
QLA User Guide

QLA User Guide

SPIRE-RAL-DOC-002260

Version 2.2

6th January 2005

1. Introduction to QLA
2. Conventions used in this Help System
3. Instructions for Reporting Problems
4. The QLA Log File
5. Starting QLA

1. The QLA Application Menu
2. EGSE Router

6. Packet Receiver
1. "Playing" data
2. Data Selection
3. Data Source
4. Time selection

7. Packet Dump
8. Packet Viewer
9. Displaying Parameters

1. Parameter Selection
1. Selecting Bolometers From Array Images
2. Selecting from the Parameters Menu
3. The Selected Parameters Window

2. Creating Displays
3. Clock Displays
4. Scrolling Lists
5. Time Series Plots
6. Compress
7. Follow
8. Fix
9. Other Uses of the Mouse

10. Time Series Properties Panel

● Image Displays

file:///Q|/ICC/sw/doc/spire/qla/doc/user.html (1 of 3)13/01/2005 11:08:44

jal73
 S. Guest, H. Bright

QLA User Guide

● Saving Parameter Values to a File
● Printing and Screenshots
● Help
● Using the Console

1. Imports
2. Startup Script
3. Starting and Using Processes
4. Printing the Values of a Parameter
5. Saving Parameter Values from the QLA Console
6. Calling the Help Application from the Console
7. Starting a Time Series Display from the Console
8. Starting a Clock Display from the Console
9. Starting a Scroller Display from the Console

● Configuring QLA

1. Basic
2. Advanced

● Troubleshooting

1. Displaying Science Parameters when no Housekeeping Packages are selected in the
Simulator

2. Selecting SID from the Housekeeping Parameters Menu in the Simulator
3. The Data Displays show a Single Value and then appear to stop
4. Incorrect Value set for hcss.ccm.factory
5. No Data Events generated when there is no SPIRE Housekeeping Data in the

Telemetry

● APID and SID Quick Look-up
● Product Metadata to FITS Translations
● Pixel Maps

1. Short Photometer Array
2. Medium Photometer Array
3. Long Photometer Array
4. Short Spectrometer Array
5. Long Spectrometer Array

● A Note on the Time Format

file:///Q|/ICC/sw/doc/spire/qla/doc/user.html (2 of 3)13/01/2005 11:08:44

QLA User Guide

● The Engineering Simulator
Last revised 6th January 2005 by S.Guest.

file:///Q|/ICC/sw/doc/spire/qla/doc/user.html (3 of 3)13/01/2005 11:08:44

mailto:s.guest@rl.ac.uk

Introduction to QLA

Introduction to QLA

The SPIRE Quick Look Analysis program, referred to as QLA in this help system, is
designed to support the SPIRE instrument tests, and takes telemetry packets as input. A
simple simulator is also available that can be used to generate packets for testing.

Data fed into the program can be viewed either in packet form, or as individual parameters,
using image displays of raw and converted data. These functionalities can be accessed
either via the GUIS or the QLA console, which uses the Jython scripting language.

Parameter data can be saved in ASCII and FITS file format, and GUI components can be
printed to hardcopy or to image files.

A technical introduction to QLA can be found in the description section of "Package herschel.
spire.qla" in the Javadoc.

file:///Q|/ICC/sw/doc/spire/qla/help/Intro.html13/01/2005 11:10:54

The Engineering Simulator

The Engineering Simulator

An engineering simulator has been produced for QLA test purposes. This produces simulated packets with the
correct format at the correct rate and allows the user to insert values for testing purposes.

To start the simulator the following must be typed at the command prompt (Note that if you are using the router,
this must be started first).

> Eng_simulator

A Spire Engineering Simulator window will appear. This consists of a Selector menu of radio button options,
SEND and SendS buttons, text boxes to set the timers, and an image which indicates whether data is currently
being sent to the router.

Clicking on any of the first four radio buttons (Full Photometer, Full Spectrometer, Housekeeping, or
Alphabetically) will bring up Simulator Parameter Selector windows, which are menus of the SPIRE
parameters. The first three are subdivisions of the full list, and the fourth is the entire list in alphabetical order.

When a parameter is selected from the menu a Simulator Parameter Settings window for that parameter
appears with a slider. Further selections from the same Simulator Parameter Selector window will add more
parameters to this same Simulator Parameter Settings window. Separate windows are generated for science
and housekeeping data. If a particular parameter has already been selected, a warning message appears to
inform the user of this. Multiple selections can be made by using the shift and control keys.

Closing a Simulator Parameter Settings window and closing a Simulator Parameter Selector window will
not shut down the whole simulator.

Pressing SEND will start the packet stream from the simulator to the router for all parameters, both science and
housekeeping. The values of the parameters can be changed by moving the sliders or by typing values into the
text boxes and pressing the enter key. The image in the simulator will start to animate to indicate that data is
being sent. The text of theSEND button changes to PAUSE, and the text of the SendS button changes to
PauseS. Pressing Pause pauses the flow of data to the router for all parameters. Pressing PauseS pauses the
flow of data for science parameters only.

Pressing SendS will start the packet stream from the simulator to the router for science parameters, but not for
housekeeping parameters. Once pressed, the text of the button changes to PauseS, and pressing it again
pauses the flow of data for science parameters.

Note that sending data for science parameters without any housekeeping data can cause problems with the
displays, as documented in the troubleshooting section.

It is possible to save the currently selected parameters as a file. Clicking on SaveSelection will save a file called
saveSelection.txt in the directory from which you are running the simulator. Clicking LoadSelection launches a
file chooser window, which you can use to navigate to the directory where you previously saved saveSelection.
txt. This will load the stored selection. The format of the file is one parameter name per line, the parameter name
being the first word on the line. Any other words on the line are treated as comments, as are whole lines
beginning with #, eg

#comment
PHOTFARRAY034 another comment
PHOTFARRAY004
#comment comment la la la

file:///Q|/ICC/sw/doc/spire/qla/help/Simulator.html (1 of 2)13/01/2005 11:14:43

The Engineering Simulator

OBSID

It is possible to change the time period only for existing parameters (ie those that have already been selected
and are sending data to the router).

The Spire Engineering Simulator window, with 6 parameters selected (4 science and 2 housekeeping). The
Simulator Parameter Selector housekeeping menu is also visible.

file:///Q|/ICC/sw/doc/spire/qla/help/Simulator.html (2 of 2)13/01/2005 11:14:43

Using The Console

Using The Console

The QlaConsole window is started by selecting the QlaConsole option from the SPIRE Quick Look Analysis
window. The console allows access to all QLA public methods via the Jython scripting language and any Jython
command is accepted. Advanced users can consult the Javadoc.

Really advanced users can access any attribute or method regardless of its declaration provided the class is
declared to be public. This is controlled by the python.security.respectJavaAccessibility property
defined in the file QlaConsole.props. Currently this is set to false (i.e. allow all access). Full exploitation of this
feature requires inspection of the source code.

There are various scripts contained within the QLA build. These are located in herschel/spire/qla/scripts. If you
are using the application bundled in a jar file, see Conventions used in this Help System for information on
extracting these. Once you have extracted them, and saved them to your local file system, you can open them in
the console and edit them as you wish (see later in this section). The scripts are also available here. - if you
have a problem with a script you can check here to see if a later version is available. Information on creating a
pipeline script can be found here.

Commands can be typed directly at the console prompt in the command pane (bottom left). Alternatively,
prewritten jython scripts can be called from the Execute, Execute line by line or Execute in the background
options of the Console menu. Calling Execute line by line means that all the commands from the scripts will be
saved into the console history (bottom right), whereas calling Execute saves only one command - execfile
("PathToYourScript"). Calling Execute in the background means that the process will happen in a
separate thread, givng priority to non-background processes.

Under the File menu there is the option to open a script. If this option is called, the script will be opened in the
top pane, but not executed. The user can then edit the script file if they wish to. Clicking in the grey bar on the
lefthand side of this pane causes an arrow to appear. If the Run menu item under the Run menu is pressed, the
line of code that the arrow is next to (and any following lines if the command covers multiple lines) will be
executed. A highlighted area of text can be executed with the Run selection menu item, and the whole script
can be run with the Run all menu item, both from the Run menu. The option is available to save scripts using
the Save and Save as... menu items in the File menu. This will save the contents of the top pane.

The right-hand pane of the QlaConsole displays the commands that have been executed (the console history),
and highlights in red the ones where execution has failed. It is possible to save the successfully executed
commands from a session by chosing Save history or Save history as... from the Console menu. Chosing
Import history from the Edit menu will append the current history to the contents of the top pane. Clicking on
an executed command in the history pane (successful or unsuccessful) displays an xml version of that
command in the command pane.

The Edit menu has options for copying and pasting text in the top pane and the command pane, and for
undoing and redoing edits to the top pane. Copying and pasting can also be done by highlighting text with the
mouse to copy, and pressing the middle mouse button to paste. When in the command pane, the up and down
arrows can be used to scroll through previously executed commands, as with a normal operating system
console.

The toolbar provides a selection of convenience buttons that fulfil the same functions as some of the menu items
mentioned above.

file:///Q|/ICC/sw/doc/spire/qla/help/QLAConsole.html (1 of 2)13/01/2005 11:14:44

file:///Q|/ICC/sw/lib/herschel/spire/qla/scripts
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/pipeline/package-summary.html

Using The Console

The QlaConsole window

file:///Q|/ICC/sw/doc/spire/qla/help/QLAConsole.html (2 of 2)13/01/2005 11:14:44

herschel.spire.qla (Herschel Science Center Javadoc)

Overview Package Class Tree Deprecated Index Help

 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES All Classes

Package herschel.spire.qla

This package contains the main API to be used by QLA applications.

See:
 Description

Interface Summary
Converter Interface to handle conversion

DataListener Interface for a data listener.

PacketListener Interface for a packet listener.

ParameterMonitor Interface for a component that actively monitors parameters.

ParameterSelector Interface for a component that selects parameters.

Plottable Deprecated. Use plot package

SelectionListener Interface for a parameter selection listener.

Class Summary
AccumulatedData This class stores accumulated data for a single parameter.

Controller QLA control.

DataAccumulator This class receives packets and extracts the selected parameters.

DataEvent DataEvent is used to notify interested parties that the available data has
changed.

DataModel This class represents the data as it is received.

DataViewer Demonstration of DataListener concept.

EventTester Component to generate (single) events for test purposes.

FunctionConverter Conversion class using a function expression.

Jython Jython support class.

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-summary.html (1 of 12)13/01/2005 11:14:45

file:///Q|/ICC/sw/doc/api/overview-summary.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-tree.html
file:///Q|/ICC/sw/doc/api/deprecated-list.html
file:///Q|/ICC/sw/doc/api/index-all.html
file:///Q|/ICC/sw/doc/api/help-doc.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/dataio/package-summary.html
file:///Q|/ICC/sw/doc/api/index.html
file:///Q|/ICC/sw/doc/api/allclasses-noframe.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Converter.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/DataListener.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/PacketListener.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterMonitor.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterSelector.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Plottable.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/SelectionListener.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/AccumulatedData.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Controller.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/DataAccumulator.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/DataEvent.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/DataModel.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/DataViewer.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/EventTester.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/FunctionConverter.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Jython.html

herschel.spire.qla (Herschel Science Center Javadoc)

Ool This class handles Out-Of-Limits (OOL) parameters.

