

End Item Data Package (EIDP)

SPIRE - Spectrometer Calibration Source (SCal) - PFM

SPIRE Ref.: HSO-CDF-EIDP-071-UCF- SPIRE-UCF-DOC-002125 Cardiff Ref.: HSO-CDF-EIDP-071 Issue 1.0 19 August 2004

Prepared by: Peter Hargrave

Approved by: Ian Walker

Distribution list

RAL	Eric Sawyer	Cardiff	Peter Ade
	Eric Clark		Matt Griffin
	Judy Long		lan Walker
	Bruce Swinyard		Brian Kiernan
	Doug Griffin		Iris Didschuns

Astronomy Instrumentation Group, Department of Physics & Astronomy, University of Wales, Cardiff, 5 The Parade, Cardiff CF24 3YB +44 (0)2920 876682 H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\EIDP\SCAL_PFM_HSO-CDF-EIDP-071.doc

Change Record

Issue	Section	Date	Changes
1.0		12 th August 2004	First issue for approval at DRB

Table of contents

SECTION 01 - SHIPPING DOCUMENTS	7
SECTION 02 - TRANSPORTATION, PACKING, HANDLING & INTEGRATION PROCEDURES	8
SECTION 03 - CERTIFICATE OF CONFORMANCE – THIS WILL BE SIGNED AFTER EIDP APPROVED & PDF'D	10
SECTION 04 - QUALIFICATION STATUS LIST / COMPLIANCE MATRIX	11
SECTION 05 - TOP LEVEL DRAWINGS (INC. FAMILY TREE)	14
SECTION 06 - INTERFACE DRAWINGS	16
SECTION 07 - FUNCTIONAL, BLOCK & MECHANICAL DRAWINGS	18
SECTION 08 – ELECTRICAL CIRCUIT DIAGRAMS	31
SECTION 09 - AS BUILT CONFIGURATION ITEMS STATUS LIST	33
SECTION 10 – SERIALISED COMPONENTS LIST	35
SECTION 11 - LIST OF WAIVERS	36
SECTION 12 - COPIES OF WAIVERS	36
SECTION 13 - OPERATIONS MANUAL	38
SECTION 14 - HISTORICAL RECORD	47
SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP) Page 3	3 of 115

	0
SECTION 16 - OPERATING TIME / CYCLE RECORD	71
SECTION 17 – CONNECTOR MATING RECORD	72
SECTION 18 – AGE SENSITIVE ITEMS RECORD	74
SECTION 19 – PRESSURE VESSEL HISTORY / TEST RECORD	74
SECTION 20 - CALIBRATION DATA RECORD	74
SECTION 21 - TEMPORARY INSTALLATION RECORD	90
SECTION 22 - OPEN WORK / DEFERRED WORK / OPEN TESTS	90
SECTION 23 - LIST OF NON-CONFORMANCE REPORTS	90
SECTION 24 - COPIES OF NON-CONFORMANCE REPORTS	90
SECTION 25 - TEST REPORTS	90
SECTION 26 – ASSEMBLY RECORD	90
SECTION 27 - REFERENCE LIST OF EIDP'S	99
SECTION 28 - MASS RECORDS1	100
SECTION 29 - CLEANLINESS STATEMENT1	101

Page 4 of 115

SECTION 30 - OTHER USEFUL INFORMATION	102
SECTION 31 - DPL/DML	102
SECTION 32 – LIST OF APPENDICES/ATTACHMENTS	102
APPENDIX A	103
THERMOMETER CALIBRATION REPORTS	103
APPENDIX B	110
REPORT FROM CRYOGENIC VIBRATION TESTS	110
APPENDIX C	111
SCAL-B CALIBRATION REPORT	111
APPENDIX D	112
SCAL LIFETEST REPORT	112
APPENDIX E	113
SCAL LIFETEST PROCEDURE & RECORD	113
APPENDIX F	114
SCAL ENHANCED WARM-UP TEST REPORT	114

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 5 of 115

CERTIFICATES OF CONFORMANCE & CALIBRATION

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 6 of 115

SECTION 01 - Shipping Documents

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 7 of 115

SECTION 02 - Transportation, Packing, Handling & Integration Procedures

Handling

- Inspection may be carried out in class-100 clean air cabinet.
- The SCal baffle must not be removed unless by an authorised member of the SPIRE AIV team.
- ESD precautions should be observed at all times when handling SCal.

Storage

• The SCal assembly must be stored in the transport container provided.

Installation

- The SCal assembliy should be installed by trained MSSL or RAL technicians, according to the MSSL integration procedure –SPIRE Structure integration & Handling MSSL/SPIRE/SP011.04 section 10.2.
- The prime and redundant connectors may be identified with reference to Figure 1 below.

Figure 1 Identification of Prime and Redundant connectors. Note – flight spare model is shown in this view.

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 8 of 115

Cleaning & Bakeout

- Outer surface may be cleaned using a clean-room wipe impregnated with iso-propyl alcohol.
- Bakeouts should be kept to a minimum, and the temperature should NEVER exceed 80°C.

SECTION 03 - Certificate of Conformance – This will be signed after EIDP approved & PDF'd

Cardiff University Astronomy Instrumentation Group hereby certifies that the following equipment,								
Space	ecraft / Project:	Herschel						
	Instrument:	SPIRE						
	Model:	PFM						
	Spectrometer Calibration Source							
Serial No: SCAL-PFMB-000								
As described in this End Item Data	As described in this End Item Data Package: HSO-CDF-EIDP-071							
Complies with the requirements set out in: SPIRE Instrument Requirements Document - SPIRE-RAL-PRJ-000034 Spectrometer Calibrator ICD – HSO-CDF-ICD-011 Issue 3.0 Spectrometer Calibrator Specifications – HSO-CDF-SP-001 Issue 1.0								
Responsible Authority		Signature						
Cardiff Product Assurance	Dr I.Wa	/alker						
Cardiff SPIRE Management Dr P.Hargrave								

SECTION 04 - Qualification Status List / Compliance Matrix

Test	Status	Applicable document	Test
			Institute
Dimension and tolerances to specification	Compliant	SCal ICD – HSO-CDF-ICD-011	UWC
Visual inspection (internal & external)	Passed		UWC
Mass	Compliant	SCal ICD - HSO-CDF-ICD-011	UWC
Thermal / vacuum cycles	Passed. Prior to delivery, SCal-PFM underwent a total of nine thermal / vacuum	Section 14 & 15	UWC
	cycles to <15-K.	Historical record & Logbook	
Power consumption	Compliant, assuming maximum required source temperature is 90-K	Section 13	UWC
Vibrations 300K	Passed	AIV-2003-091-VIB,	RAL
		HSO-CDF-RP-078	
Vibrations 4K	Passed	AIV-2003-091-VIB,	RAL
		HSO-CDF-RP-078	
Environmental condition - Vacuum	Compliant	Section 14 & 15	UWC
3x10 ⁻¹ mBar		Historical record & Logbook	
Differential pressure (a pumping-out rate of	Compliant	Section 14 & 15	RAL
10mB/sec)		Historical record & Logbook	
Pre-bake out (not exceeding 80°C)	Performed & compliant	Section 14 & 15	UWC
		Historical record & Logbook	
Outgassing	Compliant	By design	UWC
Cleanliness checks, by visual inspection.	Passed		UWC
Degradation due to high energy radiation.	Compliant	By design	UWC

Compliance with IRD

Requirement ID	Description	Value	Compliant?							
IRD-CALS-R01 Radiated spectrum		Null the central maximum to accuracy of 5% (goal 2%) Replicate the dilute spectrum of the telescope to an accuracy of better than 20% (goal 5%) over 200-400 μ m.	Yes – by analysis.							
IRD-CALS-R03	Adjustability:	Zero - maximum in 256 steps	Yes. This is determined by the warm electronics drive – 12- bit DAC.							
IRD-CALS-R04	Uniformity	The uniformity of the intensity from the cal. source across the field image at the detector shall be better than 5%	TBD – Source is at a pupil. Detectors illuminate pupil with Gaussian profile, with nominal 8-dB edge taper.							
	SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP) Page 11 of 115									

IRD-CALS-R05	Repeatability and drift	The output intensity of the calibration source shall drift by no more than 1% over one hour of continuous operation. The absolute change in the output intensity of the source shall be no more than 15% over the mission lifetime	This depends on the stability of the warm electronics drive. No drift noticeable on a day-to-day basis. At the conclusion of life tests, the source temperature increased by 3% for the same nominal applied power.		
IRD-CALS-R06 Operation		The calibration source shall be capable of continuous operation for periods of up to 2 hours with no loss of operational performance.	Yes.		
IRD-CALS-R07	Number of operations	The calibration source shall be capable of up to 12000 operational cycles	Yes.		
IRD-CALS-R08	Operating Voltage	No more than 28 V DC	Yes		
IRD-CALS-R09	Power dissipation in the focal plane	Shall be within the specification given in the systems budget document What is this specification? Systems budget document now states that total budget for spectroscopy is 8.4mW. This does not show the breakdown for SMEC and SCAL.	Previously quoted values were 5mW (req.) and 2mW(goal) – we are compliant with these numbers		
IRD-CALS-R11 Mechanical envelope		Cylinder of 70mm diameter and 100mm length	Requirement needs updating following RAL-issued ECR to snout design. Envelope is now 50mm diameter, 121mm length.		
IRD-CALS-R12 Thermal Isolation		The temperature of the SCAL housing and surrounding structure shall rise by no more than 1 K over the temperature of the FPU structure after one hour of continuous operation.	Yes		
IRD-CALS-R13	Operating Temperature	< 6 K	Yes		
IRD-CALS-R14	Redundancy	Fully redundant systems shall be provided for the active elements.	Yes		
IRD-CALS-R15	Thermometry	Thermometers shall be provided on the spectrometer calibrator as specified in IRD	Yes		
IRD-CALS-R16	Time Response	Warm-up time: Stable nominal operating temperature to be reached in less than 30 min (req.); 15 min (goal). Cool-down time from nominal operating temperature to < 10 K: 3 hrs (requirement); 30 min (goal)	Yes, if enhanced warm-up procedure is used.		
SCAL-T1	Mass	< 200 gm	Yes		
SCAL-SAFE-01	IRD-SAFE-R08	Failure of any sub-system, or one of its components, shall not affect the health of any other subsystem, the instrument or the interface with the satellite.	Yes		
SCAL-SAFE-02	IRD-SAFE-R09	Failure of any component in a subsystem shall not damage any redundant or backup component designed to replace	Yes		

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 12 of 115

		that component in the subsystem	
SCAL-REL-01	IRD-REL-R01	As far as possible the total failure of a single sub-system	Yes
		shall not lead to the total loss of instrument operations.	
SCAL-REL-02	IRD-REL-R03	Cold redundant hardware shall be provided wherever	Yes
		practicable within the instrument design.	

SECTION 05 - Top Level Drawings (Inc. Family Tree)

Hardware tree

The hardware tree for SCal is shown in Figure 2. Note that the part numbers are given by the general form "SCAL-XXX-nnn", where "XXX" is the model designation (CQM, PFM etc) and "nnn" is the number given in the hardware tree. For instance, the part number for the SCal flight model rear cover would be "SCAL-PFM-105".

Figure 2 Hardware tree for SCal components.

TOP LEVEL DRAWING LIST

Drawing No.	Title
SCAL-PFM-000	SPIRE SCal Assembly

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 14 of 115

	1	2	3	4	5	6		7	8	9	10		11	12
A	CLEAN & BREAK ALL SHARP EDGES													
В	B 26 N/D BG1 24 N/D HELICOIL SCREWLOCK INSERTS 2-56UNCx 1.5D 1 PT. NO. 3585-02 CNX.129													
							22 21 20 19 18 17 16 15	N/D N/D PFM-102 N/D N/D PFM-102 N/D PFM-105	JACK SCREW BELLEVILLE CONNECTOR M HELICOIL SC SCREW, 2-56 BELLEVILLE CONNECTOR E SCREW, 2-50 BELEVILLE	, 2-56UNC. 12.7 L SPRING WASHER MDM37SSB CREWLOCK INSERTS SUNC CP HD. 4.76 SPRING WASHER BRACKET SUNC CP HD. 4.76	.G. 2-56UNC x 2D LG.	4 2 2 4 4 2 4 2 4	PT. NO. MRM. PT. NO. D6- PT. NO. 358 ST.STEEL PT. NO. D6- ST.STEEL	5254 20 5-02 CNX.129 20
С				00 69			13 12 11 10 9 8 7	N/D N/D PFM-104 PFM-203 PFM-201 PFM-301 PFM-301	BELLEVILLE SCREW, 2-56 STRUT CLAMF 5% SOURCE 5% STRUT 2% SOURCE 2% STRUT	SPRING WASHER SUNC CP HD. 6.35	LG.	4 4 1 2 2 2 2	PT. NO. D6-	20
						6 5 4 3 2 1 ITEM NO.	N/D N/D PFM-101 N/D PFM-106 DRAWING No.	BELLEVILLE SCREW, 4-40 BASE PLATE BELLEVILLE SCREW, 2-50 SNOUT DESCRIPTIO	SPRING WASHER DUNC CP HD. SPRING WASHER GUNC CP HD. 4.76	LG.	6 6 1 3 3 1 No. OFF	PT. NO. D6- ST.STEEL PT. NO. D6- ST.STEEL REMARKS	20	
	CONTRACT NO. AMENDMENT MATERIAL & SPEC : AS LISTED						SCALE	1.5:1	TOLERANCES	UNLESS	ASTRONOMY & I CARDIFF	NSTRUN UN I VEF	MENTATION GRO	UP
D	APPROVALS DRAWN E CHECKED BY	DATE 3JK 15.10.03 7: IT 18.10.03	-	FINISH: ESTD WT.		DWT.	DI	MENSIONS IN MM	OTHERWISE S LINEAR +/- ANGULAR +/-	OTHERWISE STATED QUEENS BUILDING 5 THE PARADE LINEAR +/- 0,10 ANGULAR +/- 0,15* TEL 02920 876269 FAX 02920		THE PARADE RDIFF CF24 3YE FAX 02920 8	B 74056	
	APPROVED E	BY: PCH 18.10.03 B		CAD FILE	AC	L 111.	PROJECT		T T E		E-MAIL Bria DRAWING NO	n.Kier	SCAL-PFM-000	.ac.uk
				/SPIRE/Cardiff_ Shipped/SCal/PF	_workpackages/[M/Drawings	eliverables/ SPIRE SCAL SHEET 1 C		OF 1	A2					
	1	2	3	4	5	6		7	8	9	10		11	12

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 15 of 115

SECTION 06 - Interface Drawings

INTERFACE DRAWING LIST

Drawing No.	Title	Notes
SCAL-ICD-000	SCal Mechanical interface drawing	This is the ICD for SCal-PFM and SCal-FS.

Figure 3 Mechanical interface drawing for SCal-PFM

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 17 of 115

SECTION 07 - Functional, Block & Mechanical Drawings

Component drawings are given in this section.

FUNCTIONAL & BLOCK DRAWING LIST

Drawing No.	Title

MECHANICAL COMPONENT DRAWING LIST

Drawing No.	Title	Notes
SCAL-PFM-101	Base plate	
SCAL-PFM-102	Connector bracket (p)	
SCAL-PFM-103	Connector bracket (r)	
SCAL-PFM-104	Strut clamp	
SCAL-PFM-105	Rear cover	
SCAL-PFM-106	Snout	
SCAL-PFM-202	4% strut type B	
SCAL-PFM-203	4% source	
SCAL-PFM-302	2% strut type B	
SCAL-PFM-303	2% source	

[1	2	3	4	5	6	7	8 9	9 10	11	12
	CLEAN	& BREAK ALL	SHARP EDGES	l I							
,											
							~				
			K				The				
					/	AV				\land	
з				OF I			PODÍ				
					$) \land \land$						
					/						-
									K Co C	0	
				2		l					
<u> </u>											
	CONTRACT NO.		AMENDMENT	MATERIAL & SPEC	ALUMINIUM 6	082	SCALE 3:1	TOLERANCES UNLESS OTHERWISE STATED	ASTRONOMY & INSTE JOLERANCES UNLESS CARDIFF UNI DTHERWISE STATED OUFFNS BUILDING		
	APPROVALS DRAWN BJK CHECKED BY:	DATE 22.09.03 T 24.09.03	REDRAWN, REPLACES	TEINISH: ALUCHRO	ME - 1200 ES	TD WT.	DIMENSIONS IN MM	LINEAR +/- 0,10 ANGULAR +/- 0,15°	NEWPORT ROAD TEL 02920 8762	CARDIFF CF24 3YB 269 FAX 02920 874056	
	APPROVED BY: ISSUE	PCH 24.09.03 C		CAD FILE			PROJECT		E-MAIL Brian.ł	Kiernan⊛astro.cf.ac.ul SCAL-PFM-101-373	(
				/SPIRE/Cardiff_v Shipped/SCal/PF	vorkpackages/De A/Drawinas	liverables/	SPIRE	BASE PLATE - SCAL - P	PFM - 101 SHEE	ET 3 OF 3	42
				1			1				

	1	2	3	4	5	6	7	8	9	10	11	12	7
А	CLEAN	& BREAK ALL	. SHARP EDGES						BG1 APPLIED SHOWN TO A THICKNESS (D TO SURFACE - NOMINAL OF 1.0 MM			
В				1,00 —		-		ø3,00 -	-				
c				1.00	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	-		1,60					_
					A -		THREA MIN T 3.50M	DED TO M1.6 × C HREADED LENGTH M. <u>SECTION</u>	A : A				
	CONTRACT NO		AMENDMENT	MATERIAL & SPEC	: ALUMINIUM 608	32	SCALE 10:1	TOLERANCES	UNLESS	ASTRONOMY & INS CARDIFF UN	TRUMENTATION GROUP	>	
D	APPROVALS	DATE	REDRAWN, REPLACES	FINISH: ALUCHRON BG1	WE - 1200 ESTE	WT.	DIMENSIONS	OTHERWISE S	0,10	QUEENS BUILDING	5 THE PARADE		
	CHECKED BY:	IT 28.10.03 : PCH 28.10.03		QUANTITY:	ACTI	WT.	IN MM	ANGULAR +/-	· 0,15°	TEL 02920 876 E-MAIL Brian.	269 FAX 02920 874 Kiernan⊛astro.cf.c	-056 ic.uk	
	ISSUE	В		CAD FILE	workpackages /Del	iverables/	PROJECT	TITLE 2	SOURCE	DRAWING NO	SCAL-PFM-303		
-				Shipped/SCal/PF	W/Drawings	iverubies/	SPIRE	- scái	L - PFM - 303	SHEE	ET 1 OF 1	A2	
	1	2	3	4	5	6	7	8	9	10	11	12	15

SECTION 08 – Electrical Circuit Diagrams

Figure 4 Schematic of pin allocations for SCal prime and redundant connectors. Both prime and redundant connectors are MDM-37 way socket connectors, with jackposts.

Table 1 Pin allocations for SCal-PFM electrical connectors.

Function	MDM-37-SSB 37-way socket	Max. current
HS Spect. 4% temperature I+	5	1 µA
HS Spect. 4% temperature V+	6	N/A
HS Spect. 4% temperature V-	24	N/A
HS Spect. 4% temperature I-	25	1 µA
HS Spect. 4% temperature shld*	23	N/A
HS Spect. 2% temperature I+	7	1 µA
HS Spect. 2% temperature V+	8	N/A
HS Spect. 2% temperature V-	26	N/A
HS Spect. 2% temperature I-	27	1 µA
HS Spect. 2% temperature shld*	9	N/A
HS Spect. Stim near SOB temperature I+	10	1 µA
HS Spect. Stim near SOB temperature V+	11	N/A
HS Spect. Stim near SOB temperature V-	28	N/A
HS Spect. Stim near SOB temperature I-	29	1 µA
HS Spect. Stim near SOB temperature shld*	30	N/A
HS Spect. 4% heater I+	14	9 mA
HS Spect. 4% heater V+	15	9 mA
HS Spect. 4% heater I-	33	9 mA
HS Spect. 4% heater V-	34	9 mA
HS Spect. 2% heater I+	16	7 mA
HS Spect. 2% heater V+	17	7 mA
HS Spect. 2% heater I-	35	7 mA
HS Spect. 2% heater V-	36	7 mA

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 32 of 115

SECTION 09 - As Built Configuration Items Status List

Files are located in the directories indicated below, and on the accompanying CD-ROM.

Item	Reference	Location	Notes
SCal drawings and		\\Darkstar\Astroworld\Projects\\\SPIRE\Cardiff_workpackages\Deliver	
Material certificates of conformance		Attached as Appendix G	
Thermometer calibration data		\\Darkstar\Astroworld\Projects\SPIRE\Cardiff_workpackages\Delivera bles\Shipped\SCal\PFM\Calibration-files\Thermometers	
Power vs Temperature calibration files		\\Darkstar\Astroworld\Projects\SPIRE\Cardiff_workpackages\Delivera bles\Shipped\SCal\PFM\Calibration-files	
PFM configured documents		\\Darkstar\Astroworld\Projects\SPIRE \Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Documents	
Test reports (PFM & lifetest)		\\Darkstar\Astroworld\Projects\SPIRE \Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-reports	

Item	Reference	Batch number / Serial	Quantity	Sub-	Manufacturer /	C of C #	Notes
		number		Assembly	supplier		
BASE PLATE	SCAL-PFM-101		1		Electromec	23959	Order ref 03/0325/PX
CONNECTOR BRACKET (P)	SCAL-PFM-102		1		Electromec	23959	Order ref 03/0325/PX
CONNECTOR BRACKET (R)	SCAL-PFM-103		1		Electromec	23959	Order ref 03/0325/PX
STRUT CLAMP	SCAL-PFM-104		1		Electromec	23959	Order ref 03/0325/PX
REAR COVER	SCAL-PFM-105		1	щ	Electromec	23959	Order ref 03/0325/PX
SNOUT	SCAL-PFM-106		1	L R	Electromec	23959	Order ref 03/0325/PX
CONNECTOR (P)	SCAL-PFM-107	GS83513/02-FN-429B, MRM5254	1	RUCT	Glenair	676521, 626099, 589082	Order ref. 91774, 85503
CONNECTOR (R)	SCAL-PFM-108	GS83513/02-FN-429B, MRM5254	1	NL STI	Glenair	676521, 626099, 589082	Order ref. 91774, 85503
SOB THERMOMETER (P)	SCAL-PFM-109	X28264	1	SCA	Lakeshore		CX-1030-SD-HT-4L Calibration data in appendix A and on accompanying CD- ROM
SOB THERMOMETER (R)	SCAL-PFM-110	X28265	1		Lakeshore		CX-1030-SD-HT-4L Calibration data in appendix A and on accompanying CD- ROM
4% STRUT TYPE B (P)	SCAL-PFM-202		1		Electromec		Order ref 03/0325/PX
4% SOURCE (P)	SCAL-PFM-203		1		Electromec		Order ref 03/0325/PX
4% HEATER RESISTOR (P)	SCAL-PFM-204	Lot 00020037/5541P7	1	RIME	Vishay	03181	Vishay 500Ω High reliability chip resistor PHR0805YB
4% THERMOMETER (P)	SCAL-PFM-205	X29754	1	4% PI SOU	Lakeshore	14200, 14119 429014	CX-1030-SD-HT-4L Calibration data in appendix A and on accompanying CD- ROM
SAPPHIRE ISOLATION PLATE	SCAL-PFM-206		2		Goodfellow		Order ref. LS236675/A J H Invoice # 131282
2% STRUT TYPE B (P)	SCAL-PFM-302		1		Electromec		Order ref 03/0325/PX
2% SOURCE (P)	SCAL-PFM-303		1	ME ME	Electromec		Order ref 03/0325/PX
2% HEATER RESISTOR (P)	SCAL-PFM-304	Lot 00020037/5541P7	1	2° PRII SOU E	Vishay	03181	Vishay 500Ω High reliability chip resistor PHR0805YB

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 34 of 115

2% THERMOMETER (P)	SCAL-PFM-305	X29758	1		Lakeshore	14200, 14119 429018	CX-1030-SD-HT-4L Calibration data in appendix A and on accompanying CD- ROM
SAPPHIRE ISOLATION PLATE	SCAL-PFM-306		2		Goodfellow		Order ref. LS236675/A J H Invoice # 131282
4% STRUT TYPE B (R)	SCAL-PFM-402		1		Electromec		Order ref 03/0325/PX
4% SOURCE (R)	SCAL-PFM-403		1	L L	Electromec		Order ref 03/0325/PX
4% HEATER RESISTOR (R)	SCAL-PFM-404	Lot 00020037/5541P7	1	INDAI	Vishay	03181	Vishay 500Ω High reliability chip resistor PHR0805YB
4% THERMOMETER (R)	SCAL-PFM-405	X29756	1	% REDI SOU	Lakeshore	14200, 14119 429016	CX-1030-SD-HT-4L Calibration data in appendix A and on accompanying CD- ROM
SAPPHIRE ISOLATION PLATE	SCAL-PFM-406		2	4	Goodfellow		Order ref. LS236675/A J H Invoice # 131282
2% STRUT TYPE B (R)	SCAL-PFM-502		1		Electromec		Order ref 03/0325/PX
2% SOURCE (R)	SCAL-PFM-503		1	Ļ	Electromec		Order ref 03/0325/PX
2% HEATER RESISTOR (R)	SCAL-PFM-504	Lot 00020037/5541P7	1	INDAI	Vishay	03181	Vishay 500Ω High reliability chip resistor PHR0805YB
2% THERMOMETER (R)	SCAL-PFM-505	X29761	1	% REDI SOUI	Lakeshore	14200, 14119 429023	CX-1030-SD-HT-4L Calibration data in appendix A and on accompanying CD- ROM
SAPPHIRE ISOLATION PLATE	SCAL-PFM-506		2	2	Goodfellow		Order ref. LS236675/A J H Invoice # 131282

SECTION 10 – Serialised Components List

As section 9.

SECTION 11 - List of Waivers

Waiver Number	Title	Status
HSO-CDF-RFW-077	Request to accept SCal flight candidate "B" as flight model assembly	Open

SECTION 12 - Copies of Waivers

See next page.

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 36 of 115
Rutherford Appleton Laboratory	REQUES	FOR WAI (RFW/F	VER / DE RFD)	VIATION	PRC Space S	DUCT ASS Science and Departme	URANCE Technology ent
RFW/RFD HR-SP-CDF-RFW-XXX, HSO-CDF-RFW-077 Number:							
Spacecraft / Project	HERSCHEL		Origina	ator's Name	Pet	er Hargrave	
System / Experiment / Model	SPIRE-P	FM	Signat	ure / Date	2	1 they	Club Elly signa files Polar Heller De Charactelle Heller Heller Heller Heller Heller Heller Heller Heller ZOLF (H. H. 1137-53) William
Sub-System	SCal		Reque: (Highligh	st Type nt applicable requ	wa wat)	iver (RFW)	Deviation (RFD)
Assembly			Organi	sation		Cardiff Un	iversity
Sub-Assembly			Ref. Do	oc. / Drwg No.			
Item Serial No.	SCAL-PFMB-	000	Refere	nces			
RFW/RFD Title	Request to a	ccept SCal flig	ht candidat	te "B" as fligh	nt model as	ssembly	
End Items(s) Affected (Hardware, Software)							
Name			CI-Nu	mber		Mode	(s)
SCal flight model					Flig	ht	
	Req	uirement / Inte	erface Docu	ments Affecte	ed .		
Specification/Drawin	ig Title	Numbe	er	Issue	Date	App. P	aragraph
SCal specification document HSO-CDF-SP-001		01	1.0	07/09/0	Document w	ill be re-written	

Description of Deviation / Discrepancy / Non-Conformance Two models of SCal were built as candidates for the flight model, one to the CQM design (SCal-PFMA), and one reduced power dissipation version (SCal-PFMB).

The reduced power dissipation version (SCaI-PFMB) has passed all qualification tests and inspections, and is deemed by Cardiff as suitable for flight. However, this assembly has undergone cryogenic vibration to full flight qualification levels. This RFD is to request that this assembly be accepted as the flight model device by the project (pending successful DRB), considering that it has undergone the aforementioned vibration testing.

None

Other Items or Requirements (Potentially) Affected

Need for RFW/RFD and Rationale for Acceptance

The change request that prompted the building of the reduced power version (SCaI-PFMB) was received at a late stage in the SCaI development program, and after CCM delivery. Therefore the two versions of SCaI mentioned above were built on the understanding that SCaI-PFMA would be the default flight version, and SCaI-PFMB would be upgraded to flight model (as a replacement for PFMA) on the successful completion of all qualification tests. Lifetests have been successfully completed on both candidate designs (lifetest model assemblies, not the actual SCaI-PFMA or PFMB devices).

The SCaI-PFMB version dissipates approximately half the power of the SCaI-PFMA version for the same source temperature, with no degradation of the time constant.

	Approved	Rejected	Name	Date
Engineering:				
Product Assurance:				
CCB-Chairman:				
Principle Investigator				
Product Assurance:				
Co-Investigator				
Prime Contractor				
ESA Project Office				

Attachment One – SCal PFMB example data

Calibration curves are shown below for the SCal-PFMB prime and redundant 4% sources, as an example. These data show that there were no adverse effects on SCal-PFMB following cold vibration qualification tests.

4% prime source

Figure 1: Comparison of the equilibrium temperature versus applied power for 4% prime source before and after cold vibration qualification.

4% redundant source

Figure 2: Comparison of the equilibrium temperature versus applied power for 4% redundant source before and after cold vibration qualification.

ISO9: Form PA 016 Request for Waiver/deviation (RFW/RFD) Issue 04

Page 1 of 2

with SCal-PFMB specs.

ISO9: Form PA 016 Request for Waiver/deviation (RFW/RFD) Issue 04

Page 2 of 2

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 37 of 115

SECTION 13 - Operations Manual

Introduction

SCal is located at a pupil at the second input port to the SPIRE FTS. It has two thermal sources, with full redundancy. These sources fill \sim 4% and \sim 2% of the pupil area respectively. These sources can be heated to different temperatures in the range 4K – 200K, and be operated individually or together to suit different background conditions.

The purpose of SCal is to null the Herschel telescope emission. The nominal telescope parameters are 80K in-orbit temperature with 4% emissivity. However, the actual parameters in-orbit may be significantly different from this.

Source temperatures

This section gives recommended source temperatures for different telescope temperature / emissivity scenarios, together with the corresponding power dissipation.

Page 39 of 115

Page 40 of 115

Page 41 of 115

Powering up SCal sources

Although SCal may be operated by applying a constant power to the sources, the time to reach the required source temperature can be reduced by applying a higher power initially, and reducing this to the equilibrium level.

For details, see HSO-CDF-RP-083 (SCal enhanced warm-up procedure report) – Appendix F.

The recommended method is using a feedback loop, similar to that indicated in Figure 5 below.

source type	gain	P _{max} (mW)	T _{eq} (K)	t _{warm-up} (min)	t _{cool-down} (min)
2%	5	15	79.98	4.6	54
2%	5	15	99.99	8	61
2%	0.7	5	16.10	2	13
2%	2	5	24.51	2	
4%	1.5	5	29.25	4.7	34
4%	0.6	5	27.25	3	21
4%	5	15	49.62	3	56
4%	5	15	79.39	6	91
4%	5	15	99.23	9.6	111

Figure 5 Implementation of a typical feedback loop for powering up SCal sources.

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 45 of 115

The table in Figure 5 gives recommended parameters to be used for the desired equilibrium temperature (T_{eq}), together with typical results from tests ($t_{warm-up}$, $t_{cool-down}$).

This method greatly reduces the time to reach equilibrium from Level-1 temperature. For instance, the time taken to reach a stable temperature of 100K for the 4% source is reduced from 56 minutes to 9.6 minutes.

It must be stressed that the loop shown above is not optimal, just an example. This method is shown as an example of the improvements achievable.

It is recommended that full PID control is implemented in software.

SECTION 14 - Historical Record

Summary. See section 15 – Logbook / Diary of events – for detailed record. Note – "Thermal / Vacuum cycle" means one cycle 300K – 4K – 300K under vacuum in the test dewar.

Date	Event	Notes
19/01/04	Assembly of sources starts	
11/02/04	Black coating applied to SCal parts	
13/02/04	Prime sources wired	
18/02/04	Redundant sources wired	
19/02/04	Wiring QA checks carried out by P.Ade	
20/02/04	Photographic logging of all soldered joints	
09/03/04	Tests at 4K start – prime side	Thermal / Vacuum Cycle #1
16/03/04	Tests at 4K start – redundant side	Thermal / Vacuum Cycle #2
22/03/04	Taken to RAL for cold vibration qualification run	Thermal / Vacuum Cycle #3. Cryogenic vibration qualification.
31/03/04	Post shake inspection at Cardiff – no anomalies.	
06/04/04	Prime side calibration at 4K	Thermal / Vacuum Cycle #4
13/04/04	Continuing prime side calibration at 4K	Thermal / Vacuum Cycle #5
24/04/04	Begin calibration of redundant side at 4K	Thermal / Vacuum Cycle #6
26/07/04	Enhanced warm-up procedure tests start – prime side only.	Thermal / Vacuum Cycle #7
02/08/04	Enhanced warm-up procedure tests continue – prime side	Thermal / Vacuum Cycle #8
	only.	
09/08/04	Enhanced warm-up procedure tests continue – prime side	Thermal / Vacuum Cycle #9
	only.	
12/08/04	Final cleaning & bakeout	In vacuum oven at 350K for 24 Hrs.

SECTION 15 - Logbook / Diary of Events

Assembly & Test Log - SCAL PFMA and PFMB

This log records all events related to SCAL flight model and flight spare assembly and test. Both models will be assembled and tested together. NOTE:- 18th August 2004 – Type B has now been accepted as the flight model. The following historical record therefore concentrates on SCal-PFMB. Details on SCal-A testing have been removed.

19/01/04

Assembly of PFM and FS sources starts.

PFMA sources have 2.0mm bores in the Torlon struts. PFMB sources have 2.5mm bores. The AI caps were bonded to the torlon struts using EpoTek-920-FL (batch# 903421, expiry 16/07/04).

Sapphire insulators were bonded using the same epoxy mix, and all were cured for 2 Hrs at 80C.

The sources were labelled as follows:-

Source	Description	Thermometer	Heater
Scal-4PA	Scal 4% prime type A	X29753, CX-1030-SD-HT	Vishay 500Ω PHR0805YB Lot 00020037/5541P7 QC# 03181
Scal-4PB	4% prime type B	X29754, CX-1030-SD-HT	(633
Scal-4RA	4% redundant type A	X29755, CX-1030-SD-HT	(633
Scal-4RB	4% redundant type B	X29756, CX-1030-SD-HT	(633
Scal-2PA	2% prime type A	X28655, CX-1030-SD-HT	(633
Scal-2PB	2% prime type B	X29758, CX-1030-SD-HT	6633
Scal-2RA	2% redundant type A	X29760, CX-1030-SD-HT	(633
Scal-2RB	2% redundant type B	X29761, CX-1030-SD-HT	4433
SCAL-SOB THERMOMETER A PRIME	On SCal baseplate	X28646, CX-1030-SD-HT	
SCAL-SOB THERMOMETER B PRIME	On SCal baseplate	X28264, CX-1030-SD-HT	
SCAL-SOB THERMOMETER A REDUNDANT	On SCal baseplate	X28651, CX-1030-SD-HT	
SCAL-SOB THERMOMETER B REDUNDANT	On SCal baseplate	X28265, CX-1030-SD-HT	

Type A is the default, qualified version for flight (2.0mm bore). Type B will be built as flight spare, will undergo qualification, and may be swapped for flight.

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 48 of 115

NOTE:- 18th August 2004 – Type B has now been accepted as the flight model. The following historical record therefore concentrates on SCal-PFMB. Details on SCal-A testing have been removed.

11/02/04

Scal base plates blackened. "Pupil area" coated with BG7 (lumpy black), inter-source baffle with non-lumpy black. Scal sources mounted to base plates – RETAINING PLATE BOLTED USING 2-56 X 3/16 BOLTS.:-

Impedance checks - direct on terminals post-mounting & soldering:-

Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4PA	Scal 4% prime type A	32.9	500
Scal-4PB	4% prime type B	35.1	500
Scal-4RA	4% redundant type A	34.7	500
Scal-4RB	4% redundant type B	33.0	500
Scal-2PA	2% prime type A	32.8	500
Scal-2PB	2% prime type B	35.4	500
Scal-2RA	2% redundant type A	35.5	500
Scal-2RB	2% redundant type B	36.8	500

12/02/04

Wired Scal-A sources to prime & redundant connectors

13/02/04

Wired Scal-B prime sources

18/02/04

Wired Scal-B redundant sources

19/02/04

Wiring checked by P.Ade. All passed.

