placed in a table with each column
of the table being a single 1D spectrum. Something similar could also be set up for multi-
dimensional data. In these cases, each “column” of a table would have an N-dimensional
object.

#Example 12.2 – basic command line method for getting
#data frames from a database
from herschel.access.util import *
from herschel.access import *

#create a tabledataset for the data frames to go into
table=TableDataset()
#start means by which we will access the dataframes
#in the database
dfaccess=DataFrameAccess()
#provide an id for the frames we are looking for
#in this case the observation has an identification number of 1400
dfaccess.setObsid(1400)
#find the data in the database (query).
#This just provides a set of references
#to where data frames fitting the criteria reside in the database
data=HcssConnection.get(dfaccess)
#if there is something found, length of the references > 0
if len(data) > 0:
#then loop around and get all the frames associated with the obsid
 for j in range(len(data)):
 df = data[j]
#now actually get each frames and put them in a real 1D array
 datad = Double1d(df.getFrame())
#and we make each frame into a column in a table
#so that table[0] is the first column and contains
#the first 1D spectrum of the observation, value for each channel
#The column label is the string value of j, i.e., 0, 1, 2, 3…
 table[str(j)]=Column(datad)

This brings in a set of spectra as a table. To see what is in the table we can

#get general overview
print table
#see what is in the first column
print table[0]

Herschel IA User’s Manual
V0.4, 21 January 2005

132

#see just the data for the first column. No quantities, column
headings etc.
print table[0].data

A plot of table[0].data will show a channel versus value 1D spectrum.

12.9.2 From Database to ASCII File

Following on from the previous section. If we want to have the spectra be placed in an
ASCII table output file, then we can add the following code to example 12.2.

#set up an output table
mine=AsciiTableTool()
#add a description to our table
table.description="Sample WBS spectra"
#make sure there is a header on the output – see AsciiTableTool help
mine.formatter.header=1
#make sure that comments are allowed
mine.formatter.commented=1
#indicate the prefix for comments in the file
mine.formatter.commentPrefix="; "
#provide a name for the ascii output file and save the data
mine.save("sample_wbs_spectra`,table)

Being a little more sophisticated, we can add in a prompt and also iterate around to obtain
several observations from a database and place them in ASCII files. Example 12.3
provides a basic Java Swing component to prompt the user for a starting and ending
obsid. The data is then passed onto appropriately named ASCII table files.

#Example 12.3 – database to ASCII tables for multiple spectra
#import Java swing for GUI components
import javax.swing as sshwing
from herschel.access.util import *
from herschel.access import *

The data will be placed in comma-delimited tables.
#prompt the user for first obsid using a JAVA Swing component
input_obsid = sshwing.JOptionPane.showInputDialog\
 ("Enter first obsid in list: ")
start_obsid = int(input_obsid)
#prompt again for last obsid
input_obsid = sshwing.JOptionPane.showInputDialog\
 ("Enter last obsid in list: ")
end_obsid = int(input_obsid)

for i in range(start_obsid,end_obsid+1):
 table=TableDataset()
 dfaccess=DataFrameAccess()
 dfaccess.setObsid(i)
 data=HcssConnection.get(dfaccess)
 if len(data) > 0:
 for j in range(len(data)):

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/numeric/package-summary.html

Herschel IA User’s Manual
V0.4, 21 January 2005

133

 df = data[j]
 datad = Double1d(df.getFrame())
 table[str(j)]=Column(datad)
 mine=AsciiTableTool()
 table.description="Sample WBS spectra"
 mine.formatter.header=1
 mine.formatter.commented=1
 mine.formatter.commentPrefix="; "
 mine.save("wbs_spectra_"+str(i),table)

The inner loop in the example 12.3 allows us to get each frame in an observation in turn
and place it into a table “column”. The outer loop takes the tables formed for each
observation id and places them in an ASCII file called “wbs_spectra_<obsid>.txt”. These
are comma-delimited ASCII tables viewable in any text editor.