PacketEvent PacketEvent is used to notify interested parties that a packet has arrived.

PacketReceiver Manage the reception of packets.

PacketType Class to support operations based on packet type.

PacketUtil Utility class to interrogate SPIRE packets.

PacketViewer Packet dump showing complete packet contents.

Parameter
This class allows applications to access data for the parameters they have
selected with a ParameterManager.

ParameterDescriptor Utility class for getting information about parameters and extracting
parameter data from packets.

ParameterManager Class to manage parameters for use by data monitors.

PixelMapper

QLA QLA main program.

QlaConsole Interactive QLA Jython-based console (version 2).

QLAPopup Class that creates a right-click Popup menu.

SelectionEvent SelectionEvent is used to notify interested parties that parameters have
been selected or deselected for monitoring.

SignalConverter Class to handle signal conversion: raw value <--> converted value

Subsystem Class to support operations based on subsystem.

Timeline Class to store a timeline.

Exception Summary

NoSuchParameterException Class to generate an exception when given parameters
cannot be found in the table, SPIRE_Param_DB.txt.

TableFileNotFoundException Class to generate an exception when a specified table
file cannot be found.

UnmappedVirtualParameterException Class to generate an exception when given parameters
cannot be found in the table, SPIRE_Param_DB.txt.

Package herschel.spire.qla Description

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-summary.html (2 of 12)13/01/2005 11:14:45

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Ool.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/PacketEvent.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/PacketReceiver.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/PacketType.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/PacketUtil.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/PacketViewer.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Parameter.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterManager.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterDescriptor.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterManager.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/PixelMapper.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/QLA.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/QlaConsole.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/QLAPopup.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/SelectionEvent.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/SignalConverter.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Subsystem.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Timeline.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/NoSuchParameterException.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/TableFileNotFoundException.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/UnmappedVirtualParameterException.html

herschel.spire.qla (Herschel Science Center Javadoc)

This package contains the main API to be used by QLA applications. It contains classes to receive
telemetry packets, extract their parameters, store them with assigned times, and make them available
to other applications. It also contains the main QLA program and a Jython-based console, as well as a
few demo programs that show how to use the API in a simple way.

The QLA architecture is summarised here.

Introduction to the QLA API

Types of parameters

A common source of confusion is that the word "parameter" is used in a number of different contexts
(in Java programming terms you could say that it is "overloaded"). Here is a summary of the different
types:

● A configuration parameter is one that defines an aspect of the program configuration. It is
sometimes also called a property. The handling of these parameters is a part of the HCSS (see
Configuration). The defaults for these parameters are contained in the file QLA.defaults.
You can override the default values by creating a file qla.props in your home directory
and redefining any number of parameters there, for example:

 qla.lookandfeel = single
 qla.processes = C:\\Documents and Settings\\sg55\\qla.
processes
 hcss.access.authentication = false
 hcss.access.database = drcu_test@truro
 hcss.ccm.factory = herschel.versant.ccm.
CoreFactoryImpl

Note that this mechanism can be used to override HCSS parameters as well as those specific
to the QLA.

● Telemetry packets contain a number of parameters depending on their type e.g. housekeeping
packets contain different parameters than science packets. These parameters are defined in the
"Sunil table" pointed to by the qla.parameters property. This table includes the
information required to extract the parameters from the packets, such as bit-offset and bit-
length. The programming interface to this information is the ParameterDescriptor
class.

● A virtual parameter is a special type of the above that is not contained in the table. They can
be used when it is not known a priori which actual parameter to use. Currently these
parameters are only used for detector data, where it is possible that either one or all of the
detector arrays is switched on. Note that the actual configuration is known when the SID of
the science data is known. Virtual parameters are internally mapped to the correct ones on
reception of the first new type of science detector (photometer or spectrometer) packet. Any

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-summary.html (3 of 12)13/01/2005 11:14:45

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/doc-files/arch.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterDescriptor.html

herschel.spire.qla (Herschel Science Center Javadoc)

attempt to call ParameterDescriptor.getInstance(String) on one of these
parameters before a science packet has arrived, or when different detector science data is
arriving will fail with an UnmappedVirtualParameterException.

● A higher level of parameter is one that contains the extracted data together with an assigned
time as TAI epoch 1958. The normal interface to this data is the Parameter class. Objects
of this type are created with the help of a ParameterManager. Creating a Parameter
object causes the system to start monitoring that parameter if it wasn't already. A component
that does this must implement the ParameterMonitor interface. The name attribute of
these parameters is the same as the one used by ParameterDescriptor. Because
multiple components might want to look at the same data, a Parameter object uses an
underlying AccumulatedData object. AccumulatedData objects are shared between
multiple Parameter objects if they refer to the same data. A Parameter object has two
advantages over an AccumulatedData one: it has an easier-to-use interface and it
maintains its own independent state.

Where to start

All those classes listed above can seem a bit daunting. Here is a quick and by no means
comprehensive summary of the most important parts of the API. These are the parts that will
normally be used from Jython scripts.

ParameterManager This API controls the registering and deregistering of parameters. Note
that the QLA console has a predefined parameter manager variable
pm.

Parameter This is the API to get at the data.

ParameterDescriptor This is the API for everything you wanted to know about a parameter
but were afraid to ask.

PacketType This is the API for everything you wanted to know about a type of
packet. Packets are unique by a combination of APID, (service) type,
(sevice) subtype and SID

Controller This API serves notification of things happening.

The following HCSS packages are also particularly useful in QLA script development.

herschel.ia.
ui

General user interface support. WindowManager can be used to create
windows in a consistent way. It also supports automatic cleanup when a
window is closed.

Configuration parameters

These are the configuration parameters used by this package. Subpackages may define their own.
These configuration parameters are automatically picked up from the file QLA.defaults. Note that
these values can be overridden without changing this file - for details see the HCSS configuration

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-summary.html (4 of 12)13/01/2005 11:14:45

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterDescriptor.html#getInstance(java.lang.String)
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/UnmappedVirtualParameterException.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Parameter.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterManager.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Parameter.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterMonitor.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterDescriptor.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Parameter.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/AccumulatedData.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/AccumulatedData.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Parameter.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Parameter.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/AccumulatedData.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterManager.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Parameter.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterDescriptor.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/PacketType.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Controller.html

herschel.spire.qla (Herschel Science Center Javadoc)

mechanism.

Parameter Name Description Valid Values Default

qla.lookandfeel This sets the look and feel to
either independent windows
(multiple) or windows contained
within a single frame (single)

single
multiple

multiple

qla.parameters Name of "Sunil" table file
containing parameter
descriptions

Filename
relative to the
location of the
QLA.class file

tables/SPIRE_Param_DB.txt

qla.sidtable Name of table file containing
SID descriptions

Filename
relative to the
location of the
QLA.class file

tables/SPIRE_SID_Table.txt

qla.mappings Name of table file defining
mappings from "virtual"
detector parameters (e.g.
PHOTLW001) to parameters in
qla.parameters (e.g.
PHOTFARRAY001)

Filename
relative to the
location of the
QLA.class file

tables/Detector_Mappings

qla.processes Name of the file defining which
processes are started
automatically when QLA is run
and which are added to the
"Process Selector" menu

Filename
relative to the
location of the
QLA.class file

qla.processes

qla.apids This defines the default APIDs
that PacketReceiver will request

0-2047
(decimal, not
hex) in a
comma
seperated list
delimited by
braces

{1280, 1282, 1284, 1285,
1286}

qla.simulatetimes Turn this on to simulate basic
data times if the packets don't
contain them

true
false

false

qla.convertdets Turn this on to perform second-
stage detector conversion.
Currently this will not do
anything sensible due to the way
the OBS is set up, might change
in future

true
false

false

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-summary.html (5 of 12)13/01/2005 11:14:45

herschel.spire.qla (Herschel Science Center Javadoc)

qla.buffersize This defines the initial size of
the data buffers

positive integer 10240

qla.packetcache This is the size of the packet
cache used by PacketViewer

positive integer 30000

Example QLA Jython script

Here is a simple example of a Jython script that uses the QLA and Herschel IA APIs to collect some
data and write the result to a FITS file. This script can be run from the QlaConsole application. This
is a modified version of a real script that was written for a particular purpose. It is provided just for
example purposes and does not attempt to exercise all of the QLA API. Note that this script performs
no real-time data processing. See the
herschel.spire.qla.pipeline
package for details of how to do this kind of processing.

Import the common Herschel IA stuff that we need
from herschel.ia.numeric import *
from herschel.ia.dataset import *
from herschel.ia.io.fits import *

Get the names of all the PHOTF array parameters
detectors = filter (lambda x: x.startswith("PHOTFARRAY"),
ParameterDescriptor.getNames(0x0200))

Monitor some h/k using the built-in ParameterManager. Note that
Parameter objects are returned.
obsp = pm.add ("OBSID")
bbp = pm.add ("BBID")

Monitor the frame time and all the detectors
count = pm.add ("PHOTFFRAMETIME") # raw data (default)
detp = pm.add (detectors, 1) # converted data, all detectors

This function will be called when the test starts. It's only
purpose is to instruct the QLA
to call the "end" function when STEP goes to -1 and to remember
the current time.
def start():
 Controller.addStateListener (end, [count.lastTime], "STEP",
0xFFFF)

This function will be called at the end of the test. Note that
the startTime argument is the
count.lastTime in the start function above.
def end (startTime):

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-summary.html (6 of 12)13/01/2005 11:14:45

herschel.spire.qla (Herschel Science Center Javadoc)

 # Save the end time FIRST as data is still coming in...
 endTime = count.lastTime
 obsid = int(obsp.lastRaw)
 bbid = int(bbp.lastRaw)
 #
 # Create a table dataset and fill in the columns. For DPUCOUNT we
need to convert from double
 # precision to integer (the method of doing so is a little messay
at the moment).
 ds = TableDataset()
 ds["TIME"] = Column (Double1d (count.getTimes (startTime,
endTime)) - startTime)
 ds["DPUCOUNT"] = Column (Int1D (map (lambda x: int(x), count.
getRaw (startTime, endTime))))
 for i in range(len(detectors)):
 ds["BOL"+str(i+1)] = Column (Double1d (detp[i].getConverted
(startTime, endTime)))
 #
 # Add some metadata. This will map to FITS header records.
 meta = MetaData()
 meta["origin"] = StringParameter ("RAL")
 meta["telescope"] = StringParameter ("HCSS-ILT")
 meta["instrument"] = StringParameter ("SPIRE")
 meta["creationDate"] = DateParameter (Date())
 meta["startDate"] = DateParameter (Timeline.taiToDate (startTime))
 meta["endDate"] = DateParameter (Timeline.taiToDate (endTime))
 meta["obsid"] = LongParameter (obsid)
 meta["bbid"] = LongParameter (bbid)
 #
 # Finally wrap it all in a Product and write it as a FITS file.
 product = Product (meta=meta)
 product.set ("Bolometer data", ds)
 filename = "pht_bol_"+str(obsid)+"_"+str(bbid)+".fits"
 print "Writing file ",filename," with ",str(ds.rowCount)," rows
and ",str(ds.columnCount)," columns"
 fits = FitsArchive()
 #
 # This ensures that the non-standard metadata names (eg obsid)
map correctly to FITS keywords.
 fits.rules.append (DictionarySpire())
 fits.save (filename, product)

This is the real start of the script. Instruct QLA to kick things
off by calling the "start"
function when STEP goes to 1.
Controller.addStateListener (start, "STEP", 1)

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-summary.html (7 of 12)13/01/2005 11:14:45

herschel.spire.qla (Herschel Science Center Javadoc)

Tutorial

How to write a ParameterMonitor

Implementing the
ParameterMonitor
interface allows a component to register and deregister for data. If nothing else is already monitoring
this data, then registering will cause it to start being monitored. If nothing else is monitoring this data,
then deregistering will cause monitoring of that data to stop.