20/02/04

Final assembly in clean room. Photographic logging of all soldered connections.

05/03/04

put additional wire inside the BACUS cryostat Mount SCAL B in the cryostat in semi-clean area (taking photos) Short in cryo-harness (lines 42 & 43 as well 54 & 55 connected, but not grounded to the cryostat) Demount SCAL B for replacing harness in semi-clean area

06/03/04

Replacing harness and mount SCAL B in semi-clean area and taking photos of assembly 4-wire-measurement of the thermometer impedances with AVS bridge (GPIB 20) at 300K 4-wire-measurement of the heater impedances with Agilent 34401A (GPIB 22) at 300K

300 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4PB	4% prime type B (CX29754)	34.64	500.14
Scal-2PB	2% prime type B (CX29758)	34.69	500.13
SCAL-SOB	body prime type B (CX28264)	42.47	

07/03/04

cooling down to LN2 temperature

08/03/04

4-wire-measurement of the thermometer impedances with AVS bridge (GPIB 20) at 77K 4-wire-measurement of the heater impedances with Agilent 34401A (GPIB 22) at 77K

77 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4PB	4% prime type B (CX29754)	79.15	501.05
Scal-2PB	2% prime type B (CX29758)	73.25	500.95
SCAL-SOB	body prime type B (CX28264)	119.05	-

Page 50 of 115

expected 78.8 Ω for T2% at 77 K instead we measure 73.25 Ω this is due to measuring of H2% with Agilent multimeter (0.1 mA, self heating) at the same time

cooling down to LHe temperature

09/03/04

4-wire-measurement of the thermometer impedances with AVS bridge (GPIB 20) at 4K 4-wire-measurement of the heater impedances with Agilent 34401A (GPIB 22) at 4K

4 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4PB	4% prime type B (CX29754)	439.3	500.89
Scal-2PB	2% prime type B (CX29758)	427.1	501.28
SCAL-SOB	body prime type B (CX28264)	948.8	

measure the equilibrium temperature for various applied powers by powering up the 4% heater of the primary source of SCAL B

data file: \\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\before cold vibration\prime source\4% source\SCAL B 09 03 04.txt

P (mW)	T4% _{eq.} (K)	T2% _{eq.} (K)	TSOB _{eq.} (K)
1	56.944	4.871	4.431
2	81.048	5.421	4.572
3	98.505	5.955	4.702

10/03/04

measure the equilibrium temperature for various applied powers by powering up the 4% heater of the primary source of SCAL B data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\before cold vibration\prime source\4% source\SCAL_B 10 03 04.txt</u>

\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\before cold vibration\prime source\4% source\SCAL B 10 03 04 2.txt

P (mW)	T4% _{eq.} (K)	T2% _{eq.} (K)	TSOB _{eq.} (K)
4	112.316	6.473	4.850
5	123.194	6.943	4.968

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 51 of 115

11/03/04

measure the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B primary source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test_data\before_cold_vibration\prime_source\4% source\SCAL_B_11_03_04.txt</u>

P (mW) T4% _{eq.} (K)	T2% _{eq.} (K)	TSOB _{eq.} (K)
0.4	35.456	4.502	4.328
0.6	43.618	4.614	4.354
0.8	50.584	4.731	4.383
0.1	17.836	4.319	4.269
0.05	12.928	4.290	4.262
15	185.448	10.597	5.975
10	161.490	8.998	5.505
0.025	9.386	4.266	4.247

12/03/04

finishing calibration of SCAL B primary source

15/03/04

Prime source impedance check:-

300 K				
Source		Thermometer (Ohms)	Heater (Ohms)	
Scal-4PB	4% prime type B (CX29754)	35.11	500.81	
Scal-2PB	2% prime type B (CX29758)	35.15	501.06	
SCAL-SOB	body prime type B (CX28264)	41.98	-	

Swap to SCAL B redundant source

300 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4RB	4% red type B (C X29756)	33.14	500.81
Scal-2RB	2% red type B (C X29761)	36.50	501.06
SCAL-SOB	body red type B (CX28265)	33.97	

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 52 of 115

16/03/04

11-00 cooling down to 77 K

77 K				
Source		Thermometer (Ohms)	Heater (Ohms)	
Scal-4RB	4% red type B (CX29756)	70.26	501.1	
Scal-2RB	2% red type B (CX29761)	78.67	501.0	
SCAL-SOB	body red type B (CX28265)	77.10		

16-00 cooling down to 4 K

4 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4RB	4% red type B (CX29756)	321.3	501.9
Scal-2RB	2% red type B (CX29761)	398.1	501.5
SCAL-SOB	body red type B (CX28265)	380.8	

measure the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B redundant source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\before cold vibration\redundant source\4% source\SCAL B r 16_03_04.txt</u>

17/03/04

measure the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B redundant source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\before cold vibration\redundant</u> <u>source\4% source\SCAL_B_r_17_03_04.txt</u> there was a typing error in the CX29756 thermometer calibration LabView vi problem is fixed but the data file <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\before cold vibration\redundant source\4% source\SCAL_B_r_16_03_04.txt and <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\before cold vibration\redundant source\4%</u> source\SCAL_B_r_17_03_04.txt have to be corrected</u>

18/03/04

measure the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B redundant source

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 53 of 115

data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\before cold vibration\redundant source\2% source\SCAL B r 18 03 04.txt</u>

T4% _{eq.} (K)	T2% _{eq.} (K)	TSOB _{eq.} (K)
126.65	8.16	5.34
115.60	7.60	5.18
101.99	6.89	4.98
84.13	6.12	4.76
59.85	5.37	4.53
	T4% _{eq.} (K) 126.65 115.60 101.99 84.13 59.85	T4%eq. (K) T2%eq. (K) 126.65 8.16 115.60 7.60 101.99 6.89 84.13 6.12 59.85 5.37

measure the equilibrium temperature for various applied powers by powering up the 2% heater of SCAL B redundant source data file: <u>\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\before cold vibration\redundant source\2% source\SCAL_B_r_18_03_04_2.txt</u>

19/03/04

measure the equilibrium temperature for various applied powers by powering up the 2% heater of SCAL B redundant source data file: <u>\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\before cold vibration\redundant source\2% source\SCAL B r 19_03_04.txt</u>

P (mW)	T4% _{eq.} (K)	T2% _{eq.} (K)	TSOB _{eq.} (K)
1	5.29	60.71	4.52
2	6.15	86.60	4.75
3	6.67	105.14	4.97
4	7.28	119.15	5.17
5	7.91	131.08	5.36

finishing calibration of SCAL B source

summary data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\before cold vibration\SCAL B 4percent 090304 summary.xls</u>

02/03/04

SCAL-B taken to RAL for cold vibration run. Bolted on shaker plate at Cardiff.

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 54 of 115

31/03/04

Post shake inspection of SCAL-B. Visual inspection passed – no anomalies.

02/04/03

SCAL-B re-installed in Bacus dewar for post-shake test and final calibration. Prime sources connected.

05/04/04

Prime source warm impedance check:-

300 K				
Source		Thermometer (Ohms)	Heater (Ohms)	
Scal-4PB	4% prime type B (CX29754)	34.67	500.2	
Scal-2PB	2% prime type B (CX29758)	34.72	500.2	
SCAL-SOB	body prime type B (CX28264)	42.50		

06/04/04

cooling down to LN2 temperature

77 K				
Source		Thermometer (Ohms)	Heater (Ohms)	
Scal-4PB	4% prime type B (CX29754)	78.08	501.0	
Scal-2PB	2% prime type B (CX29758)	78.64	501.1	
SCAL-SOB	body prime type B (CX28264)	119.14		

cooling down to LHe temperature

4 K				
Source		Thermometer (Ohms)	Heater (Ohms)	
Scal-4PB	4% prime type B (CX29754)	441.16	501.8	
Scal-2PB	2% prime type B (CX29758)	429.23	501.9	
SCAL-SOB	body prime type B (CX28264)	955.27		

measure the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B prime source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\after cold vibration\prime source\4%</u> source\SCAL_B_p_06_04_04.txt

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 55 of 115

07/04/04

measure the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B prime source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test_data\after cold vibration\prime source\4%</u> source\SCAL_B_p_06_04_04.txt

P(mM)	T1% (K)	T2% (K)	
i (iiivv)	$1 - 70_{eq.}$ (11)	$12/0_{eq.}$ (IX)	$100D_{eq.}$ (IV)
5.00	123.294	6.850	4.588
4.00	112.206	6.378	4.531
3.00	98.496	5.903	4.466

08/04/04

measure the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B prime source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\after cold vibration\prime source\4% source\SCAL B p 06 04 04.txt</u>

P (mW)	T4% _{eq.} (K)	T2% _{eq.} (K)	TSOB _{eq.} (K)
2.00	80.969	5.394	4.400
1.00	56.974	4.845	4.331
0.8	50.797	4.731	4.315
0.6	43.646	4.611	4.299

warming up the cryostat with pumping on the vacuum chamber at the same time

13/04/04

cooling down to LN2 temperature

77 K				
Source		Thermometer (Ohms)	Heater (Ohms)	
Scal-4PB	4% prime type B (CX29754)	78.75	501.2	
Scal-2PB	2% prime type B (CX29758)	78.61	501.1	
SCAL-SOB	body prime type B (CX28264)	119.01		

cooling down to LHe temperature

4 K

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 56 of 115

Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4PB	4% prime type B (CX29754)	440.32	501.8
Scal-2PB	2% prime type B (CX29758)	428.10	501.9
SCAL-SOB	body prime type B (CX28264)	951.94	

measure the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B prime source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\after cold vibration\prime source\4% source\SCAL B p 13 04 04.txt</u>

14/04/04

continue measure the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B prime source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\after cold vibration\prime source\4% source\SCAL_B p 13 04 04.txt</u>

15/04/04

continue measure the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B prime source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\after cold vibration\prime source\4% source\SCAL_B_p_13_04_04.txt</u>

16/04/04

finishing measure the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B prime source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\after cold vibration\prime source\4% source\SCAL_B p_13_04_04.txt</u>

17/04/04

measure the equilibrium temperature for various applied powers by powering up the 2% heater of SCAL B prime source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\after cold vibration\prime source\2%</u> source\SCAL B p2percent 17 04 04.txt and <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\after cold vibration\prime source\2%</u> data\after cold vibration\prime source\2% source\SCAL B p2percent 17 04 04 2.txt and \\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\after cold vibration\prime source\2% source\SCAL B p2percent 17 04 04 3.txt and <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\after cold vibration\prime source\2% source\SCAL B p2percent 17 04 04 3.txt and <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test</u> data\after cold vibration\prime source\2% source\SCAL B p2percent 17 04 04 4.txt</u>

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 57 of 115

18/04/04

continue measure the equilibrium temperature for various applied powers by powering up the 2% heater of SCAL B prime source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\after cold vibration\prime source\2%</u> source\SCAL B_p2percent 18_04_04.txt and <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test</u> data\after cold vibration\prime source\2% source\SCAL B_p2percent 18_04_04_2.txt

19/04/04

continue measure the equilibrium temperature for various applied powers by powering up the 2% heater of SCAL B prime source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\after cold vibration\prime source\2% source\SCAL_B_p2percent_19_04_04_2.txt</u>

20/04/04

continue measure the equilibrium temperature for various applied powers by powering up the 2% heater of SCAL B prime source data file: <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\after cold vibration\prime source\2% source\SCAL B p2percent 20 04 04.txt</u>

and

\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\after cold vibration\prime source\2% source\SCAL B_p2percent_20_04_04_2.txt

21/04/04

finishing measure the equilibrium temperature for various applied powers by powering up the 2% heater of SCAL B prime source data file: <u>\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\after cold vibration\prime source\2% source\SCAL B p2percent 20 04 04 2.txt</u>

22/04/04

warm up the cryostat by emptying all cryogenics

23/04/04

speed up the warming of the cryostat by putting some dry nitrogen gas into the vacuum chamber (TSOB=100K)

24/04/04

open cryostat and connect the redundant source

300 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4RB	4% red type B (CX29756)	32.88	500.3
	SPIRE - Spe	ctrometer Calibration Sour	ce (SCal) - PFM - E

Page 58 of 115

Scal-2RB	2% red type B (CX29761)	36.22	500.3
SCAL-SOB	body red type B (CX28265)	33.71	

26/04/04

cooling down to LN2 temperature

77 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4RB	4% red type B (CX29756)	70.08	501.3
Scal-2RB	2% red type B (CX29761)	78.66	501.1
SCAL-SOB	body red type B (CX28265)	77.11	

cooling down to LHe temperature

4 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4RB	4% red type B (CX29756)	70.08	501.3
Scal-2RB	2% red type B (CX29761)	78.66	501.1
SCAL-SOB	body red type B (CX28265)	77.11	

measure the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B redundant source data file: <u>Test data\after cold vibration\redundant source\4% source\SCAL FS Br 4percent 26 04 04 2.txt</u>

27/04/04

continue measuring the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B redundant source data file: <u>Test data/after cold vibration/redundant source/4% source/SCAL FS Br 4percent 26 04 04 2.txt</u>

28/04/04

continue measuring the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B redundant source data file: <u>Test data/after cold vibration/redundant source/4% source/SCAL FS Br 4percent 26 04 04 2.txt</u>

29/04/04

finishing measuring the equilibrium temperature for various applied powers by powering up the 4% heater of SCAL B redundant source data file: <u>Test data\after cold vibration\redundant source\4% source\SCAL FS Br_4percent_26_04_04_2.txt</u> switch to the 2% heater of SCAL B redundant source measure the equilibrium temperature for various applied powers by powering up the 2% heater of SCAL B redundant source

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 59 of 115

data file: <u>Test data\after cold vibration\redundant source\2% source\SCAL_FS_Br_2percent_29_04_04.txt</u> and <u>D:\Devlabv\acqtemp\SCAL_FS_Br_2percent_29_04_04_2.txt</u>

30/04/04

finishing measuring the equilibrium temperature for various applied powers by powering up the 2% heater of SCAL B redundant source data file: <u>Test data\after cold vibration\redundant source\2% source\SCAL_FS_Br_2percent_29_04_04.txt</u> and D:\Devlabv\acgtemp\SCAL_FS_Br_2percent_29_04_04_2.txt

31/04/04

warming up the cryostat

26/07/04

Scal-B re-installed to Bacus ready for enhanced warm-up test.

Thermometer measurements – 4-wire using AVS resistance bridge (GPIB 20). Heater measured using multimeter using 4-wire measurement.

300 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4PB	4% prime type B (CX29754)	34.48	500.10
Scal-2PB	2% prime type B (CX29758)	34.53	500.16
SCAL-SOB	body prime type B (CX28264)	42.22	

~ 16:05: Cryostat closed

~ 16:10: On pump

27/07/04

~ 9.25: Cooling down to LN2. Display on pump gave erratic reading when switched on initially. Gives a value for the pressure inside BACUS of order $10^{-5}/10^{-6}$ mbar when switched back on again, approx. 30 min after the initial switch on. After a short period switched on gives a value of order $10^{-8}/10^{-9}$ – considered unrealistic.

~ 15:18: LN2 values for resistance:

77 K				
Source		Thermometer (Ohms)	Heater (Ohms)	
Scal-4RB	4% prime (CX29754)	76.96	500.97	
Scal-2RB	2% prime (CX29758)	77.41	501.03	
SCAL-SOB	body prime (CX28264)	119.20		

~ 16:30: Cool-down to LHe begins.

~ 18:05: Helium transfer finished. Top up LN2.

Page 60 of 115

28/07/04

Morning: top up LN2, LHe. I He values for resistance:

4.2 K				
Source		Thermometer (Ohms)	Heater (Ohms)	
Scal-4RB	4% prime (CX29754)	442.3	501.46	
Scal-2RB	2% prime (CX29758)	430.2	501.57	
SCAL-SOB	body prime (CX28264)	956.9		

Test procedure

For each source:-

LabView files (for both 4% and 2% sources):-

"One_temperature_monitoring_no_scan_modev1d.vi" (Temperature monitoring)

"convert_P_in_T_from_calibration_SCALBp4percent.vi" (Conversion file)

"TtiPL330_Applied_Power_With_Rv1c.vi" (Applying power)

Data files (raw):-

\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\280704\raw

data\SCAL B 4 P T(K) 280704 3.txt for temperature variation of ScalB prime 4% source

<u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\280704\raw</u>

data\SCAL_B_4_P_P(mW)_280704_2.txt for power applied to Scal B prime 4% source

\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\280704\raw

data\SCAL B 2 P T(K) 280704 2.txt and \\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test

data\280704\raw data\SCAL B 2 P T(K) 280704.txt for temperature variation of Scal B prime 2% source

\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\280704\raw

data\SCAL_B_2_P_P(mW)_280704_2.txt and \\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test

data\280704\raw data\SCAL B 2 P P(mW) 280704.txt for power applied to Scal B prime 2% source

Initial recordings: Obtaining curves for power inputs of 150 mW and 5 mW to Scal B prime 4% and 2% sources in order to derive curves for the temperature, T, obtained at time t. A slight power input was observed when connecting the power source to the illuminator box, which affected the value of the base temperature. The procedure for obtaining these measurements {may be}, therefore:

- 1. Check source temperature at equilibrium with cable to the power supply disconnected.
- 2. Enter zero power in GPIB power vi, then start program. Once started, change the power to 15 mW, but do not apply this power yet (i.e. do not click 'return', 'enter'. etc.).
- 3. Switch on the appropriate power button on the illuminator box.

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 61 of 115

- 4. Quickly connect the power supply to the illuminator box, and quickly apply the 15 mW power (by pressing 'return', etc.), so that the base temperature does not have time to rise much above 4.2419 K.
- 5. Monitor warm-up with LabVIEW program.
- 6. For the 15 mW, it was decided that only needed curve up to \sim 100 K.
- 7. Once curve reaches around this value, use GPIB power vi to apply zero power
- 8. Leave to cool-down. Wait for the temperature to reach base value with the supply connected. Once this is obtained, switch the output to 'OFF' (do not stop the program), and disconnect the power supply from the illuminator box
- 9. Repeat steps 1 8 with 5 mW applied power, leaving the source to reach approximate equilibrium (the expected equilibrium temperature can be obtained by using a convert program).
- 10. Repeat steps 1 9 with 2% source.

Glitches were observed at measurements just beyond 18 K for both 15 mW and 5 mW applied power. This was thought to be due to the AVS bridge changing range from 2 k to 200 k. Once these measurements were taken, the sources were powered-up using the adapted procedure. Initial recordings used the TTiPL330DP power supply. This supply, however, showed switching effects: no power was applied between consecutive measurements when changing the value of the applied power. {In an attempt to} avoid this problem, the power supply was switched to the DAQ card.

Power supply TtiPL330DP switching effect (does not apply power between voltage change) – switch to DAQ card to avoid problem.

Select power – use convert program to give expected equilibrium temperature, T_{eq} Use GPIB power VI to apply 15mW until T=(T_{eq} -2) K Use GBIP power VI to switch to required power for expected equilibrium temperature using different program "TTiPL330_Applied_Power_With_Rv1d.vi" which can be found in \\Darkstar\Astroworld\Projects\Spire\LabView\Applied_Power_with_control_R.IIb keeping cold at 77K over the weekend

02/08/04

cooling down 77K

~140 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4RB	4% prime (CX29754)	55.78	500.68
Scal-2RB	2% prime (CX29758)	55.43	501.73
SCAL-SOB	body prime (CX28264)	75.66	

77 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4RB	4% prime (CX29754)	79.19	500.98

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 62 of 115

Scal-2RB	2% prime (CX29758)	78.77	501.05
SCAL-SOB	body prime (CX28264)	119.27	

~ 14:30: Cool-down to LHe begins.

~ 16:00: Helium transfer finished. Top up LN2.

- the multimeter HP34410A use 100µA constant current source to measure the resistance therefore 4%/2% are heating up during the measurement
 of the heater resistance
- to avoid this switch to use the AVS bridge for the heater resistance measurement

4.2 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4RB	4% prime (CX29754)	440.6	501.8
Scal-2RB	2% prime (CX29758)	430.2	501.9
SCAL-SOB	body prime (CX28264)	957.9	

connected ground from 25pin connector with the insulated BNC-connector "Power 3/4" inside the "Illuminator box", result after connecting the DAQ card with the "Illuminator box" the temperature jumps to 4.24K instead of 5K without ground connected.

Test procedure for each source:

LabView files (for both 4% and 2% sources):

"One_temperature_monitoring_no_scan_modev1d.vi" (Temperature monitoring) can be found in

\\Darkstar\Astroworld\Projects\Spire\LabView\temperature monitoring no scan mode AVS.IIb

"TTiPL330_Applied_Power_With_Rv1d.vi" (Applying power) can be found in <u>\\Darkstar\Astroworld\Projects\Spire\LabView\Applied_Power_with_control_R.llb</u> LabView file for both 4% prime source:

"convert_P_in_T_from_calibration_SCALBp4percent.vi" (Conversion file)can be found in <u>\\Darkstar\Astroworld\Projects\Spire\LabView\scal_calibration.llb</u> Data files (raw):-

\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\280704\raw data\SCAL B 4 P T(K) 020804.txt for temperature variation of Scal B prime 4% source

SCAL B 4% source: R_{control}=996 Ohm; R_{SCAL}=501.8 Ohm

T _{start}	P _{required}	T _{eq.}	Power	P _{initial}	Time	commont
(K)	(mW)	(K)	factor	(mW)	factor	comment
4.24	0.15	21.88	30	4.5	13	no overshoot, reach 21.1K at 66 sec, reach 21.37 at 10 min
4.24	0.15	21.88	30	4.5	13.75	no overshoot, reach 21.4K at 66sec; reach 21.52 at 10 min, shows a drop in temperature before it's rise again
4.24	0.15	21.88	33	4.95	12	no overshoot, reach 21.17K at 66sec; shows a drop in temperature before it's rise again
4.24	0.15	21.88	33	4.95	13.75	overshoot ; reach 22.04 at 66 sec; reach at 10 min 21.78

03/08/04

10-00 top up LN2

10-15 top up LHe

Data files (raw):

\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\280704\raw data\SCAL B 4 P T(K) 030804.txt for temperature variation of Scal B prime 4% source

SCAL B 4% source: R_{control}=996 Ohm; R_{SCAL}=501.8 Ohm

T _{start}	Prequired	T _{ea.}	Power	P _{initial}	Time	comment
(K)	(mW)	(K)	factor	(mW)	factor	comment
4.24	0.15	21.88	33	5.1	13.5	overshoot, reach 21.93K at 66 sec, reach 21.73 at 10 min, shows a drop in temperature before it's rise again
4.24	0.15	21.88	33	5.1	13.25	overshoot, reach 21.81K at 66 sec, reach 21.67 at 10 min
4.24	0.15	21.88	33	5.1	13	no overshoot, reach 21.69K at 66 sec, reach 21.618 at 4 min, reach 21.616 at 10 min
4.24	0.275	29.53	18	5.22	32.85	overshoot, reach 28.32K at 66 sec, reach 29.35K at 10min, shows a drop in temperature before it's rise again
4.24	0.275	29.53	18	5.22	32	no overshoot, reach 28.19K at 66 sec, reach 29.22K at 4min, reach 29.21K at 10min

Data files (raw):

\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\280704\raw data\SCAL B 2 P T(K) 030804.txt for temperature variation of Scal B prime 2% source

SCAL B 2% source: R_{control}=996 Ohm; R_{SCAL}=501.9 Ohm

T _{start} (K)	P _{required} (mW)	T _{eq.} (K)	Power factor	P _{initial} (mW)	Time factor	comment
4.24	0.275	29.09	18	5.22	19.5	no overshoot, reach 28.68K at 66 sec, reach 28.72K at 4min, reach 28.78K at 10min, shows a drop in temperature before it's rise again
4.24	0.275	29.09	18	5.22	19	no overshoot, reach 28.48K at 66 sec, reach 28.56K at 4min, reach 28.70K at 10min, shows a drop in temperature before it's rise again
4.24	0.275	29.09	18	5.22	20	overshoot T _{max} = 28.99K, reach 28.88K at 66 sec, reach 28.89K at 4min, reach 28.86K at 10min
4.24	0.275	29.09	18	5.22	19.75	overshoot T _{max} = 28.87K, reach 28.78K at 66 sec, reach 28.78K at 4min, reach 28.79K at 10min, reach stable 28.8K at 15min
4.24	0.275	29.09	18	5.22	19.6	no overshoot T _{max} = 28.8K, reach 28.7K at 66 sec, reach 28.73K at 4min, reach 28.76K at 10min, shows a drop in temperature before it's rise again
4.24	0.275	29.09	19	5.5	19.7	overshoot T _{max} = 28.84K, reach 28.75K at 66 sec, reach 28.77K at 4min, reach 28.79K at 10min, shows a drop in temperature before it's rise again

04/08/04

9-45 top up LN2 10-00 top up LHe Data files (raw):

\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\280704\raw data\SCAL B 2 P T(K) 040804.txt for temperature variation of Scal B prime 2% source

SCAL B 2% source: R_{control}=996 Ohm; R_{SCAL}=501.9 Ohm

T _{start}	P _{required}	T _{eq.}	Power	P _{initial}	Time	comment
4 24	0.15	21.57	33	51	g	overshoot T= 22.03K_reach 21.84K at 66 sec_reach 21.57K at 4min_reach 21.42K at 10min
4.24	0.15	21.57	33	5.1	8	no overshoot, reach 21.1K at 66 sec, reach 21.09K at 4min, reach 21.22K at 10min, shows a drop in temperature before it's rise again
4.24	0.15	21.57	33	5.1	8.5	overshoot T _{max} = 21.67K, reach 21.48K at 66 sec, reach 21.35K at 4min, reach 21.35K at 10min
4.24	0.15	21.57	33	5.1	8.4	overshoot T _{max} = 21.6K, reach 21.42K at 66 sec, reach 21.31K at 4min, reach 21.33K at 10min, shows a drop in temperature before it's rise again
4.24	0.79	50.10	18.5	15.41	20	no overshoot, reach 42.6K at 66 sec
4.24	0.79	50.10	18.9	15.72	33	overshoot T _{max} = 50.39K, reach 48.6K at 66 sec, reach 50.34K at 4min, reach 50.11K at 10min,
4.24	0.79	50.10	18.9	15.72	30	no overshoot, reach 47.57K at 66 sec, reach 49.02K at 4min, reach 49.21K at 10min,
4.24	0.79	50.10	18.9	15.72	31.5	overshoot T _{max} = 49.7K, reach 48.17K at 66 sec, reach 49.70K at 4min, reach 49.66K at 10min,
4.24	0.79	50.10	18.9	15.72	31.25	no overshoot, reach 48.09K at 66 sec, reach 49.58 at 4min, reach 49.59K at 10min, shows a tiny drop in temperature before it's rise again, reach 49.63K at 18min
4.24	0.79	50.10	18	15.01	31.5	no overshoot, reach 47.39K at 66 sec, reach 49.05 at 4min, reach 49.24K at 10min
4.24	0.79	50.10	18	15.01	32.5	no overshoot, reach 47.79K at 66 sec, reach 49.50K at 4min, reach 49.54K at 10min, reach 49.69K at 70min

05/08/04

10-15 top up LN2

10130 top up LHe

Data files (raw):

\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\280704\raw data\SCAL B 2 P T(K) 050804.txt for temperature variation of Scal B prime 2% source

SCAL B 2% source: R_{control}=996 Ohm; R_{SCAL}=501.9 Ohm

T _{start}	Prequired	T _{eq.}	Power	P _{initial}	Time	comment
(K)	(mW)	(K)	factor	(mW)	factor	comment
4.26	0.79	50.10	18	15.01	33	overshoot T _{max} = 49.67K, reach 47.88K at 66 sec, reach 49.66K at 4min, reach 49.62K at 10min,
4.25	2	81.56	6.5	15	134	overshoot T _{max} = 81.64K, reach 59.05K at 66 sec, reach 76.88K at 4min, reach 81.50K at 10min, reach 80.92K after 70min
4.25	2	81.56	6.5	15	130	overshoot T _{max} = 81.14K, reach 58.99K at 66 sec, reach 76.43K at 4min, reach 80.94K at 10min, reach 81.08K at 25min

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 65 of 115

17-05 use different method to apply power

- apply maximum power (5mW or 15mW)
- wait until temperature is 2K below the desired equilibrium power
- switch to the corresponded power for the desired equilibrium power

LabView files:

"One_temperature_monitoring_no_scan_modev1d.vi" (Temperature monitoring) can be found in

\\Darkstar\Astroworld\Projects\Spire\LabView\temperature monitoring no scan mode AVS.IIb

"TTiPL330_Applied_Power_With_Rv1e.vi" (Applying power) can be found in \\Darkstar\Astroworld\Projects\Spire\LabView\Applied_Power_with_control_R.llb

Data files (raw):

\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\280704\raw data\SCAL B 2 P T(K) 050804.txt for temperature variation of Scal B prime 2% source

T _{st}	tart	P _{required}	T _{eq.}	P _{max}	t _{start}	comment
(K	()	(mW)	(K)	(mW)	(mfs)	
4.2	26	2	80.82	15	393	stopped at T=77.78K, no overshoot, reach 61.42K at 66 sec, reach 77.4K at 4min, reach 78.34K at 10min, reach 80.50 at 50min

20-00 use different method to apply power

• using proportional feedback method which applies maximum power from the start and reduces the power to required power automatically to reach certain temperature in shortest time

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 66 of 115

a difference between T_{eq.} and T_{final} will be observed because only a proportional factor was used in the feed back instead of additional integrational factor

LabView files:

"SCAL_enhanced_warmup_feedbackv1.vi" (Temperature monitoring) can be found in <u>\\Darkstar\Astroworld\Projects\Spire\LabView\scal_calibration.llb</u>

Data files (raw):

<u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test_data\280704\raw</u> <u>data\SCAL_B_2_P_T(K)_feedback_050804.txt</u> and <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test_data\280704\raw data\SCAL_B_2_P_T(K)_feedback_050804_2.txt for temperature variation of Scal_B prime 2% source</u>

T _{start} (K)	T _{eq.} (K)	T _{final} (K)	P _{max} (mW)	gain	comment
4.26	80.60	80	15	5	no overshoot, reach 63.72K at 66 sec, reach 79.97K at 3.3min, reach 80K at 7.7min, reach 80 at 10min

06/08/04

10-45 top up LN2

10-30 top up LHe

Data files (raw):

<u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test_data\280704\raw</u> <u>data\SCAL_B_2_P_T(K)_feedback_060804.txt</u> for temperature variation of Scal B prime 2% source

SCAL B 2% source: R_{control}=996 Ohm; R_{SCAL}=501.9 Ohm

T _{start} (K)	T _{eq.} (K)	T _{final} (K)	P _{max} (mW)	gain	V _{applied} (V)	comment
4.24	100.75	99.99	15	5	3.77	no overshoot, reach 63.19K at 66 sec, reach 99.087K at 4min
4.25	20		5	5		overshoot because the temperature data for controlling due to AVS range change
4.25	17	16.66	5	2		overshoot Tmax=18K and undershoot, reach 16.6 at 42s
4.25	17	16.17	5	0.75	0.62	overshoot Tmax=16.86K and undershoot, reach 16.1 at 66s
4.25	17		5	0.25		not even close
4.25	17	16.10	5	0.7	0.65	overshoot Tmax=16.7K and undershoot, reach 16.05 at 66s,
4.25	25	24.51	5	2	1.03	overshoot Tmax=24.64K and undershoot, reach 24.46 at 66s, because the temperature data for controlling due to AVS range change

Data files (raw):

\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\280704\raw

data\SCAL B 4 P T(K) feedback 060804.txtfor temperature variation of Scal B prime 4% source

SCAL B 4% source: R_{control}=996 Ohm; R_{SCAL}=501.8 Ohm

T _{start} (K)	T _{eq.} (K)	T _{final} (K)	P _{max} (mW)	gain	V _{applied} (V)	comment
4.26	30	29.25	5	1.5	1.12	no overshoot, reach 29.02K at 66s, reach 29.25K at 4min
4.25	18	16.95	5	0.6	0.65	no overshoot, reach 16.75K at 66s, reach 29.25K at 4min
4.25	50	49.62	15	5	1.89	no overshoot, reach 49.4K at 66s, reach 49.61K at 3min
4.25	80	79.39	15	5	2.94	no overshoot, reach 51.38K at 66s, reach 77.85K at 4min, reach 79.39K at 4.3min
4.25	100	99.23	15	5	3.84	no overshoot, reach 51.40K at 66s, reach 77.86K at 4min, reach 99.23K at 8min

09/08/04

cooling down to LN2 temperature from 140K

77 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4RB	4% prime (CX29754)	79.09	501.1
Scal-2RB	2% prime (CX29758)	78.80	501.3

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 68 of 115

SCAL-SOB	body prime (CX28264)	119.32	

14-00 cooling down to LHe

15-40 every is thermalized to 4 K

4 K			
Source		Thermometer (Ohms)	Heater (Ohms)
Scal-4RB	4% prime (CX29754)	441.7	501.9
Scal-2RB	2% prime (CX29758)	430.6	501.6
SCAL-SOB	body prime (CX28264)	958.9	

re-check calibration for few data points

LabView files:

"SCAL_calibration_v1.3.vi" (Temperature monitoring and automatically power apply) can be found in

\\Darkstar\Astroworld\Projects\Spire\LabView\scal_calibration.llb

Data files (raw):

\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\check calibration\SCAL B 4p 09 08 04.txt for temperature variation of Scal B prime 4% source

SCAL B 4% source: R_{control}=996 Ohm; R_{SCAL}=501.9 Ohm

$P(MVV) 14\%_{eq.}(K) 12\%_{eq.}(K) 150B_{eq.}(K) 150B_$	
0.099 17.583 4.2735 4.2339	
0.9936 56.363 4.764 4.2912	
3.9834 111.48 6.1993 4.4619	

10/08/04

Data files (raw):

\\Darkstar\Astroworld\Projects\Spire\Cardiff workpackages\SCAL\Assembly&test\SCAL PFM FS\Test data\check calibration\SCAL B 2p 10 08 04.txt for

temperature variation of Scal B prime 2% source

SCAL B 2% source: R_{control}=996 Ohm; R_{SCAL}=501.6 Ohm

P (mW)	T4% _{eq.} (K)	T2% _{eq.} (K)	TSOB _{eq.} (K)
0.099			
0.9936			
3.9834			

Page 69 of 115

11/08/04

- disconnect grounding of the "Power ¾" BNC socket inside the Illuminator box and repeat 0.1mW measurement for the 2% and 4% source
- T4% rise to 4.97K; T2% rise to 4.77K; TSOB stays at 4.23K
- during LHe transfer T4% drops to 4.85K; T2% rise to 4.69K; TSOB stays at 4.23K

Data files (raw):

\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_FS\Test data\check calibration\SCAL_B_2p_11_08_04.txt for temperature variation of Scal B prime 2% source

SCAL B 2% source: R_{control}=996 Ohm; R_{SCAL}=501.6 Ohm

P (mW)	T4% _{eq.} (K)	T2% _{eq.} (K)	TSOB _{eq.} (K)
0.099			

Data files (raw):

Test data\check calibration\4% source\raw data\SCAL_B_4p_09_08_04.txt

SCAL B 4% source: R_{control}=996 Ohm; R_{SCAL}=501.6 Ohm

P (mW)	T4% _{eq.} (K)	T2% _{eq.} (K)	TSOB _{eq.} (K)
0.099			

• let the cryostat warming up on its own

SECTION 16 - Operating Time / Cycle Record

See also section 14 and section 15.

SCal-PFMB has undergone a total of nine thermal / vacuum cycles 300K – 4K – 300K.