12.9.3 Downloading Dataframes from a Database Using a GUI

A somewhat more sophisticated method of accessing a database from within an IA
session involves the use of a GUI interface such as a DataSelector tool. This is available
via the ProcessConnect command. Example 12.4 provides a downloadable script that
uses just such an interface for obtaining HIFI dataframes.

#Example 12.4 – GUI interface to a database
from herschel.hifi.generic import *
from herschel.ccm.api import *
import java.lang.reflect
import javax.swing as swing

#the following defines a class we can then run in an IA session
class Hifids:
 def __init__(self):
#Connect the processor so that we get data output to ‘a’.
 self.pc = ProcessConnect("pc")
#Now set up place for output of dataframe
 self.out = self.pc.getConnector("df-output")
#create an array which will hold HIFI data frames – up to 1000 of them
 self.a = java.lang.reflect.Array.newInstance(HifiDataFrame,1000)
#provide passage for the dataframes into ‘a’.
 self.out.pass(self.a)
#now setup a user GUI for the process connector and a completion button
 self.win = swing.JFrame()
 self.win.contentPane.layout=java.awt.FlowLayout()
 self.win.contentPane.add(self.pc.getJComponent())
 choose = swing.JButton("Finished", size=(65,70), \
 actionPerformed=self.dataChoice)
 self.win.contentPane.add(choose)
 self.win.pack()
 self.win.show()
 def dataChoice(self, event):
#This subroutine creates a table when the GUI’s “Finished”
#button is clicked.
 table=TableDataset()
 table.description=("Data output")

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

Herschel IA User’s Manual
V0.4, 21 January 2005

#allow the table (output) to be seen within the session,
#not just the class.
 global table
 for j in range(1000):
 if (self.a[j] != None):
 datad = Double1d(self.a[j].getFrame())
 table[str(j)] = Column(datad)
#…and gets rid of the pop-up window to finish.
 self.win.dispose()

To use the program, download it into your jconsole session and hit the button.
Now, whenever you want to run the program during the rest of your IA session, type the
following (e.g., at the IA>> prompt)

 Hifids()

This brings up a window similar to that shown in Figure 12-2 – showing the “play” tab
screen. You can browse the database with the button (bottom left), choose between
dataframes or source packets (the example script handles HIFI dataframes only for
now) under the “data” tab and get the data under the “play” tab. Dataframes associated
with particular APID, building block ID or observation ID can be chosen (see Figure
12-3). A timeframe can also be indicated.

Once the dataframes have been identified, they can be obtained by hitting the play button
under the “play” tab. This is the single arrowed button to the left. The buttons on under
this tab have similar functions to those on a DVD player! Once play is complete, hitting
the Finished button exits the GUI and places the dataframes in a table available to the IA
session of the user.

Figure 12-2: The play tab opened for the dataselector tool

134

Herschel IA User’s Manual
V0.4, 21 January 2005

Figure 12-3: The Data tab of the dataselector tool. The example program works with Data frames
only, at present.

Output for this program is placed in a TableDataset, called table, where one column holds
a single 1D spectrum. This table is then available for use in the user’s IA session.

12.10 Accessing Housekeeping (HK) Data

Assuming you have access to a database who’s schema is compatible with the version of
the software you are running (see above for information regarding schema evolution)
then the HCSS package binstruct can be used to access housekeeping information.
Housekeeping packets are dealt with in a somewhat different way to dataframes, but there
are some similarities in structure.

12.10.1Accessing HK Information For a Given Obsid

Example 12.5 illustrates basic housekeeping packet access for an observation with an
obsid of 1400. The end product is a table with two columns, time in the first column and
the housekeeping parameter value (raw) in the second column. Although an example
relative to HIFI is given, this can be adapted to dealing with HK data from the SPIRE and
PACS too.