There is a fairly standard way to write a ParameterMonitor:

1. Create a ParameterManager, normally in the constructor, passing the current instance as
an argument

2. Add the desired parameters to the ParameterManager and optionally store references to
the created Parameter objects

3. Provide a method to return the ParameterManager, as required by the interface

For Example, to monitor the parameters OBSID and BBID (in Java):

class MonitorExample implements ParameterMonitor {
 private ParameterManager pm;
 private Parameter[] params;

 MonitorExample() {
 pm = new ParameterManager (this);
 params = pm.add (new String[] {"OBSID", "BBID"});
 }

 public ParameterManager getParameterManager() {return pm;}
}

In Jython, this looks like this:

class MonitorExample(ParameterMonitor):
 def __init__(self):
 self.pm = ParameterManager (self);
 pm.add (["OBSID", "BBID"])
 #
 def getParameterManager(self):
 return self.pm

Note that if a component is created by the

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-summary.html (8 of 12)13/01/2005 11:14:45

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterMonitor.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterMonitor.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterManager.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterManager.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Parameter.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/ParameterManager.html

herschel.spire.qla (Herschel Science Center Javadoc)

WindowManager.add(String,JComponent)
method (as happens with subclasses of JComponent in the start menu), then there is no need to
explicitly deregister parameters - this will happen automatically when the window is closed.

How to write a DataListener

A class implements
DataListener
in order to be notified of data updates. Note that the rate of these events is controlled by the
qla.eventrate
configuration parameter. This means that by default, a
DataEvent
is
not
generated on each packet reception. A
DataEvent
contains references to
all
the parameters (actually
AccumulatedData
objects) that are currently being monitored by
all
active components of the QLA. Note further that a
DataListener
is purely passive - it does not cause any parameters to be monitored. The steps involved in writing the
listener are:

1. Implement the DataListener.stateChanged(DataEvent) method, which is called
for each event.

2. Pass the listening instance to the QLA controller by calling the method Controller.
addDataListener(DataListener)

For example:

class DataExample implements DataListener {
 int events;

 DataExample() {
 events = 0;
 Controller.addDataListener (this);
 }

 public void stateChanged (DataEvent event) {
 System.out.println ("Data event "+(++events)+" received at
"+(new Date())+

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-summary.html (9 of 12)13/01/2005 11:14:45

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/DataListener.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/DataListener.html#stateChanged(herschel.spire.qla.DataEvent)
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Controller.html#addDataListener(herschel.spire.qla.DataListener)
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Controller.html#addDataListener(herschel.spire.qla.DataListener)

herschel.spire.qla (Herschel Science Center Javadoc)

 " from "+event.getSource().getClass().
getName());

 AccumulatedData[] params = event.getData();
 System.out.print ("Parameters in event:");
 for (int i = 0; i < params.length; i++) System.out.print ("
"+params[i].getName());
 System.out.println();
 }
}

For the reasons detailed above, a
DataListener
is often also a
ParameterMonitor
, though this is not essential. The two functions work together, as shown by developing the previous
examples:

class DataMonitorExample implements ParameterMonitor, DataListener {
 private ParameterManager pm;
 private Parameter[] params;

 DataMonitorExample() {
 pm = new ParameterManager (this);
 params = pm.add (new String[] {"OBSID", "BBID"});
 Controller.addDataListener (this);
 }

 public ParameterManager getParameterManager() {return pm;}

 public void stateChanged (DataEvent event) {

 // Print the latest raw value of each parameter
 for (int i = 0; i < params.length; i++)
 System.out.println (params[i].getName()+" = "+params[i].
getLastRaw());
 }
}

Here is the same example in Jython:

class DataMonitorExample(ParameterMonitor,DataListener):
 def __init__(self):
 self.pm = ParameterManager (self);
 self.params = pm.add (["OBSID", "BBID"]);
 Controller.addDataListener (self);

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-summary.html (10 of 12)13/01/2005 11:14:45

herschel.spire.qla (Herschel Science Center Javadoc)

 #
 def getParameterManager(self):
 return self.pm
 #
 def stateChanged (self,event):
 # Print the latest raw value of each parameter
 for p in self.params:
 print p.name," = ",p.lastRaw

How to write a PacketListener

This is fairly starightforward and similar to the data listener case.

1. Implement the PacketListener.packetReceived(PacketEvent) method, which
is called each time a packet is received.

2. Pass the listening instance to the QLA controller by calling the method Controller.
addPacketListener(PacketListener)

Here is the actual code from the
PacketViewer
demo application:

public class PacketViewer extends JPanel implements PacketListener {

 private ScrollingText _text;
 private int packets;

 public PacketViewer() {
 _text = new ScrollingText ("Ready...", 6, 60);
 JScrollPane span = new JScrollPane (_text);
 span.setVerticalScrollBarPolicy (JScrollPane.
VERTICAL_SCROLLBAR_ALWAYS);
 add (span);

 packets = 0;
 Controller.addPacketListener (this);
 }

 public void packetReceived (PacketEvent event) {
 _text.appendLine ("Packet "+(++packets)+" at "+(new Date())+
 " from "+event.getSource().getClass().getName
());
 }
}

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-summary.html (11 of 12)13/01/2005 11:14:45

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/PacketListener.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/PacketListener.html#packetReceived(herschel.spire.qla.PacketEvent)
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Controller.html#addPacketListener(herschel.spire.qla.PacketListener)
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Controller.html#addPacketListener(herschel.spire.qla.PacketListener)

herschel.spire.qla (Herschel Science Center Javadoc)

Writing a SelectionListener

Components that implement this interface are automatically notified whenever there is any change in
which parameters are being monitored i.e. whenever a
ParameterMonitor
registers or deregisters for a parameter. Note that if a GUI component is a
ParameterMonitor
, its parameters will be automatically deregistered when it is closed. The steps involved are:

1. Implement the SelectionListener interface.
2. Pass the listening instance to the QLA controller by calling the method Controller.

addSelectionListener(SelectionListener)

Overview Package Class Tree Deprecated Index Help

 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES All Classes

herschel.ia.numeric Numeric package. Contains definitions of data types such
as Double1d

herschel.ia.numeric.
function

Contains various numeric functions e.g. statistical,
interpolation, FFT etc.

herschel.ia.dataset Contains classes to define datasets and products

herschel.ia.io.fits How to read/write products from/to FITS files

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-summary.html (12 of 12)13/01/2005 11:14:45

file:///Q|/ICC/sw/doc/api/herschel/spire/qla/SelectionListener.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/SelectionListener.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Controller.html#addSelectionListener(herschel.spire.qla.SelectionListener)
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/Controller.html#addSelectionListener(herschel.spire.qla.SelectionListener)
file:///Q|/ICC/sw/doc/api/overview-summary.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/package-tree.html
file:///Q|/ICC/sw/doc/api/deprecated-list.html
file:///Q|/ICC/sw/doc/api/index-all.html
file:///Q|/ICC/sw/doc/api/help-doc.html
file:///Q|/ICC/sw/doc/api/herschel/spire/qla/dataio/package-summary.html
file:///Q|/ICC/sw/doc/api/index.html
file:///Q|/ICC/sw/doc/api/allclasses-noframe.html

SPIRE (SPECTRAL AND PHOTOMETRIC IMAGING RECEIVER)

SPIRESPIRE Spectral
and
Photometric
Imaging
Receiver

SPIRE Focal Plane Unit, CAD model

SPIRE is one three instruments to be carried on the European Space Agency's
Herschel Space Observatory (formerly called FIRST). It is designed to make
spectral and photometric observations at far infrared and submillimetre
wavelengths. It is being built by a European consortium led by the UK, with
contributions from France, Italy, USA, Sweden and Spain.

 The SPIRE Project Related Links Travel Info

Features SPIRE Web site at Cardiff University How to get to RAL
Science with SPIRE ESA Herschel Science Centre How to get to Cosener's House
Organisation ESA Science Communications, Herschel Hotels

RAL Space Science Department British Airways (Link)
Instrument Performance CLRC British Midlands (Link)
Photo Gallery SAp Eurostar (Link)

IFSI Railtrack (Link)
ATC National Express Coaches (Link)
ICSTM Astrophysics Traffic Information (Link)
MSSL Oxford Guide (Link)
JPL The Weather at RAL (Link)
SPIRE Web site at University of Lethbridge

If you have any questions relating to the project please contact:
http://www.ssd.rl.ac.uk/SPIRE/ (1 of 2)13/01/2005 11:14:49

http://www.ssd.rl.ac.uk/SPIRE/gallery\spectrometer.jpg
http://www.ssd.rl.ac.uk/SPIRE/FEATURES.HTM
http://www.astro.cf.ac.uk/groups/instrumentation/projects/spire/index.html
http://www.clrc.ac.uk/Activity/ACTIVITY=RALMaps;
http://www.ssd.rl.ac.uk/SPIRE/Science.htm
http://astro.esa.int/herschel/
http://www.clrc.ac.uk/Activity/ACTIVITY=CosenersHouse;
http://www.ssd.rl.ac.uk/SPIRE/ORGANISATION.HTM
http://sci.esa.int/herschel/
http://www.ssd.rl.ac.uk/SPIRE/hotel.htm
http://www.ssd.rl.ac.uk/
http://www.british-airways.com/bans/checkin.htm
http://www.ssd.rl.ac.uk/SPIRE/PERFORMANCE.HTM
http://www.clrc.ac.uk/
http://www.iflybritishmidland.com/
http://www.ssd.rl.ac.uk/SPIRE/Gallery.htm
http://www-dapnia.cea.fr/Sap/
http://www.eurostar.com/
http://www.ifsi.rm.cnr.it/
http://www.railtrack.co.uk/travel/
http://www.roe.ac.uk/atc/
http://www.nationalexpress.co.uk/
http://astro.ic.ac.uk/
http://www.theaa.co.uk/motoringandtravel/index.asp
http://www.mssl.ucl.ac.uk/www_astro/homepage.html
http://www.comlab.ox.ac.uk/archive/ox.html
http://www.jpl.nasa.gov/
http://www.onlineweather.com/BritishIsles/Forecast/Oxford.html
http://research.uleth.ca/spire/

SPIRE (SPECTRAL AND PHOTOMETRIC IMAGING RECEIVER)

SPIRE Project Office
Tel: +44 (0)1235 446322
Fax: +44 (0)1235 446667

Created by:

K.J. King
k.j.king@rl.ac.uk

Rutherford Appleton Laboratory

Chilton, DIDCOT, Oxon OX11 0QX, U.K.

Last modified - 24th January 2002

http://www.ssd.rl.ac.uk/SPIRE/ (2 of 2)13/01/2005 11:14:49

mailto:j.a.long@rl.ac.uk
http://www.sstd.rl.ac.uk/
http://www.clrc.ac.uk/

Conventions used in this Document

Conventions used in this Help System

Sans-serif italic is used for file names, file paths, package names, variable names, method
names and application names.
Fixed-width bold is used for user input at command lines on the system console.
Fixed-width plain is used for user input in files.
Sans-serif bold is used for window names, button names, menu names, menu selections,
labels and tab names.