While at 4K (baseplate temperature), the SCal sources have been heated to operating temperature (varying between 20K and 160K) and back a number of times (but less than 20 in total), as indicated in section 15 and Appendix C (Scal-B calibration report)

SECTION 17 – Connector Mating Record

Connector Mate / Demate log									
Project SPIRE			Experiment						
Subsystem Spectrometer Calibration source		Model	PFM	ID	SCAL-PFM-000 – Prime Connector MDM-37S		onnector		
ID		ID		ID	ID		ID		
Mate date	Demate date	Mate date	Demate date	Mate date	Demate date	Mate date	Demate date	Mate date	Demate date
07/03/04	15/03/04	02/04/03	24/04/04	26/07/04	12/08/04				
P. Hargrave	P. Hargrave	P. Hargrave	P. Hargrave	P. Hargrave	P. Hargrave				
After 5 cycles	s, carry out visu	al inspection.	Record result b	elow.					
Connect I/D		Debris	Bent pins	Remarks		Pass	Fail	Signature	
ID		ID		ID		ID		ID	
Mate date	Demate date	Mate date	Demate date	Mate date	Demate date	Mate date	Demate date	Mate date	Demate date
After 10 cycles, carry out visual inspection with magnification. Record result below.									
Connect I/D		Debris	Bent pins	Remarks		Pass	Fail	Signature	
NOTE: In cas	e of failure, an	NCR is require	d.						
Connector Ma	te / Demate log	9							
----------------	--------------------	---------------------------------	----------------------	-----------------	-------------	-----------	--	-----------	-------------
Project		SPIRE		Experiment					
Subsystem		Spectrometer Calibration source		Model	PFM	ID	SCAL-PFM-000 – Redundant Connector MDM-37S		ant
ID									
Mate date	Demate date	Mate date	Demate date	Mate date	Demate date	Mate date	Demate date	Mate date	Demate date
15/03/04	20/03/04	24/04/03	31/04/04						
P. Hargrave	P. Hargrave	P. Hargrave	P. Hargrave						
After 5 cycles	, carry out visu	al inspection.	│ Record result b	elow.					
Connect I/D		Debris	Bent pins	Remarks		Pass	Fail	Signature	
ID									
Mate date	Demate date	Mate date	Demate date	Mate date	Demate date	Mate date	Demate date	Mate date	Demate date
After 10 cycle	s, carry out vis	ual inspection	with magnifica	tion. Record re	sult below.				1
Connect I/D		Debris	Bent pins	Remarks		Pass	Fail	Signature	
NOTE: In case	e of failure, an l	NCR is required	d.						

SECTION 18 – Age Sensitive Items Record

There are no age-sensitive items.

SECTION 19 – Pressure Vessel History / Test Record

N/A

SECTION 20 - Calibration Data Record

Thermometer calibration curves

Full calibration reports for all thermometers are shown in Appendix A.

SCal-4% prime thermometer – X29754

DATA PLOT

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 75 of 115

SCal-2% prime thermometer – X29758

DATA PLOT

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 76 of 115

SCal-4% redundant thermometer – X29756

DATA PLOT

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 77 of 115

SCal-2% redundant thermometer – X29761

DATA PLOT

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 78 of 115

SCal prime near SOB Thermometer – X28264

y = m1+T1(2.0652,1.6314,m2,m				
	Value	Error		
m1	168.62	0.0083204		
m2	-102.91	0.01449		
m3	16.25	0.01351		
m4	-2.1645	0.012742		
m5	0.29808	0.012521		
m6	0.021492	0.011728		
m7	-0.031175	0.011655		
m8	0.028605	0.010032		
m9	-0.015089	0.0099593		
Chisq	11.227	NA		
R	1	NA		

y = m 1-	y = m1+11(2.5937,2.0652,m2,m					
	Value	Error				
m1	40.88	0.0011418				
m2	-32.205	0.0019752				
m3	6.1963	0.001861				
m4	-0.73934	0.001746				
m5	0.07258	0.0017107				
m6	0.010247	0.0016082				
m7	-0.0071502	0.0015767				
m8	-0.0034126	0.0013834				
m9	0.0028717	0.0013873				
Chisq	0.18573	NA				
R	1	NA				

y = m1+T1(3.4133,2.5937,m2,m				
	Value	Error		
m1	5.8457	0.00049434		
m2	-5.7952	0.00088868		
m3	1.9575	0.00075224		
m4	-0.50177	0.00065247		
m5	0.1068	0.0005781		
m6	0.0016598	0.00055153		
m7	0.010325	0.00055656		
m8	0.0064626	0.00050647		
m9	0.0032958	0.00044221		
Chisq	0.0017067	NA		
R	1	NA		

Page 79 of 115

SCal redundant near SOB Thermometer – X28265

y = m1+T1(2.888,2.2951,m2,m0					
	Value	Error			
m1	5.9165	0.00070635			
m2	-5.8189	0.0012512			
m3	1.9052	0.001078			
m4	-0.4488	0.00097865			
m5	0.086414	0.00091565			
m6	-0.0035135	0.00086844			
m7	-0.0005853	0.00082291			
m8	-0.0018692	0.0007321			
m9	-0.0012941	0.00065539			
Chisq	0.0041611	NA			
R	1	NA			

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 80 of 115

Temperature vs power calibration

The equilibrium temperature achieved for each source as a function of applied power is presented in this section.

These data were obtained in a cryostat with a liquid Helium heatsink, i.e. a 4.2K SCal base temperature. Therefore the in-orbit equilibrium temperature may vary from these data, according to the Level-1 (SPIRE Optical Bench - SOB) temperature.

For each source, the power calibration data are presented, together with a Chebychev polynomial fit to the data.

Typical times to reach equilibrium, for certain constant applied powers, are also shown.

SCal- 4% prime source - power calibration

fit equation	coefficient	error
	m1 = 63.164	0.045792
	m2 = 72.736	0.071229
$[-1, -1] (PU - \log P) - (\log P - PL),$	m3 = 22.551	0.063424
$T(P) = \sum_{i=0}^{\infty} m_{i} \cos\left[i \cdot \cos^{-1}\left(\frac{(V - U - V - V - V)}{PU - PL}\right)\right]$	m4 = 2.7334	0.050699
	m5 = -0.93589	0.042519
	m6 = -0.6317	0.044712
PU = 0.9991	m7 = -0.25804	0.057828
PL = -1.6021	m8 = 0.097062	0.062944
	m9 = -0.16928	0.055977

SCal- 4% prime source - Time response

Page 83 of 115

fit equation	coefficient	error
	m1 = 69.527	0.041256
	m2 = 75.69	0.068996
$[-1, -1, -1] = [PU - \log P],$	m3 = 21.765	0.058256
$ I(P) = \sum m_i \cos \left I \cdot \cos^{-1} \left(\frac{\sqrt{2} - \sqrt{2}}{2} - \frac{\sqrt{2} - \sqrt{2}}{2} \right) \right $	m4 = 2.5715	0.041003
	m5 = -0.72045	0.028792
	m6 = -0.37803	0.038444
PU = 1.0024	m7 = 0.017292	0.055935
PL = -1.3109	m8 = 0.037832	0.060874
	m9 = 0.022366	0.04554

Page 84 of 115

SCal- 2% prime source - Time response

Page 85 of 115

SCal- 4% redundant source

fit equation	coefficient	error
	m1 = 60.168	0.14263
	m2 = 68.205	0.23435
$[-1, -1] (\log P - PL) - (PU - \log P),$	m3 = 20.838	0.14169
$ I(P) = \sum m_i \cos \left[I \cdot \cos^{-1} \left(\frac{V \cdot S}{P \cdot I} - \frac{V \cdot S}{P \cdot I} \right) \right]$	m4 = 2.8534	0.012794
	m5 = -0.58275	0.093839
	m6 = -0.41683	0.14872
PU = 0.89/2	m7 = 0.00032901	0.14523
PL = -1.6159	m8 = 0.047701	0.093517
	m9 = 0.037595	0.047889

Page 86 of 115

SCal- 4% redundant source - Time response

Page 87 of 115

SCal- 2% redundant source

fit equation	coefficient	error
	m1 = 61.551	0.10638
	m2 = 70.52	0.14104
\neg \neg \neg \neg \neg \neg $(\log P - PL) - (PU - \log P)$	m3 = 22.318	0.14428
$I(P) = \sum m_i \cos[I \cdot \cos^{-1}(\frac{\sqrt{10}}{2} + \frac{\sqrt{10}}{2})]$	m4 = 3.3467	0.095438
$0 \qquad [\qquad PO-PL \qquad]$	m5 = -0.64679	0.080251
	m6 = -0.49679	0.087555
PU = 0.8994	m7 = 0.023365	0.12297
PL = -1.6141	m8 = 0.10975	0.12033
	m9 = 0.095858	0.1425

Page 88 of 115

SCal- 2% redundant source - Time response

Page 89 of 115

SECTION 21 - Temporary Installation Record

See sections 14 & 15.

SECTION 22 - Open Work / Deferred Work / Open Tests

Optimisation of enhanced warm-up procedure. This will be done using SCal-FS and the SCal thermal model.

SECTION 23 - List of Non-Conformance Reports

None.

SECTION 24 - Copies of Non-Conformance Reports

N/A

SECTION 25 - Test Reports

See appendices.

SECTION 26 – Assembly Record

This section contains photographic records of the source assembly and connector wiring.

Page 91 of 115

Page 92 of 115

Page 93 of 115

Page 94 of 115

Page 96 of 115

Page 98 of 115

SECTION 27 - Reference List of EIDP's

Associated

<u>Title</u> (Listed in alphabetical order)	ID (Serial No.)	<u>Acronym</u>	Document No.	<u>lssue</u>	<u>Date</u>

Lower Level

<u>Title</u> (Listed in alphabetical order)	<u>ID</u> (Serial No.)	<u>Acronym</u>	Document No.	<u>Issue</u>	<u>Date</u>

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)

Page 99 of 115

SECTION 28 - Mass Records

Assembly	Final measured mass
SCAL-PFM-000	

SECTION 29 - Cleanliness Statement – this will be digitally signed once DRB approved version is PDF'd

Statement

The PFM Spectrometer Calibration Source assembly (SCAL-PFM-000) has been cleaned, assembled and tested within a class 1000 clean room to meet the requirements of the Cardiff PA plan (HSO-CDF-PL-007).

SignedPeter Hargrave, Technical Manager, Cardiff-SPIRE deliverables.

SignedIan Walker, Programme Manager, Cardiff AIG.

Date

Extra Information

A dedicated Herschel-Planck clean room is available in the Cardiff AIG labs, class 1 000, with class 100 laminar flow cabinets.

For cooldown tests (thermal cycles) the PFM assembly was integrated to the Cardiff test dewar within the clean room annex (approx. Class 10,000 – exposure ~15 minutes per thermal cycle).

The PFM assembly was also integrated to the RAL cold vibration test facility. For the duration of this test, the Scal-PFM assembly was kept in a sealed bag with vent holes.

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 101 of
	115

SECTION 30 - Other Useful Information

SECTION 31 - DPL/DML

Refer to the Cardiff-SPIRE PFM deliverables lists.

Cardiff-SPIRE-DML	HSO-CDF-LI-074
Cardiff-SPIRE-DMPL	HSO-CDF-LI-075
Cardiff-SPIRE-DPL	HSO-CDF-LI-076

SECTION 32 – List of Appendices/Attachments

<u>Appendix #</u>	<u>Title</u>	Document No.	<u>Issue</u>	<u>Date</u>	Notes
	(Listed in alphabetical order)				
A	Thermometer Calibration Reports	Calibration Report_CX28264.doc			
		Calibration Report_CX28265.doc			
		X29754.pdf			
		X29756.pdf			
		X29758.pdf			
		X29761.pdf			
В	Report from Cryogenic Vibration Tests	HSO-CDF-RP-078			Will be added/modified in time
					for DRB
С	SCal-B Calibration Report	HSO-CDF-RP-080			
D	SCal Lifetest Report	HSO-CDF-RP-081			
E	SCal Lifetest procedure & record	HSO-CDF-PR-082			
F	SCal enhanced warm-up test report	HSO-CDF-RP-083			

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 102 of
	115

Appendix A

Thermometer Calibration Reports

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 103 of
	115

X29754 SCAL-B 4% prime thermometer

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 104 of
	115

DATA PLOT

Calibration Report: 429014 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29754 Sensor Excitation: 2mV±50%

Page 1 of 14

TEST DATA

Calibration Report: 429014 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29754 Sensor Excitation: 2mV±50%

Index	Temperature (K)	Resistance (Ω)	Index	Temperature (K)	Resistance (Ω)
1	3.60593	499.991	41	75.1487	80.7769
2	3.80499	479.519	42	80.1400	77.7497
3	4.00700	460.937	43	85.1343	75.0063
4	4.20193	444.764	44	90.1253	72,4999
5	4.72442	408.437	45	95.1235	70.1935
6	5.12389	385.651	46	100.113	68.0643
7	5.62757	361.615	47	110.213	64.2175
8	6.32918	334.444	48	120.097	60.9446
9	7.13731	309.635	49	130.101	58.0186
10	8.15287	285.154	50	140.106	55.4171
11	9.17435	265.634	51	150.102	53.0881
12	10.1958	249.675	52	160.094	50.9847
13	11.2113	236.383	53	170.083	49.0829
14	12,2193	225,138	54	180.077	47.3503
15	13.2203	215.435	55	190.080	45.7618
16	14.2104	206.966	56	200.079	44.3034
17	15,1980	199.431	57	210.072	42,9641
18	16 1744	192 712	58	220.066	41 7287
19	17 1484	186 609	59	230 079	40 5804
20	18.1223	181.073	60	240.076	39.5189
21	19.0932	175.978	61	250.073	38.5292
22	20.0686	171 250	62	260.080	37 6076
23	21 1462	166 417	63	270 070	36 7475
24	22 7158	160 039	64	280 079	35 9416
25	24.3143	154.171	65	290.072	35.1915
26	25 9523	148 723	66	300 077	34 4808
27	27 5894	143 759	67	310 074	33 8149
28	29 2320	139 205	68	315 079	33 4972
29	31 0577	134 567	69	320 092	33 1898
30	33.1808	129.643	70	326.095	32.8385
31	36 1881	123 439	71	330 089	32 5963
32	39 1894	117,960			02.0000
33	42 1831	113 091			
34	45 1829	108 709			
35	48.1704	104.760			
36	50,1691	102.317			
37	55,1561	96.8279			
38	60 1600	92 0401			
39	65 1554	87 8415			
40	70,1533	84.1076			
		• • . •			

POLYNOMIAL EQUATION

Calibration Report: 429014 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29754 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Useful Range of Fit:

4.00K	to	24.3K
461.6 Ohms	to	154.2 Ohms

Lower and Upper limits of Log(resistance) used in computing Chebychev coefficients: 7I = 2.15763404708 7II = 2.60896237717

	ZL - 2.15/03494/90	20 - 2.0909023	0// 1/
Order	Coefficient	Std. Deviation of Coefficient	Ratio (Coeff./Std Dev.)
0	12.254978	3.1570E-04	38818.89
1	-11.369745	4.8882E-04	-23259.49
2	3.284991	4.7026E-04	6985.50
3	-0.627410	4.4411E-04	-1412.74
4	0.060038	4.3313E-04	138.61
5	0.004666	4.2033E-04	11.10
6	-0.001746	4.0342E-04	-4.33

Z = Log(resistance)

X = ((Z-ZL)-(ZU-Z))/(ZU-ZL)

Temp. (K) = $\Sigma A_i^* COS(i * ARCCOS(X))$, where 0 <= i <= 6 and the A_i 's are the coefficients in the table above.

POLYNOMIAL EQUATION

Calibration Report: 429014 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29754 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Temp. (K) vs. Log(resistance)

	R Meas. (Ω)	T Meas. (K)	T Eq. (K)	T diff. (mK)
1	499.9912	3.60593	3.60577	0.16
2	479.5185	3.80499	3.80493	0.06
3	460.9372	4.00700	4.00716	-0.16
4	444.7643	4.20193	4.20263	-0.70
5	408.4369	4.72442	4.72354	0.88
6	385.6510	5.12389	5.12382	0.07
7	361.6149	5.62757	5.62752	0.04
8	334.4439	6.32918	6.32965	-0.48
9	309.6347	7.13731	7.13766	-0.35
10	285.1535	8.15287	8.15221	0.67
11	265.6342	9.17435	9.17349	0.86
12	249.6747	10.19583	10.19614	-0.31
13	236.3825	11.21131	11.21352	-2.21
14	225.1382	12.21933	12.22034	-1.01
15	215.4350	13.22032	13.21958	0.74
16	206.9665	14.21038	14.20868	1.69
17	199.4308	15.19803	15.19565	2.38
18	192.7116	16.17444	16.17308	1.37
19	186.6091	17.14841	17.15113	-2.72
20	181.0726	18.12232	18.12204	0.28
21	175.9776	19.09320	19.09381	-0.62
22	171.2500	20.06857	20.06975	-1.18
23	166.4174	21.14615	21.14886	-2.70
24	160.0388	22.71581	22.71381	2.00
25	154.1708	24.31426	24.31259	1.68
26	148.7234	25.95234	25.95144	0.90
27	143.7590	27.58941	27.59075	-1.34

Order of Fit = 6 RMS error of fit = 1.30 mK Largest absolute error = -2.72 mK at data point no. 19

Calibration Report: 429014 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29754 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Useful Range of Fit:

24.3K	to	110.K
154.2 Ohms	to	64.22 Ohms

Lower and Upper limits of Log(resistance) used in computing Chebychev coefficients: 7I = 1.76356705864 7II = 2.22110864022

	ZL = 1.70330703804	20 = 2.2211980	4033
Order	Coefficient	Std. Deviation of Coefficient	Ratio (Coeff./Std Dev.)
0 1 2	64.603642 -53.055603 10.917440	1.4372E-03 2.3370E-03 2.1325E-03	44950.22 -22701.98 5119.67
3	-1.428942	1.9505E-03	-732.61
4	0.101529	1.8305E-03	55.46
5	0.010150	1.8199E-03	5.58
0 1 2 3 4 5	64.603642 -53.055603 10.917440 -1.428942 0.101529 0.010150	Coefficient 1.4372E-03 2.3370E-03 2.1325E-03 1.9505E-03 1.8305E-03 1.8199E-03	(Coeff./Std Dev 44950.22 -22701.98 5119.67 -732.61 55.46 5.58

Z = Log(resistance)

X = ((Z-ZL)-(ZU-Z))/(ZU-ZL)

Temp. (K) = $\Sigma A_i^* COS(i * ARCCOS(X))$, where 0 <= i <= 5 and the A_i 's are the coefficients in the table above.

Calibration Report: 429014 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29754 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Temp. (K) vs. Log(resistance)

	R Meas. (Ω)	T Meas. (K)	T Eq. (K)	T diff. (mK)
23	166.4174	21.14886	21.14822	0.64
24	160.0388	22.71381	22.71331	0.49
25	154.1708	24.31259	24.31261	-0.03
26	148.7234	25.95234	25.95179	0.55
27	143.7590	27.58941	27.59165	-2.23
28	139.2050	29.23199	29.23356	-1.57
29	134.5666	31.05770	31.05804	-0.34
30	129.6430	33.18080	33.18463	-3.83
31	123.4387	36.18806	36.18614	1.92
32	117.9604	39.18941	39.18639	3.02
33	113.0907	42.18306	42.17880	4.27
34	108.7092	45.18285	45.17697	5.88
35	104.7596	48.17036	48.16654	3.83
36	102.3166	50.16910	50.16945	-0.35
37	96.82788	55.15610	55.16312	-7.02
38	92.04011	60.15999	60.17119	-11.21
39	87.84152	65.15540	65.16325	-7.85
40	84.10762	70.15334	70.15963	-6.29
41	80.77691	75.14867	75.13214	16.53
42	77.74968	80.14005	80.13768	2.37
43	75.00634	85.13433	85.13001	4.32
44	72.49995	90.12526	90.12013	5.14
45	70.19349	95.12350	95.11850	5.00
46	68.06431	100.11258	100.11821	-5.63
47	64.21751	110.21260	110.22508	-12.47
48	60.94458	120.09683	120.09568	1.15
49	58.01858	130.10071	130.09701	3.71

Order of Fit = 5 RMS error of fit = 5.87 mK Largest absolute error = 16.53 mK at data point no. 41

Calibration Report: 429014 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29754 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Useful Range of Fit:

110.K	to	325.K
64.22 Ohms	to	32.90 Ohms

Lower and Upper limits of Log(resistance) used in computing Chebychev coefficients: 7I = 1.51316896149 7II = 1.8462968374

	ZL = 1.51316896149	ZU = 1.846296	08374
Order	Coefficient	Std. Deviation of Coefficient	Ratio (Coeff./Std Dev.)
0	194.449534	7.3511E-03	26451.87
1	-114.932390	1.1302E-02	-10168.85
2	17.711031	1.0232E-02	1731.02
3	-2.502760	9.9620E-03	-251.23
4	0.462651	9.8717E-03	46.87
5	-0.083066	9.6885E-03	-8.57

Z = Log(resistance)

X = ((Z-ZL)-(ZU-Z))/(ZU-ZL)

Temp. (K) = $\Sigma A_i^* COS(i * ARCCOS(X))$, where 0 <= i <= 5 and the A_i 's are the coefficients in the table above.

Calibration Report: 429014 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29754 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Temp. (K) vs. Log(resistance)

	R Meas. (Ω)	T Meas. (K)	T Eq. (K)	T diff. (mK)
45	70.19349	95.11850	95.10500	13.50
46	68.06431	100.11821	100.13120	-12.99
47	64.21751	110.22508	110.24065	-15.57
48	60.94458	120.09683	120.09526	1.57
49	58.01858	130.10071	130.08963	11.09
50	55.41712	140.10566	140.09055	15.12
51	53.08806	150.10187	150.08883	13.04
52	50.98471	160.09420	160.10459	-10.39
53	49.08292	170.08252	170.09238	-9.86
54	47.35033	180.07714	180.07869	-1.55
55	45.76180	190.07998	190.08755	-7.57
56	44.30336	200.07943	200.09897	-19.54
57	42.96412	210.07180	210.08302	-11.21
58	41.72875	220.06649	220.05657	9.92
59	40.58044	230.07864	230.07241	6.23
60	39.51887	240.07554	240.05350	22.04
61	38.52916	250.07283	250.06239	10.44
62	37.60759	260.07957	260.06703	12.55
63	36.74753	270.06965	270.06998	-0.34
64	35.94159	280.07885	280.09356	-14.71
65	35.19149	290.07200	290.04961	22.39
66	34.48083	300.07704	300.09871	-21.66
67	33.81489	310.07357	310.11513	-41.56
68	33.49720	315.07921	315.11465	-35.44
69	33.18976	320.09166	320.09743	-5.77
70	32.83850	326.09518	325.97286	122.31
71	32.59635	330.08939	330.14143	-52.04

Order of Fit = 5 RMS error of fit = 30.22 mK Largest absolute error = 122.31 mK at data point no. 70

INTERPOLATION TABLE

Calibration Report: 429014 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29754 Sensor Excitation: 2mV±50%

Temp (K)	<u>Res.</u> (Ω)	<u>dR/dT (Ω/K)</u>	<u>dlogR/dlogT</u>	Temp (K)	<u>Res.</u> (Ω)	<u>dR/dT (Ω/K)</u>	<u>dlogR/dlogT</u>
4 000	461 561	-87 307	-0 75663	37 00	121 887	-1 8751	-0 56921
4.200	444.971	-78.824	-0.74401	38.00	120.049	-1.8017	-0.57029
4.400	429.951	-71.556	-0.73228	39.00	118.282	-1.7328	-0.57133
4.600	416.284	-65.267	-0.72122	40.00	116.582	-1.6680	-0.57231
4.800	403.786	-59.838	-0.71133	42.00	113.367	-1.5496	-0.57409
5 000	202 205	FF 070	0 70400	44.00	440.075		0 57500
5.000	392.305	-55.079	-0.70199	44.00	110.375	-1.4441	-0.57569
5.200	381.716	-50.893	-0.69330	46.00	107.583	-1.3498	-0.57714
5.400	371.916	-47.179	-0.68501	48.00	104.970	-1.2650	-0.57843
5.600	362.817	-43.882	-0.67731	50.00	102.518	-1.1885	-0.57966
5.600	334.340	-40.942	-0.07015	52.00	100.211	-1.1192	-0.56077
6.000	346.421	-38.290	-0.66318	54.00	98.0364	-1.0562	-0.58178
6.500	328.718	-32.758	-0.64775	56.00	95.9822	-0.99890	-0.58280
7.000	313.472	-28.396	-0.63409	58.00	94.0376	-0.94643	-0.58373
7.500	300.174	-24.914	-0.62248	60.00	92.1936	-0.89834	-0.58464
8.000	288.454	-22.065	-0.61195	65.00	87.9709	-0.79422	-0.58683
8.500	278.023	-19.728	-0.60316	70.00	84.2205	-0.70861	-0.58896
9.000	268.664	-17.766	-0.59515	75.00	80.8610	-0.63729	-0.59109
9,500	260.204	-16.115	-0.58837	77.35	79.3985	-0.60779	-0.59211
10.00	252,509	-14.702	-0.58222	80.00	77.8290	-0.57715	-0.59325
10.50	245.469	-13.490	-0.57702	85.00	75.0746	-0.52594	-0.59547
11.00	238 004	12 /35	0 57232	00.00	72 5578	0 49197	0 50770
11.00	233.011	-12.433	-0.57252	90.00	70.2460	-0.40107	-0.39770
12.00	20011	-10 704	-0.50052	100.0	68 1127	-0.44377	-0.60204
12.00	227.401	-10.704	-0.50472	100.0	66 1380	-0.41007	-0.00204
13.00	217.459	-9.3497	-0.55893	110.0	64.3028	-0.35491	-0.60714
13.50	212.930	-8.7795	-0.55663	115.0	62.5847	-0.33260	-0.61115
14.00	208.671	-8.2661	-0.55458	120.0	60.9743	-0.31182	-0.61367
14.50	204.655	-7.8033	-0.55287	125.0	59.4636	-0.29278	-0.61546
15.00	200.860	-7.3832	-0.55137	130.0	58.0433	-0.27567	-0.61742
15.50	197.265	-7.0016	-0.55014	135.0	56.7042	-0.26017	-0.61941
16.00	193.853	-6.6527	-0.54909	140.0	55.4394	-0.24599	-0.62119
16.50	190.608	-6.3334	-0.54825	145.0	54.2424	-0.23299	-0.62283
17.00	187.516	-6.0398	-0.54756	150.0	53,1077	-0.22106	-0.62437
17.50	184.564	-5.7695	-0.54705	155.0	52.0302	-0.21007	-0.62581
18.00	181.743	-5.5196	-0.54666	160.0	51.0056	-0.19991	-0.62709
18 50	179 0/1	-5 2882	-0 54642	165.0	50 0200	-0 10048	-0 62821
19.00	176 452	-5.2002	-0.54628	170.0	49 0997	-0.190-0	-0.02021
19.50	173 966	-4 8734	-0 54627	175.0	48 2118	-0 17354	-0.62993
20.00	171 576	-4 6870	-0 54634	180.0	47 3634	-0 16591	-0.63051
21.00	167.061	-4.3497	-0.54677	185.0	46.5519	-0.15875	-0.63090
00.00	400.000	4 0500	0 5 4 7 5 4	400.0	45 7754	0.45004	0.00400
22.00	162.863	-4.0532	-0.54751	190.0	45.7751	-0.15204	-0.63108
23.00	158.944	-3.7908	-0.54855	195.0	45.0308	-0.14573	-0.63107
24.00	155.272	-3.5567	-0.54975	200.0	44.3172	-0.13979	-0.63085
25.00	151.822	-3.3470	-0.55114	205.0	43.0324	-0.13418	-0.63044
26.00	148.571	-3.1586	-0.55276	210.0	42.9748	-0.12889	-0.62984
27.00	145.499	-2.9881	-0.55449	215.0	42.3430	-0.12389	-0.62906
28.00	142.590	-2.8325	-0.55621	220.0	41.7355	-0.11915	-0.62809
29.00	139.830	-2.6900	-0.55789	225.0	41.1510	-0.11467	-0.62696
30.00	137.206	-2.5591	-0.55955	230.0	40.5884	-0.11041	-0.62566
31.00	134.708	-2.4384	-0.56114	235.0	40.0466	-0.10637	-0.62422
32.00	132.326	-2.3267	-0.56267	240.0	39.5244	-0.10254	-0.62264
33.00	130.052	-2.2232	-0.56412	245.0	39.0208	-9.8894e-2	-0.62093
34.00	127.877	-2.1270	-0.56552	250.0	38.5351	-9.5428e-2	-0.61910
35.00	125.796	-2.0372	-0.56680	255.0	38.0663	-9.2130e-2	-0.61716
36.00	123.801	-1.9534	-0.56803	260.0	37.6136	-8.8989e-2	-0.61513

INTERPOLATION TABLE

Calibration Report: 429014 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29754 Sensor Excitation: 2mV±50%

Temp (K)	Res. (Ω)	dR/dT (Ω/K)	dlogR/dlogT	Temp (K)	Res. (Ω)	dR/dT (Ω/K)	dlogR/dlogT
265.0	37,1761	-8.5998e-2	-0.61301	285.0	35,5659	-7.5357e-2	-0.60386
270.0	36.7533	-8.3146e-2	-0.61081	290.0	35.1951	-7.2993e-2	-0.60145
273.15	36.4942	-8.1418e-2	-0.60940	295.0	34.8358	-7.0735e-2	-0.59900
275.0	36.3445	-8.0427e-2	-0.60855	300.0	34.4876	-6.8576e-2	-0.59653
280.0	35.9489	-7.7833e-2	-0.60623	305.0	34.1499	-6.6513e-2	-0.59404
				310.0	33.8223	-6.4539e-2	-0.59153
				315.0	33.5044	-6.2650e-2	-0.58902
				320.0	33.1957	-6.0842e-2	-0.58650
				325.0	32.8958	-5.9110e-2	-0.58398

THERMAL CYCLE TESTING

Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Serial Number: X29754

This sensor was tested for repeatability through rapid thermal cycles from room temperature into liquid helium. During this test, the following four lead resistance values were recorded:

Room Temperature:	34.1Ω
Liquid Nitrogen:	79.4Ω
Liquid Helium:	444Ω

The nitrogen and helium values were recorded in OPEN dewars, so precision comparisons with calibration values or other dip test values should not be made.

Recommended Operating Parameters:

For sensors calibrated by LSCI the current to the sensor is adjusted to maintain the sensor output voltage at the values listed below. In order to minimize possible self-heating errors, we suggest that these same guidelines be followed in using the sensor:

Above 1K:	1 to 3 mV
0.1 to 1K:	0.1 mV
Below 0.1K:	0.03 mV

Lead Identification:

NONE

To avoid possible damage to the sensor, do not exceed 1 Volt and do not exceed 100 mA current.

Page 11 of 14

BREAKPOINTS 340 FORMAT

Calibration Report: 429014 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Name: CX-1030-SD-HT-4L

Sales Order: 14119 Serial Number: X29754

Serial number: X29754		
Format: 4 ;Log Ohms/Kelv	<i>/</i> in	
Limit: 325.		
Coefficient: 1 ;Negative	Deint E6: 1 99702 91 000	Deint 111: 0 11107 0 650
Point 1: 1.51713,325.000	Point 57: 1 90600 79 500	Point 112: 2,42240 0,200
Point 3: 1 52632 313 500	Point 58: 1 90264 76 500	Point 113: 2.42349, 9.200
Point 4: 1 53086 308 000	Point 50: 1.90204, 70.000	Point 114: 2 44713 8 400
Point 5: 1 53551 302 500	Point 60: 1 91642 72 500	Point 115: 2 46002 8 000
10/11/01/1000001,002.000	1 0111 00. 1.01042, 72.000	1 0111 110. 2.40002, 0.000
Point 6: 1.54026.297.000	Point 61: 1.92359, 70.500	Point 116: 2.47373. 7.600
Point 7: 1.54513,291.500	Point 62: 1.93094, 68.500	Point 117: 2.48839, 7.200
Point 8: 1.55011,286.000	Point 63: 1.93851, 66.500	Point 118: 2.50212, 6.850
Point 9: 1.55521,280.500	Point 64: 1.94629, 64.500	Point 119: 2.51675, 6.500
Point 10: 1.56043,275.000	Point 65: 1.95431, 62.500	Point 120: 2.53244, 6.150
Point 11: 1.56529,270.000	Point 66: 1.96258, 60.500	Point 121: 2.54833, 5.820
Point 12: 1.57026,265.000	Point 67: 1.97067, 58.600	Point 122: 2.56490, 5.500
Point 13: 1.57534,260.000	Point 68: 1.97858, 56.800	Point 123: 2.58279, 5.180
Point 14: 1.58053,255.000	Point 69: 1.98673, 55.000	Point 124: 2.60095, 4.880
Point 15: 1.58585,250.000	Point 70: 1.99514, 53.200	Point 125: 2.61928, 4.600
	D. 1.1. 74. 0.00000 54.400	B
Point 16: 1.59129,245.000	Point 71: 2.00382, 51.400	Point 126: 2.63913, 4.320
Point 19: 1.60256 225 000	Point 72: 2.01200, 49.000	Point 127. 2.00001, 4.040
Point 10: 1.60230,235.000	Point 73: 2.02209, 47:000	FUIII 128. 2.00420, 4.000
Point 79: 1.00039,230.000	Point 74: 2:03172, 40:000	
1 Oliti 20. 1.01437,223.000	1 oint 75. 2.04035, 44.400	
Point 21: 1 62049 220 000	Point 76 [.] 2 04975 42 800	
Point 22: 1 62677 215 000	Point 77 2 05925 41 200	
Point 23: 1.63320.210.000	Point 78: 2.06973, 39.500	
Point 24: 1.63980,205.000	Point 79: 2.07998, 37.900	
Point 25: 1.64656,200.000	Point 80: 2.08997, 36.400	
Point 26: 1.65350,195.000	Point 81: 2.10034, 34.900	
Point 27: 1.66062,190.000	Point 82: 2.11113, 33.400	
Point 28: 1.66792,185.000	Point 83: 2.12237, 31.900	
Point 29: 1.67467,180.500	Point 84: 2.13332, 30.500	
Point 30: 1.68158,176.000	Point 85: 2.14472, 29.100	
Deint 04: 4 00007 474 500	Delist 00: 0 45005 07 700	
Point 31: 1.68867,171.500	Point 86: 2.15665, 27.700	
Point 32: 1.09595, 167.000	Pulli 67. 2.10023, 20.400	
Point 33. 1.70336, 162.500	Point 80: 2 10005, 20 100	
Point 35: 1 71888 153 500	Point 00: 2 20432 22 700	
1 0111 35. 1.7 1000, 155.500	1 0111 30. 2.20432, 22.700	
Point 36: 1 72695 149 000	Point 91 2 21723 21 500	
Point 37: 1.73526.144.500	Point 92: 2.22971, 20.400	
Point 38: 1.74380,140.000	Point 93: 2.23923, 19.600	
Point 39: 1.75162,136.000	Point 94: 2.24723, 18.950	
Point 40: 1.75964,132.000	Point 95: 2.25551, 18.300	
Point 41: 1.76789,128.000	Point 96: 2.26409, 17.650	
Point 42: 1.77638,124.000	Point 97: 2.27301, 17.000	
Point 43: 1.78513,120.000	Point 98: 2.28157, 16.400	
Point 44: 1.79415,116.000	Point 99: 2.29045, 15.800	
Point 45: 1.80345,112.000	Point 100: 2.29969, 15.200	
Deint 46: 1 01204 400 000	Deint 101: 2 20052 14 052	
FUIIL 40. 1.01304,108.000 Doint 47: 1.82160.104.500	Fullt 101. 2.30853, 14.050	
Point 47. 1.02109,104.000	Fullt 102. 2.31/72, 14.100 Doint 103: 2.32731, 13.550	
Point 49: 1 83717 98 500	Point 104: 2 33734 13 000	
Point 50: 1 84388 96 000	Point 105: 2 34689 12 500	
Point 51: 1.85076. 93.500	Point 106: 2.35687. 12.000	
Point 52: 1.85780, 91.000	Point 107: 2.36734, 11.500	
Point 53: 1.86503, 88.500	Point 108: 2.37834, 11.000	
Point 54: 1.87245, 86.000	Point 109: 2.38877, 10.550	
Point 55: 1.88008, 83.500	Point 110: 2.39972, 10.100	

BREAKPOINTS 91C/93C/330 FORMAT

Calibration Report: 429014 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29754

Interpolation Method: Lagrangian Limit: 325. (Kelvin) Format: 4 (Log Ohms/Kelvin) Number of Breakpoints: 47

No.	Units	Temperature (K)	No.	Units	Temperature (K)
1	1 51714	225.0	26	2 12088	20.1
1	1.51714	323.0	20	2.12000	JZ. 1 20 7
2	1.517.92	315.0	20	2.14012	20.7
3	1.52510	200.0	20	2.17303	20.0
4	1.55700	300.0	29	2.20332	22.0
5	1.55105	285.0	30	2.23092	20.5
6	1.56530	270.0	31	2.25814	18.1
7	1.58054	255.0	32	2.28599	16.1
8	1.59686	240.0	33	2.31268	14.4
9	1.61438	225.0	34	2.33925	12.9
10	1.63321	210.0	35	2.36738	11.5
11	1.65351	195.0	36	2.39482	10.3
12	1.67544	180.0	37	2.42076	9.3
13	1.69923	165.0	38	2.44718	8.4
14	1.72516	150.0	39	2.47380	7.6
15	1.75362	135.0	40	2.50017	6.9
16	1.78515	120.0	41	2.52566	6.3
17	1.82046	105.0	42	2.54942	5.8
18	1.86068	90.0	43	2.57602	5.3
19	1.90774	75.0	44	2.59980	4.9
20	1.95433	62.5	45	2.62630	4.5
21	1.97994	56.5	46	2.65615	4.1
22	2.01080	50.0	47	2.66423	4.0
23	2.03725	45.0			
24	2.06539	40.2			
25	2.09272	36.0			