#Example 12.5 – basic HK packet access
#import packages needed
from herschel.access import *
from herschel.access.util import *
from herschel.binstruct import *
from herschel.pus import *

#look to access HK packets associated with obsid = 1400
pk = PacketAccess(1400)

#connect to the default database to find the packets
hk_set = HcssConnection.get(pk)

135

Herschel IA User’s Manual
V0.4, 21 January 2005

136

#create an empty Java array list – needed for the
#PacketSequence routine below.
arrList = java.util.ArrayList()

#loop around adding the housekeeping dataset into our array
for x in range(len(hk_set)):
 arrList.add(hk_set[x])

#we can look at our array
print arrList
#…but to get something sensible we need packets in a time order.
pseq = PacketSequence(arrList)

#find packets in the sequence which contain information on
#temperatures within the focal plane unit
seq_FPU_Temp = pseq.select(TypeEquals("FPU_Temperatures"))

#find out what parameters are contained in the selected packets
#by obtaining the housekeeping parameter names from the first
#selected packet in the sequence
par_FPU_Temp = seq_FPU_Temp[0].getParametersContained()

#print out to the IA session the names of all the parameters contained
print par_FPU_Temp

#choose the FPU Temperature parameter you want to get info on
#…and get a time ordered set of housekeeping data for it
#The output file plot_fpu_hk is a TableDataset with one column for time
#(a Finetime of microseconds since 1 January 1958)
#and one for the value of the parameter (RAW rather than engineering
#value). Here we choose the parameter FPU_b_body_top for the table
#output and get the converted values (in degrees K)
plot_fpu_hk = seq_FPU_Temp.getConvertedMeasures(["FPU_b_body_top"])
time = Double1d(plot_fpu_hk[0].data/1000000.0) # puts time into seconds
data = Double1d(plot_fpu_hk[1].data)

#Now we can plot the timeline of the HK data over the
#time period of the observation (obsid=1400) by plotting the table
p = PlotXY(time, data, "A title")

12.10.2Accessing HK Data For a Given Time Period

We may be interested in looking at HK data for longer periods of time, e.g., over an
extended period covering several observations within the same database. This is
particularly useful when looking for trends in instrument data.

In example 12.6 we show how HK data can be obtained for a set of parameters over a
given time period entered as Java Dates.
NOTE: Care needs to be taken that time periods being sampled are not too long since the
HK data is held in memory and days of HK data can lead to and “OutofMemory” error.

Herschel IA User’s Manual
V0.4, 21 January 2005

137

#Example 12.6 – Getting HK data over a given time period.
#Import needed packages for handling databases and HK data
from herschel.access import *
from herschel.access.util import *
from herschel.binstruct import *
from herschel.pus import *
#And this allows us to deal with times.
from herschel.share.fltdyn.time import *

#First we enter a start and stop time for HK information.
#We enter Java Dates, given as year (-1900), Month (-1),
#day, hour, minute, second.
#Our start_time is therefore 01:10:00 on 25 October 2004
 start_time = java.util.Date(104, 9, 25, 1, 10, 0)
#stop_time is 01:15:00 on the same day
 stop_time = java.util.Date(104, 9, 25, 1, 15,0)
#Need to convert final numbers into a FineTime used in database.
 start_1 = DateConverter.dateToFineTime(start_time)
#Date/time of start for plotted data
 prod_date = DateConverter.fineTimeToDate(start_1)
Ditto for stop time
 stop_1 = DateConverter.dateToFineTime(stop_time)
 end_date = DateConverter.fineTimeToDate(stop_1)
#initialize some parameters
 pk=0
 hk_set = 0
#get object ready for sorting packets.
 pseq = PacketSequence()
#set up the query for accessing packets of HK data
#Here we ask for packets with an APID of 1026, which carries
#HIFI HK data. The database identified by the user’s
#properties is accessed for packets of this type
#between the given start and stop FineTimes.
 pk = PacketAccess(1026,start_1,stop_1)
#Now we know where to look, we can get the packets!
#First we create an array with the packets in
 hk_set = HcssConnection.get(pk)
#……then we loop over the array to get the contents and
#put packets into our packet sequence
 for x in range(len(hk_set)):
 pseq.add(PusTmSourcePacket(hk_set[x].getContents()))