Unless otherwise specified, this document illustrates file paths using Unix file separators:
Windows users will have to substitute "/"s with "\"s.

> is used to denote a command prompt. Unless otherwise specified, the commands given in
this document are the same for Windows and Unix users.

QLA> is used to denote a command prompt in the QLA Console

The above conventions may be overidden if the word in question is a link to another section
of the help system. If this is the case, the word will be in the usual link style.

Note that file paths quoted in this document are relative to the location of the qla directory.
This is a subdirectory of the spire directory, which is in turn a subdirectory of the herschel
directory. The location of the herschel directory on an individual's file system will vary
according to where they installed QLA. It may be the case the the files referred to are held
in a jar file accessed through the classpath. You can view the contents of a jar file with the
following command, where foo.jar is the name of your jar file:

> jar tf foo.jar

To extract a particular file to your current directory, for example to copy it to create your own
version for configuration purposes (see "Configuring QLA"), use the following command,
where foo.jar is the name of your jar file, and foo/bar/fish.file is the path to the
file you wish to copy within the jar file structure.

> jar xf foo.jar foo/bar/fish.file

The above jar commads are identical on Windows and Unix.

file:///Q|/ICC/sw/doc/spire/qla/help/Conventions.html13/01/2005 11:14:49

Instructions for Reporting Problems

Instructions for Reporting Problems

Problems detected in the QLA should be reported using the SPIRE SPR/SCR reporting
system.

Errors detected in this document should be reported to Steve Guest.

file:///Q|/ICC/sw/doc/spire/qla/help/ProblemReporting.html13/01/2005 11:14:49

http://astro.esa.int/herschel_webapps/servletsuite/ProblemReportServlet?area=spire
http://astro.esa.int/herschel_webapps/servletsuite/ProblemReportServlet?area=spire
mailto:s.guest@rl.ac.uk

The QLA Log File

The QLA Log File

Every time you run QLA, a file called qla.log is created in your home directory. This contains
details of Java exceptions that have been thrown, and messages with information or
problems. It can be useful for diagnosing or solving a bug with the software.

file:///Q|/ICC/sw/doc/spire/qla/help/Log.html13/01/2005 11:14:50

Starting QLA

Starting QLA

QLA can be run with two look and feel set-ups, either multiple or single window mode.
Screenshots in this document are taken from the multiple window mode. See Configuring
QLA for instructions on changing the look and feel, and other configurable properties.

QLA can be started from the command prompt (in any directory) by typing:

> qla

The qla command will be set up as either a script or an alias to invoke the correct
command.

This brings up two windows if the user is using the default settings. SPIRE Quick Look
Analysis is the main QLA window, which is used to select QLA applications. If it is closed it
ends the QLA session. The PacketReceiver window is described here.

In the bottom part of the window, warning and error messages are displayed.

The SPIRE Quick Look Analysis window

Some of the QLA program properties can be changed by bringing up a property editor
window. To access the property editor, right-click on the window and select "properties".
The "Save" button writes updated values to the QLA.props file in the .hcss subdirectory
of the home directory. Note that a change to the look and feel will only apply to subsequent
runs of QLA after it has been saved.

file:///Q|/ICC/sw/doc/spire/qla/help/StartingQLA.html13/01/2005 11:14:50

file:///Q|/ICC/sw/doc/spire/qla/help/SelectingInputData.html

The QLA Application Menu

The QLA Application Menu

The QLA Application menu on the SPIRE Quick Look Analysis window is used to select
the main functions of the QLA. The options are introduced briefly below.

● Parameter Selector: allows the user to select parameters in order to view them as
they change over time.

● Image Display: allows the user to view bolometer arrays of raw SPIRE data in the
form of an image of the instrument projection on the sky.

● Packet Dump: this dumps the contents of raw telemetry packets to the screen.
● PacketViewer: An application that shows when a packet is received by QLA.
● QlaConsole: this allows access to all QLA public methods via the Jython scripting

language.
● EventTester: A developers' application for unit testing aspects of QLA functionality.
● DataViewer: A demo application for viewing data values and saving data.
● PacketReceiver: allows the user to select the input data type, source and time period.
● Help Application: launches the help system.

file:///Q|/ICC/sw/doc/spire/qla/help/ProcessSelection.html13/01/2005 11:14:50

file:///Q|/ICC/sw/doc/spire/qla/help/SelectingInputData.html

EGSE Router

EGSE Router

The EGSE router must be running in order to receive data in near real time. If it is not
already running it will need to be started first. Note that the router can be run on a different
machine from the QLA.

Within the EGSE Router selection the first text box displays the host name, the default
being localhost. Its value is determined by the configurable property hcss.access.
router.host. The second box displays a four-digit port number, the default being 9877.
This is set by the property hcss.access.router.port. See the configuration section for
details.

If the router is being used this should be started at the command prompt. The four-digit port
number forms the last part of the command, and must be the same as that for the hcss.
access.router.host configurable property as described above. Speak to your system
administrator if you have any problems.

> java herschel.spire.egse.Router 9877

Note: Windows users will need to start another system console in order to do this.

If the router was already running on the specified port on the host machine, an "Address in
use" error will be observed. This is not normally a problem.

file:///Q|/ICC/sw/doc/spire/qla/help/Router.html13/01/2005 11:14:51

Packet Receiver

Packet Receiver

The QLA Packet Receiver is a slightly customised version of the common "access"
package's Data Selector tool, see the documentation for that tool.

file:///Q|/ICC/sw/doc/spire/qla/help/PacketReceiver.html13/01/2005 11:14:51

Access Package

Herschel Common Science System

Access Package User Guide

Issue: 1.15, 10th December 2004

Author: Steve Guest

This document describes the usage of the graphical components provided by the access package. The
top-level documentation for the package can be found here. A more general "How-To" on accessing
the database can be found here.

Data Selector

The configuration of the component can be changed by editing its properties, or user preferences.
Each "tab" has its own associated properties and property editor. To access a property editor, right-
click on the window and select "properties".

Selecting the property editor for the "Play" tab

The "Save" button writes updated values to the application.props file in the.hcss subdirectory of
the home directory, where application is the name of the application e.g. QLA. A tooltip giving extra
information is displayed if the mouse is held over a property.

file:///Q|/ICC/sw/lib/hcss/doc/access/doc/user.html (1 of 5)13/01/2005 11:14:51

mailto:s.guest@rl.ac.uk
file:///Q|/ICC/sw/lib/hcss/doc/access/index.html
file:///Q|/ICC/sw/lib/hcss/doc/ia/doc/howtos/howto-use-database.html

Access Package

Editing the properties for the "Play" tab

The basic means of operation is to set up the data request using the Data, Time and Source tabs, and
then start data reception from the Play tab, which operates in a similar manner to a tape deck. Note
that the Data and Time selections are both applied.

"Playing" the data

Data reception will start once the play button is pressed, under the Play tab. Note that if the play
button is pressed before an input stream is set up (e.g. with a router connection), then a timeout is
likely to occur. The Messages tab can be used to check if this has occurred.

Selecting the play button

When playback mode is selected (i.e. from a database) the speed can be adjusted via the fast forward
and fast reverse recorder buttons on the Play tab. In order to use the full features of this mode
including backward stepping, ensure that the cache data option from the Source tab is selected.

The pause button pauses playback, and causes two more buttons to become visible, which allow the
user to step forwards and step backwards one packet or data frame at a time.

file:///Q|/ICC/sw/lib/hcss/doc/access/doc/user.html (2 of 5)13/01/2005 11:14:51

Access Package

Playback mode, with the pause button having been pressed, and the step forward button being selected

Data Type

The Data tab is used to select what data is accessed. Multiple Apids, Types, Subtypes and SIDs can
be selected using either commas or white space as delimiters. Numbers can be entered either as
decimal or in hex if prepended with "0x". Note that every selection acts as a filter - the default of
each parameter is "any". The type, subtype and SID fields are only active when packets are selected.
(This might be relaxed at a future time as these fields are valid for SPIRE data frames).

The Browse button starts the Test Execution browser, which allows the user to browse the tests
which have been carried out. When a test is selected, click on "export selection". When the browser is
closed, the times for that test are entered into the "Time" tab of the Data Selector.

Selecting the data type

Data Source

There are three sources from which data can be retrieved: a local or remote database for playback
data, or the EGSE router for real time data. If the Source tab is pressed one of the three options can
be selected. Note that the default selection can be changed from the property editor window.

file:///Q|/ICC/sw/lib/hcss/doc/access/doc/user.html (3 of 5)13/01/2005 11:14:51

Access Package

When a remote database is selected, the text field displays the URL that will serve the data. The value
of the local database field is passed to the server. Therefore the name of the remote database is
changed in the same way as a local one.

Selecting the data source

A database has to be selected in order to use playback mode. A local database is one that the user is
able to access directly from their machine. This is simpler and provides better performance than a
remote database, but means that a Versant installation is required on the client side. The text box
contains the name of the database and may be edited.

A remote database can be installed anywhere that is network-accessible. Both TCP/IP sockets and
HTTP protocols are supported. This does not require a Versant installation on the client, but does
require a server to be running. Depending on the selected protocol, either a URL will be displayed
(HTTP, the default) or a host name and port number (TCP/IP).

Time

The Time tab allows a start and end time to be selected for playback purposes, with each time being
entered as a day, month, year, hour, minute and second. Times are specified as by default as UTC.
This can be changed if desired from the properties editor.

By default, whenever the start time is advanced, the end time is advanced by the same amount. This
behaviour can be changed from the property editor. The "Save" button saves the selected times to the
user preferences file, and they will be remembered in subsequent runs of the program. The "Reset"
button removes the time as a selection criteria. Visually, the current time is then displayed, but it is
not used. This tab is only available if a local or remote database is selected under the Source tab.

Note that the time selection operates as an additional filter to anything specified in the Data panel.
Use the "Reset" button to clear it.

file:///Q|/ICC/sw/lib/hcss/doc/access/doc/user.html (4 of 5)13/01/2005 11:14:51

Access Package

Selecting the time range

file:///Q|/ICC/sw/lib/hcss/doc/access/doc/user.html (5 of 5)13/01/2005 11:14:51

Packet Dump

Packet Dump

The PacketDump application dumps the contents of a certain packet type to the screen.

Clicking the popup menu mouse button (the right mouse button in most operating systems)
in the PacketDump window brings up a popup menu with a properties... option. Selecting
this brings up a new window which allows the user to select packets according to their
description. The default selected packet is "Nominal Housekeeping". More than one packet
can be selected by using the shift and control keys with the mouse button.

The default display update rate is 500 milliseconds, and this can be changed by entering a
new value in the Display Rate section of the properties window. The packet contents can
be displayed in hex, decimal or binary, according to the option selected in the Display in
section of the properties window.

All properties can also be changed from the QLA Console application using "set" methods,
for example setDisplayRate. See the API for details of these methods.