Temperature for Resistance Decades:

Res. (Ohms)	Temp. (K)
100	52.188

BREAKPOINTS 234 FORMAT

Calibration Report: 429014 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29754

	-		Maximum Tem	<u>perature</u> Error:			
			1.4 - 10K:	0.005K			
			10 - 20K:	0.010K			
			20 - 40K:	0.017K			
			40 - 100K:	0.043K			
			> 100K:	0.180K			
<u>BP #</u>	<u>Temp. (K)</u>	<u>Res. (Ω)</u>	Log10 Res.	<u>BP #</u>	<u>Temp. (K)</u>	<u>Res. (Ω)</u>	Log10 Res.
1	321.366	33.11311	1.520	31	32.216	131.8257	2.120
2	297.312	34.67369	1.540	32	29.678	138.0384	2.140
3	275.450	36.30781	1.560	33	27.322	144.5440	2.160
4	255.514	38.01894	1.580	34	25.140	151.3561	2.180
5	237.237	39.81072	1.600	35	23.121	158.4893	2.200
6	220.408	41.68694	1.620	36	21.256	165.9587	2.220
7	204.854	43.65158	1.640	37	19.538	173.7801	2.240
8	190.437	45.70882	1.660	38	17.959	181.9701	2.260
9	177.029	47.86301	1.680	39	16.509	190.5461	2.280
10	164.532	50.11872	1.700	40	15.182	199.5262	2.300
11	152.879	52.48075	1.720	41	13.969	208.9296	2.320
12	141.996	54.95409	1.740	42	12.861	218.7762	2.340
13	131.830	57.54399	1.760	43	11.849	229.0868	2.360
14	122.341	60.25596	1.780	44	10.929	239.8833	2.380
15	113.475	63.09573	1.800	45	10.091	251.1886	2.400
16	105.179	66.06934	1.820	46	9.328	263.0268	2.420
17	97.443	69.18310	1.840	47	8.634	275.4229	2.440
18	90.237	72.44360	1.860	48	8.002	288.4032	2.460
19	83.530	75.85776	1.880	49	7.428	301.9952	2.480
20	77.296	79.43282	1.900	50	6.904	316.2278	2.500
21	71.498	83.17638	1.920	51	6.427	331.1311	2.520
22	66.115	87.09636	1.940	52	5.992	346.7369	2.540
23	61.121	91.20108	1.960	53	5.594	363.0781	2.560
24	56.486	95.49926	1.980	54	5.230	380.1894	2.580
25	52.189	100.0000	2.000	55	4.897	398.1072	2.600
26	48.204	104.7129	2.020	56	4.591	416.8694	2.620
27	44.508	109.6478	2.040	57	4.310	436.5158	2.640
28	41.081	114.8154	2.060	58	4.052	457.0882	2.660
29	37.902	120.2264	2.080	59	3.814	478.6301	2.680
30	34.952	125.8925	2.100				

X29758 SCAL-B 2% prime thermometer

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 105 of
	115

DATA PLOT

Calibration Report: 429018 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29758 Sensor Excitation: 2mV±50%

Page 1 of 14

TEST DATA

Calibration Report: 429018 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29758 Sensor Excitation: 2mV±50%

Index	Temperature (K)	Resistance (Ω)	Index	Temperature (K)	Resistance (Ω)
1	3.60604	485.235	41	75.1476	80.2362
2	3.80519	465.676	42	80.1406	77.2626
3	4.00707	447.968	43	85.1340	74.5587
4	4.20352	432.381	44	90.1238	72.0863
5	4.72414	397.784	45	95.1233	69.8131
6	5.12455	375.921	46	100.112	67.7123
7	5.62741	352.879	47	110.212	63.9123
8	6.32950	326.752	48	120.097	60.6798
9	7.13738	302.871	49	130.099	57.7881
10	8.15264	279.288	50	140.106	55.2149
11	9.17440	260.462	51	150.102	52.9123
12	10.1961	245.029	52	160.094	50.8370
13	11.2104	232.194	53	170.082	48.9487
14	12.2201	221.264	54	180.077	47.2351
15	13.2194	211.861	55	190.080	45.6651
16	14.2124	203.616	56	200.080	44.2251
17	15.2012	196.279	57	210.073	42.8984
18	16,1742	189,792	58	220.067	41.6747
19	17,1492	183.881	59	230.078	40,5393
20	18.1215	178.486	60	240.075	39.4857
21	19.0930	173.502	61	250.072	38.5076
22	20.0679	168 916	62	260.079	37 5923
23	21 1464	164 212	63	270 070	36 7444
24	22.7159	157.949	64	280.079	35,9449
25	24.3148	152.243	65	290.072	35.1944
26	25 9494	146 923	66	300 077	34 4975
27	27 5911	142 061	67	310 072	33 8397
28	29 2313	137 622	68	315 080	33 5258
29	31 0566	133 085	69	320 092	33 2184
30	33.1811	128.241	70	326.096	32.8687
31	36 1870	122 169	71	330 092	32 6387
32	39 1911	116 787			02.0001
33	42 1821	112 029			
34	45 1813	107 723			
35	48.1694	103.849			
36	50 1691	101 446			
37	55 1564	96 0417			
38	60 1606	91 3450			
39	65 1554	87 2032			
40	70 1524	83 5311			
		00.0011			

Calibration Report: 429018 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29758 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Useful Range of Fit:

4.00K	to	24.3K
448.6 Ohms	to	152.2 Ohms

Lower and Upper limits of Log(resistance) used in computing Chebychev coefficients:

	ZL = 2.15247579460	20 - 2.0009022	2923
Order	Coefficient	Std. Deviation of Coefficient	Ratio (Coeff./Std Dev.)
0	12.266048	3.1745E-04	38639.77
1	-11.377249	4.9169E-04	-23139.14
2	3.276864	4.7286E-04	6929.91
3	-0.620809	4.4652E-04	-1390.32
4	0.057461	4.3541E-04	131.97
5	0.005286	4.2275E-04	12.50
6	-0.001756	4.0566E-04	-4.33

Z = Log(resistance)

X = ((Z-ZL)-(ZU-Z))/(ZU-ZL)

Temp. (K) = $\Sigma A_i^* COS(i * ARCCOS(X))$, where 0 <= i <= 6 and the A_i 's are the coefficients in the table above.

Calibration Report: 429018 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29758 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Temp. (K) vs. Log(resistance)

	R Meas. (Ω)	T Meas. (K)	T Eq. (K)	T diff. (mK)
1	485.2351	3.60604	3.60585	0.20
2	465.6762	3.80519	3.80524	-0.05
3	447.9683	4.00707	4.00711	-0.04
4	432.3809	4.20352	4.20438	-0.86
5	397.7840	4.72414	4.72320	0.94
6	375.9205	5.12455	5.12409	0.46
7	352.8788	5.62741	5.62742	-0.01
8	326.7522	6.32950	6.33011	-0.61
9	302.8707	7.13738	7.13844	-1.06
10	279.2883	8.15264	8.15246	0.18
11	260.4624	9.17440	9.17279	1.61
12	245.0293	10.19610	10.19580	0.30
13	232.1945	11.21043	11.21074	-0.31
14	221.2643	12.22011	12.22091	-0.80
15	211.8606	13.21940	13.21976	-0.36
16	203.6159	14.21238	14.21232	0.06
17	196.2790	15.20121	15.20236	-1.15
18	189.7921	16.17419	16.17369	0.49
19	183.8814	17.14918	17.14762	1.56
20	178.4855	18.12147	18.11971	1.76
21	173.5017	19.09296	19.09586	-2.89
22	168.9157	20.06792	20.06750	0.42
23	164.2115	21.14637	21.14468	1.69
24	157.9489	22.71590	22.71961	-3.71
25	152.2427	24.31476	24.31212	2.64
26	146.9232	25.94943	25.94963	-0.20
27	142.0606	27.59114	27.59139	-0.25

Order of Fit = 6 RMS error of fit = 1.31 mK Largest absolute error = -3.71 mK at data point no. 24

Calibration Report: 429018 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29758 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Useful Range of Fit:

24.3K	to	110.K
152.2 Ohms	to	63.91 Ohms

Lower and Upper limits of Log(resistance) used in computing Chebychev coefficients:

	ZL = 1.70183810753	20 = 2.2154036	4320
Order	Coefficient	Std. Deviation of Coefficient	Ratio (Coeff./Std Dev.)
0	64.623274	1.3025E-03	49613.85
1	-53.063432	2.1181E-03	-25052.79
2	10.896525	1.9327E-03	5637.85
3	-1.423310	1.7678E-03	-805.13
4	0.100982	1.6592E-03	60.86
5	0.011061	1.6488E-03	6.71

Z = Log(resistance)

X = ((Z-ZL)-(ZU-Z))/(ZU-ZL)

Temp. (K) = $\Sigma A_i^* COS(i * ARCCOS(X))$, where 0 <= i <= 5 and the A_i 's are the coefficients in the table above.

Calibration Report: 429018 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29758 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Temp. (K) vs. Log(resistance)

	R Meas. (Ω)	T Meas. (K)	T Eq. (K)	T diff. (mK)
23	164.2115	21.14468	21.14510	-0.42
24	157.9489	22.71961	22.71887	0.74
25	152.2427	24.31212	24.31149	0.63
26	146.9232	25.94943	25.94965	-0.21
27	142.0606	27.59114	27.59285	-1.71
28	137.6215	29.23135	29.22934	2.01
29	133.0854	31.05655	31.05244	4.11
30	128.2406	33.18108	33.18976	-8.68
31	122.1694	36.18697	36.18812	-1.16
32	116.7872	39.19107	39.19499	-3.92
33	112.0288	42.18208	42.17549	6.59
34	107.7227	45.18125	45.17668	4.58
35	103.8485	48.16936	48.16180	7.55
36	101.4462	50.16910	50.16598	3.12
37	96.04168	55.15643	55.16745	-11.02
38	91.34499	60.16056	60.16121	-0.65
39	87.20316	65.15544	65.16406	-8.62
40	83.53112	70.15236	70.15380	-1.44
41	80.23624	75.14761	75.14772	-0.12
42	77.26257	80.14057	80.13798	2.58
43	74.55875	85.13401	85.12911	4.89
44	72.08625	90.12382	90.12083	2.99
45	69.81307	95.12333	95.11451	8.82
46	67.71228	100.11200	100.11328	-1.29
47	63.91233	110.21227	110.22601	-13.73
48	60.67984	120.09690	120.09531	1.58
49	57.78807	130.09923	130.09646	2.77

Order of Fit = 5 RMS error of fit = 5.32 mK Largest absolute error = -13.73 mK at data point no. 47

Calibration Report: 429018 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29758 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Useful Range of Fit:

110.K	to	325.K
63.91 Ohms	to	32.93 Ohms

Lower and Upper limits of Log(resistance) used in computing Chebychev coefficients: 7I = 1.51373274759 7II = 1.84393673895

	ZL = 1.51575274759	20 - 1.0439307	2090
Order	Coefficient	Std. Deviation of Coefficient	Ratio (Coeff./Std Dev.)
0	194.357325	4.0527E-03	47957.22
1	-114.859138	6.2665E-03	-18329.07
2	17.739413	5.6306E-03	3150.52
3	-2.531073	5.4850E-03	-461.45
4	0.480269	5.4978E-03	87.36
5	-0.093527	5.4616E-03	-17.12
6	0.028821	5.2811E-03	5.46

Z = Log(resistance)

X = ((Z-ZL)-(ZU-Z))/(ZU-ZL)

Temp. (K) = $\Sigma A_i^* COS(i * ARCCOS(X))$, where 0 <= i <= 6 and the A_i 's are the coefficients in the table above.

Calibration Report: 429018 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29758 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Temp. (K) vs. Log(resistance)

	R Meas. (Ω)	T Meas. (K)	T Eq. (K)	T diff. (mK)
45	69.81307	95.11451	95.12209	-7.58
46	67.71228	100.11328	100.10170	11.58
47	63.91233	110.22601	110.22245	3.55
48	60.67984	120.09690	120.10338	-6.49
49	57.78807	130.09923	130.10971	-10.48
50	55.21492	140.10563	140.11049	-4.86
51	52.91234	150.10170	150.09363	8.08
52	50.83703	160.09350	160.07202	21.48
53	48.94873	170.08249	170.09044	-7.95
54	47.23508	180.07739	180.07630	1.09
55	45.66506	190.07993	190.08174	-1.81
56	44.22508	200.07952	200.08018	-0.66
57	42.89836	210.07327	210.08334	-10.07
58	41.67470	220.06667	220.07143	-4.76
59	40.53926	230.07804	230.07857	-0.53
60	39.48567	240.07454	240.08198	-7.45
61	38.50763	250.07189	250.06405	7.83
62	37.59229	260.07888	260.08794	-9.07
63	36.74443	270.07040	270.03234	38.06
64	35.94490	280.07933	280.06007	19.26
65	35.19445	290.07178	290.11358	-41.80
66	34.49747	300.07718	300.07042	6.75
67	33.83975	310.07219	310.07484	-2.65
68	33.52577	315.07957	315.07775	1.82
69	33.21843	320.09156	320.12710	-35.54
70	32.86872	326.09572	326.06568	30.04
71	32.63869	330.09170	330.08957	2.14

Order of Fit = 6 RMS error of fit = 16.21 mK Largest absolute error = -41.80 mK at data point no. 65

INTERPOLATION TABLE

Calibration Report: 429018 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29758 Sensor Excitation: 2mV±50%

Temp (K)	<u>Res.</u> (Ω)	<u>dR/dT (Ω/K)</u>	<u>dlogR/dlogT</u>	Temp (K)	<u>Res.</u> (Ω)	<u>dR/dT (Ω/K)</u>	<u>dlogR/dlogT</u>
4 000	448 560	-83 382	-0 74355	37 00	120 652	-1 8383	-0 56373
4 200	432 711	-75 331	-0 73118	38.00	118 850	-1 7667	-0.56486
4 400	418 351	-68 433	-0 71975	39.00	117 117	-1 6995	-0 56593
4,600	405 276	-00.+00	0 70807	40.00	115.450	1 6364	0.56606
4.000	202 211	-02.403	-0.70097	40.00	112.400	-1.0304	-0.50090
4.800	393.311	-57.307	-0.09937	42.00	112.295	-1.5206	-0.50661
5.000	382.311	-52.783	-0.69032	44.00	109.358	-1.4179	-0.57047
5.200	372.161	-48.802	-0.68188	46.00	106.616	-1.3257	-0.57198
5.400	362.761	-45.266	-0.67383	48.00	104.049	-1.2428	-0.57333
5.600	354.028	-42.126	-0.66635	50.00	101.640	-1.1680	-0.57459
5.800	345.888	-39.324	-0.65939	52.00	99.3723	-1.1003	-0.57575
6 000	338 281	-36 794	-0 65261	54 00	97 2345	-1 0386	-0 57678
6 500	321 260	-31 513	-0 63759	56.00	95 2143	-0.98246	-0 57783
7 000	306 586	-27 342	-0 62428	58.00	93 3015	-0.93107	-0.57879
7.500	293 777	-24 010	-0.61296	60.00	91 4872	-0.88395	-0 57972
8.000	282.477	-21.281	-0.60269	65.00	87.3312	-0.78188	-0.58194
0.500	070 440	10.011	0 50440	70.00	00.0000	0.00704	0 50440
8.500	272.413	-19.041	-0.59413	70.00	83.6383	-0.69791	-0.58410
9.000	263.377	-17.158	-0.58633	75.00	80.3289	-0.62791	-0.58625
9.500	255.204	-15.5/4	-0.57974	77.35	/8.88//	-0.59895	-0.58727
10.00	247.766	-14.216	-0.57376	80.00	77.3410	-0.56887	-0.58843
10.50	240.956	-13.051	-0.56872	85.00	74.6256	-0.51856	-0.59065
11.00	234.690	-12.037	-0.56416	90.00	72.1436	-0.47530	-0.59294
11.50	228.897	-11.152	-0.56030	95.00	69.8631	-0.43773	-0.59523
12.00	223.520	-10.372	-0.55683	100.0	67.7581	-0.40507	-0.59782
12.50	218.510	-9.6825	-0.55390	105.0	65.8059	-0.37632	-0.60045
13.00	213.826	-9.0674	-0.55128	110.0	63.9902	-0.35044	-0.60241
13 50	200 432	-8 5181	-0 54908	115.0	62 2068	-0 32730	-0 60436
14.00	205.402	-8.0232	-0.54713	120.0	60 7116	-0.30717	-0.60714
14.50	200.200	-7 5771	-0.54552	125.0	50 2215	-0.28011	-0.61023
15.00	107 715	7 1710	0.54411	120.0	57 8170	0.20311	0.61294
15.00	104 222	-7.1719	-0.34411	130.0	57.0179	-0.27230	-0.01204
15.50	194.222	-0.0037	-0.54297	135.0	50.4950	-0.23740	-0.01510
16.00	190.906	-6.4670	-0.54201	140.0	55.2418	-0.24351	-0.61713
16.50	187.750	-6.1588	-0.54125	145.0	54.0566	-0.23074	-0.61892
17.00	184.743	-5.8753	-0.54064	150.0	52.9328	-0.21894	-0.62042
17.50	181.871	-5.6142	-0.54021	155.0	51.8658	-0.20802	-0.62167
18.00	179.125	-5.3728	-0.53990	160.0	50.8513	-0.19791	-0.62271
18.50	176.496	-5.1492	-0.53973	165.0	49.8855	-0.18852	-0.62354
19.00	173.974	-4.9414	-0.53966	170.0	48,9650	-0.17979	-0.62420
19.50	171 552	-4 7482	-0 53972	175.0	48 0866	-0 17165	-0 62468
20.00	169 223	-4 5679	-0 53987	180.0	47 2476	-0 16405	-0 62500
21.00	164.822	-4.2415	-0.54041	185.0	46.4453	-0.15695	-0.62516
22.00	160 727	2 0545	0 54129	100.0	45 6772	0 15020	0 62519
22.00	100.727	-3.9040	-0.34120	190.0	45.0775	-0.15050	-0.02316
23.00	156.901	-3.7020	-0.54268	195.0	44.9416	-0.14406	-0.62505
24.00	153.315	-3.4751	-0.54399	200.0	44.2362	-0.13819	-0.62477
25.00	149.944	-3.2699	-0.54519	205.0	43.5592	-0.13267	-0.62436
26.00	146.768	-3.0866	-0.54679	210.0	42.9090	-0.12746	-0.62379
27.00	143.765	-2.9210	-0.54858	215.0	42.2841	-0.12254	-0.62308
28.00	140.921	-2.7697	-0.55032	220.0	41.6831	-0.11789	-0.62222
29.00	138.221	-2.6311	-0.55203	225.0	41.1048	-0.11349	-0.62122
30.00	135.655	-2.5039	-0.55374	230.0	40.5478	-0.10931	-0.62007
31.00	133.210	-2.3865	-0.55537	235.0	40.0113	-0.10535	-0.61877
32.00	130.879	-2.2779	-0.55695	240.0	39,4940	-0.10159	-0.61733
33.00	128.652	-2.1771	-0.55845	245.0	38,9951	-9.8003e-2	-0.61574
34.00	126 522	-2 0835	-0.55989	250.0	38 5137	-9.4591e-2	-0 61401
35.00	124 483	-1 9961	-0 56122	255.0	38 0489	-9 1338e-2	-0 61214
36.00	122 528	-1 9145	-0.56250	260.0	37 6001	-8.8235e-2	-0 61014
							2.0.011

INTERPOLATION TABLE

Calibration Report: 429018 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29758 Sensor Excitation: 2mV±50%

Temp (K)	<u>Res.</u> (Ω)	<u>dR/dT (Ω/K)</u>	<u>dlogR/dlogT</u>	Temp (K)	<u>Res.</u> (Ω)	<u>dR/dT (Ω/K)</u>	<u>dlogR/dlogT</u>
265.0	37,1663	-8.5273e-2	-0.60801	285.0	35.5700	-7.4671e-2	-0.59829
270.0	36.7471	-8.2443e-2	-0.60575	290.0	35.2027	-7.2298e-2	-0.59559
273.15	36.4901	-8.0724e-2	-0.60427	295.0	34.8469	-7.0025e-2	-0.59281
275.0	36.3417	-7.9737e-2	-0.60337	300.0	34.5022	-6.7847e-2	-0.58994
280.0	35.9495	-7.7148e-2	-0.60088	305.0	34.1683	-6.5759e-2	-0.58699
				310.0	33.8445	-6.3755e-2	-0.58397
				315.0	33.5306	-6.1833e-2	-0.58089
				320.0	33.2261	-5.9989e-2	-0.57775
				325.0	32.9306	-5.8218e-2	-0.57457

THERMAL CYCLE TESTING

Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Serial Number: X29758

This sensor was tested for repeatability through rapid thermal cycles from room temperature into liquid helium. During this test, the following four lead resistance values were recorded:

Room Temperature:	34 .1Ω
Liquid Nitrogen:	78.8Ω
Liquid Helium:	432Ω

The nitrogen and helium values were recorded in OPEN dewars, so precision comparisons with calibration values or other dip test values should not be made.

Recommended Operating Parameters:

For sensors calibrated by LSCI the current to the sensor is adjusted to maintain the sensor output voltage at the values listed below. In order to minimize possible self-heating errors, we suggest that these same guidelines be followed in using the sensor:

Above 1K:	1 to 3 mV
0.1 to 1K:	0.1 mV
Below 0.1K:	0.03 mV

Lead Identification:

NONE

To avoid possible damage to the sensor, do not exceed 1 Volt and do not exceed 100 mA current.

Page 11 of 14

BREAKPOINTS 340 FORMAT

Calibration Report: 429018 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Name: CX-1030-SD-HT-4L

Sales Order: 14119 Serial Number: X29758

Serial number: X29758		
Format: 4 ;Log Ohms/Kelv	in	
Limit: 325.		
Coefficient: 1 ;Negative	Deint 50: 1 00500 01 000	Deint 444: 0 40550 0 550
Point 1: 1.51759,325.000	Point 56: 1.88522, 81.000	Point 111: 2.40552, 9.550
Point 2: 1.52226,319.000	Point 57: 1.89323, 78.500	Point 112: 2.41771, 9.100 Doint 112: 2.42020 9.700
Point 4: 1 52112 209 000	Point 50: 1.09902, 70.000	Point 114: 2 44122 9 200
Point 5: 1 53572 302 500	Point 60: 1.01348 72.500	Point 115: 2 45422 7 000
Fullit 5. 1.55572,502.500	Foint 60. 1.91546, 72.500	Foint 115. 2.45422, 7.900
Point 6: 1 54042 297 000	Point 61: 1 92059 70 500	Point 116: 2 46795 7 500
Point 7: 1 54523 291 500	Point 62: 1 92788 68 500	Point 117: 2 48077 7 150
Point 8: 1 55017 286 000	Point 63: 1 93539 66 500	Point 118: 2 49438 6 800
Point 9: 1.55476.281.000	Point 64: 1.94311, 64.500	Point 119: 2.50893. 6.450
Point 10: 1.55945.276.000	Point 65: 1.95106, 62.500	Point 120: 2.52452, 6.100
,		,
Point 11: 1.56424,271.000	Point 66: 1.95925, 60.500	Point 121: 2.53984, 5.780
Point 12: 1.56915,266.000	Point 67: 1.96728, 58.600	Point 122: 2.55629, 5.460
Point 13: 1.57416,261.000	Point 68: 1.97512, 56.800	Point 123: 2.57406, 5.140
Point 14: 1.57929,256.000	Point 69: 1.98320, 55.000	Point 124: 2.59211, 4.840
Point 15: 1.58454,251.000	Point 70: 1.99154, 53.200	Point 125: 2.61033, 4.560
Point 16: 1.58991,246.000	Point 71: 2.00015, 51.400	Point 126: 2.63009, 4.280
Point 17: 1.59541,241.000	Point 72: 2.00904, 49.600	Point 127: 2.65009, 4.020
Point 18: 1.60103,236.000	Point 73: 2.01825, 47.800	Point 128: 2.65182, 4.000
Point 19: 1.60679,231.000	Point 74: 2.02780, 46.000	
Point 20: 1.61269,226.000	Point 75: 2.03659, 44.400	
Deint 21: 1 61872 221 000	Deint 76: 2.04567 42.800	
Point 21: 1.61872,221.000	Point 76: 2.04567, 42.800	
Point 22: 1.62491,210.000	Point 77: 2.05506, 41.200	
Point 24: 1.63775 206 000	Point 70: 2.00540, 59.500	
Point 25: 1 64441 201 000	Point 80: 2.08617 36 300	
1 0111 23. 1.0444 1,201.000	10111 00. 2.000 17, 00.000	
Point 26: 1 65125 196 000	Point 81 2 09648 34 800	
Point 27: 1 65826 191 000	Point 82 2 10719 33 300	
Point 28: 1.66546.186.000	Point 83: 2.11835, 31.800	
Point 29: 1.67212,181.500	Point 84: 2.12921, 30.400	
Point 30: 1.67893,177.000	Point 85: 2.14054, 29.000	
Point 31: 1.68591,172.500	Point 86: 2.15237, 27.600	
Point 32: 1.69308,168.000	Point 87: 2.16387, 26.300	
Point 33: 1.70043,163.500	Point 88: 2.17588, 25.000	
Point 34: 1.70798,159.000	Point 89: 2.18752, 23.800	
Point 35: 1.71574,154.500	Point 90: 2.19971, 22.600	
Delist 00: 4 70074 450 000	Deint 01: 0.04050, 04 400	
Point 36: 1.72371,150.000	Point 91: 2.21253, 21.400	
Point 37: 1.73191,145.500	Point 92: 2.22492, 20.300	
Point 30: 1.74034,141.000	Point 93. 2.23437, 19.300	
Point 40: 1 75697 132 500	Point 95: 2 25054 18 200	
1 on t 40. 1.10001,102.000	- Sint 50. 2.20007, 10.200	
Point 41: 1.76513.128.500	Point 96: 2.25907. 17.550	
Point 42: 1.77352.124.500	Point 97: 2.26793. 16.900	
Point 43: 1.78216,120.500	Point 98: 2.27643, 16.300	
Point 44: 1.79104,116.500	Point 99: 2.28525, 15.700	
Point 45: 1.80021,112.500	Point 100: 2.29444, 15.100	
Point 46: 1.80968,108.500	Point 101: 2.30322, 14.550	
Point 47: 1.81825,105.000	Point 102: 2.31236, 14.000	
Point 48: 1.82707,101.500	Point 103: 2.32190, 13.450	
Point 49: 1.83487, 98.500	Point 104: 2.33187, 12.900	
Point 50: 1.84153, 96.000	Point 105: 2.34138, 12.400	
Point 51: 1.84835, 93.500	Point 106: 2.35131, 11.900	
Point 52: 1.85534, 91.000	Point 107: 2.36173, 11.400	
Point 53: 1.86251, 88.500	Point 108: 2.37269, 10.900	
FUIL 54: 1.80987, 80.000	Point 109: 2.38308, 10.450	
Point 55: 1.87744, 83.500	Point 110: 2.39400, 10.000	

BREAKPOINTS 91C/93C/330 FORMAT

Calibration Report: 429018 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29758

Interpolation Method: Lagrangian Limit: 325. (Kelvin) Format: 4 (Log Ohms/Kelvin) Number of Breakpoints: 46

No.	Units	Temperature (K)	No.	Units	Temperature (K)
1	1 51760	325.0	26	2 12925	30.4
2	1 51837	324.0	20	2.12020	27.1
3	1 53031	309.0	28	2 18362	24.2
4	1 54304	294.0	29	2 21040	21.6
5	1.55663	279.0	30	2.23803	19.2
6	1.57115	264.0	31	2.26519	17.1
7	1.58668	249.0	32	2.29136	15.3
8	1.60333	234.0	33	2.31928	13.6
9	1.62119	219.0	34	2.34532	12.2
10	1.64041	204.0	35	2.37273	10.9
11	1.66113	189.0	36	2.39909	9.8
12	1.68358	174.0	37	2.42631	8.8
13	1.70800	159.0	38	2.45098	8.0
14	1.73471	144.0	39	2.47894	7.2
15	1.76412	129.0	40	2.50264	6.6
16	1.79676	114.0	41	2.52928	6.0
17	1.83357	99.0	42	2.55427	5.5
18	1.87592	84.0	43	2.58242	5.0
19	1.92605	69.0	44	2.60775	4.6
20	1.96347	59.5	45	2.64388	4.1
21	1.99487	52.5	46	2.65182	4.0
22	2.01984	47.5			
23	2.04744	42.5			
24	2.07500	38.0			
25	2.10217	34.0			

Temperature for Resistance Decades:

Res. (Ohms)	Temp. (K)
100	51.433

BREAKPOINTS 234 FORMAT

Calibration Report: 429018 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29758

	-		⁻	_			
			Maximum Tem	perature Error:			
			1.4 - 10K:	0.006K			
			10 - 20K:	0.011K			
			20 - 40K:	0.018K			
			40 - 100K:	0.039K			
			> 100K:	0.187K			
BP #	<u>Temp. (K)</u>	<u>Res. (Ω)</u>	Log10 Res.	<u>BP #</u>	<u>Temp. (K)</u>	<u>Res. (Ω)</u>	Log10 Res.
1	321.886	33.11311	1.520	31	31.589	131.8257	2.120
2	297.495	34.67369	1.540	32	29.070	138.0384	2.140
3	275.439	36.30781	1.560	33	26.734	144.5440	2.160
4	255.325	38.01894	1.580	34	24.574	151.3561	2.180
5	236.914	39.81072	1.600	35	22.576	158.4893	2.200
6	219.968	41.68694	1.620	36	20.735	165.9587	2.220
7	204.305	43.65158	1.640	37	19.039	173.7801	2.240
8	189.791	45.70882	1.660	38	17.483	181.9701	2.260
9	176.309	47.86301	1.680	39	16.056	190.5461	2.280
10	163.771	50.11872	1.700	40	14.751	199.5262	2.300
11	152.089	52.48075	1.720	41	13.559	208.9296	2.320
12	141.189	54.95409	1.740	42	12.472	218.7762	2.340
13	131.011	57.54399	1.760	43	11.483	229.0868	2.360
14	121.497	60.25596	1.780	44	10.583	239.8833	2.380
15	112.599	63.09573	1.800	45	9.764	251.1886	2.400
16	104.300	66.06934	1.820	46	9.021	263.0268	2.420
17	96.575	69.18310	1.840	47	8.345	275.4229	2.440
18	89.372	72.44360	1.860	48	7.730	288.4032	2.460
19	82.674	75.85776	1.880	49	7.172	301.9952	2.480
20	76.448	79.43282	1.900	50	6.663	316.2278	2.500
21	70.667	83.17638	1.920	51	6.201	331.1311	2.520
22	65.301	87.09636	1.940	52	5.779	346.7369	2.540
23	60.325	91.20108	1.960	53	5.393	363.0781	2.560
24	55.711	95.49926	1.980	54	5.041	380.1894	2.580
25	51.433	100.0000	2.000	55	4.718	398.1072	2.600
26	47.471	104.7129	2.020	56	4.422	416.8694	2.620
27	43.797	109.6478	2.040	57	4.150	436.5158	2.640
28	40.390	114.8154	2.060	58	3.901	457.0882	2.660
29	37.233	120.2264	2.080	59	3.670	478.6301	2.680
30	34.302	125.8925	2.100				

X28264 SCAL-B prime SOB thermometer

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 106 of
	115

Calibration Report (CX28264)

Document Ref.: Cardiff Ref.: Issue: 1.0

Prepared by: Iris Didschuns Last Modified on: 19 August 2004 Approved by:

Distribution list

Instrumentation Group, Physics & Astronomy Department, Cardiff University, 5 The Parade, Cardiff CF24 3YB +44 (0) 29 2078 6464 H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Cal ibration-files\Thermometers\CX28264\Calibration Report_CX28264.doc Last updated 17/02/2004 13:56 by Iris Didschuns

Date: 17 February 2004

Calibration Report- (CX28264)

Table of Contents

1.	Sco	ре	
2.	Ove	erview of experimental set-up	
2	.1	Cryostat set-up	
2	.2	Data Acquisition	4
2	.3	Data Calibration	5
3.	Res	ults	6

Ref.:SPIRE Issue: 1.0 Date: 17 February 2004 Page: 3 of 7

Calibration Report– (CX28264)

1. Scope

This document describes the calibration procedure and results for the Lakeshore Cernox High temperature thermometer (type: CX-1030-SD-HT; Serial No.: X28264).

2. Overview of experimental set-up

2.1 Cryostat set-up

The thermometer calibration was carry out under vacuum in a Helium 4 cryostat. The temperature range was from room temperature down to 4.2 K and through pumping on the He4 bath it was extend to 1.5 K. Therefore the three thermometers where mounted onto the 4 K plate next to the calibrated thermometers see Figure 1. The thermometers are calibrated against a calibrated Lakeshore Cernox thermometer (type: CX-1030-SD-HT-1.4L; Serial No.: X25820). The Lakeshore Cernox thermometer is calibrated from 1.4 K up to 325 K.

Figure 1: experimental set-up inside the cryostat

A 4 K and 77 K radiation shield was mounted over all temperature sensors to significantly decrease the radiation input form the surrounding. The data were taken during the warming up period of the cryostat to ensure a good thermal equilibrium of the sensor. The warming up rate until 4 K was 1K per 68min (Figure 2) and from 4 K until 300 K was 1K per 5min (Figure 3).