#Now we get the parameters in the packets that we can plot.
 seq_HIFI_HK = pseq.select(TypeEquals("HIFI_HK_rev_3"))
#Lets pick out some of them
 mnemonics = ["HF_AH1_MXMG_V", "HF_AV1_MXMG_V"]
#…and get their converted (physical unit) measurements.
#“plot_HIFI_HK” is a TableDataset with a first column measuring time
#and the next 2 columns holding the HK parameter values
#at those times. We can now plot any of the parameters versus
#time, or against each other, by picking out the appropriate
#column of the table.
 plot_HIFI_HK = seq_HIFI_HK.getConvertedMeasures(mnemonics)
#This is what to do to set up the plot. Since time
#is in microseconds we convert it to

Herschel IA User’s Manual
V0.4, 21 January 2005

#seconds first.
#Get the first column and divide by 1 million
 time = plot_HIFI_HK[0].data/1000000.0
#Let’s measure time on the plot from the beginning of the observation….
#We subtract the initial time value
 plot_time = time - time[0]
#We will plot the two voltages contained in columns 2 and 4
 h_voltage = plot_HIFI_HK[1].data
 v_voltage = plot_HIFI_HK[2].data

#Now plot the data
 p = PlotXY(plot_time, h_voltage, "H Mixer Plot")
#Change to a line plot
 p.setLine("H Mixer Plot")
#change the labels
 p.setLabel("x-Axis", "Time (hours)")
 p.setLabel("y-Axis", "Mixer voltage [V]")
#and add a title
 p.setTitle("Plot of Mixer Voltages. Start: "+str(prod_date)+"
End: "+str(end_date))
#Now we can also overlay the second voltage trend in blue.
 p.addLayer(plot_time, v_voltage, "V Mixer Plot")
 p.setLine("V Mixer Plot")

An example of the kind of output one can expect from this is given in Figure 12-4.

Figure 12-4: Sample timeline plot of HK data from example 12.6.

138

Herschel IA User’s Manual
V0.4, 21 January 2005

139

12.11 Removing a Database

To remove a database that you have created can be done simply AT A TERMINAL
PROMPT (not within the jconsole session).

>> removedb –rmdir mydatabase

Herschel IA User’s Manual
V0.4, 21 January 2005

140

Appendix A: Example User’s Property
File

An example properties file to be placed in ~<user>/.hcss/myconfig file of the user (orC:\Documents and
Settings\<user>\ hcss.props for Windows users).
For most users, the first few lines are the most important ones.

var.hcss.workdir=C://temp
hcss.access.ccm = herschel.versant.ccm
hcss.access.query.navigate=true
hcss.access.database = ilt_qm_9${var.database.server}
dbname = ilt_qm_9
dbfactory = herschel.versant.store.StoreFactoryImpl
hcss.pg.useList = true
hcss.pg.xml.listLocation =
{${var.hcss.dir}/config/defns,${var.hcss.dir}/../../config/defns}
#****add old myconfig
HCSS Properties File - location SRON

Author: Craig Porrett

#To show queries submitted by access
#hcss.store.verbosity = 1

General

var.database.server = @lin-sron-02.sron.rug.nl
var.database.devel=tony_hcss${var.database.server}
dbfactory = herschel.versant.store.StoreFactoryImpl
dbname = tony_hcss

hcss.cus.database=tony_hcss@${var.database.server}
hcss.cus.instrument = HIFI
hcss.cus.tabledir = ${user.dir}/CUS/custables

var.hcss.dir=C:/ia/hifi/lib/hcss
#var.hcss.workdir = ${user.home}/
#changed by Peer on 27-09-2002
#var.hcss.dir = ${user.home}/hcss_builds/latest_build
#var.hcss.dir = /Users/users/hcssbld/hcss_builds/latest_build