Note that when new packet types are selected, PacketDump starts to use the changed
values to select packets from the packet stream at once. But, until the apply button is
pressed, the contents of packets are interpreted according to the properties before the
changes have been made. Note that currently you also have to press the apply button after
calling the "set" methods in order to let the change take effect.

file:///Q|/ICC/sw/doc/spire/qla/help/PacketDump.html (1 of 2)13/01/2005 11:14:52

Packet Dump

The PacketDump window and its associated properties window

file:///Q|/ICC/sw/doc/spire/qla/help/PacketDump.html (2 of 2)13/01/2005 11:14:52

Packet Viewer

Packet Viewer

This is an application that shows when a packet is received by QLA. It displays the values in
hex, with the offsets on the left.

If the Pause button is pressed, the display freezes on the packet currently being received.
The > and < buttons can then be pressed to step through and view the data for individual
packets.

file:///Q|/ICC/sw/doc/spire/qla/help/PacketViewer.html13/01/2005 11:14:52

Displaying Parameters

Displaying Parameters

In order to watch a parameter evolve with time, a user needs to select the parameter they
are interested in, and then select how they wish to view it. Both of these selections are
made via the Parameter Selector window which is started by selecting the Parameter
Selector option from the SPIRE Quick Look Analysis window.

Note that the parameter will start to be monitored from the moment that the display is
created for it for the first time. This and all subsequent displays of the parameter will show
it's behaviour from this moment.

file:///Q|/ICC/sw/doc/spire/qla/help/ParameterDisplay.html13/01/2005 11:14:52

Parameter Selection

Parameter Selection

Parameters can be selected in one of two ways. For specific bolometer parameters
(PHOTOMETER or FTS), the user can click on the relevant bolometer array name displayed
in the Arrays menu, which brings up a window with a visual display from which bolometers
can be selected. Alternatively individual parameters can be selected from the Parameters
menu, via the relevant submenu.

file:///Q|/ICC/sw/doc/spire/qla/help/ParameterSelection.html13/01/2005 11:14:53

Selecting Bolometers From Array Images

Selecting Bolometers From Array Images

The Arrays menu contains five buttons labelled with the five arrays in SPIRE. Pressing one of these buttons will bring up a window with a
display of the bolometer projection on the sky. In this window the top display area shows a menu containing all the bolometer names in
the array, and the bottom one displays selected detectors (labelled Selected Bols). A mouse click on any bolometer, either in the array
layout or upper display area, will put its identifier in the lower display area. A second click on the same bolometer will remove it. The drop-
down menu at the top labelled Short-cut Selections gives the options to select groups of bolometers. At present only the Co-aligned
and All Bolometers options are implemented. Once selections are completed, the Confirm Selection and Close button displays the
selected parameters in the Selected Parameters area in the Parameter Selector window, and closes the window with the bolomoter
display. If this button is clicked more than once (if the window with the bolometer display is reopened), extra parameters in the list will be
added to the Selected Parameters area. Note that parameters no longer in the list will not be removed from the Selected Parameters
area.

file:///Q|/ICC/sw/doc/spire/qla/help/SelectingBolometers.html (1 of 2)13/01/2005 11:14:53

Selecting Bolometers From Array Images

Selecting parameters using a bolometer array display

file:///Q|/ICC/sw/doc/spire/qla/help/SelectingBolometers.html (2 of 2)13/01/2005 11:14:53

Selecting from the Parameters Menu

Selecting from the Parameters Menu

Any parameter can be selected via the pull down Parameters menu on the Parameter Selector window. At present
only the Alphabetically and Subsystem submenus have been defined and implemented, with the Functionality and
Operating Mode ones still to be defined. The Alphabetically submenu contains further submenus which divide the
parameters according to their initial letter, and within each of these submenus the parameters are listed in
alphanumeric order. The Subsystem submenu divides them according to their subsystem type.

Right-clicking on any parameter will display its description in the Information Box, as will clicking on the Get
Description button. This description is based on the entry for the parameter in the tables/SPIRE_Param_DB.txt file
(See "Configuring QLA").

Parameters can also be selected by typing their name in the Get Parameter text box. As you type, suggested
parameter names will appear in the drop-down menu on the right. The name that appears at the top of the list is the
first alphabetically in the possible parameters available.

file:///Q|/ICC/sw/doc/spire/qla/help/SelectingParametersMenu.html (1 of 2)13/01/2005 11:14:53

Selecting from the Parameters Menu

Selecting parameters individually via the Parameters drop-down menu

file:///Q|/ICC/sw/doc/spire/qla/help/SelectingParametersMenu.html (2 of 2)13/01/2005 11:14:53

The Selected Parameters Window

The Selected Parameters Window

Once selections of parameters have been made using either the Arrays menu or the
Parameters menu, the list in the main Selected Parameters area can still be edited.
Pressing the Clear button, will remove the whole list of parameters from this area. To
remove individual parameters, click on them in the list, and then click on the Remove
Selected Parameters button. Highlighting a parameter and pressing the Get Description
button displays its description in the information box, in the same manner as right-clicking in
the drop down menus (see Selecting from the Parameters Menu).

file:///Q|/ICC/sw/doc/spire/qla/help/SelectedParametersWindow.html13/01/2005 11:14:54

Creating Displays

Creating Displays

Once parameters have been selected, then the display type: Clock, Scroller, or Time Series is
chosen from the Display using drop-down menu. The conversion type of the data to be
displayed is selected from the Conversion drop-down menu - either Raw, Converted, or Both.
Clicking on the make display button will invoke a new Parameter Displayer window of the
appropriate display type. The title of the window is determined by the pattern APID(type, subtype)-
SID. So for example in the figure below the title of the time series window is "Parameter 1284
(21:1)-0x200 Raw".

The selected parameters are viewed as separate components within the window. If the display
type is TimeSeries and the conversion type is Both, two windows containing time series
displayers will be launched, one for raw values and one for converted values.

To display a new set of parameters, press the Clear button on the Parameter Selector window.
The already dispatched displays will continue to update. A new set of parameters can then be
selected and new display will appear when make display is pressed again. Closing the
Parameter Selector window will not close the Parameter Displayer windows invoked by it.
There is no limit to the number of times a parameter can be selected or the number of different
ways it can be displayed.

If no parameters are selected when make display is pressed, then two default parameters:
OBSID and PHOTFARRAY001 are displayed.

See "troubleshooting", for a note about displaying science parameters when no housekeeping
packages are selected in the simulator.

Parameter Displayer windows for the PHOTSW005 parameter, shown (clockwise from left) as a
time series, clock and scroller. Note that the time series and scroller are showing the raw values,
and that the clock is showing both raw and converted values.

file:///Q|/ICC/sw/doc/spire/qla/help/CreatingDisplays.html13/01/2005 11:14:54

Clock Displays

Clock Displays

The Clock displays the latest values of parameters like a simple digital clock. Each clock will
list the parameter names on the left, with a grey background and its value on the right with a
white background. If both housekeeping and science values are selected, they will appear
on different clock displays. When Both is selected from the Conversion drop-down menu,
the parameter name appears to the left as usual, but there are now 2 values on the right,
separated by a forward slash. The raw value is to the left of the slash and the converted
value is to the right.

Clicking the popup menu mouse button gives access to some properties menu items. If
only one parameter is being displayed, there will be just one properties menu item, labelled
for that particular parameter. If more than one parameter is being displayed, then there will
still be an individual properties menu item for the parameter clicked on, but there will also
be a properties for all parameters menu item, which will change the properties of all the
parameters being displayed. Clicking this brings up a window with the option to change the
number radix of the displayed parameter[s]. The default is decimal, but hex and binary can
also be used. This window also allows the user to change the conversion type of the
displayed parameter[s].

file:///Q|/ICC/sw/doc/spire/qla/help/ClockDisplays.html13/01/2005 11:14:54

Scrolling Lists

Scrolling Lists

The Scroller displays the current and past values of the selected parameter in a set of scrollable lists.
The lists display all data since the Select button on the Parameter Selector was pressed. Like the
clock displays, the science data and the housekeeping data are displayed in separate windows.
When new data arrives, the display automatically switches to show the latest data at the bottom of
the list.

If a set of scroller displayers are grouped in one window, different parameters are scrolled
independently of each other by default. Clicking the popup menu mouse button on any one of the
lists brings up the option to lock scrolling with one or more other lists. This means moving one scroll
bar will move the scroll bar of all other locked parameters at the same time. Clicking the popup menu
mouse button again gives the option to unlock from any previously locked parameters. The format of
every line is identical to that of the Clock displayer.

Clicking the popup menu mouse button also brings up the option to set the properties in the same
way as for the Clock displayer.

Using the popup menu to select locking and unlocking of scroll bars. In this example the mouse was
clicked in the PHOTSW003 parameter window. The PHOTSW003 parameter had previously been
locked to the PHOTSW002 parameter, which is why the option to unlock from it is shown here. It had
not yet been locked to the PHOTSW001 parameter, so the option to lock to it is shown.

file:///Q|/ICC/sw/doc/spire/qla/help/ScrollingLists.html13/01/2005 11:14:55

Time Series Plots

Time Series Plots

The Time Series displays the values of a parameter as a function of time. The display has
optional compress mode, follow mode, and fix mode. The user can switch between the
different modes by using the options in the right click menu, or by using the mouse, as
described in the next sections. The display range and display size can be changed by the
user.

The properties panel, accessed via the properties... button on the popup menu, provides a
list of preset options for controlling the plot.

file:///Q|/ICC/sw/doc/spire/qla/help/TimeSeries.html13/01/2005 11:14:55

Compress

Compress

The default mode for the time series display is the compress mode. This keeps the x
coordinate of the left edge of the plot constant and compresses the x axis scale when new
data become available. This means that new data are always within the display range.

● Double-click the mouse (left button) to return to the default plotting in compress mode
after zooming (described in "Other Use of the Mouse"). This mode includes all data
from the beginning to the newest data point.

● Control-double-click (left button) to plot in compress mode showing the current x
range. This is only relevant if the user has zoomed in or out and changed the default
x range (see "Other Use of the Mouse").

Alternatively, click on full range COMPRESS mode or COMPRESS mode in the popup
menu.

The y-axis scale varies to accommodate the highest and lowest data points.

file:///Q|/ICC/sw/doc/spire/qla/help/Compress.html13/01/2005 11:14:55

Follow

Follow

The follow mode makes the display window follow the latest data point with a constant x
coordinate span.

● Shift-double-click to plot in follow mode. The span will continue to display the same
width as it had when shift-double-click occurred. In this mode, two red vertical lines
are drawn across the upper and lower borders of the drawing box to indicate the x
coordinate of the newest data point.

Alternatively, click on FOLLOW mode in the popup menu.

The y-axis scale varies to accommodate the highest and lowest data points.

file:///Q|/ICC/sw/doc/spire/qla/help/Follow.html13/01/2005 11:14:55

Fix

Fix

The fix mode simply fixes the coordinates of all sides of the plot, both x and y axes, so that
the displayed part of the data can be inspected without interference of new data. Fix mode
only occurs automatically after a particular zoom action has moved the newest data point
outside the drawing area (see "Other Use of the Mouse" for details).

file:///Q|/ICC/sw/doc/spire/qla/help/Fix.html13/01/2005 11:14:55

Other Use of the Mouse

Other Use of the Mouse

Click the popup menu mouse button to access the saving options; each data set can be
saved separately.

Drag the mouse holding down any button to zoom. The release point of the mouse button
can be outside the plotting area, but the press point must be inside it. If the release point is
outside the window, this has the effect of zooming out.