Figure 2: Typical warming up curve in temperature range between 1.5 K and 4.2 K

Figure 3: Typical warming up curve in temperature range between 4.2 K and 300 K

Figure 4: Power dissipation of the Lakeshore Temperature Monitor LS218E at the calibrated CERNOX thermometer

2.2 Data Acquisition

The resistance of all temperature sensors were monitor with the Lakeshore Temperature Monitor Model 218. The Lakeshore Temperature Monitor was used according to the manual. This means on each of the two groups of four inputs was the same type sensor connected. The calibrated CERNOX thermometer (CX25820) was connected to the 1st input and the to calibrate Cernox thermometer were connected to the 2nd, 3rd and 4th inputs. These inputs were configured for the sensor type "Cernox RTD" (see below). A LabVIEW program was used to control the temperature monitor as well to record the resistance data.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Cal
Physics & Astronomy Department,	ibration-files\Thermometers\CX28264\Calibration
Cardiff University,	Report_CX28264.doc
5 The Parade,	Last updated 17/02/2004 13:56 by Iris Didschuns
Cardiff CF24 3YB	
+44 (0) 29 2078 6464	

Ref.:SPIRE Issue: 1.0 Date: 17 February 2004 Page: 5 of 7

Introduction

Calibration Report- (CX28264)

Lake Shore Model 218 Temperature Monitor User's Manual

rable 1-2, model 210 densor input renormance ena	Table 1-2.	Model 218	Sensor Input	Performance	Charl
--	------------	-----------	--------------	-------------	-------

	1				
Sensor Type	Silicon Diode	GaAlAs Diode	100 Ω Platinum RTD 500 Ω Full Scale	1000 Ω Platinum RTD	Cemox™ RTD
Temperature Coefficient	Negative	Negative	Positive	Positive	Negative
Sensor Units	Volts (V)	Volts (V)	Ohms (Ω)	Ohms (Ω)	Ohms (Ω)
Input Range	0 – 2.5 V	0 – 7.5 V	0 – 500 Ω	0 – 5000 Ω	0 – 7500 Ω
Sensor Excitation (Constant Current)	10 µA ±0.01%	10 µA ±0.01%	1 mA ±0.3%	1 mA ±0.3%	10 μA ±0.01%
Display Resolution (Sensor Units)	100 uV	100 uV	10 mΩ	100 mΩ	100 mΩ
Example LSCI Sensor	DT-470-CO-13 with 1.4H Cal.	TG-120SD with 1.4H Cal.	PT-103 with 14J Cal.	PT-1001 ² with 1.4 J Cal.	CX-1050-SD with 4L Cal.
Temperature Range	1.4 – 475 K	1.4 – 475 K	30 – 800 K	30 – 800 K	3.5 – 400 K
Standard Sensor Curve	LSCI Curve 10	Requires Calibration	DIN 43760	Scaled from DIN 43670	Requires calibration
Typical Sensor Sensitivity	-30 mV/K at 4.2 K -1.9 mV/K at 77 K -2.4 mV/K at 300 K -2.2 mV/K at 475 K	-180 mV/K at 10 K -1.25 mV/K at 77 K -2.75 mV/K at 300 K -2.75 mV/K at 475 K	0.19 Ω/K at 30 K 0.42 Ω/K at 77 K 0.39 Ω/K at 300 K 0.35 Ω/K at 675 K 0.33 Ω/K at 800 K	1.9 Ω/K at 30 K 4.2 Ω/K at 77 K 3.9 Ω/K at 300 K 3.3 Ω/K at 800 K	-770 Ω/K at 4.2 K -1.5 Ω/K at 77 K -0.1 Ω/K at 300 K
Measurement Resolution:					
Sensor Units	20 uV	20 uV	2 mΩ	20 mΩ	50 mΩ
Temperature Equivalence	1 mK at 4.2 K 11 mK at 77 K 10 mK at 300 K 10 mK at 475 K	1 mK at 10 K 16 mK at 77 K 10 mK at 300 K 10 mK at 475 K	10.6 mK at 30 K 10 mK at 77 K 10 mK at 300 K 10 mK at 675 K 10 mK at 800 K	10.6 mK at 30 K 10 mK at 77 K 10 mK at 300 K 10 mK at 800 K	1 mK at 4.2 K 33.3 mK at 77 K 500 mK at 300 K
Electronic Accuracy:					
Sensor Units	±160 uV ±0.01% RDG	±160 uV ±0.02% RDG	±0.004 Ω ±0.02% RDG	$\pm 0.06 \ \Omega \pm 0.04\% \ \text{RDG}$	±0.1 Ω ±0.04% RDG
Temperature Equivalence	±11 mK at 4.2 K ±138 mK at 77 K ±88 mK at 300 K ±77 mK at 475 K	±6 mK at 10 K ±300 mK at 77 K ±150 mK at 300 K ±110 mK at 475 K	±25 mK at 30 K ±18 mK at 77 K ±70 mK at 300 K ±162 mK at 675 K ±187 mK at 800 K	±40 mK at 30 K ±33 mK at 77 K ±135 mK at 300 K ±370 mK at 800 K	±1 mK at 4.2 K ±88 mK at 77 K ±1.144 K at 300K
Temperature Accuracy including electronic accuracy, CalCurve™ and calibrated sensor	±31 mK at 4.2 K ±193 mK at 77 K ±138 mK at 300 K ±177 mK at 475 K	±21 mK at 10 K ±390 mK at 77 K ±140 mK at 300 K ±210 mK at 475 K	±45 mK at 30 K ±38 mK at 77 K ±105 mK at 300 K ±262 mK at 675 K ±287 mK at 800 K	±60 mK at 30 K ±53 mK at 77 K ±170 mK at 300 K ±470 mK at 800 K	±9 mK at 4.2 K ¹ ±138 mK at 77 K ¹ ±1.284 K at 300K ¹
Magnetic Field Use	Recommended for T ≥ 60 K & B ≤ 3 T	Recommended for T > 4.2 K & B \leq 5 T	Recommended for T > 40 K & B ≤ 2.5 T	Recommended for T > 40 K & B < 2.5 T	Recommended for T > 2 K & B < 19 T

Specified accuracy includes no effects of thermal EMF voltages. An error of 3 m2 results from each 1 µV of thermal EMF voltage. In well-designed systems, thermal EMF voltage should be less than 10 µV
No longer available from Lake Shore.

1-4

2.3 Data Calibration

A polynomial equation based on the Chebychev polynomials has been fit to the calibration data. This equation is of the form:

$$T(x) = \sum_{i=0}^{n} a_i \cdot \cos(i \cdot \arccos(x))$$

where T(x) represents the temperature in Kelvin and a_i represents the Chebychev coefficients. The parameter x is a normalized variable given by:

$$x = \frac{(Z - Zl) - (ZU - Z)}{(ZU - ZL)}$$

Z is $Z = log_{10}(R)$. *ZL* and *ZU* designate the lower and upper limit of the variable *Z* over the fit range.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Cal
Physics & Astronomy Department,	ibration-files\Thermometers\CX28264\Calibration
Cardiff University,	Report_CX28264.doc
5 The Parade,	Last updated 17/02/2004 13:56 by Iris Didschuns
Cardiff CF24 3YB	
+44 (0) 29 2078 6464	

3. Results

Figure 5: A polynomial equation based on the Chebychev polynomials has been fit to the calibration data and the coefficients are shown for each temperature range.

Instrumentation Group, Physics & Astronomy Department, Cardiff University, 5 The Parade, Cardiff CF24 3YB +44 (0) 29 2078 6464 H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Cal ibration-files\Thermometers\CX28264\Calibration Report_CX28264.doc Last updated 17/02/2004 13:56 by Iris Didschuns

Figure 6: This graph shows the difference between calculated temperature and measured temperature.

Instrumentation Group, Physics & Astronomy Department, Cardiff University, 5 The Parade, Cardiff CF24 3YB +44 (0) 29 2078 6464 H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Cal ibration-files\Thermometers\CX28264\Calibration Report_CX28264.doc Last updated 17/02/2004 13:56 by Iris Didschuns

X29756 SCAL-B 4% redundant thermometer

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 107 of
	115

DATA PLOT

Calibration Report: 429016 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29756 Sensor Excitation: 2mV±50%

Page 1 of 14

TEST DATA

Calibration Report: 429016 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29756 Sensor Excitation: 2mV±50%

Index	Temperature (K)	Resistance (Ω)	Index	Temperature (K)	Resistance (Ω)
1	3.60616	369.666	41	75.1478	71.8923
2	3.80505	356.290	42	80.1401	69.4295
3	4.00698	344.127	43	85.1341	67.1857
4	4.20190	333.384	44	90.1259	65.1200
5	4.72419	309.351	45	95.1232	63.2156
6	5.12413	294.010	46	100.112	61.4547
7	5.62727	277.719	47	110.212	58.2579
8	6.32901	259.116	48	120.097	55.5216
9	7.13744	241.974	49	130.100	53.0668
10	8.15252	224.896	50	140.106	50.8700
11	9.17388	211.071	51	150.102	48.8982
12	10.1957	199.727	52	160.094	47.1103
13	11.2113	190.220	53	170.083	45.4865
14	12 2198	182 070	54	180 077	44 0033
15	13.2208	175.016	55	190.079	42.6412
16	14 2122	168 814	56	200 079	41 3867
17	15 1980	163 285	57	210 073	40 2352
18	16 1742	158 332	58	220.067	39 1622
19	17 1501	153 839	59	230.078	38 1678
20	18.1218	149.720	60	240.075	37.2435
21	19 0929	145 934	61	250 073	36 3833
22	20.0681	142 394	62	260.079	35 5832
23	21 1460	138 755	63	270.069	34 8298
24	22 7159	133 948	64	280 079	34 1250
25	24.3146	129.507	65	290.072	33.4668
26	25 9497	125 374	66	300 078	32 8398
27	27 5938	121 581	67	310 072	32 2606
28	29 2319	118 092	68	315 080	31 9834
29	31 0574	114 509	69	320.092	31 7155
30	33.1817	110.709	70	326.096	31.3972
31	36 1874	105 877	71	330 090	31 1979
32	30 1001	101 611	• •	000.000	01.1070
33	42 1827	97 7798			
34	45 1824	94 3152			
35	48.1697	91.1877			
36	50 1692	89 2498			
37	55 1561	84 8701			
38	60 1602	81 0258			
39	65 1550	77 6350			
40	70 1529	74 6098			
10	10.1040	17.0000			

Page 2 of 14
Calibration Report: 429016 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29756 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Useful Range of Fit:

4.00K	to	24.3K
344.5 Ohms	to	129.5 Ohms

Lower and Upper limits of Log(resistance) used in computing Chebychev coefficients:

	ZL - 2.00400052041	20 - 2.3070097	4922
Order	Coefficient	Std. Deviation of Coefficient	Ratio (Coeff./Std Dev.)
0	12.294818	3.2454E-04	37883.89
1	-11.392262	5.0283E-04	-22656.36
2	3.251466	4.8330E-04	6727.62
3	-0.606381	4.5647E-04	-1328.41
4	0.054590	4.4516E-04	122.63
5	0.005033	4.3256E-04	11.64
6	-0.001275	4.1513E-04	-3.07

Z = Log(resistance)

X = ((Z-ZL)-(ZU-Z))/(ZU-ZL)

Temp. (K) = $\Sigma A_i^* COS(i * ARCCOS(X))$, where 0 <= i <= 6 and the A_i 's are the coefficients in the table above.

Calibration Report: 429016 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29756 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Temp. (K) vs. Log(resistance)

	R Meas. (Ω)	T Meas. (K)	T Eq. (K)	T diff. (mK)
1	369.6662	3.60616	3.60599	0.17
2	356.2897	3.80505	3.80499	0.07
3	344.1269	4.00698	4.00668	0.29
4	333.3837	4.20190	4.20372	-1.81
5	309.3506	4.72419	4.72235	1.84
6	294.0101	5.12413	5.12363	0.50
7	277.7187	5.62727	5.62765	-0.38
8	259.1155	6.32901	6.33038	-1.37
9	241.9739	7.13744	7.13788	-0.44
10	224.8964	8.15252	8.15042	2.10
11	211.0710	9.17388	9.17510	-1.22
12	199.7275	10.19568	10.19605	-0.37
13	190.2199	11.21127	11.21005	1.22
14	182.0696	12.21985	12.22021	-0.36
15	175.0158	13.22080	13.22004	0.76
16	168.8137	14.21224	14.21200	0.24
17	163.2849	15.19800	15.19895	-0.95
18	158.3317	16.17420	16.17670	-2.51
19	153.8389	17.15005	17.14959	0.46
20	149.7195	18.12179	18.12181	-0.02
21	145.9337	19.09287	19.09011	2.76
22	142.3944	20.06814	20.06659	1.55
23	138.7554	21.14598	21.14922	-3.24
24	133.9475	22.71587	22.71500	0.86
25	129.5072	24.31455	24.31404	0.51
26	125.3737	25.94971	25.95097	-1.27
27	121.5812	27.59380	27.59321	0.59

Order of Fit = 6 RMS error of fit = 1.34 mK Largest absolute error = -3.24 mK at data point no. 23

Calibration Report: 429016 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29756 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Useful Range of Fit:

24.3K	to	110.K
129.5 Ohms	to	58.26 Ohms

Lower and Upper limits of Log(resistance) used in computing Chebychev coefficients: 7I = 1.72482278171 7II = 2.14225003518

	ZL - 1./24022/01/1	20 - 2.1422500	0100
Order	Coefficient	Std. Deviation of Coefficient	Ratio (Coeff./Std Dev.)
0	64.731028	1.4486E-03	44684.49
1	-53.094861	2.3549E-03	-22546.73
2	10.796985	2.1486E-03	5025.03
3	-1.390311	1.9656E-03	-707.33
4	0.093317	1.8469E-03	50.53
5	0.012139	1.8333E-03	6.62

Z = Log(resistance)

X = ((Z-ZL)-(ZU-Z))/(ZU-ZL)

Temp. (K) = $\Sigma A_i^* COS(i * ARCCOS(X))$, where 0 <= i <= 5 and the A_i 's are the coefficients in the table above.

Calibration Report: 429016 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29756 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Temp. (K) vs. Log(resistance)

	R Meas. (Ω)	T Meas. (K)	T Eq. (K)	T diff. (mK)
23	138.7554	21.14922	21.14830	0.92
24	133.9475	22.71500	22.71509	-0.08
25	129.5072	24.31404	24.31463	-0.59
26	125.3737	25.94971	25.95078	-1.07
27	121.5812	27.59380	27.59121	2.59
28	118.0924	29.23193	29.23148	0.44
29	114.5091	31.05742	31.06208	-4.66
30	110.7094	33.18171	33.18437	-2.66
31	105.8770	36.18736	36.19207	-4.71
32	101.6112	39.19009	39.18070	9.39
33	97.77980	42.18274	42.17716	5.58
34	94.31525	45.18240	45.18125	1.15
35	91.18767	48.16971	48.16876	0.96
36	89.24982	50.16917	50.16710	2.08
37	84.87010	55.15613	55.15784	-1.71
38	81.02580	60.16017	60.16697	-6.80
39	77.63589	65.15585	65.16358	-7.73
40	74.60981	70.15289	70.16135	-8.46
41	71.89228	75.14776	75.14910	-1.34
42	69.42952	80.14005	80.13614	3.91
43	67.18573	85.13411	85.11744	16.67
44	65.12000	90.12593	90.11789	8.04
45	63.21558	95.12316	95.12040	2.76
46	61.45472	100.11153	100.11707	-5.54
47	58.25787	110.21209	110.22358	-11.48
48	55.52161	120.09697	120.10063	-3.66
49	53.06679	130.10035	130.09436	5.99

Order of Fit = 5 RMS error of fit = 5.92 mK Largest absolute error = 16.67 mK at data point no. 43

Calibration Report: 429016 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29756 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Useful Range of Fit:

110.K	to	325.K
58.26 Ohms	to	31.46 Ohms

Lower and Upper limits of Log(resistance) used in computing Chebychev coefficients:

	ZL = 1.49412539875	20 = 1.8008240	19970
Order	Coefficient	Std. Deviation of Coefficient	Ratio (Coeff./Std Dev.)
0	194.431541	6.2938E-03	30892.40
1	-114.838107	9.7294E-03	-11803.17
2	17.641752	8.7457E-03	2017.19
3	-2.530510	8.5190E-03	-297.04
4	0.489222	8.5386E-03	57.30
5	-0.097158	8.4839E-03	-11.45
6	0.033193	8.2031E-03	4.05

Z = Log(resistance)

X = ((Z-ZL)-(ZU-Z))/(ZU-ZL)

Temp. (K) = $\Sigma A_i^* COS(i * ARCCOS(X))$, where 0 <= i <= 6 and the A_i 's are the coefficients in the table above.

Calibration Report: 429016 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29756 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Temp. (K) vs. Log(resistance)

	R Meas. (Ω)	T Meas. (K)	T Eq. (K)	T diff. (mK)
45	63.21558	95.12040	95.12993	-9.54
46	61.45472	100.11707	100.10256	14.50
47	58.25787	110.22358	110.21837	5.21
48	55.52161	120.09697	120.10931	-12.33
49	53.06679	130.10035	130.10677	-6.42
50	50.86996	140.10581	140.11150	-5.70
51	48.89819	150.10195	150.08970	12.26
52	47.11034	160.09390	160.08907	4.83
53	45.48647	170.08275	170.07900	3.75
54	44.00333	180.07742	180.07016	7.26
55	42.64116	190.07948	190.07862	0.87
56	41.38668	200.07878	200.09655	-17.77
57	40.23522	210.07313	210.05618	16.95
58	39.16218	220.06718	220.08085	-13.67
59	38.16779	230.07828	230.09143	-13.15
60	37.24354	240.07539	240.09491	-19.52
61	36.38326	250.07315	250.08523	-12.08
62	35.58315	260.07924	260.03568	43.56
63	34.82985	270.06916	270.05367	15.49
64	34.12503	280.07855	280.06447	14.07
65	33.46680	290.07238	290.03470	37.68
66	32.83980	300.07833	300.15339	-75.05
67	32.26055	310.07168	310.10038	-28.70
68	31.98343	315.08033	315.08108	-0.75
69	31.71546	320.09163	320.04330	48.34
70	31.39717	326.09554	326.13406	-38.53
71	31.19790	330.08993	330.06148	28.45

Order of Fit = 6 RMS error of fit = 25.19 mK Largest absolute error = -75.05 mK at data point no. 66

INTERPOLATION TABLE

Calibration Report: 429016 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29756 Sensor Excitation: 2mV±50%

Temp (K)	<u>Res.</u> (Ω)	<u>dR/dT (Ω/K)</u>	<u>dlogR/dlogT</u>	Temp (K)	<u>Res.</u> (Ω)	<u>dR/dT (Ω/K)</u>	<u>dlogR/dlogT</u>
4 000	344 510	-57 407	-0 66653	37 00	104 675	-1 4641	-0 51752
4 200	333 577	-52 069	-0.65559	38.00	103 239	-1 4092	-0.51871
4 400	323 632	-47 491	-0.64567	39.00	101.856	-1 3576	-0 51983
4,600	314 541	43 516	0.63640	40.00	101.000	1 3001	0.52001
4.000	206 190	40.075	-0.03040	40.00	07.0052	-1.3091	-0.32091
4.800	300.169	-40.075	-0.02024	42.00	97.9955	-1.2199	-0.52260
5.000	298.484	-37.044	-0.62054	44.00	95.6365	-1.1403	-0.52462
5.200	291.348	-34.365	-0.61335	46.00	93.4286	-1.0688	-0.52622
5.400	284.719	-31.977	-0.60647	48.00	91.3567	-1.0043	-0.52765
5.600	278.540	-29.847	-0.60007	50.00	89.4075	-0.94592	-0.52899
5.800	272.765	-27.940	-0.59411	52.00	87.5695	-0.89291	-0.53022
6.000	267.352	-26.213	-0.58829	54.00	85.8328	-0.84455	-0.53133
6 500	255 190	-22 588	-0 57534	56.00	84 1884	-0.80046	-0 53245
7 000	244 643	-19 705	-0 56383	58.00	82 6285	-0 75999	-0 53347
7 500	235,389	-17.389	-0 55404	60.00	81 1462	-0 72282	-0 53446
8.000	227.187	-15.481	-0.54515	65.00	77.7407	-0.64204	-0.53681
0 500	040.054	10.000	0 50770	70.00	74 7005	0 57500	0 50000
8.500	219.851	-13.909	-0.53776	70.00	74.7025	-0.57530	-0.53908
9.000	213.238	-12.582	-0.53102	75.00	71.9696	-0.51945	-0.54132
9.500	207.234	-11.460	-0.52536	77.35	70.7765	-0.49628	-0.54238
10.00	201.751	-10.496	-0.52023	80.00	69.4937	-0.47218	-0.54357
10.50	196.716	-9.6657	-0.51592	85.00	67.2364	-0.43177	-0.54584
11.00	192.069	-8.9404	-0.51203	90.00	65.1667	-0.39692	-0.54818
11.50	187.760	-8.3065	-0.50876	95.00	63.2597	-0.36657	-0.55049
12.00	183,750	-7.7454	-0.50582	100.0	61,4945	-0.34015	-0.55315
12.50	180.004	-7.2485	-0.50336	105.0	59.8529	-0.31686	-0.55586
13.00	176.493	-6.8040	-0.50116	110.0	58.3223	-0.29571	-0.55773
13 50	173 102	6 4060	0 40034	115.0	56 8020	0 27683	0 55057
14.00	170.081	-0.+000	-0.+3333+	120.0	55 5500	0.27000	0.56242
14.00	167 140	-0.0407	-0.49773	120.0	53.5500	-0.20030	-0.30242
14.00	107.140	-3.7221	-0.49041	120.0	52,0016	-0.24000	-0.50505
15.00	104.304	-5.4207	-0.49527	130.0	53.0916	-0.23212	-0.50637
15.50	101.700	-5.1576	-0.49437	135.0	51.9025	-0.21967	-0.57071
16.00	159.192	-4.9111	-0.49360	140.0	50.8932	-0.20823	-0.57282
16.50	156.794	-4.6851	-0.49303	145.0	49.8787	-0.19768	-0.57468
17.00	154.504	-4.4768	-0.49258	150.0	48.9150	-0.18791	-0.57623
17.50	152.314	-4.2846	-0.49227	155.0	47.9984	-0.17884	-0.57754
18.00	150.217	-4.1066	-0.49207	160.0	47.1255	-0.17042	-0.57862
18.50	148.206	-3.9415	-0.49200	165.0	46,2932	-0.16259	-0.57951
19.00	146 274	-3 7878	-0 49201	170.0	45 4987	-0 15529	-0.58021
19 50	144 416	-3 6447	-0 49213	175.0	44 7395	-0 14847	-0.58075
20.00	142 628	-3 5108	-0 49231	180.0	44 0133	-0 14210	-0.58112
21.00	139.241	-3.2684	-0.49294	185.0	43.3179	-0.13613	-0.58136
00.00	400.004	2 05 45	0.40204	400.0	40.0544	0 40050	0 50445
22.00	136.081	-3.0545	-0.49381	190.0	42.0514	-0.13052	-0.58145
23.00	133.124	-2.8634	-0.49471	195.0	42.0121	-0.12526	-0.58141
24.00	130.347	-2.6940	-0.49604	200.0	41.3983	-0.12031	-0.58122
25.00	127.729	-2.5438	-0.49788	205.0	40.8085	-0.11564	-0.58090
26.00	125.255	-2.4074	-0.49971	210.0	40.2415	-0.11123	-0.58045
27.00	122.911	-2.2832	-0.50155	215.0	39.6958	-0.10706	-0.57985
28.00	120.685	-2.1699	-0.50343	220.0	39.1705	-0.10311	-0.57911
29.00	118.568	-2.0658	-0.50526	225.0	38.6644	-9.9365e-2	-0.57824
30.00	116.551	-1.9699	-0.50705	230.0	38.1765	-9.5809e-2	-0.57721
31.00	114.626	-1.8812	-0.50877	235.0	37.7060	-9.2428e-2	-0.57605
32.00	112,786	-1.7990	-0.51042	240.0	37,2520	-8.9209e-2	-0.57474
33.00	111 026	-1 7226	-0.51200	245.0	36 8137	-8.6141e-2	-0 57328
34.00	109 339	-1 6514	-0 51351	250.0	36 3904	-8.3216e-2	-0 57169
35.00	107 722	-1 5847	-0 51490	255.0	35 9813	-8 04226-2	-0 56995
36.00	106 168	-1 5224	-0 51624	260.0	35 5850	-7 77520-2	-0 56808
20.00			0.01021		23.0000		0.00000

INTERPOLATION TABLE

Calibration Report: 429016 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29756 Sensor Excitation: 2mV±50%

Temp (K)	<u>Res.</u> (Ω)	<u>dR/dT (Ω/K)</u>	<u>dlogR/dlogT</u>	Temp (K)	<u>Res.</u> (Ω)	<u>dR/dT (Ω/K)</u>	<u>dlogR/dlogT</u>
265.0	35.2036	-7.5199e-2	-0.56607	285.0	33,7940	-6.6026e-2	-0.55683
270.0	34.8338	-7.2756e-2	-0.56394	290.0	33.4690	-6.3965e-2	-0.55424
273.15	34.6069	-7.1270e-2	-0.56253	295.0	33.1542	-6.1987e-2	-0.55155
275.0	34.4759	-7.0416e-2	-0.56168	300.0	32.8490	-6.0089e-2	-0.54878
280.0	34.1294	-6.8175e-2	-0.55931	305.0	32.5532	-5.8267e-2	-0.54592
				310.0	32.2662	-5.6517e-2	-0.54299
				315.0	31.9879	-5.4836e-2	-0.53999
				320.0	31.7178	-5.3220e-2	-0.53694
				325.0	31.4556	-5.1667e-2	-0.53383

THERMAL CYCLE TESTING

Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Serial Number: X29756

This sensor was tested for repeatability through rapid thermal cycles from room temperature into liquid helium. During this test, the following four lead resistance values were recorded:

Room Temperature:	32.5Ω
Liquid Nitrogen:	70.7Ω
Liquid Helium:	333Ω

The nitrogen and helium values were recorded in OPEN dewars, so precision comparisons with calibration values or other dip test values should not be made.

Recommended Operating Parameters:

For sensors calibrated by LSCI the current to the sensor is adjusted to maintain the sensor output voltage at the values listed below. In order to minimize possible self-heating errors, we suggest that these same guidelines be followed in using the sensor:

Above 1K:	1 to 3 mV
0.1 to 1K:	0.1 mV
Below 0.1K:	0.03 mV

Lead Identification:

NONE

To avoid possible damage to the sensor, do not exceed 1 Volt and do not exceed 100 mA current.

Page 11 of 14

BREAKPOINTS 340 FORMAT

Calibration Report: 429016 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Name: CX-1030-SD-HT-4L