Access

hcss.access.database = ${var.database.devel}
hcss.access.test.database = ${var.database.devel}
hcss.access.connection = herschel.access.db.LocalConnection
hcss.access.network = socket
hcss.access.socket.host = localhost

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/herschel/ia/numeric/toolbox/filter/Convolution.html

Herschel IA User’s Manual
V0.4, 21 January 2005

141

hcss.access.socket.port = 8050
hcss.access.url = http://lin-sron-02.sron.rug.nl:5019/servlets/
hcss.access.packetprocessor = HIFI
hcss.access.instrumentmodel = Engineering
hcss.access.factory.query = herschel.access.db.VersantQueryFactory
hcss.access.router.host = localhost
hcss.access.router.port = 9877
hcss.access.query.allpks = select selfoid from
herschel.versant.ccm.TmSourcePacketImpl
hcss.access.query.alldfs = select selfoid from
herschel.versant.ccm.DataFrameImpl

CCM

hcss.ccm.test.database = ${var.database.devel}

following from Kevin's email on 29th Jan. 2004 siteid = 1 for hifi-
icc
this following from the ICD

hcss.ccm.siteid = 1
hcss.ccm.mission.config = democonfig
hcss.ccm.mission.database = ${var.database.server}

Formatter
formatter package needs to be changed to use the var.hcss.dir system
hcss.formatter.directory.root = ${var.source.dir}

MIB
var.mib.defns = ${var.hcss.dir}/data/mib/defns
var.mib.data = ${var.hcss.dir}/data/mib/example-mibs/example-1
var.mib.aux = ${var.mib.data}/auxil
var.mib.raw = ${var.mib.data}/ascii-tables
hcss.mib.database = ${var.database.devel}
#hcss.mib.database = hcssbld_hcss
hcss.mib.datadir = ${var.mib.raw}
hcss.mib.tablelist = ${var.mib.aux}/tablelist
hcss.mib.tc_command_durns = ${var.mib.aux}/tc-durns
hcss.mib.tm_param_list = ${var.mib.aux}/tmparams
hcss.mib.test_tc_command_list = ${var.mib.aux}/tcmds
hcss.mib.test_tm_param_list = ${hcss.mib.tm_param_list}
hcss.mib.tabledefs = ${var.mib.defns}/table-defns/
hcss.mib.dbroot = hcss_mib_root
hcss.mib.uplink_id = 1
hcss.mib.test_uplink_id = 1
hcss.mib.downlink_id = 1
hcss.mib.test_downlink_id = 1
hcss.mib.errorsonly = false
hcss.mib.logfile = mibchecker.log
hcss.mib.readallcmds = true
hcss.mib.tc_command_list = xxx

TM Ingest
hcss.tmingest.database = ${var.database.devel}
hcss.tmingest.port = 9877

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/herschel/ia/numeric/toolbox/filter/Convolution.html

Herschel IA User’s Manual
V0.4, 21 January 2005

142

TM Proc

Store
hcss.store.test.database = ${var.database.devel}

#ia dataflow
herschel.ia.dataflow.maxbuffersize = 50

pcss needed for ia demo 28th January
hcss.mib.cus_file = gencus_scripts.out
hcss.mib.instrument = HIFI

#hcss.ccm.mission.config = democonfig
#hcss.ccm.mission.database = hcssbld_hcss@lin-sron-02.sron.rug.nl

binstruct
hcss.binstruct.ip_filename = instr_props.ip
hcss.binstruct.tm_version_map=TmVersions.tbl
hcss.binstruct.mib=C:/ia/binstruct
hcss.binstruct.services = herschel.binstruct.mib.MibAsciiServices
hcss.bintruct.mib_source = ascii
JConsole
hcss.jython.user.import=${user.home}/iltscripts_qm_reports.py
hcss.jconsole.buffer.size=320000
hcss.jconsole.prompt = "Tony's IA>>"
hcss.jconsole.width = 900
hcss.jconsole.height = 600