The x axis of all the parameter displays is adjusted when the user zooms. However, the
adjustment of the y axis when zooming is more complicated. Because several parameters
can be displayed at once, a method is needed to determine which parameter display the
user intends to update. If the user presses the mouse within a particular parameter display,
then this is the display to have its y axis updated. If the user clicks on the grey area either to
the left or the right of the white displays, then the parameter display that the click is adjacent
to will have its Y axis updated. If the user clicks on the grey area above or below the white
display areas, then the top box will have its y axis updated.

If the newest data point is not within range after zooming, plotting will switch into the fix
mode to allow inspection of existing data without the interference of changing axes.

file:///Q|/ICC/sw/doc/spire/qla/help/Mouse.html13/01/2005 11:14:56

Time Series Properties Panel

Time Series Properties Panel

The properties panel, accessed via the properties... button on the popup menu, provides a
list of preset options for controlling the plot. A check mark indicates whether or not the
property is selected.

If Y auto range is selected, it means that the display range of the y axis is automatically
calculated when new data is displayed. This should be disabled to keep the y range
constant when new data is received.

tick format for X and tick format for Y determine the display format of the x and y axes
respectively. By default the time (x axis) is displayed in UTC (hh:mm:ss) format. Ay format
permitted by

file:///Q|/ICC/sw/doc/spire/qla/help/PropertiesTS.html13/01/2005 11:14:56

Image Displays

Image Displays

The Image Display window is launched when Image Display is chosen from the SPIRE Quick
Look Analysis window.

The user should select the desired bolometer array from the five buttons on the Image Display
window (e.g. PHOT SHORT), which causes QLA to automatically register all the bolometer
parameters to be monitored. It also launches a new Imager window which displays the SPIRE
data in the form of an image of the instrument projection on the sky. When a science data event,
from the simulator for instance, is received the bolometers with signal will "light up" using a
specified colour table, the default being "Heat". The signal values displayed vary from 0 (black) to
16 bit unsigned (full colour). A red circle around a bolometer means it is co-aligned. Either raw or
converted data is displayed: this is determined by selecting one or the other from the yellow drop-
down menu.

Holding the mouse over a bolometer will display the current signal values (raw and converted) in
the information box at the bottom of the imager panel.

Clicking on a bolometer will bring up a time series display window for that parameter.

The update rate of the display governs the refresh rate of the image. It has no link to the input rate
of data, which is controlled by the qla.eventrate (see Configuring QLA). The value can be set to
'0.5' to update the view every 2 seconds.

The Freeze Image button can be used to freeze the display at the moment that it is clicked (the
text then changes to Unfreeze Image). Data updates will not be shown until it is pressed again.

The colour table used to display the data can be edited by clicking on the red Colour Contr...
button, which opens a Colour Contrast window (see the second figure below). The colour table
options are "Heat", "Blue" or "Grey", which are chosen from the drop-down menu. The Reverse
CT button inverts the colour table, so that full-colour indicates the lowest signal value and black
the highest.

The colour contrast can be adjusted using the sliding bars and the max and min values for the
slider bars can be set in the text boxes below. If the max slider bar value is lower than the signal
values coming in, the maximum colour will be displayed for that data. Conversely, if the min slider
bar value is higher than the signal values coming in, the minimum colour will be displayed for that
data. If the min slider bar value is greater than the max slider bar value, then all bolometers that
have a signal value above the minimum value will light up with the same colour, and the rest will
remain black.

The max and min values for the slider bars can also be set manually using the text areas at the
bottom of the Colour Contrast window.

file:///Q|/ICC/sw/doc/spire/qla/help/ImageDisplays.html (1 of 3)13/01/2005 11:14:56

Image Displays

Imager window showing the Short PHOT array. The lighter-coloured parameters are those
receiving science events from the simulator. The user is checking the value of J12 by holding the
cursor over the relevant bolometer.

file:///Q|/ICC/sw/doc/spire/qla/help/ImageDisplays.html (2 of 3)13/01/2005 11:14:56

Image Displays

Colour Contrast window showing the "Blue" colour table being selected.

file:///Q|/ICC/sw/doc/spire/qla/help/ImageDisplays.html (3 of 3)13/01/2005 11:14:56

Saving Parameter Values to an ASCII File

Saving Parameter Values to a file

The Save window can be accessed from the DataViewer demo application (accessed from
the SPIRE Quick Look Analysis window), or by pressing the popup menu mouse button in
QLA windows which have a save function implemented. To save data for a particular
parameter to file the following instructions should be followed:

● If you are using the DataViewer application, enter the parameter name(s) in the
DataViewer window (note: QLA is case-sensitive and all parameter names only use
upper case letters) and press the enter key.

● Press Save - this brings up the Save window showing the parameters in the current
data buffer (i.e. the selected parameters that can be saved) and the various options
for doing this (note: selecting a particular parameter in this window does nothing).

● Select Export data to file, and then click on the launch button - this brings up the
Data export to file window showing the parameters in the current data buffer and the
possible file formats that can be used.

● Select which parameter(s) to save from the Product Selection List. (Holding down
the shift key and clicking on two separate parameters will select these two
parameters and all the ones between them in the list. Holding down the control key
and clicking on two or more separate parameters selects these parameters only, and
not the ones in between).

● Select which data format to use from the Data Format selector. Note: ASCII refers to
a structured flat-file format (i.e. the data is saved in human-readable form but with
keywords describing the data); Unstructured refers to an unstructured flat-file format
(i.e. the data is saved in human-readable form without any structure, e.g. plain
columns of data).

● Press Transfer Data - this brings up a FileChooser window.
● Select the filename for the file to contain the parameter data and press Save. Note: If

no extension or an inappropriate one for the selected data format is attached to the
filename, the default extension for the selected data format is used. The configured
values are:

Data format
Supported
extensions

Default
extension

ASCII .dat, .DAT, .txt, .TXT .txt

FITS .fits, .FITS, .fit, .FIT .fits

XDF .xdf, .XDF .xdf

Unstructured .dat

Not that if the save application is launched from the console, or if the select all parameters

file:///Q|/ICC/sw/doc/spire/qla/help/SaveData.html (1 of 2)13/01/2005 11:14:57

Saving Parameter Values to an ASCII File

option is chosen from the clock, scroller or time series displays, the default option is to save
all the parameters currently being monitored. See Saving Parameter Values from the QLA
Console for details.

The Save and Data export to file windows

file:///Q|/ICC/sw/doc/spire/qla/help/SaveData.html (2 of 2)13/01/2005 11:14:57

Printing and Screenshots

Printing and Screenshots

In most of the QLA GUIs the facility is available to print and to create screenshots. Where
these options are available, they can be accessed via the popup menu.

If printing is available, the popup menu will either have just one printing option, labelled
print the frame, or two printing options, labelled print this component and print whole
frame. In the former case, the whole frame will be printed. In the latter case, which is used
for composite GUIs, print this component will print just the component in question, such as
a text area, and print whole frame will print the whole frame.

If the option to create a screenshot is available, the option is given either to create
screenshot as jpeg or to create screenshot as png. When selected, these options will
generate a file saver dialogue box, so that you can save the generated image file to your
system.

file:///Q|/ICC/sw/doc/spire/qla/help/PrintingAndScreenshots.html13/01/2005 11:14:57

Help

Help

QLA incorporates a context-sensitive help system, which is accessed from the GUIs via the
popup menu. The page which is opened first depends on the GUI that the help option is
called from, and will be the page most relevant to that particular GUI.

The application can also be started from the Help Application option in the SPIRE Quick
Look Analysis window, from the QLA console, and independently of QLA at the command
prompt:

> java herschel.spire.qla.Help

When the help system is called by any means other than the popup menu, it will open on
the first page of the document rather than on a relevant page within the help system. It is
possible to use the console to open it on another page, see Calling the Help Application
from the QLA Console for details.

file:///Q|/ICC/sw/doc/spire/qla/help/Help.html13/01/2005 11:14:57

Imports

Imports

Several Java packages are imported automatically when the console is started. These are:
java.lang, herschel.spire.qla, herschel.spire.qla.viewer, herschel.spire.qla.selector and
herschel.spire.qla.dataio. These packages are defined in the file QlaConsole.imports.

There are various ways of importing packages in Jython. A convenient way is to use the
from statement with a wildcard, eg

QLA> from herschel.ia.dataset import *

However, this form should be used with care, especially in scripts, as it can lead to problems
owing to unexpected rebinding of names. It is safer to use the import statement, eg

QLA> import herschel.ia.dataset as dataset.

In this case class names have to be prepended with the package variable, in this case
dataset, eg

QLA> dataset.ArrayDataset

file:///Q|/ICC/sw/doc/spire/qla/help/ConsoleImports.html13/01/2005 11:14:57

Startup Script

Startup Script

The script QlaConsole.py is also executed when the console is started. This defines the
following functions (arguments are optional unless they are marked with asterisks):

pd(packets)

Start Packet Dump with the given packet mnemonic, the
default if no argument is supplied being nominal
housekeeping ("NHK"). The packets variable can specified as
a single String or as an array of Strings.
Examples:
QLA> pd()
QLA> pd("CHK")
QLA> pd(["CHK", "PHOTSW", "PHOTMW"])

pv() Start Packet Viewer.

clock (names,
dataType)

Start a clock display. The names variable is the name of a
parameter, or an array (or tuple) of names. If names is not
specified, the parameters known to the console's
ParameterManager are displayed. For the dataType variable,
specify 0 for raw data (the default), 1 for converted, or 2 for
both.
Examples:
QLA> clock()
QLA> clock("PHOTSW001")
QLA> clock(["PHOTSW001, "PHOTSW002"], 1)
See Starting a Clock Display for more information.

scroll (names,
dataType)

Start a scroller display. The arguments are the same as those
specified for clock.
Examples:
QLA> scroll()
QLA> scroll("PHOTSW001")
QLA> scroll(["PHOTSW001, "PHOTSW002"], 1)
See Starting a Scroller Display for more information.

ts (names,
dataType)

Start a time series display. The arguments are the same as
those specified for clock.
Examples:
QLA> ts()
QLA> ts("PHOTSW001")
QLA> ts(["PHOTSW001, "PHOTSW002"], 1)
See Starting a Time Series Display for more information.

file:///Q|/ICC/sw/doc/spire/qla/help/ConsoleStartupScript.html (1 of 2)13/01/2005 11:14:58

Startup Script

dataio()
Start the Data I/O application. All monitored parameters are
available.

select() Start the Parameter Selector application.

plot(*p1*, p2)

Plot one parameter against another. The parameters should
have the same sampling rate. If only one argument is
supplied, the parameter is plotted against time. Parameters
passed to this function can be any of the following:
a) Arrays or tuples of numeric values
b) Parameter objects
c) Parameter names as Strings. In this case the parameters
will be registered with the console's ParameterManager
(variable pm)

This script also looks for a user-defined script and executes it if it exists. This user script
must be named qla.py and reside in the user's home directory.

file:///Q|/ICC/sw/doc/spire/qla/help/ConsoleStartupScript.html (2 of 2)13/01/2005 11:14:58

Starting and Using Processes

Starting and Using Processes

This example shows how to start Packet Dump. It is purely for illustrative purposes, as
PacketDump can be started with the "pd" command.