Sales Order: 14119 Serial Number: X29756

Format: 4 ::Cog Ohms/Kelvin Limit: 325. Coefficient: 1 ::Negative Point: 1: 14798-325.000 Point 55: 1.83466, 82.500 Point 1111: 2.31051, 9.750 Point: 1: 150789.325.000 Point 55: 1.8558, 75.500 Point 112: 2.3288, 8.850 Point: 1: 150789.304.500 Point 56: 1.86188, 73.500 Point 1112: 2.32648, 8.850 Point: 1: 150780.304.500 Point 60: 1.86188, 73.500 Point 1112: 2.36448, 8.050 Point: 1: 150780.228.800 Point 61: 1.86336, 71.500 Point 1112: 2.36448, 8.050 Point: 1: 150785224.8000 Point 61: 1.86367.500 Point 112: 2.4488, 6.500 Point: 1: 153785274.500 Point 66: 1.90352, 61.500 Point 121: 2.4328, 2.800 Point: 1: 153785274.500 Point 66: 1.90352, 61.500 Point 121: 2.4328, 2.800 Point: 1: 153785274.500 Point 71: 1.91345, 52.400 Point 122: 2.44751, 55.40 Point: 1: 154742.245.500 Point 71: 1.93344, 54.000 Point 122: 2.43761, 4.900 Point: 1: 1.56175.259.500 Point 71: 1.9474, 45.000 Point 122: 2.43761, 4.900 Point: 1: 1.56175.259.500 Point 71: 1.9474, 45.000 Point 122: 2.53724, 4.000 Point 1: 1: 1.56175.259.500 Point 71: 1.9474, 45.000	Serial number: X29756		
Lunt: 325. Coefficient: 1 : : Negative Point 1 : 1: 49769,325.000 Point 57 : 1.84193, 80.000 Point 112 : 2.3128, 9.300 Point 3 : 1.50535,314.500 Point 57 : 1.84193, 80.000 Point 112 : 2.32128, 9.300 Point 3 : 1.50535,314.500 Point 57 : 1.84193, 80.000 Point 112 : 2.32128, 9.300 Point 112 : 2.32128, 9.300 Point 112 : 2.32128, 9.300 Point 112 : 2.32478, 8.450 Point 5 : 1.51298,304.500 Point 6 : 1.61691,299.500 Point 6 : 1.86188, 73.500 Point 112 : 2.34748, 8.450 Point 7 : 1.5206,284.500 Point 6 : 1.82505,284.500 Point 6 : 1.82505,284.500 Point 6 : 1.82505,284.500 Point 12 : 1.54208,284.500 Point 12 : 1.54208,284.500 Point 12 : 1.54208,284.500 Point 12 : 1.5426,289.500 Point 12 : 1.54365,24.4200 Point 12 : 1.54365,44.500 Point 12 : 1.54366,4620 Point 12 : 1.54336,24.500 Point 22 : 1.59352,214.500 Point 22 : 1.59352,214.500 Point 22 : 1.59352,214.500 Point 31 : 1.6499,175.500 Point 31 : 1.6496,171.000 Point 32 : 1.6736,129.000 Point 31 : 1.6499,175.500 Point 32 : 1.6763,195.00 Point 31 : 1.6499,175.500 Point 31 : 1.6499,175.500 Point 32 : 1.6774,119	Format: 4 ;Log Ohms/Kelvi	ו	
Coemican: 1 1, Wigarive Point 1: 1, 149769,325.000 Point 55: 1, 183466, 82.500 Point 111: 2, 31051, 9, 750 Point 2: 1, 50166,319,500 Point 55: 1, 184842, 77.500 Point 111: 2, 23218, 9, 300 Point 3: 1, 5035,314,500 Point 51: 1, 14883, 77.500 Point 111: 2, 233486, 8, 050 Point 4: 1, 50912,309,500 Point 61: 1, 18683, 71,500 Point 111: 2, 23748, 8, 050 Point 5: 1, 51288,304,500 Point 61: 1, 18683, 71,500 Point 111: 2, 23748, 8, 050 Point 1: 1, 5206,228,4500 Point 61: 1, 18683, 71,500 Point 111: 2, 24781, 7500 Point 1: 1, 53795,274,500 Point 61: 1, 9007, 63,500 Point 121: 2, 44386, 5520 Point 1: 1, 153795,274,500 Point 66: 1, 90352, 61,500 Point 122: 2, 44761, 5,540 Point 1: 1, 153795,274,500 Point 66: 1, 90352, 61,500 Point 122: 2, 44761, 5,540 Point 1: 1, 153795,274,500 Point 66: 1, 90352, 61,500 Point 122: 2, 44761, 5,540 Point 1: 1, 153795,274,500 Point 71: 1, 91445, 52,200 Point 122: 2, 44761, 5,540 Point 1: 1, 153795,274,500 Point 71: 1, 94145, 52,200 Point 122: 2, 44761, 5,540 Point 1: 1, 153795,274,500 Point 71: 1, 94145, 52,2000 Point 122: 2, 44761, 5,540 <	Limit: 325.		
Point 1: 1.49/19.22.000 Point 5: 18.498, 80.000 Point 112: 2.3128, 9.300 Point 3: 1.50535, 51.4500 Point 5: 1.84198, 80.000 Point 112: 2.3128, 9.300 Point 3: 1.50535, 51.4500 Point 5: 1.84198, 80.000 Point 112: 2.3128, 9.300 Point 5: 1.51298, 304, 500 Point 6: 1.86188, 73.500 Point 112: 2.3128, 9.300 Point 5: 1.5298, 304, 500 Point 6: 1.86188, 73.500 Point 112: 2.3128, 8.300 Point 5: 1.5298, 304, 500 Point 6: 1.86886, 650 Point 112: 2.3129, 7.250 Point 1: 1.53205, 228, 284, 500 Point 6: 1.86886, 650 Point 112: 2.44368, 6.550 Point 1: 1: 53205, 228, 244, 500 Point 6: 1.90352, 61, 500 Point 12: 2.4478, 65, 500 Point 1: 1: 53278, 274, 500 Point 6: 1.90352, 61, 500 Point 12: 2.4478, 65, 500 Point 1: 1: 54704, 244, 500 Point 7: 1.194145, 52, 500 Point 12: 2.4478, 45, 500 Point 1: 1: 515655, 254, 500 Point 7: 1.93344, 54, 000 Point 12: 2.4378, 44, 500 Point 1: 1: 517565, 524, 500 Point 7: 1.93344, 54, 000 Point 12: 2.4378, 430 Point 1: 1: 517565, 524, 500 Point 7: 1.9374, 48, 600 Point 12: 2.4378, 44, 500 Point 1: 1: 517566, 524, 500 Point 7: 1.9374, 48, 600 Point 12:	Coefficient: 1 ;Negative		
Point 2: 150765.35.314.500 Point 5: 1.84193, 80.000 Point 113: 2.3262, 9.380 Point 4: 1.50912.309.500 Point 58: 1.85858, 7.500 Point 113: 2.3268, 8.880 Point 4: 1.50912.309.500 Point 58: 1.85858, 7.500 Point 113: 2.3268, 8.880 Point 5: 1.51691.299.500 Point 61: 1.8683, 71.500 Point 112: 2.3268, 8.860 Point 6: 1.5209.298.500 Point 61: 1.8868, 6.500 Point 112: 2.3261, 8.900 Point 11: 5.33562, 79.500 Point 66: 1.90352, 61.500 Point 112: 2.41868, 6.500 Point 11: 1.5337652, 74.500 Point 66: 1.90352, 61.500 Point 122: 2.41868, 6.200 Point 12: 1.53376, 274.500 Point 66: 1.90352, 61.500 Point 122: 2.43306, 5.860 Point 12: 1.53376, 274.500 Point 66: 1.90352, 61.500 Point 122: 2.43306, 5.860 Point 12: 1.53376, 248.500 Point 68: 1.92006, 65.800 Point 122: 2.43306, 5.860 Point 15: 1.5565, 254.500 Point 71: 1.94145, 52.200 Point 124: 2.4731, 4.320 Point 16: 1.5176, 29.500 Point 72: 1.94362, 50.400 Point 124: 2.4738, 4.320 Point 12: 1.5376, 24.500 Point 72: 1.94362, 50.400 Point 127: 2.53724, 4.000 Point 21: 1.5376, 24.500 Point 72: 1.94362, 50.400 Point 128: 2.53724, 4.000 <td>Point 1: 1.49769,325.000</td> <td>Point 56: 1.83466, 82.500</td> <td>Point 111: 2.31051, 9.750</td>	Point 1: 1.49769,325.000	Point 56: 1.83466, 82.500	Point 111: 2.31051, 9.750
Point 3: 1.530912,309.500 Point 52: 1.55209 Point 113: 2.32439, 8450 Point 5: 1.51298,304.500 Point 52: 1.8568,75500 Point 111: 2.34437, 8450 Point 5: 1.51298,304.500 Point 61: 1.86836,71.500 Point 111: 2.34437, 8450 Point 5: 1.5209,294.500 Point 61: 1.86836,71.500 Point 111: 2.37991, 7.250 Point 8: 1.52505,299.500 Point 63: 1.8760, 99.500 Point 111: 2.37991, 7.250 Point 111: 1.32792,74.500 Point 66: 1.99607, 63.500 Point 121: 2.440486, 65.50 Point 12: 1.54245,269.500 Point 66: 1.99032, 61.500 Point 121: 2.44088, 6.500 Point 12: 1.54245,269.500 Point 68: 1.98206, 55.800 Point 121: 2.44053, 6.540 Point 13: 1.56147,249.500 Point 71: 1.94145, 52.200 Point 124: 2.47918, 4.920 Point 12: 1.5665,254.500 Point 72: 1.94952, 50.400 Point 126: 2.51380, 4.340 Point 12: 1.57166,239.500 Point 77: 1.97547, 45.000 Point 126: 2.51380, 4.340 Point 22: 1.5823,229.500 Point 77: 1.97547, 45.00 Point 126: 2.53724, 4.000 Point 22: 1.58736,224.500 Point 77: 1.97547, 45.00 Point 126: 2.53724, 4.000 Point 22: 1.58736,224.500 Point 78: 2.09117, 26.500 Point 28: 2.0375, 34.000 <td>Point 2: 1.50166,319.500</td> <td>Point 57: 1.84193, 80.000</td> <td>Point 112: 2.32128, 9.300</td>	Point 2: 1.50166,319.500	Point 57: 1.84193, 80.000	Point 112: 2.32128, 9.300
Point 5: 1:51298:304:500 Point 132: 1:23336, 73:500 Point 114: 2:34:47, 8:45:80 Point 5: 1:51298:304:500 Point 61: 1:86836, 71:500 Point 117: 2:34:48, 8:300 Point 5: 1:5228:284:500 Point 61: 1:8678, 75:500 Point 117: 2:33291, 7:250 Point 11: 1:5375:276:500 Point 66: 1:80835, 67:500 Point 119: 2:4488, 6:50 Point 11: 1:5375:276:500 Point 66: 1:90352, 61:500 Point 119: 2:4488, 6:50 Point 11: 1:5375:276:500 Point 66: 1:90352, 61:500 Point 12: 2:4488, 6:200 Point 11: 1:5476:264:500 Point 66: 1:90352, 61:500 Point 12: 2:4488, 6:200 Point 11: 1:5476:269:500 Point 68: 1:92606, 55:800 Point 12: 2:44761, 5:40 Point 11: 1:5476:229:500 Point 71: 1:94145, 52:200 Point 12: 2:44781, 4:200 Point 11: 1:54565:254:500 Point 71: 1:94145, 52:200 Point 12: 2:4308, 4:20 Point 11: 1:54565:254:500 Point 71: 1:94145, 52:200 Point 12: 2:53274, 4:000 Point 12: 1:5655:254:500 Point 71: 1:94145, 52:200 Point 12: 2:53274, 4:000 Point 22: 1:576:229:500 Point 72: 1:9727, 4:800 Point 12: 2:53274, 4:000 Point 22: 1:576:229:500 Point 73: 1:9747, 4:5000 Point 22: 2:53274, 4:000 <t< td=""><td>Point 4: 1 50012 200 500</td><td>Point 50: 1.04942, 77.500</td><td>Point 114: 2.24247 9.450</td></t<>	Point 4: 1 50012 200 500	Point 50: 1.04942, 77.500	Point 114: 2.24247 9.450
Point 6: 1:51285,03-000 Point 6: 1:3000 Point 7: 1:3000 Point 7: 1:52094,294,500 Point 6: 1:8305,050 Point 11: 2:33991,7;250 Point 8: 1:52262,284,500 Point 6: 1:83183,67,500 Point 11: 2:33991,7;250 Point 11: 1:33356,279,500 Point 66: 1:89807,63,500 Point 12: 2:43086,65,200 Point 11: 1:3795,274,500 Point 66: 1:8907,63,500 Point 12: 2:43086,56,260 Point 13: 1:5476,259,500 Point 66: 1:89206,55,800 Point 12: 2:43086,56,264,500 Point 13: 1:5665,244,500 Point 72: 1:94962,50,400 Point 12: 2:43936,46,20 Point 11: 1:5166,23,24500 Point 77: 1:93673,34,400 Point 12: 2:5330,4,340 Point 2: 1:57693,234,500 Point 77: 1:93673,43,400 Point 12: 2:33724,4,000 Point 2: 1:58732,34,500 Point 77: 1:93673,43,43,00 Point 2: 2:33724,4,000 Point 2: 1:58734,184,500 Point 77: 1:93	Point 5: 1 51208 304 500	Point 60: 1 86188 73 500	Point 115: 2 35486 8 050
Point 6: 1.51691,299,500 Point 61: 1.86836,71.500 Point 11: 2.36698,7650 Point 7: 1.52094,294,500 Point 62: 1.87500,69500 Point 17: 2.37991,7250 Point 9: 1.52926,284,500 Point 64: 1.88885,65500 Point 11: 12: 2.34386, 6.550 Point 11: 1.53795,274,500 Point 66: 1.90352, 61: 500 Point 12: 2.44886, 6.200 Point 12: 1.54246,260 500 Point 67: 1.91158, 59: 400 Point 12: 2.44786, 5240 Point 12: 2.44781, 5402 Point 14: 1.56175,259: 500 Point 68: 1.92052, 61: 500 Point 12: 2.44791, 4: 420 Point 12: 2.44791, 4: 420 Point 15: 1.5665,244: 500 Point 71: 1.93446, 52: 200 Point 12: 2.47918, 4: 420 Point 16: 1.56147,249: 500 Point 71: 1.93446, 68: 00 Point 12: 2.53274, 4: 000 Point 15: 1.5665,244: 500 Point 76: 1.98373, 43: 400 Point 22: 1.5323, 24: 500 Point 72: 1.9952,74: 45: 000 Point 21: 1.58786,224: 500 Point 76: 1.98373, 43: 400 Point 22: 1.5376, 4: 66: 00 Point 22: 1.5376, 4: 66: 00 Point 21: 1.58786,224: 500	Foint 5. 1.51298,304.500	Foint 60. 1.60166, 75.500	Foint 115. 2.35480, 8.050
Point 7: 152094,294,500 Point 62: 187500, 69,500 Point 111: 2,37991, 7,250 Point 8: 1,5206,289,500 Point 63: 1,88183, 67,500 Point 111: 2,39201, 6,900 Point 11: 1,53356,279,500 Point 66: 1,90352, 61,500 Point 121: 2,4308, 6,5800 Point 11: 1,53756,274,500 Point 66: 1,90352, 61,500 Point 121: 2,4308, 5,860 Point 11: 1,54704,264,500 Point 66: 1,90352, 61,500 Point 121: 2,44761, 5,540 Point 11: 1,5665,244,500 Point 71: 1,94145, 52,200 Point 122: 2,4933, 6, 520 Point 11: 1,5665,244,500 Point 71: 1,94452, 50,400 Point 122: 2,53724, 4,000 Point 12: 1,5665,244,500 Point 77: 1,95747,45,000 Point 122: 2,53724, 4,000 Point 21: 1,5823,229,500 Point 77: 1,9373, 43,400 Point 22: 2,53724, 4,000 Point 22: 1,5823,214,500 Point 78: 2,03875, 34,000 Point 23: 2,53724, 4,000 Point 23: 1,58736,224,500	Point 6: 1 51691 299 500	Point 61: 1 86836 71 500	Point 116: 2 36698 7 650
Point 8: 1.52905.289.500 Point 631.183183, 67.500 Point 11: 2.33201, 6.300 Point 1: 1.53356,273.500 Point 64: 1.88885, 65.500 Point 11: 2.4488, 6.550 Point 1: 1.53356,273.500 Point 66: 1.90352, 61.500 Point 12: 2.4488, 6.200 Point 12: 1.54245,269.500 Point 66: 1.90352, 61.500 Point 12: 2.4483, 5.400 Point 12: 1.54245,269.500 Point 66: 1.90352, 61.500 Point 12: 2.4463, 5.400 Point 15: 1.5665,254.500 Point 71: 1.94145, 52.200 Point 12: 2.44632, 5.2200 Point 15: 1.5664,244.500 Point 71: 1.94145, 52.200 Point 12: 2.53274, 4.000 Point 15: 1.5663,244.500 Point 77: 1.93274, 448.000 Point 12: 2.53724, 4.000 Point 15: 1.58233,229.500 Point 77: 1.93274, 748.000 Point 12: 2.53724, 4.000 Point 21: 1.58332,24260 Point 71:	Point 7: 1 52094 294 500	Point 62: 1 87500 69 500	Point 117: 2 37991 7 250
Point 9: 1.52926.284.500 Point 64: 1.88885, 65.500 Point 111: 12: 2.40488, 6.550 Point 10: 1.53356,279.500 Point 66: 1.98007, 63.500 Point 12: 2.43686, 6.200 Point 11: 1.53756,274.500 Point 66: 1.98007, 63.500 Point 12: 2.43768, 5.860 Point 13: 1.54704,264.500 Point 66: 1.9266, 55.800 Point 12: 2.43761, 5.54 Point 15: 1.55655,254.500 Point 71: 1.9436, 52.200 Point 12: 2.49636, 4.620 Point 15: 1.56651,245.00 Point 71: 1.94455, 52.400 Point 12: 2.53276, 4.060 Point 15: 1.5768,324.500 Point 73: 1.95787, 48.600 Point 12: 2.53724, 4.000 Point 21: 1.5768,232.500 Point 73: 1.95787, 48.600 Point 12: 2.53724, 4.000 Point 21: 1.5768,232.500 Point 73: 1.96787, 48.600 Point 12: 2.53724, 4.000 Point	Point 8: 1 52505 289 500	Point 63 1 88183 67 500	Point 118 ⁻ 2 39201 6 900
Point 10: 1.53356,279.500 Point 65: 1.89607, 63.500 Point 12: 1.24245,289.500 Point 12: 1.54245,229.500 Point 66: 1.90352, 61.500 Point 12: 1.24245,229.500 Point 12: 1.54245,229.500 Point 66: 1.9266,55.800 Point 12: 2.44761, 5.540 Point 15: 1.55655,254.500 Point 66: 1.9266,55.800 Point 12: 2.44781, 4.920 Point 15: 1.55655,254.500 Point 71: 1.94145, 52.200 Point 12: 2.4326, 5.230 Point 16: 1.56147,249.500 Point 72: 1.94952, 50.400 Point 12: 2.5376, 4.060 Point 15: 1.55663,254.500 Point 77: 1.94952, 50.400 Point 12: 2.53724, 4.000 Point 12: 2.53724, 4.000 Point 15: 1.57693,234.500 Point 77: 1.99227, 41.800 Point 12: 2.53724, 4.000 Point 22: 1.5932,214.500 Point 78: 2.0114, 40.200 Point 22: 1.5932,214.500 Point 78: 2.0210, 28, 36.600 Point 28: 2.0375, 34.000 Point 28: 2.0376, 34.600 Point 22: 1.62401, 194.500 Point 83: 2.04978, 32.500 Point 28: 2.6376, 4.600 Point 28: 2.6376, 4.600 Point 31: 1.6436, 175.5	Point 9: 1 52926 284 500	Point 64 1 88885 65 500	Point 119 ⁻ 2 40488 6 550
Point 11: 153795,274.500 Point 66: 190352, 61.500 Point 12: 2.43306, 5.860 Point 12: 154245,269,500 Point 66: 1.91872, 57.600 Point 12: 2.44761, 5.540 Point 13: 154704,284.500 Point 66: 1.91872, 57.600 Point 12: 2.44761, 5.540 Point 14: 1.55175,259,500 Point 66: 1.92806, 55.800 Point 12: 2.47918, 4.920 Point 16: 1.56147,249.500 Point 71: 1.94145, 52.200 Point 12: 2.51380, 4.340 Point 17: 1.56617,244.500 Point 72: 1.94787, 48.600 Point 12: 2.53276, 4.060 Point 19: 1.5769,234.500 Point 77: 1.97877, 48.000 Point 12: 2.5376, 4.060 Point 21: 1.58786,224.500 Point 77: 1.92277, 41.800 Point 12: 2.53724, 4.000 Point 22: 1.59352,214.500 Point 77: 1.92277, 41.800 Point 22: 1.59352,219.500 Point 21: 1.58786,224.500 Point 77: 1.92277, 41.800 Point 22: 1.53352,219.500 Point 22: 1.59352,219.500 Point 78: 2.01917, 26.500 Point 23: 1.6309,149.500 Point 23: 1.61760,199.500 Point 81: 2.02910, 35.500 Point 82: 2.03875, 34.000 Point 24: 1.63059,189.500 Point 83: 2.06944, 29.600 Point 31: 1.64996,175.500 Point 31: 1.64996,175.500 Point 83: 2.01717, 26.800 Point 32: 1.1377, 24.200 <td>Point 10: 1.53356.279.500</td> <td>Point 65: 1.89607, 63.500</td> <td>Point 120: 2.41868, 6.200</td>	Point 10: 1.53356.279.500	Point 65: 1.89607, 63.500	Point 120: 2.41868, 6.200
Point 11: 153795.274 500 Point 66: 190352.61.500 Point 12: 12.43265.65.860 Point 12: 154704.264.500 Point 68: 1.91872,57.600 Point 12: 2.43761, 5.540 Point 13: 1.54704.264.500 Point 68: 1.9206, 55.800 Point 12: 2.44761, 5.543 Point 14: 1.55175.259.500 Point 77: 1.91364, 54.000 Point 12: 2.44781, 4.920 Point 15: 1.56652,524.500 Point 77: 1.9364, 54.000 Point 12: 2.43781, 4.920 Point 11: 1.57166,239.500 Point 77: 1.93264, 54.000 Point 12: 2.53276, 4.060 Point 12: 1.5766,239.500 Point 74: 1.96651, 46.800 Point 12: 2.53724, 4.000 Point 21: 1.58232,219.500 Point 77: 1.99274, 45.000 Point 12: 2.53724, 4.000 Point 21: 1.58786,224.500 Point 77: 1.99274, 45.000 Point 22: 2.53724, 4.000 Point 21: 1.58786,224.500 Point 78: 2.00111, 40.200 Point 23: 1.5932,214.500 Point 80: 2.01828, 37.000 Point 22: 1.61760,199.500 Point 81: 2.02910, 35.500 Point 82: 2.03875, 34.000 Point 32: 1.6374, 184.500 Point 32: 1.6374, 184.500 Point 83: 2.04848, 32.500 Point 33: 1.64357, 180.000 Point 83: 2.03875, 34.000 Point 31: 1.64986, 1.75.500 Point 83: 2.0197, 25.500 Point 83: 2.0197, 25.500 Point		,	
Point 12: 154245,269.500 Point 67: 191158, 59.400 Point 12: 2.44761, 5.540 Point 14: 1.55175,259.500 Point 68: 191872, 57.600 Point 12: 2.44628, 5.220 Point 15: 1.55655,254.500 Point 70: 1.93364, 54.000 Point 12: 2.44936, 4.340 Point 16: 1.56147,249.500 Point 71: 1.94145, 52.200 Point 12: 2.53724, 4.060 Point 11: 1.56147,249.500 Point 71: 1.94745, 52.00 Point 12: 2.53724, 4.000 Point 12: 1.58786,224.500 Point 77: 1.95747, 45.000 Point 12: 2.53724, 4.000 Point 12: 1.58786,224.500 Point 77: 1.96274, 45.000 Point 12: 2.53724, 4.000 Point 22: 1.58352,219.500 Point 77: 1.90227, 41.800 Point 22: 1.53724, 4.000 Point 22: 1.58786,224.500 Point 77: 2.01013, 45.00 Point 22: 1.53724, 4.000 Point 22: 1.58786,224.500 Point 77: 2.01028, 38.600 Point 22: 1.53724, 4.000 Point 22: 1.58786,224.500 Point 78: 2.0011, 42.000 Point 22: 1.53724, 4.000 Point 22: 1.58786,224.500 Point 78: 2.0011, 42.000 Point 22: 1.53724, 4.000 Point 22: 1.58786,224.500 Point 78: 2.0011, 42.000 Point 22: 1.5373, 4.500 Point 22: 1.63059,189.500 Point 81: 2.02910, 35.500 Point 32: 1.6365, 1.71.000	Point 11: 1.53795,274.500	Point 66: 1.90352, 61.500	Point 121: 2.43306, 5.860
Point 13: 154704,264.500 Point 68: 1.91872,57.600 Point 13: 2.426329, 5.220 Point 14: 1.55175,259 Point 69: 1.92066, 55.800 Point 124: 2.47918, 4.920 Point 15: 1.55655,254.500 Point 70: 1.93364, 54.000 Point 124: 2.47918, 4.920 Point 16: 1.56175,259,500 Point 71: 1.94145, 52.200 Point 125: 2.49636, 4.620 Point 17: 1.56651,244.500 Point 73: 1.95787, 48.000 Point 127: 2.53276, 4.060 Point 12: 1.57633,234.500 Point 74: 1.96651, 46.800 Point 128: 2.53724, 4.000 Point 21: 1.58736,224.500 Point 77: 1.99227, 41.800 Point 22: 1.59352,219.500 Point 22: 1.59352,219.500 Point 77: 1.99227, 41.800 Point 23: 1.61136,204.500 Point 22: 1.59352,219.500 Point 78: 2.0111, 40.200 Point 24: 1.60526,209.500 Point 23: 1.6136,204.500 Point 81: 2.02910, 35.500 Point 28: 1.6374,184.500 Point 23: 1.64367,180.000 Point 82: 2.03875, 34.000 Point 33: 1.64374,184.500 Point 31: 1.64996,175.500 Point 86: 2.08006, 28.200 Point 33: 1.64367,180.000 Point 32: 1.66561,171.000 Point 92: 2.17478,32.0600 Point 33: 1.64364,185.00 Point 33: 1.6996,175.500 Point 92: 2.17474,21.800 Point 93: 2.1766,11.850 </td <td>Point 12: 1.54245,269.500</td> <td>Point 67: 1.91158, 59.400</td> <td>Point 122: 2.44761, 5.540</td>	Point 12: 1.54245,269.500	Point 67: 1.91158, 59.400	Point 122: 2.44761, 5.540
Point 14: 1.55175,259,500 Point 9: 1.262,24783 Point 12: 2.479636 4.200 Point 12: 2.479636 4.320 Point 12: 2.479636 4.200 Point 12: 2.53724 4.000 Point 22: 2.53724 4.000 Point 22:<	Point 13: 1.54704,264.500	Point 68: 1.91872, 57.600	Point 123: 2.46329, 5.220
Point 15: 1.55655,254.500 Point 70: 1.93364, 54.000 Point 125: 2.49636, 4.620 Point 16: 1.56147,249.500 Point 71: 1.94145, 52.200 Point 126: 2.51380, 4.340 Point 17: 1.56651,244.500 Point 71: 1.93787, 48.600 Point 127: 2.53276, 4.060 Point 19: 1.5769,3234.500 Point 74: 1.96651,46.800 Point 128: 2.53724, 4.000 Point 21: 1.58786,224.500 Point 75: 1.97547, 45.000 Point 128: 2.53724, 4.000 Point 21: 1.59352,214.500 Point 75: 1.97547, 45.000 Point 128: 2.53724, 4.000 Point 22: 1.59352,214.500 Point 75: 1.97547, 45.000 Point 22: 1.5732, 4.400 Point 23: 1.59932,214.500 Point 75: 2.00114, 40.200 Point 23: 2.0372, 4.1800 Point 25: 1.61760,199.500 Point 81: 2.02910, 35.500 Point 81: 2.02910, 35.500 Point 26: 1.61760,199.500 Point 82: 2.03875, 34.000 Point 32: 1.6374, 184.50 Point 82: 2.05925, 31.000 Point 21: 6.2051,213.000 Poin	Point 14: 1.55175,259.500	Point 69: 1.92606, 55.800	Point 124: 2.47918, 4.920
Point 16: 1.56147,249.500 Point 71: 1.94145, 52.200 Point 126: 2.51380, 4.340 Point 17: 1.56651,244.500 Point 72: 1.94952, 50.400 Point 127: 2.53276, 4.060 Point 18: 1.57166,239.500 Point 73: 1.95787, 48.600 Point 128: 2.53724, 4.000 Point 21: 1.58786,224.500 Point 76: 1.98373, 43.400 Point 128: 2.53724, 4.000 Point 22: 1.59352,214.500 Point 77: 1.99227, 41.800 Point 78: 2.0111, 40.200 Point 26: 1.61780,199.500 Point 82: 2.03875, 34.000 Point 82: 2.03875, 34.000 Point 26: 1.61780,199.500 Point 82: 2.03875, 34.000 Point 82: 2.03875, 34.000 Point 26: 1.61780,199.500 Point 82: 2.03875, 34.000 Point 82: 2.03875, 34.000 Point 31: 1.64365,181.100 Point 82: 2.03875, 34.000 Point 33: 1.6359,189.500 Point 31: 1.64996,175.500 Point 88: 2.09117, 26.800 Point 33: 1.66561,171.00 Point 32: 1.6433,166.500 Point 99: 2.11227, 24.200 Point 33: 1.66561,171.00 Point 34: 1.6996,175.500 Point 99: 2.14222, 23.000 Point 34: 1.69702,175.500 Point 35: 1.68447,153.000 Point 99: 2.14227, 14.200 Point 34: 1.69702,175.500 Point 41: 1.72312,131.000 Point 96: 2.17909, 17.800 Point 99: 2.20257,	Point 15: 1.55655,254.500	Point 70: 1.93364, 54.000	Point 125: 2.49636, 4.620
Point 16: 1.56147,249.500 Point 71: 1.94145, 52.200 Point 127: 2.5326, 4.360 Point 17: 1.56651,244.500 Point 72: 1.9452, 50.400 Point 127: 2.5327, 4.400 Point 19: 1.57693,234.500 Point 74: 1.96651, 46.800 Point 22: 2.5372, 4.4000 Point 21: 1.58736,224.500 Point 77: 1.9452, 7.46.000 Point 128: 2.5372, 4.4000 Point 22: 1.59352,219.500 Point 77: 1.9227, 41.800 Point 72: 1.9502,71.9922,7.41.800 Point 22: 1.59352,219.500 Point 77: 1.9227, 41.800 Point 72: 1.0528,030,8600 Point 22: 1.61136,204.500 Point 78: 2.00111, 40.200 Point 82: 2.03875, 34.000 Point 22: 1.63354,185,00 Point 81: 2.02910, 35.500 Point 83: 2.04878, 32.500 Point 31: 1.63059,189.500 Point 82: 2.03875, 34.000 Point 31: 1.64996,175.500 Point 82: 2.04878, 32.500 Point 31: 1.6496,175.500 Point 82: 2.0117, 26.800 Point 33: 1.66323,166.500 Point 82: 2.11327, 24.200 Point 33: 1.66323,166.500 Point 92: 2.1422, 23.000 Point 33: 1.69963,144.000 Point 93: 2.16403, 19.100 Point 34: 1.7705,135.000 Point 93: 2.1643, 19.100 Point 44: 1.74671,119.000 Point 93: 2.1742, 18.450 Poi			
Point 17: 156651,244.500 Point 72: 1.94952, 50.400 Point 127: 2.53276, 4.060 Point 18: 1.57166,239.500 Point 73: 1.95787, 48.600 Point 128: 2.53724, 4.000 Point 21: 1.58786,224.500 Point 75: 1.95787, 48.600 Point 128: 2.53724, 4.000 Point 21: 1.58786,224.500 Point 76: 1.98373, 43.400 Point 22: 1.59352,214.500 Point 77: 2.01028, 38.600 Point 23: 1.59332,214.500 Point 77: 2.02375, 34.000 Point 24: 1.60528,209.500 Point 78: 2.03875, 34.000 Point 25: 1.61136,204.500 Point 81: 2.02910, 35.500 Point 22: 1.59334, 184.500 Point 83: 2.04878, 32.500 Point 22: 1.63734, 184.500 Point 82: 2.03875, 34.000 Point 22: 1.63651, 171.000 Point 82: 2.06944, 29.600 Point 33: 1.64357, 180.000 Point 82: 2.04878, 32.500 Point 32: 1.65651, 171.000 Point 82: 2.0112, 22.3000 Point 33: 1.66323, 166.500 Point 83: 2.04964, 29.600 Point 34: 1.67012, 162.000 Point 82: 2.14783, 20.600 Point 35: 1.67720, 157.500 Point 91: 2.13571, 21.800 Point 36: 1.68447, 153.000 Point 92: 2.14783, 20.600 Point 36: 1.68447, 153.000 Point 92: 2.14783, 20.600 Point 37: 1.69194, 148.500 Point 92: 2.17142, 18.4	Point 16: 1.56147,249.500	Point 71: 1.94145, 52.200	Point 126: 2.51380, 4.340
Point 18: 1.57166,239.500 Point 73: 1.95787, 48.600 Point 128: 2.53724, 4.000 Point 20: 1.57693,234.500 Point 75: 1.95787, 48.600 Point 22: 1.59352,219.500 Point 75: 1.97547, 45.000 Point 21: 1.58786,224.500 Point 76: 1.98373, 43.400 Point 22: 1.59352,219.500 Point 77: 1.99227, 41.800 Point 22: 1.59352,219.500 Point 77: 1.09227, 41.800 Point 78: 2.00111, 40.200 Point 22: 1.60526,209.500 Point 78: 2.01028, 38.600 Point 25: 1.61136,204.500 Point 22: 1.63059,189.500 Point 81: 2.02910, 35.500 Point 22: 1.63059,189.500 Point 82: 2.03875, 34.000 Point 32: 1.63059,189.500 Point 82: 2.06944, 29.600 Point 31: 1.64996,175.500 Point 82: 2.06944, 29.600 Point 31: 1.64966,176.500 Point 82: 2.00917, 26.800 Point 32: 1.66323,166.500 Point 89: 2.11327, 24.200 Point 36: 1.68424, 715.000 Point 99: 2.12422, 23.000 Point 36: 1.68447, 153.000 Point 99: 2.12478, 20.600 Point 38: 1.69963,144.000 Point 99: 2.17142, 18.450 Point 39: 1.70753,139.500 Point 99: 2.17142, 18.450 Point 41: 1.72312,131.000 Point 99: 2.20257, 15.950 Point 42: 1.73076,127.000 Point 99: 2.20257, 15.950 Point 42:	Point 17: 1.56651,244.500	Point 72: 1.94952, 50.400	Point 127: 2.53276, 4.060
Point 19: 157693,234.500 Point 74: 1.96651,46.800 Point 20: 1.58233,229.500 Point 75: 1.97547,45.000 Point 21: 1.58786,224.500 Point 76: 1.9827,41.800 Point 22: 1.59352,219.500 Point 77: 1.99227,41.800 Point 22: 1.59352,214.500 Point 77: 1.99227,41.800 Point 22: 1.61760,199.500 Point 81: 2.02910, 35.500 Point 22: 1.61760,199.500 Point 81: 2.02910, 35.500 Point 22: 1.63059,189.500 Point 82: 2.03875, 34.000 Point 22: 1.63734,184.500 Point 82: 2.05825, 31.000 Point 31: 1.64996,175.500 Point 82: 2.05825, 31.000 Point 31: 1.64996,175.500 Point 82: 2.009117, 26.800 Point 31: 1.64996,175.500 Point 82: 2.0117, 26.800 Point 32: 1.65651,171.000 Point 82: 2.0117, 26.800 Point 33: 1.66323,166.500 Point 82: 2.14723, 28.000 Point 35: 1.67720,157.500 Point 90: 2.12422, 23.000 Point 36: 1.68447,153.000 Point 92: 2.14783, 20.600 Point 36: 1.68447,153.000 Point 92: 2.14783, 20.600 Point 36: 1.68447,153.000 Point 95: 2.17142, 18.450 Point 37: 1.69963,144.000 Point 95: 2.17142, 18.450 Point 41: 1.72312,131.000 Point 95: 2.17142, 18.450 Poi	Point 18: 1.57166,239.500	Point 73: 1.95787, 48.600	Point 128: 2.53724, 4.000
Point 20: 1.58233,229.500 Point 75: 1.97547, 45.000 Point 21: 1.58786,224.500 Point 76: 1.98373, 43.400 Point 22: 1.59352,214.500 Point 77: 1.99227, 41.800 Point 22: 1.59352,214.500 Point 77: 1.99227, 41.800 Point 22: 1.6136,204.500 Point 78: 2.0111, 40.200 Point 25: 1.61136,204.500 Point 80: 2.01982, 37.000 Point 25: 1.61136,204.500 Point 80: 2.01982, 37.000 Point 25: 1.61760,199.500 Point 81: 2.02910, 35.500 Point 27: 1.62401,194.500 Point 82: 2.03875, 34.000 Point 29: 1.63734,184.500 Point 82: 2.04878, 32.500 Point 30: 1.64357,180.000 Point 84: 2.05925, 31.000 Point 32: 1.65651,171.000 Point 31: 1.64996,175.500 Point 88: 2.10197, 25.500 Point 33: 1.6523,166.500 Point 33: 1.6523,166.500 Point 88: 2.10197, 25.500 Point 34: 1.67012,162.000 Point 34: 1.67012,162.000 Point 99: 2.12422, 23.000 Point 35: 1.67720,157.500 Point 35: 1.67720,157.500 Point 91: 2.13571, 21.800 Point 91:	Point 19: 1.57693,234.500	Point 74: 1.96651, 46.800	
Point 21: 1.58786.224.500 Point 76: 1.98373, 43.400 Point 22: 1.59352.219.500 Point 77: 1.99227, 41.800 Point 23: 1.59332.214.500 Point 77: 2.01028, 38.600 Point 25: 1.61136.204.500 Point 78: 2.0111, 40.200 Point 25: 1.61136,204.500 Point 78: 2.0128, 38.600 Point 26: 1.63769,188.500 Point 81: 2.02910, 35.500 Point 28: 1.63059,188.500 Point 81: 2.03875, 34.000 Point 28: 1.63059,188.500 Point 83: 2.04878, 32.500 Point 28: 1.63734,184.500 Point 83: 2.04878, 32.500 Point 28: 1.6334,184.500 Point 85: 2.06944, 29.600 Point 31: 1.64996,175.500 Point 86: 2.08006, 28.200 Point 31: 1.64996,175.500 Point 88: 2.10197, 25.500 Point 31: 1.64996,175.500 Point 88: 2.10197, 25.500 Point 31: 1.64996,175.500 Point 88: 2.10197, 25.500 Point 32: 1.65651,171.000 Point 81: 2.02117, 24.800 Point 31: 1.64996,175.500 Point 81: 2.02117, 24.800 Point 32: 1.65651,171.000 Point 81: 2.10371, 21.800 Point 33: 1.66323,166.500 Point 91: 2.13571, 21.800 Point 31: 1.69194,148.500 Point 91: 2.21871, 21.800 Point 41: 1.7038,1344.000	Point 20: 1.58233,229.500	Point 75: 1.97547, 45.000	
Point 21: 1.58/36,224.500 Point 76: 1.9833, 43.400 Point 22: 1.59352,214.500 Point 77: 1.99227, 41.800 Point 23: 1.59352,214.500 Point 77: 2.01028, 38.600 Point 24: 1.60526,209.500 Point 79: 2.01028, 38.600 Point 25: 1.61136,204.500 Point 80: 2.01982, 37.000 Point 26: 1.61760,199.500 Point 81: 2.02910, 35.500 Point 26: 1.62401,194.500 Point 81: 2.02910, 35.500 Point 28: 1.63059,189.500 Point 83: 2.04878, 32.500 Point 29: 1.63734,184.500 Point 84: 2.05925, 31.000 Point 29: 1.63734,184.500 Point 84: 2.05925, 31.000 Point 31: 1.64996,175.500 Point 86: 2.08006, 28.200 Point 31: 1.6496,175.500 Point 86: 2.01917, 26.800 Point 31: 1.65651,171.000 Point 88: 2.10197, 25.500 Point 31: 1.6702,162.000 Point 89: 2.11327, 24.200 Point 32: 1.67720,157.500 Point 99: 2.1422, 23.000 Point 34: 1.67012,162.000 Point 99: 2.1428, 23.000 Point 35: 1.67720,157.500 Point 91: 2.13571, 21.800 Point 34: 1.67038,144.000 Point 92: 2.14783, 20.600 Point 41: 1.70753,139.500 Point 92: 2.14783, 20.600 Point 42: 1.73076,127.000 Point 92: 2.14783, 20.600			
Point 22: 1.5932;219.500 Point 77: 1.99227, 41.800 Point 23: 1.59932;214.500 Point 77: 2.01028, 38.600 Point 24: 1.60526;209.500 Point 79: 2.01028, 38.600 Point 25: 1.61136;204.500 Point 80: 2.01982, 37.000 Point 26: 1.61760,199.500 Point 81: 2.02910, 35.500 Point 27: 1.62401,194.500 Point 81: 2.03975, 34.000 Point 29: 1.63734,184.500 Point 83: 2.04878, 32.500 Point 30: 1.64357,180.000 Point 86: 2.08006, 28.200 Point 31: 1.64996,175.500 Point 86: 2.08006, 28.200 Point 31: 1.64996,175.500 Point 86: 2.0117, 26.800 Point 31: 1.66353,116.500 Point 88: 2.11327, 24.200 Point 33: 1.66323,166.500 Point 89: 2.11327, 24.200 Point 34: 1.67012,162.000 Point 99: 2.12422, 23.000 Point 35: 1.67720,157.500 Point 91: 2.13571, 21.800 Point 36: 1.68447,153.000 Point 92: 2.14783, 20.600 Point 38: 1.69963,144.000 Point 93: 2.15688, 19.750 Point 38: 1.70753,139.500 Point 91: 2.13571, 21.800 Point 40: 1.71567,135.000 Point 96: 2.17909, 17.800 Point 41: 1.72312,131.000 Point 96: 2.17909, 17.800 Point 42: 1.73076,127.000 Point 97: 2.18704, 17.150 <	Point 21: 1.58786,224.500	Point 76: 1.98373, 43.400	