Herschel IA User’s Manual
V0.4, 21 January 2005

143

Appendix B: Listing of Currently Available IA Classes

A listing of IA classes within the HCSS. Many of these are low-level tasks available to
the user but not generally used in a data analysis session. Links are to on-line JavaDoc
documentation.

herschel.ia.dataset
Annotatable
Attributable
Composite
Dataset
DatasetVisitor
DataWrapper
History
NumericParameter
Parameter
ParameterVisitor
Quantifiable

Classes
AbstractDatasetAndDataVisitor
AbstractDatasetVisitor
ArrayDataset
BooleanParameter
Column
CompositeDataset
DatasetUtil
DateParameter
DoubleParameter
LongParameter
MetaData
Product
StringParameter
TableDataset

herschel.ia.help.sessioninspector
Classes
SessionInspector

herschel.ia.dataset.demo
Classes
Demo
SpectrumDataset
TableAdd

herschel.ia.demo.endtoend
Classes
Double1dPlotter
MakeHifiProduct
ProcessProductMaker
ProcessRunningAverage

herschel.ia.help.api
Classes
Help
HelpTask

herschel.ia.image
Classes
Axis
AxisGraphicsHandler
Clamp
Crop
Display
Histogram
ImageDataset
Layer
Rotate
Scale
Translate
Transpose
Wcs

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_whatisnew.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/convolution_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/polyfitter_demo.py

Herschel IA User’s Manual
V0.4, 21 January 2005

144

herschel.ia.image.gui
Classes
AnnotationToolbox
ImageCutLevels
ImageDisplayStatusPanel
ImageSaveDialog
StatusPane

herschel.ia.io.ascii
Interfaces
AsciiCsv
AsciiFixedWidth
AsciiFormatter
AsciiParser

Classes
AbstractAsciiFormatter
AbstractAsciiParser
AsciiTableTool
CsvFormatter
CsvParser
FixedWidthFormatter
FixedWidthParser
TableTemplate

herschel.ia.io.fits
Interfaces
FitsDictionary

Classes
FitsArchive
FitsRules

herschel.ia.io.fits.dictionary
Classes
AbstractFitsDictionary
DictionaryHcss
DictionaryHeasarc
DictionaryStandard
ResourceFitsDictionary
WrappedFitsDictionary

herschel.ia.jconsole.tools
Classes
JIDE

herschel.ia.numeric herschel.ia.numeric.function
Classes

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/plot/package-summary.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/numeric/Numeric1d.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/dataset/TableDataset.html

Herschel IA User’s Manual
V0.4, 21 January 2005

145

Interfaces
(note 2d to 5d versions also available)
Array1dData
ArrayData
ArrayDataVisitor
ComplexData
Logical1dData
LogicalData
Numeric1dData
NumericData
Ordered1dData
OrderedData

Classes
(note 2d, 3d, 4d and 5d versions
 also available)
AbstractArray1dData
AbstractArrayData
AbstractArrayDataVisitor
AbstractComplex1dData
AbstractLogical1dData
AbstractNumeric1dData
AbstractOrdered1dData
Bool1d
Byte1d
Complex
Complex1d
Double1d
Float1d
Int1d
Long1d
Range
Selection
Short1d
String1d