QLA> WindowManager.add ("Packet Dump", PacketDump())

file:///Q|/ICC/sw/doc/spire/qla/help/ConsoleStartingProcesses.html13/01/2005 11:14:58

Printing the Values of a Parameter

Printing the Values of a Parameter

There is a pre-defined variable of type ParameterManager called pm associated with the
console. This variable allows full access to the data, including the ability to start monitoring
parameters - the paramater is monitored from the moment that pm.add() is called. Full
details are in the Javadoc. It returns a reference to the Parameter, which can then used in
conjunction with the print command to print the parameter value to the screen. The
resulting output is shown below the command.

QLA> t=pm.add("THSK")
QLA> print t

PHOTSW001 5 lines, time, raw

1.4480225612358844E9 32767.0

1.448022561297984E9 32767.0

1.448022561360083E9 32767.0

1.4480225614221826E9 32767.0

1.4480225614842818E9 32767.0

Note that pm.add() has an optional second argument: specify 0 for raw data, 1 for
converted data, or 2 for both. The default is raw data.

file:///Q|/ICC/sw/doc/spire/qla/help/ConsolePrintingValuesOfParameter.html13/01/2005 11:14:58

Saving Parameter Values from the QLA Console

Saving Parameter Values from the QLA Console

For example, to save BBTYPE to a file you would start monitoring it with the parameter
manager, and then call the save_params() command in order to launch the DataIO
application (see Saving Parameter Values to a file).

QLA> pm.add("BBTYPE")
QLA> save_params()

The following command does the same thing, except that the data will be saved as IA
products

QLA> save_products()

file:///Q|/ICC/sw/doc/spire/qla/help/ConsoleSaving.html13/01/2005 11:14:58

Calling the Help Application from the Console

Calling the Help Application from the Console

The Help Application can be started from the console by typing

QLA> Help()

If you know the string id of the topic that you wish to open, it is possible to use the key =
argument to open the help application on a particular page, eg:

QLA> Help(key="SelectingInputData")

file:///Q|/ICC/sw/doc/spire/qla/help/ConsoleHelp.html13/01/2005 11:14:59

Starting a Time Series Display

Starting a Time Series Display

To start a time series display from the console use the following function (the arguments are
optional):

ts (names, dataType)

The names variable is the name of a parameter, or an array (or tuple) of names. If names is
not specified, the parameters known to the console's ParameterManager are displayed. For
the dataType variable, specify 0 for raw data (the default), 1 for converted, or 2 for both.

Additionally, you can specify the initial time format for the x axis by using the
tickFormatX = and tickFormatY = arguments, eg:

QLA> ts("PHOTSW001", 0, tickFormatX="UTC", tickFormatY="auto")

The above starts a time series of the PHOTSW001 parameter, showing raw data, with the x
axis time format as hh:mm:ss, and the y axis format as auto. See Time Series Properties
Panel for a description of the time formats available.

It is useful to know that the ts function returns a reference to a ParameterDisplayer object,
which is the java class used to display the time series. This can then be used to modify the
time format if necessary, using the setTickFormatX and setTickFormatY methods, eg:

QLA> par = ts("PHOTSW001")
QLA> par.setTickFormatX("auto")
QLA> par.setTickFormatY("0.00")

file:///Q|/ICC/sw/doc/spire/qla/help/StartTSDisplay.html13/01/2005 11:14:59

Starting a Clock Display

Starting a Clock Display

To start a clock display from the console use the following function (the arguments are
optional):

clock (names, dataType)

The names variable is the name of a parameter, or an array (or tuple) of names. If names is
not specified, the parameters known to the console's ParameterManager are displayed. For
the dataType variable, specify 0 for raw data (the default), 1 for converted, or 2 for both.

Additionally, you can specify the radix for the display by using the radix = arguments, eg:

QLA> clock("PHOTSW001", 0, radix=0)

The above starts a clock display of the PHOTSW001 parameter, showing raw data
displayed in hex. Specify 0 for hex, 1 for decimal and 3 for binary.

It is useful to know that the clock function returns a reference to a ParameterDisplayer
object, which is the java class used to display the clock. This can then be used to modify the
radix if necessary, using the setRadix method, eg:

QLA> par = clock("PHOTSW001")
QLA> par.setRadix(0)

file:///Q|/ICC/sw/doc/spire/qla/help/StartClockDisplay.html13/01/2005 11:14:59

Starting a Scroller Display

Starting a Scroller Display

To start a scroller display from the console use the following function (the arguments are
optional):

scroll (names, dataType)

The names variable is the name of a parameter, or an array (or tuple) of names. If names is
not specified, the parameters known to the console's ParameterManager are displayed. For
the dataType variable, specify 0 for raw data (the default), 1 for converted, or 2 for both.

Additionally, you can specify the radix for the display by using the radix = arguments, eg:

QLA> scroll("PHOTSW001", 0, radix=0)

The above starts a scroller display of the PHOTSW001 parameter, showing raw data
displayed in hex. Specify 0 for hex, 1 for decimal and 3 for binary.

It is useful to know that the scroll function returns a reference to a ParameterDisplayer
object, which is the java class used to display the scroller. This can then be used to modify
the radix if necessary, using the setRadix method, eg:

QLA> par = scroll("PHOTSW001")
QLA> par.setRadix(0)

If you want to see all the data since the parameter started to be monitored, rather than the
moment the display is created, use fromStart argument, eg:

QLA> scroll("PHOTSW001", 0, radix=0, fromStart=true)

file:///Q|/ICC/sw/doc/spire/qla/help/StartScrollerDisplay.html13/01/2005 11:14:59

Configuring QLA

Configuring QLA

QLA has a number of configurable parameters that the user can change. Subsystems used
by the QLA also have configurable parameters; the ones specific to the QLA start with qla.

Basic Configuation
Advanced Configuration

file:///Q|/ICC/sw/doc/spire/qla/help/Config.html13/01/2005 11:15:00

Basic Configuration

Basic Configuration

Listed below are QLA's configurable parameters. A default can be overridden by the user if
they redefine it in their own configuration file. To do this, they should create or edit an
existing file named QLA.props in the .hcss subdirectory of their home directory.

Note for Windows users: if the .hcss directory does not exist, Windows will not let you
create it in the usual way. A workaround is to start QLA, right-click on the PacketReceiver
window, select "properties", change something in the menu (you might well need to specify
the database for eaxample anyway), then press the "Save" button. The directory will then
have been created.

Redefinitions can be added with the syntax "parameter = value". For example:

spire.qla.lookandfeel = single

spire.qla.lookandfeel sets whether QLA is run with single or multiple windows. The
value is either single or multiple. The multiple window set-up is the default setting.

spire.qla.parameters, spire.qla.sidtable and spire.qla.mappings point to
the location of configuration files. If the location of the configuration files is changed (not
recommended!), the files must still be in the QLA tree or the they will not be loaded
correctly. The default values are tables/SPIRE_Param_DB.txt, tables/
SPIRE_SID_Table.txt and tables/Detector_Mappings.txt respectively.

spire.qla.processes points to the location of another configuration file. Unlike the
configuration files described above, this file does not need to be in the QLA tree. If the
location is not set, or the file not found, QLA will use the default file (spire.qla.processes).
The user can, if they wish, create a spire.qla.processes file in their home directory, which
will override the file pointed to by this parameter in case of a conflict between the two. The
file is used to determine which elements of QLA start automatically (by default the SPIRE
Quick Look Analysis window and the PacketReceiver window). In order to set other
processes to begin on start-up, the Start by default option should be set to true. If
required, multiple copies of the same application can be started in this manner, by having
two entries, both set to true. The example below shows how the entry for the Image
Display should appear if it is to be started automatically:

Selector.BolometerImageDisplayer true true Image Display

The normals means to create a customised file would be to copy the default file and modify
it.

spire.qla.tooltips sets whether or not tooltips are enabled in QLA. It can be set to

file:///Q|/ICC/sw/doc/spire/qla/help/ConfigBasic.html (1 of 3)13/01/2005 11:15:00

Basic Configuration

true or false, the default value being true.

spire.qla.apids is the list of APIDs to register for, in decimal format. These appear in
the PacketReceiver window's data tab on start-up. The default values are {1280, 1282,
1284, 1285, 1286}.

spire.qla.selector.imagemode is used by the image displays, and is usually set to
the data value. It can be set to random for testing purposes only.

spire.qla.DisplayRate is the display update rate in milliseconds of data displays such
as clocks, scrollers and time series windows. Note that setting it to zero implies no delay on
event reception. The default value is 500.

spire.qla.eventrate sets the rate of data event dispatching in milliseconds. It can be
set to hk (the default value), which means the data event is delivered immediately on
reception of a housekeeping packet. As housekeeping packets appear every second, this is
roughly equivalent to setting the rate to 1000. However, setting it to hk guarantees
synchronicity. This may cause problems if there is no housekeeping data in the telemetry.
See the Troubleshooting section for details.

spire.qla.simulatetimes is normally set to false. Setting it to true causes it to
ignore the input packet times from the simulator and invent it's own. This is used for testing
purposes.

spire.qla.buffersize is a tuning parameter. This is the initial buffer size used by QLA
to store data, that is the number of points that can be saved before it has to increase the
array size. When buffers are full they have to be copied, which might cause QLA to hang
briefly. Increasing the buffer size will decrease the frequency of this effect at the expense of
greater original memory use. The default value is 10240.

spire.qla.packetrate sets the size of the packet cache used by PacketViewer. The
default value is 30000.

The data access parameters (the ones starting hcss.access) are described at

file:///Q|/ICC/sw/doc/spire/qla/help/ConfigBasic.html (2 of 3)13/01/2005 11:15:00

file:///Q|/ICC/sw/doc/spire/qla/help/SelectingInputData.html

Basic Configuration

file:///Q|/ICC/sw/doc/spire/qla/help/ConfigBasic.html (3 of 3)13/01/2005 11:15:00

Advanced Configurtion

Advanced Configuration

The QLA uses the HCSS configuration mechanism, see

file:///Q|/ICC/sw/doc/spire/qla/help/ConfigAdvanced.html13/01/2005 11:15:00

Troubleshooting

Troubleshooting

This section of the help system helps to solve some common difficulties the user may have
when using QLA.

file:///Q|/ICC/sw/doc/spire/qla/help/Troubleshooting.html13/01/2005 11:15:00

Displaying Science Parameters when no Housekeeping Packages are selected in the Simulator

Displaying Science Parameters when no Housekeeping
Packages are selected in the Simulator

If the user attempts to create a display of a science parameter when no housekeeping
packets have been selected from the simulator, QLA will print the following to the system
console:

DataAccumulator: waiting for a h/k packet

However the next expected line will not appear:

DataAccumulator: Received h/k packet

and no display will be created. This is because creating displays involves use of
housekeeping packets. However it is possible to view a display under such circumstances, if
the developer's tool EventTester is started, and the PacketEvent button pressed.

file:///Q|/ICC/sw/doc/spire/qla/help/TroubleScienceDisplay.html13/01/2005 11:15:01

Selecting SID from the Housekeeping Parameters Menu in the Simulator

Selecting SID from the Housekeeping Parameters Menu in the
Simulator

Selecting this parameter at it's default setting will cause the PacketReceiver to print out
errors to the command window, and to fail to function correctly. However, the SID can be
manually set to a valid value, such as 769, in the simulator by typing it into the text box, and
pressing the enter key.