Point 23: 1.59932,214.500 Point 78: 2.00111, 40.200 Point 24: 1.60526,209.500 Point 78: 2.0128, 38.600 Point 25: 1.61136,204.500 Point 80: 2.01982, 37.000 Point 26: 1.61760,199.500 Point 81: 2.02910, 35.500 Point 27: 1.62401,194.500 Point 81: 2.03875, 34.000 Point 28: 1.63059,189.500 Point 81: 2.0478, 32.500 Point 29: 1.63734,184.500 Point 81: 2.06944, 29.600 Point 31: 1.64996,175.500 Point 86: 2.08006, 28.200 Point 32: 1.65651,171.000 Point 86: 2.09017, 26.800 Point 32: 1.65651,171.000 Point 89: 2.11327, 24.200 Point 35: 1.67720,157.500 Point 90: 2.12422, 23.000 Point 36: 1.68447,153.000 Point 91: 2.13571, 21.800 Point 36: 1.68447,153.000 Point 91: 2.13571, 21.800 Point 39: 1.70753,139.500 Point 92: 2.14783, 20.600 Point 39: 1.70753,139.500 Point 92: 2.17142, 18.450 Point 40: 1.71567,135.000 Point 92: 2.17804, 17.150 Point 41: 1.72312,131.000 Point 92: 2.1709, 17.800 Point 42: 1.73076,127.000 Point 92: 2.2057, 15.950 Point 44: 1.74671,119.000 Point 92: 2.2057, 15.950 Point 44: 1.7386,17.500 Point 101: 2.21937, 14.750 P	Point 22: 1.59352,219.500	Point 77: 1.99227, 41.800	
Point 24: 1.60526,203.500 Point 73: 2.01028, 38.600 Point 25: 1.61136,204.500 Point 80: 2.01982, 37.000 Point 26: 1.61760,199.500 Point 81: 2.02910, 35.500 Point 28: 1.63059,189.500 Point 81: 2.03875, 34.000 Point 28: 1.63059,189.500 Point 82: 2.03875, 34.000 Point 29: 1.63734,184.500 Point 82: 2.03875, 34.000 Point 30: 1.64357,180.000 Point 86: 2.08006, 28.200 Point 31: 1.64996,175.500 Point 86: 2.01917, 26.800 Point 31: 1.64996,175.500 Point 88: 2.11917, 25.500 Point 33: 1.65323,166.500 Point 88: 2.11927, 24.200 Point 35: 1.67720,157.500 Point 90: 2.12422, 23.000 Point 36: 1.68447,153.000 Point 91: 2.13571, 21.800 Point 31: 1.69194,148.500 Point 92: 2.14783, 20.600 Point 31: 1.6914,148.500 Point 92: 2.14783, 20.600 Point 31: 1.6914,148.500 Point 92: 2.14783, 20.600 Point 40: 1.71567,135.000 Point 91: 2.13571, 21.800 Point 41: 1.72312,131.000 Point 96: 2.17909, 17.800 Point 42: 1.73076,127.000 Point 97: 2.18704, 17.150 Point 44: 1.74671,119.000 Point 98: 2.20257, 15.950 Point 45: 1.75503,115.000 Point 100: 2.21080, 15.350	Point 23: 1.59932,214.500	Point 78: 2.00111, 40.200	
Point 25: 1.61136,204.500 Point 80: 2.01962, 37.000 Point 26: 1.61760,199.500 Point 81: 2.02910, 35.500 Point 27: 1.62401,194.500 Point 81: 2.03875, 34.000 Point 28: 1.63059,189.500 Point 84: 2.05925, 31.000 Point 30: 1.64357,180.000 Point 84: 2.05925, 31.000 Point 31: 1.64996,175.500 Point 86: 2.08006, 28.200 Point 32: 1.65651,171.000 Point 86: 2.09117, 26.800 Point 31: 1.64996,175.500 Point 86: 2.10197, 25.500 Point 33: 1.66323,166.500 Point 89: 2.11327, 24.200 Point 35: 1.67720,157.500 Point 90: 2.12422, 23.000 Point 36: 1.68447,153.000 Point 91: 2.13571, 21.800 Point 38: 1.69963,144.000 Point 91: 2.14783, 20.600 Point 40: 1.71567,135.000 Point 95: 2.17142, 18.450 Point 41: 1.72312,131.000 Point 95: 2.17142, 18.450 Point 41: 1.72312,131.000 Point 96: 2.17909, 17.800 Point 43: 1.73863,123.000 Point 98: 2.19466, 16.550 Point 44: 1.74671,119.000 Point 99: 2.20257, 15.950 Point 44: 1.76362,111.000 Point 101: 2.21937, 14.750 Point 45: 1.75503,115.000 Point 102: 2.22757, 14.200 Point 46: 1.76362,111.000 Point 102: 2.22757, 14.200	Point 24: 1.60526,209.500	Point 79: 2.01028, 38.600	
Point 26: 1.61760, 199.500 Point 81: 2.02910, 35.500 Point 27: 1.62401, 194.500 Point 82: 2.03875, 34.000 Point 28: 1.63059, 189.500 Point 82: 2.03875, 34.000 Point 29: 1.63734, 184.500 Point 82: 2.03875, 31.000 Point 29: 1.63734, 184.500 Point 85: 2.06944, 29.600 Point 31: 1.64996, 175.500 Point 85: 2.00944, 29.600 Point 31: 1.6496, 175.500 Point 82: 2.0117, 26.800 Point 33: 1.66323, 166.500 Point 82: 2.10197, 25.500 Point 34: 1.67012, 162.000 Point 89: 2.11327, 24.200 Point 35: 1.67720, 157.500 Point 99: 2.12422, 23.000 Point 35: 1.67720, 157.500 Point 91: 2.13571, 21.800 Point 35: 1.67730, 157.500 Point 92: 2.14783, 20.600 Point 38: 1.69963, 144.000 Point 94: 2.16403, 19.100 Point 93: 1.70753, 139.500 Point 97: 2.18704, 17.150 Point 41: 1.72312, 131.000 Point 96: 2.17909, 17.800 Point 42: 1.73076, 127.000	Point 25. 1.01130,204.500	Point 80. 2.0 1982, 37.000	
Point 20: 1.0100, 139.500 Point 81: 2.023 10, 53.500 Point 21: 1.62401, 194.500 Point 81: 2.023 10, 53.500 Point 22: 1.63059, 189.500 Point 83: 2.04878, 32.500 Point 22: 1.63734, 184.500 Point 84: 2.05925, 31.000 Point 30: 1.64357, 180.000 Point 84: 2.05925, 31.000 Point 31: 1.64996, 175.500 Point 86: 2.08006, 28.200 Point 32: 1.65651, 171.000 Point 86: 2.09117, 26.800 Point 31: 1.64996, 175.500 Point 88: 2.11327, 24.200 Point 34: 1.67012, 162.000 Point 88: 2.11327, 24.200 Point 35: 1.67720, 157.500 Point 90: 2.12422, 23.000 Point 36: 1.68447, 153.000 Point 91: 2.13571, 21.800 Point 37: 1.69194, 148.500 Point 91: 2.213571, 21.800 Point 38: 1.69963, 144.000 Point 93: 2.15688, 19.750 Point 40: 1.71567, 135.000 Point 95: 2.17142, 18.450 Point 41: 1.72312, 131.000 Point 96: 2.17909, 17.800 Point 42: 1.73076, 127.000 Point 99: 2.20257, 15.950 Point 43: 1.73863, 123.000 Point 99: 2.20257, 15.950 Point 44: 1.74671, 119.000 Point 101: 2.21030, 15.350 Point 45: 1.75503, 115.000 Point 101: 2.21037, 14.750 Point 46: 1.76362, 111.000 Point 101: 2.22610, 13.650	Point 26: 1 61760 100 500	Point 81: 2 02010 35 500	
Point 27: 163050Point 82: 203073, 4100Point 28: 163059, 189.500Point 83: 204878, 32.500Point 29: 1.63734, 184.500Point 83: 204878, 32.500Point 30: 1.64357, 180.000Point 84: 2.05925, 31.000Point 31: 1.64996, 175.500Point 85: 2.06944, 29.600Point 32: 1.65651, 171.000Point 86: 2.08006, 28.200Point 32: 1.65651, 171.000Point 87: 2.09117, 26.800Point 31: 1.6702, 157.500Point 88: 2.10197, 25.500Point 34: 1.67012, 162.000Point 89: 2.11327, 24.200Point 35: 1.68447, 153.000Point 91: 2.13571, 21.800Point 36: 1.68447, 153.000Point 91: 2.13571, 21.800Point 37: 1.69194, 148.500Point 92: 2.14783, 20.600Point 38: 1.69963, 144.000Point 91: 2.15688, 19.750Point 39: 1.70753, 139.500Point 95: 2.17142, 18.450Point 40: 1.71567, 135.000Point 95: 2.17142, 18.450Point 41: 1.72312, 131.000Point 96: 2.17909, 17.800Point 42: 1.73076, 127.000Point 96: 2.17909, 17.800Point 43: 1.73863, 123.000Point 100: 2.20267, 15.950Point 45: 1.75503, 115.000Point 101: 2.21937, 14.750Point 46: 1.76362, 111.000Point 101: 2.21937, 14.750Point 46: 1.76362, 111.000Point 102: 2.22757, 14.200Point 48: 1.77938, 104.000Point 103: 2.2610, 13.650Point 48: 1.77938, 104.000Point 103: 2.2610, 13.650Point 49: 1.78762, 100.500Point 106: 2.26237, 12.100Point 50: 1.79490, 97.500Point 106: 2.26237, 12.100Point 51: 1.80112, 95.000Point 106: 2.26237, 12.100Point 51: 1.80	Point 20. 1.01700,199.000	Point 82: 2.02910, 33.300	
Point 25: 163734;184.500 Point 84: 205925; 31.000 Point 30: 1.64357;180.000 Point 85: 2.06944, 29.600 Point 31: 1.6496;175:500 Point 86: 2.08006; 28.200 Point 32: 1.65651;171.000 Point 86: 2.0906; 28.200 Point 32: 1.65651;171.000 Point 88: 2.10197; 25:500 Point 33: 1.66323; 166:500 Point 88: 2.10197; 25:500 Point 34: 1.67012; 162:000 Point 89: 2.11327; 24:200 Point 35: 1.67720; 157:500 Point 90: 2.12422; 23:000 Point 36: 1.68447; 153:000 Point 91: 2.13571; 21:800 Point 37: 1.69194; 148:500 Point 91: 2.214783; 20:600 Point 38: 1.69963; 144:000 Point 91: 2.14783; 20:600 Point 39: 1.70753; 139:500 Point 91: 2.14783; 20:600 Point 40: 1.71567; 135:000 Point 92: 2.14783; 20:600 Point 41: 1.72312; 131:000 Point 92: 2.14783; 20:600 Point 41: 1.72312; 131:000 Point 95: 2.17142; 18:450 Point 42: 1.73076; 127:000 Point 96: 2.17909; 17:800 Point 43: 1.73863; 123:000 Point 98: 2.19466; 16:550 Point 44: 1.74671; 119:000 Point 100: 2.21080; 15:350 Point 45: 1.7503; 115:000 Point 101: 2.21937; 14:750 Point 46: 1.76362; 111:000 Point 101: 2.22610; 13:650	Point 28: 1 63059 189 500	Point 82: 2.03073, 34.000	
Point 20: 1.64357,180.000Point 85: 2.06944, 29.600Point 31: 1.64996,175.500Point 85: 2.06944, 29.600Point 32: 1.65651,171.000Point 86: 2.0117, 26.800Point 32: 1.65651,171.000Point 88: 2.0117, 26.800Point 33: 1.66323,166.500Point 88: 2.11327, 24.200Point 35: 1.67720,157.500Point 90: 2.12422, 23.000Point 36: 1.68447,153.000Point 91: 2.13571, 21.800Point 36: 1.68447,153.000Point 91: 2.13571, 21.800Point 37: 1.69194,148.500Point 92: 2.14783, 20.600Point 38: 1.69963,144.000Point 93: 2.15688, 19.750Point 39: 1.70753,139.500Point 94: 2.16403, 19.100Point 40: 1.71567,135.000Point 95: 2.17142, 18.450Point 41: 1.72312,131.000Point 96: 2.17909, 17.800Point 42: 1.73076,127.000Point 98: 2.19466, 16.550Point 43: 1.7363,123.000Point 99: 2.20257, 15.950Point 44: 1.74671,119.000Point 99: 2.21080, 15.350Point 45: 1.75503,115.000Point 101: 2.21937, 14.750Point 46: 1.76362,111.000Point 102: 2.22757, 14.200Point 48: 1.77938,104.000Point 103: 2.23610, 13.650Point 49: 1.78762,100.500Point 106: 2.26237, 12.100Point 50: 1.79490, 97.500Point 106: 2.26237, 12.100Point 51: 1.80112, 95.000Point 107: 2.27166, 11.600Point 53: 1.81402, 90.000Point 107: 2.27166, 11.600Point 53: 1.81402, 90.000Point 107: 2.27166, 11.600Point 55: 1.82759, 85.000Point 107: 2.29063, 10.650Point 55: 1.82759, 85.000Point 109: 2.29063, 10.650	Point 29: 1 63734 184 500	Point 84: 2 05925 31 000	
Point 31: 1.64996,175.500 Point 86: 2.08006, 28.200 Point 32: 1.65651,171.000 Point 87: 2.09117, 26.800 Point 33: 1.66323,166.500 Point 88: 2.10197, 25.500 Point 34: 1.67012,162.000 Point 89: 2.11327, 24.200 Point 35: 1.67720,157.500 Point 90: 2.12422, 23.000 Point 36: 1.68447,153.000 Point 91: 2.13571, 21.800 Point 37: 1.69194,148.500 Point 92: 2.14783, 20.600 Point 38: 1.69963,144.000 Point 93: 2.15688, 19.750 Point 39: 1.70753,139.500 Point 94: 2.16403, 19.100 Point 40: 1.71567,135.000 Point 95: 2.17142, 18.450 Point 41: 1.72312,131.000 Point 96: 2.17909, 17.800 Point 42: 1.73076,127.000 Point 97: 2.18704, 17.150 Point 43: 1.73863,123.000 Point 99: 2.20257, 15.950 Point 44: 1.74671,119.000 Point 99: 2.20257, 15.950 Point 45: 1.75503,115.000 Point 101: 2.21937, 14.750 Point 46: 1.76362,111.000 Point 103: 2.23610, 13.650 Point 48: 1.77938,104.000 Point 104: 2.24503, 13.100 Point 50: 1.79490, 97.500 Point 106: 2.26237, 12.100 Point 51: 1.80112, 95.000 Point 106: 2.26237, 12.100 Point 51: 1.80112, 95.000 Point 107: 2.27166, 11.600	Point 30: 1 64357 180 000	Point 85 2 06944 29 600	
Point 31: 1.64996,175.500 Point 86: 2.08006, 28.200 Point 32: 1.65651,171.000 Point 87: 2.09117, 26.800 Point 33: 1.66323,166.500 Point 88: 2.10197, 25.500 Point 34: 1.67012,162.000 Point 89: 2.11327, 24.200 Point 36: 1.68447,153.000 Point 90: 2.12422, 23.000 Point 36: 1.68447,153.000 Point 91: 2.13571, 21.800 Point 37: 1.69194,148.500 Point 92: 2.14783, 20.600 Point 38: 1.69963,144.000 Point 93: 2.15688, 19.750 Point 39: 1.70753,139.500 Point 94: 2.16403, 19.100 Point 40: 1.71567,135.000 Point 95: 2.17142, 18.450 Point 41: 1.72312,131.000 Point 96: 2.17909, 17.800 Point 42: 1.73076,127.000 Point 98: 2.19466, 16.550 Point 43: 1.73863,123.000 Point 101: 2.21937, 14.750 Point 44: 1.74671,119.000 Point 101: 2.21937, 14.750 Point 45: 1.75503,115.000 Point 101: 2.223757, 14.200 Point 46: 1.76362,111.000 Point 101: 2.223757, 14.200 Point 48: 1.77938,104.000 Point 103: 2.23610, 13.650 Point 48: 1.77938,104.000 Point 103: 2.23610, 13.650 Point 49: 1.78762,100.500 Point 105: 2.26327, 12.100 Point 50: 1.7949, 97.500 Point 106: 2.26237, 12.100 <			
Point32: 1.65651,171.000Point87: 2.09117, 26.800Point33: 1.66323,166.500Point88: 2.10197, 25.500Point34: 1.67012,162.000Point89: 2.11327, 24.200Point35: 1.67720,157.500Point90: 2.12422, 23.000Point36: 1.68447,153.000Point91: 2.13571, 21.800Point37: 1.69194,148.500Point92: 2.14783, 20.600Point38: 1.6963,144.000Point92: 2.14783, 20.600Point39: 1.70753,139.500Point94: 2.16403, 19.100Point40: 1.71567,135.000Point95: 2.17142, 18.450Point41: 1.72312,131.000Point96: 2.17909, 17.800Point43: 1.73863,123.000Point98: 2.19466, 16.550Point43: 1.73863,123.000Point 109: 2.20257, 15.950Point44: 1.74671,119.000Point 101: 2.21937, 14.750Point46: 1.76362,111.000Point 101: 2.21937, 14.750Point48: 1.77938,104.000Point 103: 2.23610, 13.650Point48: 1.77938,104.000Point 103: 2.2352, 12.600Point51: 1.80112, 95.000Point 106: 2.26237, 12.100Point51: 1.80112, 95.000Point 106: 2.26237, 12.100Point51: 1.80749, 92.500Point 108: 2.28141, 11.100Point51: 1.80749, 92.500Point 108: 2.28063, 10.650Point51: 1.82759, 85.000Point 109: 2.20063, 10.650Point55: 1.82759, 85.000Point 100: 2.30031, 10.200	Point 31: 1.64996,175.500	Point 86: 2.08006, 28.200	
Point33: 1.66323, 166.500Point88: 2.10197, 25.500Point34: 1.67012, 162.000Point89: 2.11327, 24.200Point35: 1.67720, 157.500Point90: 2.12422, 23.000Point36: 1.68447, 153.000Point91: 2.13571, 21.800Point37: 1.69194, 148.500Point92: 2.14783, 20.600Point38: 1.69963, 144.000Point93: 2.15688, 19.750Point39: 1.70753, 139.500Point94: 2.16403, 19.100Point40: 1.71567, 135.000Point95: 2.17142, 18.450Point41: 1.72312, 131.000Point95: 2.17909, 17.800Point42: 1.73076, 127.000Point98: 2.19466, 16.550Point43: 1.73863, 123.000Point 98: 2.19466, 16.550Point44: 1.74671, 119.000Point 99: 2.20257, 15.950Point45: 1.75503, 115.000Point 101: 2.21080, 15.350Point46: 1.76362, 111.000Point 101: 2.21037, 14.750Point46: 1.76362, 110.00Point 101: 2.22757, 14.200Point48: 1.77938, 104.000Point 103: 2.23610, 13.650Point50: 1.79490, 97.500Point 105: 2.26352, 12.600Point51: 1.80112, 95.000Point 106: 2.26237, 12.100Point51: 1.8012, 95.000Point 107: 2.27166, 11.600Point51: 1.80749, 92.500Point 107: 2.27166, 11.600Point51: 1.80749, 92.500Point 108: 2.28141, 11.100Point51: 1.8074, 87.500Point 108: 2.28063, 10.650Point51: 1.82759, 85.000Point 109: 2.30	Point 32: 1.65651,171.000	Point 87: 2.09117, 26.800	
Point34: 1.67012,162.000 PointPoint89: 2.11327, 24.200 PointPoint35: 1.67720,157.500Point90: 2.12422, 23.000Point36: 1.68447,153.000 PointPoint91: 2.13571, 21.800 PointPoint37: 1.69194,148.500 PointPoint92: 2.14783, 20.600 PointPoint38: 1.69963,144.000 PointPoint93: 2.15688, 19.750 PointPoint39: 1.70753,139.500 PointPoint94: 2.16403, 19.100 PointPoint40: 1.71567,135.000Point95: 2.17142, 18.450Point41: 1.72312,131.000 PointPoint96: 2.17909, 17.800 PointPoint42: 1.73076,127.000 PointPoint99: 2.20257, 15.950 PointPoint43: 1.73863,123.000 PointPoint99: 2.20257, 15.950 PointPoint45: 1.75503,115.000 PointPoint101: 2.21937, 14.750 PointPoint46: 1.76362,111.000 PointPoint101: 2.22757, 14.200 PointPoint46: 1.76362,111.000 PointPoint101: 2.22757, 14.200 PointPoint48: 1.77938,104.000 PointPoint103: 2.23610, 13.650 PointPoint51: 1.80112, 95.000 PointPoint106: 2.26237, 12.100 PointPoint51: 1.80112, 95.000 PointPoint106: 2.26237, 12.100 PointPoint51: 1.80149, 92.500 PointPoint106: 2.26237, 12.100 PointPoint51: 1.80149, 92.500 PointPoint106: 2.22963, 10.650 PointPoint51: 1.80174, 8	Point 33: 1.66323,166.500	Point 88: 2.10197, 25.500	
Point35: 1.67720, 157.500Point90: 2.12422, 23.000Point36: 1.68447, 153.000Point91: 2.13571, 21.800Point37: 1.69194, 148.500Point92: 2.14783, 20.600Point38: 1.69963, 144.000Point93: 2.15688, 19.750Point39: 1.70753, 139.500Point94: 2.16403, 19.100Point40: 1.71567, 135.000Point95: 2.17142, 18.450Point41: 1.72312, 131.000Point96: 2.17909, 17.800Point42: 1.73076, 127.000Point97: 2.18704, 17.150Point43: 1.73863, 123.000Point99: 2.20257, 15.950Point43: 1.75503, 115.000Point100: 2.21080, 15.350Point46: 1.76362, 111.000Point101: 2.21937, 14.750Point46: 1.76362, 111.000Point101: 2.223757, 14.200Point48: 1.77938, 104.000Point103: 2.23610, 13.650Point49: 1.78762, 100.500Point105: 2.25352, 12.600Point51: 1.80112, 95.000Point106: 2.26237, 12.100Point51: 1.80749, 92.500Point108: 2.28141, 11.100Point51: 1.80749, 92.500Point108: 2.28141, 11.100Point51: 1.82749, 85.000Point109: 2.29063, 10.650Point55: 1.82759, 85.000Point109: 2.29063, 10.650Point55: 1.82759, 85.000Point100: 2.20031, 10.200	Point 34: 1.67012,162.000	Point 89: 2.11327, 24.200	
Point 36: 1.68447,153.000 Point 37: 1.69194,148.500 Point 38: 1.6963,144.000 Point 93: 2.15688, 19.750Point 39: 1.70753,139.500 Point 91: 2.13571, 21.800 Point 39: 1.70753,139.500 Point 94: 2.16403, 19.100 Point 40: 1.71567,135.000Point 40: 1.71567,135.000 Point 95: 2.17142, 18.450Point 41: 1.72312,131.000 Point 95: 2.17142, 18.450Point 42: 1.73076,127.000 Point 97: 2.18704, 17.150 Point 43: 1.73863,123.000 Point 98: 2.19466, 16.550 Point 44: 1.74671,119.000 Point 99: 2.20257, 15.950 Point 45: 1.75503,115.000Point 46: 1.76362,111.000 Point 101: 2.21937, 14.750 Point 46: 1.76362,111.000 Point 102: 2.22757, 14.200 Point 48: 1.77938,104.000 Point 103: 2.23610, 13.650 Point 49: 1.78762,100.500 Point 105: 2.25352, 12.600Point 51: 1.80112, 95.000 Point 106: 2.26237, 12.100 Point 51: 1.80749, 92.500 Point 108: 2.29063, 10.650 Point 51: 1.82759, 85.000Point 51: 1.82759, 85.000	Point 35: 1.67720,157.500	Point 90: 2.12422, 23.000	
Point36: 1.68447,153.000Point91: 2.13571, 21.800Point37: 1.69194,148.500Point92: 2.14783, 20.600Point38: 1.69963,144.000Point93: 2.15688, 19.750Point39: 1.70753,139.500Point94: 2.16403, 19.100Point40: 1.71567,135.000Point95: 2.17142, 18.450Point41: 1.72312,131.000Point95: 2.17142, 18.450Point42: 1.73076,127.000Point97: 2.18704, 17.150Point43: 1.73863,123.000Point99: 2.20257, 15.950Point44: 1.74671,119.000Point99: 2.20257, 15.950Point45: 1.75503,115.000Point101: 2.21937, 14.750Point46: 1.76362,111.000Point101: 2.222757, 14.200Point48: 1.77938,104.000Point103: 2.23610, 13.650Point49: 1.78762,100.500Point104: 2.24503, 13.100Point51: 1.80112, 95.000Point106: 2.26237, 12.100Point51: 1.80112, 95.000Point106: 2.22716, 11.600Point51: 1.80174, 92.500Point108: 2.28141, 11.100Point51: 1.80174, 95.500Point108: 2.28141, 11.600Point51: 1.82074, 87.500Point108: 2.28141, 11.00Point51: 1.82759, 85.000Point109: 2.29063, 10.650Point55: 1.82759, 85.000Point102: 2.30031, 10.200			
Point37: 1.69194,148.500Point 92: 2.14783, 20.600Point38: 1.69963,144.000Point 93: 2.15688, 19.750Point39: 1.70753, 139.500Point 94: 2.16403, 19.100Point 40: 1.71567, 135.000Point 95: 2.17142, 18.450Point 41: 1.72312, 131.000Point 96: 2.17909, 17.800Point 42: 1.73076, 127.000Point 97: 2.18704, 17.150Point 43: 1.73863, 123.000Point 99: 2.20257, 15.950Point 44: 1.74671, 119.000Point 101: 2.21937, 14.750Point 45: 1.75503, 115.000Point 102: 2.22757, 14.200Point 46: 1.76362, 111.000Point 102: 2.22757, 14.200Point 49: 1.7938, 104.000Point 103: 2.23610, 13.650Point 50: 1.79490, 97.500Point 105: 2.25352, 12.600Point 51: 1.80112, 95.000Point 106: 2.26237, 12.100Point 51: 1.8012, 90.000Point 108: 2.28141, 11.100Point 51: 1.82718, 85.000Point 109: 2.20063, 10.650Point 55: 1.82759, 85.000Point 109: 2.20031, 10.200	Point 36: 1.68447,153.000	Point 91: 2.13571, 21.800	
Point38: 1.69963,144.000Point93: 2.15688, 19.750Point39: 1.70753,139.500Point94: 2.16403, 19.100Point40: 1.71567,135.000Point95: 2.17142, 18.450Point42: 1.73076,127.000Point97: 2.18704, 17.150Point43: 1.73863,123.000Point98: 2.19466, 16.550Point44: 1.74671,119.000Point99: 2.20257, 15.950Point45: 1.75503,115.000Point100: 2.21080, 15.350Point46: 1.76362,111.000Point101: 2.21937, 14.750Point46: 1.76362,111.000Point102: 2.22757, 14.200Point48: 1.77938,104.000Point103: 2.23610, 13.650Point49: 1.78762,100.500Point105: 2.25352, 12.600Point51: 1.80112, 95.000Point105: 2.26237, 12.100Point51: 1.8012, 95.000Point107: 2.27166, 11.600Point53: 1.81402, 90.000Point108: 2.28141, 11.100Point53: 1.82759, 85.000Point102: 2.20063, 10.650Point55: 1.82759, 85.000Point102: 2.20031, 10.200	Point 37: 1.69194,148.500	Point 92: 2.14783, 20.600	
Point39: 1.70753,139.500Point94: 2.16403, 19.100Point40: 1.71567,135.000Point95: 2.17142, 18.450Point42: 1.73076,127.000Point96: 2.17909, 17.800Point42: 1.73076,127.000Point97: 2.18704, 17.150Point43: 1.73863,123.000Point98: 2.19466, 16.550Point44: 1.74671,119.000Point99: 2.20257, 15.950Point45: 1.75503,115.000Point100: 2.21080, 15.350Point46: 1.76362,111.000Point101: 2.21937, 14.750Point46: 1.76362,111.000Point102: 2.22757, 14.200Point47: 1.77138,107.500Point102: 2.22757, 14.200Point49: 1.78762,100.500Point103: 2.23610, 13.650Point49: 1.78762,100.500Point105: 2.25352, 12.600Point51: 1.80112, 95.000Point106: 2.26237, 12.100Point51: 1.8012, 95.000Point108: 2.28141, 11.100Point53: 1.81402, 90.000Point108: 2.28141, 11.100Point53: 1.82759, 85.000Point109: 2.29063, 10.650Point55: 1.82759, 85.000Point110: 2.30031, 10.200	Point 38: 1.69963,144.000	Point 93: 2.15688, 19.750	
Point 40: 1.7 1567,135.000Point 95: 2.17142, 18.450Point 41: 1.72312,131.000Point 96: 2.17909, 17.800Point 42: 1.73076,127.000Point 97: 2.18704, 17.150Point 43: 1.73863,123.000Point 98: 2.19466, 16.550Point 44: 1.74671,119.000Point 99: 2.20257, 15.950Point 45: 1.75503,115.000Point 100: 2.21080, 15.350Point 46: 1.76362,111.000Point 101: 2.21937, 14.750Point 46: 1.76362,111.000Point 101: 2.22377, 14.200Point 47: 1.77138,107.500Point 102: 2.22757, 14.200Point 48: 1.77938,104.000Point 103: 2.23610, 13.650Point 50: 1.79490, 97.500Point 105: 2.25352, 12.600Point 51: 1.80112, 95.000Point 106: 2.26237, 12.100Point 51: 1.8012, 95.000Point 108: 2.28141, 11.100Point 54: 1.82074, 87.500Point 108: 2.28141, 11.100Point 54: 1.82071, 87.500Point 109: 2.29063, 10.650Point 55: 1.82759, 85.000Point 110: 2.30031, 10.200	Point 39: 1.70753,139.500	Point 94: 2.16403, 19.100	
Point41: 1.72312,131.000 PointPoint96: 2.17909, 17.800 PointPoint42: 1.73076,127.000 PointPoint97: 2.18704, 17.150 PointPoint43: 1.73863,123.000 PointPoint99: 2.20257, 15.950 PointPoint44: 1.74671,119.000 PointPoint99: 2.20257, 15.950 PointPoint45: 1.75503,115.000Point100: 2.21080, 15.350Point46: 1.76362,111.000 PointPoint101: 2.21937, 14.750 PointPoint46: 1.77388,104.000 PointPoint103: 2.223610, 13.650 PointPoint48: 1.77938,104.000 PointPoint103: 2.23610, 13.650 PointPoint51: 1.79490, 97.500 PointPoint105: 2.25352, 12.600Point51: 1.80112, 95.000 PointPoint106: 2.26237, 12.100 PointPoint51: 1.80749, 92.500 PointPoint108: 2.28141, 11.100 PointPoint51: 1.8074, 97.500 PointPoint108: 2.28141, 11.100 PointPoint51: 1.8271, 87.500 PointPoint108: 2.29063, 10.650 PointPoint55: 1.82759, 85.000 PointPoint102: 2.30031, 10.200	Point 40: 1./156/,135.000	Point 95: 2.17142, 18.450	
Point 41: 172312,131.000 Point 90: 2.17903, 17.000 Point 42: 1.73076,127.000 Point 97: 2.18704, 17.150 Point 43: 1.73863,123.000 Point 98: 2.19466, 16.550 Point 44: 1.74671,119.000 Point 99: 2.20257, 15.950 Point 45: 1.75503,115.000 Point 100: 2.21080, 15.350 Point 46: 1.76362,111.000 Point 101: 2.21937, 14.750 Point 47: 1.77138,107.500 Point 102: 2.22757, 14.200 Point 49: 1.78762,100.500 Point 103: 2.23610, 13.650 Point 49: 1.78762,100.500 Point 104: 2.24503, 13.100 Point 50: 1.79490, 97.500 Point 106: 2.26237, 12.100 Point 51: 1.80112, 95.000 Point 106: 2.26237, 12.100 Point 53: 1.81402, 90.000 Point 107: 2.27166, 11.600 Point 54: 1.82071, 87.500 Point 109: 2.29063, 10.650 Point 55: 1.82759, 85.000 Point 109: 2.20031, 10.200	Point 41: 1 72312 121 000	Point 06: 2 17000 17 900	
Point 42: 1.73676,127.000 Point 97: 2.16704, 17.130 Point 43: 1.73863,123.000 Point 98: 2.19466, 16.550 Point 44: 1.74671,119.000 Point 99: 2.20257, 15.950 Point 45: 1.75503,115.000 Point 100: 2.21080, 15.350 Point 46: 1.76362,111.000 Point 101: 2.21937, 14.750 Point 47: 1.77138,107.500 Point 102: 2.22757, 14.200 Point 48: 1.77938,104.000 Point 103: 2.23610, 13.650 Point 49: 1.78762,100.500 Point 104: 2.24503, 13.100 Point 50: 1.79490, 97.500 Point 105: 2.25352, 12.600 Point 51: 1.80112, 95.000 Point 106: 2.26237, 12.100 Point 52: 1.80749, 92.500 Point 107: 2.27166, 11.600 Point 53: 1.81402, 90.000 Point 108: 2.28141, 11.100 Point 54: 1.82071, 87.500 Point 109: 2.29063, 10.650 Point 55: 1.82759, 85.000 Point 110: 2.30031, 10.200	Point 41. 1.72312,131.000	FUIL 90. 2.1/909, 17.800 Doint 07: 2.18704 17.150	
Point 40: 1.76003, 123.000 Point 90: 2.19400, 10.330 Point 44: 1.74671, 119.000 Point 99: 2.20257, 15.950 Point 45: 1.75503, 115.000 Point 100: 2.21080, 15.350 Point 46: 1.76362, 111.000 Point 101: 2.21937, 14.750 Point 47: 1.77138, 107.500 Point 102: 2.22757, 14.200 Point 48: 1.77938, 104.000 Point 103: 2.23610, 13.650 Point 49: 1.78762, 100.500 Point 104: 2.24503, 13.100 Point 50: 1.79490, 97.500 Point 105: 2.25352, 12.600 Point 51: 1.80112, 95.000 Point 106: 2.26237, 12.100 Point 52: 1.80749, 92.500 Point 107: 2.27166, 11.600 Point 53: 1.81402, 90.000 Point 108: 2.28141, 11.100 Point 54: 1.82071, 87.500 Point 109: 2.29063, 10.650 Point 55: 1.82759, 85.000 Point 110: 2.30031, 10.200	Fullit 42. 1.730/0,127.000	FUIL 97. 2.10/04, 17.150	
Point 45: 1.75503,115.000 Point 100: 2.21080, 15.350 Point 46: 1.76362,111.000 Point 100: 2.21080, 15.350 Point 46: 1.76362,111.000 Point 101: 2.21937, 14.750 Point 47: 1.77138,107.500 Point 102: 2.22757, 14.200 Point 48: 1.77938,104.000 Point 103: 2.23610, 13.650 Point 49: 1.78762,100.500 Point 104: 2.24503, 13.100 Point 50: 1.79490, 97.500 Point 105: 2.25352, 12.600 Point 51: 1.80112, 95.000 Point 106: 2.26237, 12.100 Point 52: 1.80749, 92.500 Point 107: 2.27166, 11.600 Point 53: 1.81402, 90.000 Point 108: 2.28141, 11.100 Point 54: 1.82071, 87.500 Point 109: 2.29063, 10.650 Point 55: 1.82759, 85.000 Point 110: 2.30031, 10.200	Point 43. 1.73003,123.000	Point 90. 2. 19400, 10.000 Point 90. 2. 20257 15.050	
Point 16: 1.76362,111.000 Point 10: 2.21000, 10:000 Point 46: 1.76362,111.000 Point 101: 2.21937, 14.750 Point 47: 1.77138,107.500 Point 102: 2.22757, 14.200 Point 48: 1.77938,104.000 Point 103: 2.23610, 13.650 Point 49: 1.78762,100.500 Point 104: 2.24503, 13.100 Point 50: 1.79490, 97.500 Point 105: 2.25352, 12.600 Point 51: 1.80112, 95.000 Point 106: 2.26237, 12.100 Point 52: 1.80749, 92.500 Point 107: 2.27166, 11.600 Point 53: 1.81402, 90.000 Point 108: 2.28141, 11.100 Point 54: 1.82071, 87.500 Point 109: 2.29063, 10.650 Point 55: 1.82759, 85.000 Point 110: 2.30031, 10.200	Point 45: 1 75503 115 000	Point 100: 2 21080 15 350	
Point 46: 1.76362,111.000 Point 101: 2.21937, 14.750 Point 47: 1.77138,107.500 Point 102: 2.22757, 14.200 Point 48: 1.77938,104.000 Point 103: 2.23610, 13.650 Point 49: 1.78762,100.500 Point 104: 2.24503, 13.100 Point 50: 1.79490, 97.500 Point 105: 2.25352, 12.600 Point 51: 1.80112, 95.000 Point 106: 2.26237, 12.100 Point 52: 1.80749, 92.500 Point 107: 2.27166, 11.600 Point 53: 1.81402, 90.000 Point 108: 2.28141, 11.100 Point 54: 1.82071, 87.500 Point 109: 2.29063, 10.650 Point 55: 1.82759, 85.000 Point 110: 2.30031, 10.200	1 0.112 - 10. 1.70000, 110.000	- Sinc 100. 2.21000, 10.000	
Point 47: 1.77138,107.500 Point 102: 2.22757, 14.200 Point 48: 1.77938,104.000 Point 103: 2.23610, 13.650 Point 49: 1.78762,100.500 Point 104: 2.24503, 13.100 Point 50: 1.79490, 97.500 Point 105: 2.25352, 12.600 Point 51: 1.80112, 95.000 Point 106: 2.26237, 12.100 Point 52: 1.80749, 92.500 Point 107: 2.27166, 11.600 Point 53: 1.81402, 90.000 Point 108: 2.28141, 11.100 Point 55: 1.82759, 85.000 Point 110: 2.30031, 10.200	Point 46: 1.76362 111 000	Point 101: 2.21937 14 750	
Point 18: 1.77938,104.000 Point 103: 1.223610, 13.650 Point 49: 1.78762,100.500 Point 103: 2.23610, 13.650 Point 50: 1.79490, 97.500 Point 104: 2.24503, 13.100 Point 50: 1.79490, 97.500 Point 105: 2.25352, 12.600 Point 51: 1.80112, 95.000 Point 106: 2.26237, 12.100 Point 52: 1.80749, 92.500 Point 107: 2.27166, 11.600 Point 53: 1.81402, 90.000 Point 108: 2.28141, 11.100 Point 54: 1.82071, 87.500 Point 109: 2.29063, 10.650 Point 55: 1.82759, 85.000 Point 110: 2.30031, 10.200	Point 47: 1.77138 107 500	Point 102: 2.22757 14 200	
Point 49: 1.78762,100.500 Point 101: 2.24503, 13.100 Point 50: 1.79490, 97.500 Point 105: 2.25352, 12.600 Point 51: 1.80112, 95.000 Point 106: 2.26237, 12.100 Point 52: 1.80749, 92.500 Point 107: 2.27166, 11.600 Point 53: 1.81402, 90.000 Point 108: 2.28141, 11.100 Point 54: 1.82071, 87.500 Point 109: 2.29063, 10.650 Point 55: 1.82759, 85.000 Point 110: 2.30031, 10.200	Point 48: 1.77938 104 000	Point 103: 2.23610, 13.650	
Point50: 1.79490, 97.500Point 105: 2.25352, 12.600Point51: 1.80112, 95.000Point 106: 2.26237, 12.100Point52: 1.80749, 92.500Point 107: 2.27166, 11.600Point53: 1.81402, 90.000Point 108: 2.28141, 11.100Point54: 1.82071, 87.500Point 109: 2.29063, 10.650Point55: 1.82759, 85.000Point 110: 2.30031, 10.200	Point 49: 1.78762,100.500	Point 104: 2.24503, 13.100	
Point51: 1.80112, 95.000Point 106: 2.26237, 12.100Point52: 1.80749, 92.500Point 107: 2.27166, 11.600Point53: 1.81402, 90.000Point 108: 2.28141, 11.100Point54: 1.82071, 87.500Point 109: 2.29063, 10.650Point55: 1.82759, 85.000Point 110: 2.30031, 10.200	Point 50: 1.79490, 97.500	Point 105: 2.25352, 12.600	
Point51: 1.80112, 95.000Point 106: 2.26237, 12.100Point52: 1.80749, 92.500Point 107: 2.27166, 11.600Point53: 1.81402, 90.000Point 108: 2.28141, 11.100Point54: 1.82071, 87.500Point 109: 2.29063, 10.650Point55: 1.82759, 85.000Point 110: 2.30031, 10.200	-,	· · · · · · ·	
Point 52: 1.80749, 92.500 Point 107: 2.27166, 11.600 Point 53: 1.81402, 90.000 Point 108: 2.28141, 11.100 Point 54: 1.82071, 87.500 Point 109: 2.29063, 10.650 Point 55: 1.82759, 85.000 Point 110: 2.30031, 10.200	Point 51: 1.80112, 95.000	Point 106: 2.26237, 12.100	
Point 53: 1.81402, 90.000 Point 108: 2.28141, 11.100 Point 54: 1.82071, 87.500 Point 109: 2.29063, 10.650 Point 55: 1.82759, 85.000 Point 110: 2.30031, 10.200	Point 52: 1.80749, 92.500	Point 107: 2.27166, 11.600	
Point 54: 1.82071, 87.500 Point 109: 2.29063, 10.650 Point 55: 1.82759, 85.000 Point 110: 2.30031, 10.200	Point 53: 1.81402, 90.000	Point 108: 2.28141, 11.100	
Point 55: 1.82759, 85.000 Point 110: 2.30031, 10.200	Point 54: 1.82071, 87.500	Point 109: 2.29063, 10.650	
	Point 55: 1.82759, 85.000	Point 110: 2.30031, 10.200	