BoxCarFilter
Complex1dFunctions
ComplexFunctions
Convolution
CubicSplineInterpolator
Double1dFunctions
Double2dFunctions
DoubleArrayFunctions
DoubleFunctions
FFT
GaussianFilter
Interpolator
LinearInterpolator
LinearLeastSquaresFitter
MatrixFunctions
NearestNeighborInterpolator
Polynomial
PolynomialFitter
Shift
WindowFunctions

herschel.ia.numeric.function.util
Classes
MoreMath

Herschel IA User’s Manual
V0.4, 21 January 2005

146

herschel.ia.numeric.toolbox.basic
Classes
Abs
AbstractShiftProcedure
All
Any
ArcCos
ArcSin
ArcTan
Basic
Ceiling
Concatenate
Cos
CosH
Exp
Floor
IsFinite
IsInfinite
IsNaN
Log
Log10
LogN
Max
Mean
Median
Min
Product
Reshape
Reverse
Rms
Round
Shift
Sin
SinH
Sort
Sqrt
Square
StdDev
Sum
Tan
TanH
Variance

herschel.ia.numeric.function.fit
Classes
AbstractModel
AbstractModelFunction
AmoebaFitter
BinomialModel
DataFormatter
Fitter
FunnyModel
FunnyModelInput
Gauss2DModel
GaussMixModel
GaussModel
GaussNoPartial
IndexSet
IterativeFitter
LevenbergMarquardtFitter
LinearModel
MatrixSelections
ModelInput
NonLinearModel
NullModel
PolynomialModel
PowerModel
SineAmpModel
SineMixedModel
SineModel

Herschel IA User’s Manual
V0.4, 21 January 2005

147

herschel.ia.plot
Interfaces
CoordMouseListener

Classes
Axis
ComponentList
CompositePlot
CoordMouseEvent
FontChooser
FontDisplay
Layer
LocationDisplay
PlotProperties
PlotPropertyManager
PlotXY
PlotXYCompositeRenderer
PlotXYSeries
View

herschel.ia.task
Classes
_Dummy
Share
Signature
Task
TaskParameter

	The Herschel Common Science System and Interactive Analysis (IA)
	Brief Overview
	Availability of IA and Operating Systems
	Related Documentation
	Versioning
	Previous Versions of IA User’s Manual
	What’s New
	List of Contributors:

	HCSS Downloading and Installation
	Introduction
	Platform
	Pre-Installation Requirements
	User Installation Procedure
	Known Installation Problems

	IA Property Initialization

	Introduction to Working in IA: Using Jconsole
	Introduction
	Running IA under Jconsole:
	File Menu
	Console Menu
	Edit Menu
	Run Menu
	Help Menu

	Standard Settings for Jconsole
	Using import.py to customize Jconsole
	Programming Loops in Jconsole
	Multiline Statements with Jconsole
	Errors and Exceptions in IA
	Overview of the different libraries used in an IA session
	The error back trace mechanism
	The way Jython presents error messages
	The way JAVA presents error messages

	The HCSS exception and logging mechanism
	Exceptions as thrown from HCSS classes
	The HCSS logging mechanism

	Some IA Basics & Beginning Jython
	Basics
	Lists and Dictionaries
	Setting up and Accessing Lists
	Slicing Lists and Arrays
	Setting Up and Using Dictionaries
	Nested Dictionaries

	Augmenting Values and Arrays
	Printing to the screen and files
	Defining and Using Functions
	Blocks and programming loops
	Classes and Methods
	Writing Scripts – Programming in IA
	Some Useful Extra Items

	Handling Arrays and Other Datasets
	Introduction
	Getting started
	Types of Array Datasets
	Creating a Simple 1D Array Dataset
	Dataset attributes
	Simple 1D Array Manipulation
	1D Array Arithmetic
	Addition, subtraction and concatenation:
	Multiplication:
	Array length:
	General Application of Functions:

	Logical Operations
	Type Conversion

	Dealing With Complex Arrays
	Creating and Accessing Multi-Dimensional Array Datasets
	Creating and Viewing a Table Dataset
	Creating and Accessing a Composite Dataset