file:///Q|/ICC/sw/doc/spire/qla/help/TroubleSid.html13/01/2005 11:15:01

file:///Q|/ICC/sw/doc/spire/qla/help/SelectingInputData.html

The Data Displays show a Single Value and then appear to stop

The Data Displays show a Single Value and then appear to
stop

This is caused by the packet times not being incremented. The workaround for this is to set
qla.simulatetimes to be true (see "Configuring QLA").

file:///Q|/ICC/sw/doc/spire/qla/help/TroublePacketTimes.html13/01/2005 11:15:01

Incorrect Value set for hcss.ccm.factory

Incorrect Value set for hcss.ccm.factory

If when you start the PacketReceiver you see the following error printed to the command
console, it means that the incorrect value has been set for the hcss.ccm.factory
configurable property:

Accessing with params
APID3=1284&APID5=1286&APID2=1282&APID4=1285&NAMEnl.esa.herschel.
versant.ccm.TmSourcePacketImpl&APID1=1280
Got instance of class nl.esa.herschel.access.net.RouterConnection
Error closing stream: java.lang.NullPointerException
java.lang.NoClassDefFoundError: com/versant/trans/CapableWithHash
 at java.lang.ClassLoader.defineClass0(Native Method)
 at java.lang.ClassLoader.defineClass(ClassLoader.java:502)
 at java.security.SecureClassLoader.defineClass
(SecureClassLoader.java:123)
 at java.net.URLClassLoader.defineClass(URLClassLoader.java:250)
 at java.net.URLClassLoader.access$100(URLClassLoader.java:54)
 at java.net.URLClassLoader$1.run(URLClassLoader.java:193)
 at java.security.AccessController.doPrivileged(Native Method)
 at java.net.URLClassLoader.findClass(URLClassLoader.java:186)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:299)
 at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:265)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:255)
 at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:315)
 at nl.esa.herschel.versant.ccm.CoreFactoryImpl.
createInstrumentModel(CoreFactoryImpl.java:180)
 at nl.esa.herschel.access.HcssConnection.getInstrumentModel
(HcssConnection.java:359)
 at nl.esa.herschel.access.net.RouterProductStream.
(RouterProductStream.java:28)
 at nl.esa.herschel.access.net.RouterConnection.openStream
(RouterConnection.java:159)
 at nl.esa.herschel.access.util.DataSelector$OpenHandler.run
(DataSelector.java:299)
 at java.lang.Thread.run(Thread.java:536)

The value for hcss.ccm.factory should be changed from nl.esa.herschel.
versant.ccm.CoreFactoryImpl to herschel.spire.ccm.SimpleCoreFactory.

The former value only works if you have a Versant installation. See "Configuring QLA" for
instructions on setting configurable properties.

file:///Q|/ICC/sw/doc/spire/qla/help/TroubleHcssCcmFactory.html13/01/2005 11:15:01

file:///Q|/ICC/sw/doc/spire/qla/help/SelectingInputData.html

No Data Events generated when there is no SPIRE Housekeeping Data in the Telemetry

No Data Events generated when there is no SPIRE
Housekeeping Data in the Telemetry

If no data events are being generated, and there is no SPIRE housekeeping data in the
telemetry, you should check the value of the qla.eventrate property (see Basic
Configuration). Make sure this is not set to hk, which guarantees synchronicity of other data
events with the SPIRE housekeeping events, but if there is no SPIRE housekeeping data in
the telemetry then no data events at all will be generated. Instead, set qla.eventrate to
a number of milliseconds, such as 1000. It is possible to check that data events are being
correctly generated using the DataViewer tool.

file:///Q|/ICC/sw/doc/spire/qla/help/TroubleEventRate.html13/01/2005 11:15:02

APID & SID Quick Look-up

APID & SID Quick Look-up

This is reproduced here purely for convenience - full details are in the SPIRE Data ICD.
Remember that packets are uniquely defined by a combination of APID, packet type, packet
subtype and SID.

Telemetry type APID (hex) APID (decimal)

Telecommands, TC verification, Events 500 1280

Housekeeping 502 1282

Photometer Science Data 504 1284

Spectrometer Science Data 506 1286

BSM & SMEC 508 1288

Test Facility Control System 7f4 2036

Test FTS 7f5 2037

CDMS Simulator 7f6 2038

Telemetry type
APID
(hex)

Type
(decimal)

Subtype
(decimal)

SID
(hex)

SID
(decimal)

Nominal H/K 502 3 25 0301 769

Critical H/K 502 3 25 0300 768

Photometer full array 504 21 1 0200 512

Photometer SW 504 21 2 0102 258

Photometer MW 504 21 2 0103 259

Photometer LW 504 21 2 0104 260

Phot full test pattern 504 21 3 0309 777

Phot SW test pattern 504 21 3 030a 778

Phot MW test pattern 504 21 3 030b 779

file:///Q|/ICC/sw/doc/spire/qla/help/ApidAndSidLookup.html (1 of 2)13/01/2005 11:15:02

APID & SID Quick Look-up

Phot LW test pattern 504 21 3 030c 780

Photometer offsets 504 21 4 0207 519

Spectrometer full array 506 21 1 0201 513

Spectrometer SW 506 21 2 0105 261

Spectrometer LW 506 21 2 0106 262

Spec full test pattern 506 21 3 030d 781

Spec SW test pattern 506 21 3 030e 782

Spec LW test pattern 506 21 3 030f 783

Spectrometer offsets 506 21 4 0208 520

BSM Nominal 508 21 1 0612 1554

SCU Nominal 508 21 1 0a20 2592

SCU test pattern 508 21 3 1121 4385

SMEC scan 508 21 1 0410 1040

SMEC selected 508 21 2 0f00 3840

MCU engineering 508 21 3 0814 2068

MCU test pattern 508 21 3 0915 2325

Transparent data 508 21 3 ff00 65280

HK Packet defn 508 21 4 0209 521

HK Table Contents 508 21 4 020a 522

TFCS H/K 07f4 3 25 0100 256

Test FTS H/K 07f5 3 25 0301 768

Test FTS Science 07f5 21 1 002a 42

file:///Q|/ICC/sw/doc/spire/qla/help/ApidAndSidLookup.html (2 of 2)13/01/2005 11:15:02

Product Metadata to FITS Translations

Product Metadata to FITS Translations

When saving product data after running a script (see BLAH for details on scripts), the
following translations are used between the product metadata and the FITS headers.

Product Metadata FITS Header

origin ORIGIN

obsid OBSID

bbid BBID

fileOrigin FILEORIG

codeVersion CODE_VER

samples NSAMPLES

bolArray BOLARRAY

bolNum BOLNUM

bolCount BOLCOUNT

filetype FILETYPE

airtemp AIRTEMP

bbtemp BBTEMP

pressure PRESSURE

humidity HUMIDITY

fts_samples NSAMPLES

sampleFrequency ROTFREQU

sampleTime SAMPTIME

ftstype FTSTYPE

See the HCSS documentation for information on the translations which are inherited from
the HCSS software.

file:///Q|/ICC/sw/doc/spire/qla/help/MetaToFits.html13/01/2005 11:15:02

ftp://astro.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/index.html#Dictionaries

Pixel Maps

Pixel Maps

Short Photometer Array

Medium Photometer Array

Long Photometer Array

Short Spectrometer Array

Long Spectrometer Array

file:///Q|/ICC/sw/doc/spire/qla/help/PixelMaps.html13/01/2005 11:15:03

Short Photometer Array

Short Photometer Array

file:///Q|/ICC/sw/doc/spire/qla/help/PixelMapsShortPhot.html (1 of 2)13/01/2005 11:15:05

Short Photometer Array

file:///Q|/ICC/sw/doc/spire/qla/help/PixelMapsShortPhot.html (2 of 2)13/01/2005 11:15:05

Medium Photometer Array

Medium Photometer Array

file:///Q|/ICC/sw/doc/spire/qla/help/PixelMapsMedPhot.html (1 of 2)13/01/2005 11:15:06

Medium Photometer Array

file:///Q|/ICC/sw/doc/spire/qla/help/PixelMapsMedPhot.html (2 of 2)13/01/2005 11:15:06

Long Photometer Array

Long Photometer Array

file:///Q|/ICC/sw/doc/spire/qla/help/PixelMapsLongPhot.html (1 of 3)13/01/2005 11:15:08

Long Photometer Array

file:///Q|/ICC/sw/doc/spire/qla/help/PixelMapsLongPhot.html (2 of 3)13/01/2005 11:15:08

Long Photometer Array

file:///Q|/ICC/sw/doc/spire/qla/help/PixelMapsLongPhot.html (3 of 3)13/01/2005 11:15:08

Short Spectrometer Array

Short Spectrometer Array

file:///Q|/ICC/sw/doc/spire/qla/help/PixelMapsShortSpec.html (1 of 2)13/01/2005 11:15:09

Short Spectrometer Array

file:///Q|/ICC/sw/doc/spire/qla/help/PixelMapsShortSpec.html (2 of 2)13/01/2005 11:15:09

Long Spectrometer Array

Long Spectrometer Array

file:///Q|/ICC/sw/doc/spire/qla/help/PixelMapsLongSpec.html (1 of 2)13/01/2005 11:15:10

Long Spectrometer Array

file:///Q|/ICC/sw/doc/spire/qla/help/PixelMapsLongSpec.html (2 of 2)13/01/2005 11:15:10

A Note on the Time Format

A Note on the Time Format

Unless otherwise specified, times displayed in QLA are TAI (Temps Atomique International),
measured in seconds, with epoch 1st Jan 1958.

file:///Q|/ICC/sw/doc/spire/qla/help/TAI.html13/01/2005 11:15:10

	Local Disk
	QLA User Guide
	Introduction to QLA
	The Engineering Simulator
	Using The Console
	herschel.spire.qla (Herschel Science Center Javadoc)
	Conventions used in this Document
	Instructions for Reporting Problems
	The QLA Log File
	Starting QLA
	The QLA Application Menu
	EGSE Router
	Packet Receiver
	Access Package
	Packet Dump
	Packet Viewer
	Displaying Parameters
	Parameter Selection
	Selecting Bolometers From Array Images
	Selecting from the Parameters Menu
	The Selected Parameters Window
	Creating Displays
	Clock Displays
	Scrolling Lists
	Time Series Plots
	Compress
	Follow
	Fix
	Other Use of the Mouse
	Time Series Properties Panel
	Image Displays
	Saving Parameter Values to an ASCII File
	Printing and Screenshots
	Help
	Imports
	Startup Script
	Starting and Using Processes
	Printing the Values of a Parameter
	Saving Parameter Values from the QLA Console
	Calling the Help Application from the Console
	Starting a Time Series Display
	Starting a Clock Display
	Starting a Scroller Display
	Configuring QLA
	Basic Configuration
	Advanced Configurtion
	Troubleshooting
	Displaying Science Parameters when no Housekeeping Packages are selected in the Simulator
	Selecting SID from the Housekeeping Parameters Menu in the Simulator
	The Data Displays show a Single Value and then appear to stop
	Incorrect Value set for hcss.ccm.factory
	No Data Events generated when there is no SPIRE Housekeeping Data in the Telemetry
	APID & SID Quick Look-up
	Product Metadata to FITS Translations
	Pixel Maps
	Short Photometer Array
	Medium Photometer Array
	Long Photometer Array
	Short Spectrometer Array
	Long Spectrometer Array
	A Note on the Time Format