	IA Numeric: Basic Functions for Herschel IA
	Introduction
	Getting Started
	Functions and Lambda Expressions
	Filtering
	The 'where' and 'get' methods
	Advanced Tips
	Vectors and Matrices
	Function Library
	Basic Functions
	Discrete Fourier Transform
	Convolution
	Boxcar and Gaussian Filters
	Interpolation Functions
	Basic Fitter Routines

	Example Programs

	IA Plot: Basic Plotting of Data
	Introduction
	What do I need to make a simple XY plot?
	Introducing PlotXY
	Using PlotXY to Plot One Numeric1d Array Against Another
	Using PlotXY to Plot Columns in a TableDataset

	How to setup your PlotXY properties
	How to modify properties
	Plot properties
	Layer properties
	Axes properties.
	How to use properties.

	How to use PlotXY in IA scripts
	What about these Layers?
	What can I do with Axis?
	Log Axes, Labels and Gridlines
	Multiple Axis Labels

	How can I annotate and decorate my plot?
	How can I make my plots more colourful?

	Creating File Output and Printing a Plot Without Displaying
	Handling Units in Plots
	What about a complete example?

	Display: Handling Images with Herschel IA
	Introduction
	Using ImageDatasets
	How can I display my image?
	Display in more detail.
	How can I use Operations on my images?
	Clamping (or clipping) an Image
	Cropping an Image
	Histogram of an Image
	Rotating an Image
	Scaling an Image
	Translating an Image
	Transposing an Image

	How can I display my own numeric2d datatypes?
	How to Use Different Layers
	How to place annotations on the image
	Annotations from the Command Line in your IA session
	Annotations using the annotation toolbox

	Sample JPEG Image and Extended Example Demo Script

	Other IA Packages: What is Available?
	Introduction
	Overview of JavaDocs Documentation for IA Packages
	Package view
	Class view
	Tree view
	Deprecated view
	Index view
	IA Packages And Documentation
	herschel.ia.dataflow
	herschel.ia.dataset
	herschel.ia.demo
	herschel.ia.doc
	herschel.ia.help
	herschel.ia.image
	herschel.ia.inspector
	herschel.ia.io
	herschel.ia.jconsole
	herschel.ia.numeric
	herschel.ia.plot
	herschel.ia.task
	herschel.ia.ui

	Import and Export of Tabular ASCII and FITS Files
	Introduction
	Getting Started with ASCII Import/Export
	Basic ASCII Table Import/Export Tool Usage
	Import Parsers
	Comma-Separated-Variable Parser
	Fixed-Width Parser
	Export Formatters
	Comma-Separated-Variable Formatter
	Fixed-Width Formatter
	Table Template

	Example of How to Import/Export ASCII Tables in IA
	Overview of FITS IO
	Getting Started With FITS IO
	Basic FITS IO Tool
	Parameter Name Conversion and FITS Header
	FITS product header

	Caveats

	Using Time in the IA Environment
	Introduction
	Time Definitions
	System time in IA (FineTime)
	International Atomic Time (TAI) and FineTime
	Coordinated Universal Time (UTC)
	DecMec Time

	Time in HK Data
	Time conversion
	Time conversion in HCSS
	CucConverter

	Setup and Use of Databases
	Introduction
	Starting Up A Database:
	Unix
	Windows

	Schema Initialization
	Using an existing database and Schema Evolution
	Initializing a schema on an old database
	Schema Tool commands

	Initializing a Database For IA Use
	Quick Database Creation
	Providing Database Access for an IA Session
	Properties File Setup for Database Access
	Using the Propgen Tool

	Browsing a Database
	Getting Data Frames From a Database
	Command Line Access to Data Frames
	From Database to ASCII File
	Downloading Dataframes from a Database Using a GUI

	Accessing Housekeeping (HK) Data
	Accessing HK Information For a Given Obsid
	Accessing HK Data For a Given Time Period

	Removing a Database

	Appendix A: Example User’s Property File
	Appendix B: Listing of Currently Available IA Classes