BREAKPOINTS 91C/93C/330 FORMAT

Calibration Report: 429016 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29756

Interpolation Method: Lagrangian Limit: 325. (Kelvin) Format: 4 (Log Ohms/Kelvin) Number of Breakpoints: 46

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No.	Units	Temperature (K)	No.	Units	Temperature (K)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1 40770	225.0	26	2.04640	22.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1.49770	323.0	20	2.04010	32.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1.49041	324.0	21	2.07090	29.4
41.5103 307.0 29 212033 2.34 5 1.52299 292.0 30 2.14581 20.8 6 1.53575 277.0 31 2.17086 18.5 7 1.54939 262.0 32 2.19533 16.5 8 1.56399 247.0 33 2.22013 14.7 9 1.57963 232.0 34 2.24506 13.1 10 1.59641 217.0 35 2.26980 11.7 11 1.61447 202.0 36 2.29384 10.5 12 1.63395 187.0 37 2.31888 9.4 13 1.65505 172.0 38 2.34213 8.5 14 1.67801 157.0 39 2.36547 7.7 15 1.70313 142.0 40 2.38853 7.0 16 1.73078 127.0 41 2.41075 6.4 17 1.76147 112.0 42 2.43579 5.8 18 1.79614 97.0 43 2.45935 5.3 19 1.8358 67.0 45 2.51005 4.4 21 1.91514 58.5 46 2.53720 4.0 22 1.94682 51.0 21.660 41.4 24 1.99612 41.1 41.6 41.6 25 1.99612 41.1 41.6 40.6	3	1.49900	322.0	20	2.09013	20.2
5 1.52299 292.0 30 2.14361 20.8 6 1.53575 277.0 31 2.17086 18.5 7 1.54939 262.0 32 2.19533 16.5 8 1.56399 247.0 33 2.22013 14.7 9 1.57963 232.0 34 2.24506 13.1 10 1.59641 217.0 35 2.26980 11.7 11 1.61447 202.0 36 2.29384 10.5 12 1.63395 187.0 37 2.31888 9.4 13 1.65505 172.0 38 2.34213 8.5 14 1.67801 157.0 39 2.36547 7.7 15 1.70313 142.0 40 2.38853 7.0 16 1.73078 127.0 41 2.41075 6.4 17 1.76147 112.0 42 2.43579 5.8 18 1.79614 97.0 43 2.45935 5.3 19 1.83611 82.0 44 2.48038 4.9 20 1.88358 67.0 45 2.51005 4.4 21 1.91514 58.5 46 2.53720 4.0 22 1.94682 51.0 21.94662 51.0 41.0 23 1.97048 46.0 2.53720 4.0	4	1.51105	307.0	29	2.12000	23.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	1.52299	292.0	30	2.14581	20.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1.53575	277.0	31	2.17086	18.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	1.54939	262.0	32	2.19533	16.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	1.56399	247.0	33	2.22013	14.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	1.57963	232.0	34	2.24506	13.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1.59641	217.0	35	2.26980	11.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	1.61447	202.0	36	2.29384	10.5
13 1.65505 172.0 38 2.34213 8.5 14 1.67801 157.0 39 2.36547 7.7 15 1.70313 142.0 40 2.38853 7.0 16 1.73078 127.0 41 2.41075 6.4 17 1.76147 112.0 42 2.43579 5.8 18 1.79614 97.0 43 2.45935 5.3 19 1.83611 82.0 44 2.48038 4.9 20 1.88358 67.0 45 2.51005 4.4 21 1.91514 58.5 46 2.53720 4.0 22 1.94682 51.0 41.1 2.50005 4.0 23 1.97048 46.0 2.53720 4.0	12	1.63395	187.0	37	2.31888	9.4
14 1.67801 157.0 39 2.36547 7.7 15 1.70313 142.0 40 2.38853 7.0 16 1.73078 127.0 41 2.41075 6.4 17 1.76147 112.0 42 2.43579 5.8 18 1.79614 97.0 43 2.45935 5.3 19 1.83611 82.0 44 2.48038 4.9 20 1.88358 67.0 45 2.51005 4.4 21 1.91514 58.5 46 2.53720 4.0 22 1.94682 51.0 44.1 2.4002 4.0 23 1.97048 46.0 2.53720 4.0	13	1.65505	172.0	38	2.34213	8.5
15 1.70313 142.0 40 2.38853 7.0 16 1.73078 127.0 41 2.41075 6.4 17 1.76147 112.0 42 2.43579 5.8 18 1.79614 97.0 43 2.45935 5.3 19 1.83611 82.0 44 2.48038 4.9 20 1.88358 67.0 45 2.51005 4.4 21 1.91514 58.5 46 2.53720 4.0 22 1.94682 51.0 44.0 4.9 4.0 23 1.97048 46.0 4.0 4.0 4.0	14	1.67801	157.0	39	2.36547	7.7
16 1.73078 127.0 41 2.41075 6.4 17 1.76147 112.0 42 2.43579 5.8 18 1.79614 97.0 43 2.45935 5.3 19 1.83611 82.0 44 2.48038 4.9 20 1.88358 67.0 45 2.51005 4.4 21 1.91514 58.5 46 2.53720 4.0 22 1.94682 51.0 440 4.9 4.0 23 1.97048 46.0 4.0 4.0 4.0	15	1.70313	142.0	40	2.38853	7.0
17 1.76147 112.0 42 2.43579 5.8 18 1.79614 97.0 43 2.45935 5.3 19 1.83611 82.0 44 2.48038 4.9 20 1.88358 67.0 45 2.51005 4.4 21 1.91514 58.5 46 2.53720 4.0 22 1.94682 51.0 44.0 2.53720 4.0 23 1.97048 46.0 2.50105 4.4	16	1.73078	127.0	41	2.41075	6.4
18 1.79614 97.0 43 2.45935 5.3 19 1.83611 82.0 44 2.48038 4.9 20 1.88358 67.0 45 2.51005 4.4 21 1.91514 58.5 46 2.53720 4.0 22 1.94682 51.0 46.0 2.53720 4.0 23 1.97048 46.0 46.0 46.0 46.0 24 1.99612 41.1 46.0 46.0 46.0	17	1.76147	112.0	42	2.43579	5.8
19 1.83611 82.0 44 2.48038 4.9 20 1.88358 67.0 45 2.51005 4.4 21 1.91514 58.5 46 2.53720 4.0 22 1.94682 51.0 46.0 2.53720 4.0 23 1.97048 46.0 46.0 46.0 46.0 24 1.99612 41.1 46.0 46.0 46.0	18	1.79614	97.0	43	2.45935	5.3
20 1.88358 67.0 45 2.51005 4.4 21 1.91514 58.5 46 2.53720 4.0 22 1.94682 51.0 51.0 4.4 23 1.97048 46.0 4.4 24 1.99612 41.1 40.0	19	1.83611	82.0	44	2.48038	4.9
21 1.91514 58.5 46 2.53720 4.0 22 1.94682 51.0 23 1.97048 46.0 24 1.99612 41.1	20	1.88358	67.0	45	2.51005	4.4
22 1.94682 51.0 23 1.97048 46.0 24 1.99612 41.1	21	1.91514	58.5	46	2.53720	4.0
23 1.97048 46.0 24 1.99612 41.1	22	1.94682	51.0			
24 1.99612 41.1	23	1.97048	46.0			
	24	1.99612	41.1			
25 2.02106 36.8	25	2.02106	36.8			

Temperature for Resistance Decades:

Res. (Ohms)	Temp. (K)
100	40.402

Page 13 of 14

BREAKPOINTS 234 FORMAT

Calibration Report: 429016 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29756

•	Ū		<u>Maximum Tem</u> 1.4 - 10K: 10 - 20K: 20 - 40K: 40 - 100K:	perature Error: 0.007K 0.013K 0.020K 0.046K			
BP #	Temp (K)	Res (O)	l og 10 Res	0.222K BP #	Temp (K)	Res (O)	Log10 Res
1	321 801	31 62278	1 500	31	25 737	125 8025	2 100
2	205 658	33 11311	1.500	32	23.761	131 8257	2.100
2	233.030	34 67369	1.520	33	21 372	138 0384	2.120
4	250 995	36 30781	1.560	34	19 466	144 5440	2.140
5	231 656	38 01894	1.580	35	17 726	151 3561	2 180
6	213 936	39 81072	1.600	36	16 144	158 4893	2 200
7	197 618	41 68694	1.620	37	14 709	165 9587	2 220
8	182 576	43 65158	1.640	38	13 409	173 7801	2 240
9	168.655	45.70882	1.660	39	12.233	181.9701	2.260
10	155.762	47.86301	1.680	40	11.173	190.5461	2.280
11	143.794	50.11872	1.700	41	10.216	199.5262	2.300
12	132.670	52.48075	1.720	42	9.354	208.9296	2.320
13	122.320	54.95409	1.740	43	8.578	218.7762	2.340
14	112.680	57.54399	1.760	44	7.880	229.0868	2.360
15	103.738	60.25596	1.780	45	7.249	239.8833	2.380
16	95.449	63.09573	1.800	46	6.681	251.1886	2.400
17	87.769	66.06934	1.820	47	6.169	263.0268	2.420
18	80.662	69.18310	1.840	48	5.706	275.4229	2.440
19	74.096	72.44360	1.860	49	5.287	288.4032	2.460
20	68.033	75.85776	1.880	50	4.907	301.9952	2.480
21	62.442	79.43282	1.900	51	4.561	316.2278	2.500
22	57.285	83.17638	1.920	52	4.247	331.1311	2.520
23	52.535	87.09636	1.940	53	3.962	346.7369	2.540
24	48.155	91.20108	1.960	54	3.701	363.0781	2.560
25	44.120	95.49926	1.980				
26	40.404	100.0000	2.000				
27	36.974	104.7129	2.020				
28	33.814	109.6478	2.040				
29	30.899	114.8154	2.060				
30	28.213	120.2264	2.080				

X29761 SCAL-B 2% redundant thermometer

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 108 of
	115

DATA PLOT

Calibration Report: 429023 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29761 Sensor Excitation: 2mV±50%

Page 1 of 14

TEST DATA

Calibration Report: 429023 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29761 Sensor Excitation: 2mV±50%

Index	Temperature (K)	Resistance (Ω)	Index	Temperature (K)	Resistance (Ω)
1	3.60625	447.904	41	75.1471	80.1893
2	3.80527	430.752	42	80.1405	77.3496
3	4.00697	415.162	43	85.1340	74.7693
4	4.20283	401.488	44	90.1246	72.4077
5	4.72405	370.747	45	95.1220	70.2307
6	5.12442	351.270	46	100.112	68.2174
7	5.62776	330.679	47	110.213	64.5763
8	6.32975	307.347	48	120.097	61.4721
9	7.13722	285.809	49	130.099	58.6955
10	8.15277	264.509	50	140.105	56.2170
11	9.17411	247.432	51	150.102	53.9960
12	10.1958	233.421	52	160.094	51.9967
13	11.2105	221.666	53	170.083	50.1770
14	12.2203	211.692	54	180.078	48.5182
15	13.2230	203.061	55	190.080	46.9982
16	14.2114	195.501	56	200.080	45.6021
17	15.1988	188.762	57	210.072	44.3174
18	16,1739	182,769	58	220.066	43,1343
19	17,1501	177.323	59	230.079	42.0338
20	18.1219	172.330	60	240.075	41.0104
21	19.0924	167.748	61	250.074	40.0606
22	20.0679	163 477	62	260.081	39 1773
23	21 1462	159 123	63	270 070	38 3508
24	22 7168	153 331	64	280.082	37 5757
25	24.3139	148.007	65	290.073	36.8537
26	25.9477	143.053	66	300.078	36.1714
27	27 5954	138 525	67	310 072	35 5330
28	29 2311	134 365	68	315 079	35 2302
29	31 0573	130 113	69	320 093	34 9345
30	33.1816	125.597	70	326.097	34.5900
31	36,1875	119.898	71	330.090	34,3696
32	39 1903	114 838			
33	42 1820	110 337			
34	45 1818	106 273			
35	48.1695	102.609			
36	50 1685	100 342			
37	55 1571	95 2215			
38	60 1605	90 7581			
39	65 1556	86 8255			
40	70 1517	83 3291			
		JU.UEU I			

Calibration Report: 429023 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29761 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Useful Range of Fit:

4.00K	to	24.3K
415.7 Ohms	to	148.0 Ohms

Lower and Upper limits of Log(resistance) used in computing Chebychev coefficients: 7I = 2.1415292157 7II = 2.65118527504

	ZL = 2.1415292157	20 - 2.0011002	27504
Order	Coefficient	Std. Deviation of Coefficient	Ratio (Coeff./Std Dev.)
0	12.274101	3.7295E-04	32910.74
1	-11.379432	5.7755E-04	-19702.84
2	3.269299	5.5544E-04	5885.95
3	-0.618780	5.2462E-04	-1179.49
4	0.057863	5.1174E-04	113.07
5	0.004750	4.9700E-04	9.56
6	-0.001625	4.7683E-04	-3.41

Z = Log(resistance)

X = ((Z-ZL)-(ZU-Z))/(ZU-ZL)

Temp. (K) = $\Sigma A_i^* COS(i * ARCCOS(X))$, where 0 <= i <= 6 and the A_i 's are the coefficients in the table above.

Calibration Report: 429023 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29761 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Temp. (K) vs. Log(resistance)

	R Meas. (Ω)	T Meas. (K)	T Eq. (K)	T diff. (mK)
1	447.9043	3.60625	3.60618	0.07
2	430.7519	3.80527	3.80530	-0.03
3	415.1623	4.00697	4.00711	-0.14
4	401.4877	4.20283	4.20308	-0.25
5	370.7475	4.72405	4.72316	0.89
6	351.2702	5.12442	5.12456	-0.14
7	330.6787	5.62776	5.62853	-0.77
8	307.3467	6.32975	6.32874	1.01
9	285.8095	7.13722	7.13877	-1.56
10	264.5094	8.15277	8.15260	0.17
11	247.4321	9.17411	9.17322	0.89
12	233.4206	10.19581	10.19390	1.91
13	221.6655	11.21049	11.21270	-2.20
14	211.6919	12.22025	12.22068	-0.43
15	203.0613	13.22300	13.22096	2.04
16	195.5012	14.21140	14.21221	-0.80
17	188.7616	15.19879	15.20086	-2.07
18	182.7688	16.17390	16.17494	-1.05
19	177.3232	17.15006	17.14772	2.34
20	172.3301	18.12194	18.12166	0.28
21	167.7482	19.09236	19.09204	0.33
22	163.4770	20.06786	20.06946	-1.60
23	159.1226	21.14617	21.14541	0.76
24	153.3306	22.71684	22.71478	2.05
25	148.0066	24.31395	24.31341	0.54
26	143.0531	25.94766	25.95221	-4.55
27	138.5253	27.59541	27.59310	2.31

Order of Fit = 6 RMS error of fit = 1.54 mK Largest absolute error = -4.55 mK at data point no. 26

Calibration Report: 429023 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29761 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Useful Range of Fit:

24.3K	to	110.K
148.0 Ohms	to	64.58 Ohms

Lower and Upper limits of Log(resistance) used in computing Chebychev coefficients: 7I = 1.76860451763 7II = 2.20173184503

	ZL - 1.70000451703	20 - 2.2017310	4003
Order	Coefficient	Std. Deviation of Coefficient	Ratio (Coeff./Std Dev.)
0	64.545267	1.1559E-03	55837.83
1	-53.007161	1.8805E-03	-28188.14
2	10.956697	1.7114E-03	6402.11
3	-1.475195	1.5664E-03	-941.77
4	0.117342	1.5015E-03	78.15
5	0.008713	1.4616E-03	5.96
6	0.003256	1.4486E-03	2.25

Z = Log(resistance)

X = ((Z-ZL)-(ZU-Z))/(ZU-ZL)

Temp. (K) = $\Sigma A_i^* COS(i * ARCCOS(X))$, where 0 <= i <= 6 and the A_i 's are the coefficients in the table above.

Calibration Report: 429023 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29761 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Temp. (K) vs. Log(resistance)

	R Meas. (Ω)	T Meas. (K)	T Eq. (K)	T diff. (mK)
23	159.1226	21.14541	21.14892	-3.51
24	153.3306	22.71478	22.71194	2.85
25	148.0066	24.31341	24.30924	4.17
26	143.0531	25.94766	25.94852	-0.85
27	138.5253	27.59541	27.59055	4.86
28	134.3646	29.23106	29.23412	-3.06
29	130.1127	31.05730	31.06238	-5.07
30	125.5975	33.18162	33.18891	-7.30
31	119.8982	36.18745	36.18603	1.42
32	114.8383	39.19030	39.18904	1.26
33	110.3365	42.18197	42.17934	2.64
34	106.2730	45.18179	45.17869	3.09
35	102.6093	48.16951	48.16440	5.10
36	100.3425	50.16854	50.16246	6.08
37	95.22149	55.15711	55.16324	-6.13
38	90.75811	60.16050	60.16365	-3.15
39	86.82548	65.15559	65.16173	-6.14
40	83.32911	70.15173	70.15384	-2.11
41	80.18932	75.14707	75.14788	-0.81
42	77.34965	80.14055	80.14299	-2.45
43	74.76926	85.13401	85.13034	3.67
44	72.40770	90.12457	90.11682	7.75
45	70.23074	95.12197	95.11375	8.22
46	68.21740	100.11170	100.11551	-3.81
47	64.57626	110.21301	110.22198	-8.97
48	61.47205	120.09664	120.09669	-0.05
49	58.69546	130.09851	130.09621	2.30

Order of Fit = 6 RMS error of fit = 4.60 mK Largest absolute error = -8.97 mK at data point no. 47

Calibration Report: 429023 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29761 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Useful Range of Fit:

110.K	to	325.K
64.58 Ohms	to	34.65 Ohms

Lower and Upper limits of Log(resistance) used in computing Chebychev coefficients: 7I = 1.53617408827 7II = 1.84652722919

	ZL - 1.5301/40002/	20 - 1.0403272	2919
Order	Coefficient	Std. Deviation of Coefficient	Ratio (Coeff./Std Dev.)
0	193.900732	2.9905E-03	64839.77
1	-114.656643	4.6122E-03	-24859.60
2	18.135919	4.1639E-03	4355.49
3	-2.715954	4.0231E-03	-675.10
4	0.536736	4.0332E-03	133.08
5	-0.103940	4.0440E-03	-25.70
6	0.024621	3.9739E-03	6.20
7	-0.010242	3.7776E-03	-2.71

Z = Log(resistance)

X = ((Z-ZL)-(ZU-Z))/(ZU-ZL)

Temp. (K) = $\Sigma A_i^* COS(i * ARCCOS(X))$, where 0 <= i <= 7 and the A_i 's are the coefficients in the table above.

Calibration Report: 429023 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29761 Sensor Excitation: 2mV±50%

Polynomial Type: Chebychev Temp. (K) vs. Log(resistance)

	R Meas. (Ω)	T Meas. (K)	T Eq. (K)	T diff. (mK)
45	70.23074	95.11375	95.11123	2.52
46	68.21740	100.11551	100.12036	-4.85
47	64.57626	110.22198	110.22153	0.45
48	61.47205	120.09664	120.09272	3.92
49	58.69546	130.09851	130.09226	6.24
50	56.21703	140.10534	140.11255	-7.22
51	53.99603	150.10184	150.11613	-14.29
52	51.99667	160.09364	160.08499	8.65
53	50.17700	170.08297	170.07840	4.57
54	48.51824	180.07766	180.07072	6.94
55	46.99816	190.08014	190.07745	2.69
56	45.60212	200.07973	200.08672	-6.99
57	44.31738	210.07230	210.08702	-14.72
58	43.13431	220.06609	220.05444	11.65
59	42.03380	230.07899	230.06369	15.31
60	41.01042	240.07472	240.09004	-15.32
61	40.06062	250.07416	250.09187	-17.70
62	39.17735	260.08083	260.06821	12.62
63	38.35077	270.07030	270.06401	6.29
64	37.57573	280.08230	280.08463	-2.33
65	36.85366	290.07256	290.05112	21.43
66	36.17145	300.07773	300.09095	-13.22
67	35.53302	310.07241	310.09801	-25.59
68	35.23017	315.07944	315.07097	8.47
69	34.93446	320.09290	320.07759	15.31
70	34.59003	326.09722	326.10730	-10.08
71	34.36957	330.09006	330.08479	5.27

Order of Fit = 7 RMS error of fit = 11.55 mK Largest absolute error = -25.59 mK at data point no. 67

INTERPOLATION TABLE

Calibration Report: 429023 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29761 Sensor Excitation: 2mV±50%

Temp (K)	<u>Res.</u> (Ω)	<u>dR/dT (Ω/K)</u>	<u>dlogR/dlogT</u>	Temp (K)	<u>Res.</u> (Ω)	<u>dR/dT (Ω/K)</u>	<u>dlogR/dlogT</u>
4 000	415 684	-73 521	-0 70747	37 00	118 468	-1 7294	-0 54012
4 200	401 693	-66.577	-0.69611	38.00	116 772	-1 6632	-0.54123
4 400	388 988	-60.609	-0.68557	39.00	115 140	-1 6010	-0 54228
4,600	377 307	-00.003	0.67560	40.00	113 569	1 5424	0.54326
4.000	266 770	-55.420	-0.07500	40.00	110.500	-1.0424	-0.54320
4.800	300.770	-50.942	-0.66669	42.00	110.593	-1.4350	-0.54499
5.000	356.984	-46.997	-0.65826	44.00	107.821	-1.3392	-0.54650
5.200	347.940	-43.518	-0.65038	46.00	105.230	-1.2532	-0.54783
5.400	339.552	-40.423	-0.64286	48.00	102.802	-1.1758	-0.54898
5.600	331.748	-37.669	-0.63586	50.00	100.522	-1.1058	-0.55004
5.800	324.465	-35.207	-0.62934	52.00	98.3745	-1.0424	-0.55099
6 000	317 650	-32 982	-0 62299	54 00	96 3485	-0 98456	-0 55181
6 500	302 372	-28 325	-0 60889	56.00	94 4328	-0.93195	-0 55266
7 000	280 167	-24.636	-0 59638	58.00	02 6178	-0.88372	-0 553/1
7.000	203.107	-24.000	-0.53050	60.00	00.0052	-0.00072	0.55041
7.500	211.012	-21.001	-0.30374	65.00	90.0952	-0.03949	-0.55415
8.000	267.398	-19.255	-0.57608	65.00	80.9455	-0.74358	-0.55590
8.500	258.284	-17.260	-0.56803	70.00	83.4312	-0.66460	-0.55761
9.000	250.086	-15.580	-0.56069	75.00	80.2777	-0.59869	-0.55933
9.500	242.659	-14.163	-0.55448	77.35	78.9033	-0.57140	-0.56015
10.00	235.890	-12.947	-0.54885	80.00	77.4272	-0.54303	-0.56108
10.50	229.683	-11.902	-0.54410	85.00	74.8338	-0.49555	-0.56287
11.00	223 966	-10 991	-0.53980	90.00	72 4608	-0 45465	-0 56469
11.50	218 673	-10 105	-0.53616	95.00	70 2784	-0.41012	-0 56655
12.00	213 755	-0.4023	-0.53280	100.0	68 2622	-0.38803	-0.56844
12.00	213.733	-9.4923	-0.55209	100.0	66 2010	-0.30003	-0.50044
12.00	209.107	-0.0/0/	-0.55012	103.0	64 6507	-0.30003	-0.57033
13.00	204.073	-0.3155	-0.52764	110.0	04.0507	-0.33036	-0.57234
13.50	200.842	-7.8189	-0.52556	115.0	63.0237	-0.31477	-0.57437
14.00	197.047	-7.3712	-0.52372	120.0	61.4994	-0.29528	-0.57616
14.50	193.464	-6.9672	-0.52219	125.0	60.0677	-0.27770	-0.57788
15.00	190.073	-6.6000	-0.52085	130.0	58.7196	-0.26183	-0.57966
15.50	186.858	-6.2659	-0.51976	135.0	57.4470	-0.24742	-0.58143
16.00	183 803	-5 9602	-0 51884	140.0	56 2434	-0 23423	-0 58305
16.50	180 894	-5 6802	-0 51811	145.0	55 1029	-0 22213	-0 58452
17.00	178 110	5 4224	0.51752	150.0	54 0205	0.222210	0.58570
17.00	175.119	-5.4224	-0.51752	155.0	52 0018	-0.21097	-0.30379
10.00	170.400	-3.1040	-0.51710	100.0	52.9910	-0.20004	-0.50000
10.00	172.931	-4.9049	-0.51079	100.0	52.0129	-0.19105	-0.56770
18.50	170.500	-4.7612	-0.51661	165.0	51.0802	-0.18213	-0.58831
19.00	168.167	-4.5717	-0.51652	170.0	50.1906	-0.17381	-0.58870
19.50	165.926	-4.3954	-0.51655	175.0	49.3412	-0.16603	-0.58887
20.00	163.770	-4.2311	-0.51671	180.0	48.5295	-0.15876	-0.58884
21.00	159.691	-3.9320	-0.51707	185.0	47.7529	-0.15193	-0.58861
22.00	155.894	-3.6695	-0.51784	190.0	47.0094	-0.14553	-0.58820
23.00	152,339	-3.4458	-0.52024	195.0	46.2970	-0.13951	-0.58761
24 00	148 998	-3 2377	-0 52151	200.0	45 6137	-0 13385	-0 58687
25.00	145 860	-3.0420	-0 52139	205.0	44 9580	-0 12851	-0 58598
26.00	142.905	-2.8729	-0.52270	210.0	44.3281	-0.12347	-0.58494
27.00	140 109	0 7005	0 52465	215.0	12 7000	0 11070	0 50077
27.00	140.106	-2.7220	-0.52405	215.0	43.7220	-0.11072	-0.56377
20.00	137.450	-2.5839	-0.52635	220.0	43.1405	-0.11422	-0.58247
29.00	134.937	-2.45/1	-0.52807	225.0	42.5802	-0.10996	-0.58105
30.00	132.538	-2.3409	-0.52986	230.0	42.0405	-0.10592	-0.57950
31.00	130.252	-2.2335	-0.53157	235.0	41.5206	-0.10209	-0.57784
32.00	128.069	-2.1340	-0.53321	240.0	41.0193	-9.8456e-2	-0.57606
33.00	125.982	-2.0415	-0.53476	245.0	40.5357	-9.4996e-2	-0.57416
34.00	123.984	-1.9555	-0.53625	250.0	40.0690	-9.1701e-2	-0.57215
35.00	122.069	-1.8750	-0.53761	255.0	39.6184	-8.8562e-2	-0.57002
36.00	120.232	-1.7998	-0.53890	260.0	39.1832	-8.5568e-2	-0.56778

INTERPOLATION TABLE

Calibration Report: 429023 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29761 Sensor Excitation: 2mV±50%

$\frac{1}{1} \frac{1}{1} \frac{1}$	
265.0 38.7625 -8.2709e-2 -0.56544 285.0 37.2138 -7.2466e-2	-0.55497
270.0 38.3559 -7.9976e-2 -0.56298 290.0 36.8572 -7.0169e-2	-0.55210
273.15 38.1066 -7.8317e-2 -0.56138 295.0 36.5119 -6.7966e-2	-0.54914
275.0 37.9626 -7.7363e-2 -0.56042 300.0 36.1774 -6.5852e-2	-0.54608
280.0 37.5821 -7.4862e-2 -0.55775 305.0 35.8533 -6.3822e-2	-0.54293
310.0 35.5391 -6.1873e-2	-0.53970
315.0 35.2344 -5.9999e-2	-0.53640
320.0 34.9390 -5.8197e-2	-0.53302
325.0 34.6523 -5.6465e-2	-0.52958

THERMAL CYCLE TESTING

Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Serial Number: X29761

This sensor was tested for repeatability through rapid thermal cycles from room temperature into liquid helium. During this test, the following four lead resistance values were recorded:

Room Temperature:	35.8Ω
Liquid Nitrogen:	78.8Ω
Liquid Helium:	401Ω

The nitrogen and helium values were recorded in OPEN dewars, so precision comparisons with calibration values or other dip test values should not be made.

Recommended Operating Parameters:

For sensors calibrated by LSCI the current to the sensor is adjusted to maintain the sensor output voltage at the values listed below. In order to minimize possible self-heating errors, we suggest that these same guidelines be followed in using the sensor:

Above 1K:	1 to 3 mV
0.1 to 1K:	0.1 mV
Below 0.1K:	0.03 mV

Lead Identification:

NONE

To avoid possible damage to the sensor, do not exceed 1 Volt and do not exceed 100 mA current.

Page 11 of 14

BREAKPOINTS 340 FORMAT

Calibration Report: 429023 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29761

> 10.000 9.550 9.100 8.700 8.300 7.900 7.500 7.150 6.800 6.450 6.100 5.780 5.460 5.140 4.840 4.560 4.280 4.020 4.000

Name: CX-1030-SD-HT-4L Serial number: X29761 Format: 4 :Log Ohms/Kelv	in	
Limit: 325.		
Coefficient: 1 ;Negative		
Point 1: 1.53972,325.000	Point 56: 1.87843, 83.500	Point 111: 2.37267,
Point 2: 1.54367,319.500	Point 57: 1.88585, 81.000	Point 112: 2.38369,
Point 3: 1.54733,314.500	Point 58: 1.89349, 78.500	Point 113: 2.39535,
Point 4: 1.55108,309.500	Point 59: 1.89977, 76.500	Point 114: 2.40633,
Point 5: 1.55491,304.500	Point 60: 1.90621, 74.500	Point 115: 2.41793,
Point 6: 1.55883,299.500	Point 61: 1.91281, 72.500	Point 116: 2.43025,
Point 7: 1.56283,294.500	Point 62: 1.91959, 70.500	Point 117: 2.44337,
Pulli 6. 1.30093,209.300	Point 64: 1.02272 66 500	Point 110: 2.40002,
Point 10: 1 57541 279 500	Point 65: 1 94110 64 500	Point 120: 2.40002,
10/11/10/11/210:000	1 0/// 00: 1:04110, 04:000	1 ont 120. 2.40202,
Point 11: 1.57979,274.500	Point 66: 1.94869, 62.500	Point 121: 2.49741,
Point 12: 1.58428,269.500	Point 67: 1.95653, 60.500	Point 122: 2.51203,
Point 13: 1.58887,264.500	Point 68: 1.96420, 58.600	Point 123: 2.52773,
Point 14: 1.59357,259.500	Point 69: 1.97170, 56.800	Point 124: 2.54468,
Point 15: 1.59837,254.500	Point 70: 1.97943, 55.000	Point 125: 2.56189,
B		D
Point 16: 1.60330,249.500	Point 71: 1.98740, 53.200	Point 126: 2.5/926,
Point 19: 1 61250 220 500	Point 72: 1.99504, 51.400	Point 127. 2.59606,
Point 10: 1.61870 234 500	Point 73. 2.004 10, 49.000	Point 120: 2.01711,
Point 20: 1 62421 229 500	Point 75: 2 02211 46 000	F 01111 129. 2.01070,
1 ont 20. 1.02421,229.300	10//11/03.2.02211, 40.000	
Point 21: 1.62976,224.500	Point 76: 2.03053, 44.400	
Point 22: 1.63545,219.500	Point 77: 2.03924, 42.800	
Point 23: 1.64129,214.500	Point 78: 2.04825, 41.200	
Point 24: 1.64727,209.500	Point 79: 2.05820, 39.500	
Point 25: 1.65342,204.500	Point 80: 2.06793, 37.900	
Point 26: 1.65972,199.500	Point 81: 2.07804, 36.300	
Point 27: 1.66619,194.500	Point 82: 2.08791, 34.800	
Point 20: 1.67830 185 500	Point 84: 2 10886 31 800	
Point 30: 1 68458 181 000	Point 85: 2 11926 30 400	
	1 01111 001 2111020, 001100	
Point 31: 1.69101,176.500	Point 86: 2.13009, 29.000	
Point 32: 1.69762,172.000	Point 87: 2.14141, 27.600	
Point 33: 1.70440,167.500	Point 88: 2.15241, 26.300	
Point 34: 1.71135,163.000	Point 89: 2.16389, 25.000	
Point 35: 1.71850,158.500	Point 90: 2.17503, 23.800	
Delict 00: 4 70504 454 000	Deint 01: 0 10070 00 000	
Point 36: 1.72584,154.000	Point 91: 2.18673, 22.600	
Point 37. 1.73339,149.300 Point 38: 1.74116 145.000	Point 92. 2.19699, 21.400 Point 93: 2.21085, 20.300	
Point 39: 1 74915 140 500	Point 94: 2 21989 19 500	
Point 40: 1 75646 136 500	Point 95: 2 22750 18 850	
Point 41: 1.76397,132.500	Point 96: 2.23537, 18.200	
Point 42: 1.77169,128.500	Point 97: 2.24353, 17.550	
Point 43: 1.77963,124.500	Point 98: 2.25201, 16.900	
Point 44: 1.78781,120.500	Point 99: 2.26015, 16.300	
Point 45: 1.79625,116.500	Point 100: 2.26859, 15.700	
Doint 46: 1 90406 142 500	Daint 101: 2 27720 15 100	
PUILT 40: 1.80496,112.500	Point 101: 2.2//39, 15.100	
Foint 47. 1.01390,100.300 Point 48: 1 82210 105 000	Point 102. 2.20079, 14.000	
Point 49: 1 83048 101 500	Point 104: 2 30367 13 450	
Point 50: 1.83790. 98.500	Point 105: 2.31322. 12.900	
Point 51: 1.84423, 96.000	Point 106: 2.32232, 12.400	
Point 52: 1.85072, 93.500	Point 107: 2.33182, 11.900	
Point 53: 1.85738, 91.000	Point 108: 2.34179, 11.400	
Point 54: 1.86421, 88.500	Point 109: 2.35228, 10.900	
Point 55: 1.87122, 86.000	Point 110: 2.36222, 10.450	

BREAKPOINTS 91C/93C/330 FORMAT

Calibration Report: 429023 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K Sales Order: 14119 Serial Number: X29761

Interpolation Method: Lagrangian Limit: 325. (Kelvin) Format: 4 (Log Ohms/Kelvin) Number of Breakpoints: 46

No.	Units	Temperature (K)	No.	Units	Temperature (K)
1	1 53073	325.0	26	2 11853	30.5
2	1.53575	324.0	20	2.11000	27.2
2	1.551/6	309.0	28	2.14470	21.2
1	1 56325	294.0	20	2.10370	24.0
5	1.50525	234.0	30	2.13303	19.6
5	1.07 000	213.0	50	2.21077	13.0
6	1.58934	264.0	31	2.24420	17.5
7	1.60381	249.0	32	2.27006	15.6
8	1.61933	234.0	33	2.29620	13.9
9	1.63604	219.0	34	2.32049	12.5
10	1.65405	204.0	35	2.34596	11.2
11	1.67353	189.0	36	2.37034	10.1
12	1.69468	174.0	37	2.39540	9.1
13	1.71771	159.0	38	2.42100	8.2
14	1.74293	144.0	39	2.44686	7.4
15	1.77073	129.0	40	2.47256	6.7
16	1.80168	114.0	41	2.49749	6.1
17	1.83666	99.0	42	2.52081	5.6
18	1.87699	84.0	43	2.54701	5.1
19	1.92481	69.0	44	2.57051	4.7
20	1.96055	59.5	45	2.59681	4.3
21	1,99059	52.5	46	2.61876	4.0
22	2.01450	47.5			
23	2.04093	42.5			
24	2.06672	38.1			
25	2.09268	34.1			

Temperature for Resistance Decades:

Res. (Ohms)	Temp. (K)
100	50.474

Page 13 of 14

BREAKPOINTS 234 FORMAT

Calibration Report: 429023 Sensor Model: CX-1030-SD-HT-4L Sensor Type: Cernox Resistor Temperature Range: 4.00K to 325K

Sales Order: 14119 Serial Number: X29761

•	•		Maximum Tem	perature Error:			
			1.4 - 10K:	0.006K			
			10 - 20K:	0.013K			
			20 - 40K:	0.020K			
			40 - 100K.	0.040K			
PD #	Tomp (K)	Pea(0)		D.2-FOIX	Tomp (K)	Bec(0)	Log10 Pos
	<u>10110. (K)</u>	<u>Res. (12)</u>	LOUID Res.	<u>DF #</u>	<u>1 enip. (K)</u>	$\frac{\text{Res.}(\Omega)}{100,0004}$	LUY 10 Res.
1	324.621	34.67369	1.540	31	21.111	138.0384	2.140
2	298.036	30.30781	1.560	32	25.437	144.5440	2.160
3	274.269	38.01894	1.580	33	23.288	151.3561	2.180
4	252.845	39.81072	1.600	34	21.309	158.4893	2.200
5	233.381	41.68694	1.620	35	19.493	165.9587	2.220
6	215.600	43.65158	1.640	36	17.830	1/3./801	2.240
1	199.292	45.70882	1.660	37	16.312	181.9701	2.260
8	184.279	47.86301	1.680	38	14.928	190.5461	2.280
9	170.414	50.11872	1.700	39	13.670	199.5262	2.300
10	157.581	52.48075	1.720	40	12.527	208.9296	2.320
11	145.668	54.95409	1.740	41	11.489	218.7762	2.340
12	134.610	57.54399	1.760	42	10.550	229.0868	2.360
13	124.327	60.25596	1.780	43	9.700	239.8833	2.380
14	114.771	63.09573	1.800	44	8.930	251.1886	2.400
15	105.897	66.06934	1.820	45	8.233	263.0268	2.420
16	97.669	69.18310	1.840	46	7.602	275.4229	2.440
17	90.038	72.44360	1.860	47	7.031	288.4032	2.460
18	82.971	75.85776	1.880	48	6.514	301.9952	2.480
19	76.431	79.43282	1.900	49	6.044	316.2278	2.500
20	70.385	83.17638	1.920	50	5.616	331.1311	2.520
21	64.797	87.09636	1.940	51	5.228	346.7369	2.540
22	59.637	91.20108	1.960	52	4.874	363.0781	2.560
23	54.873	95.49926	1.980	53	4.550	380.1894	2.580
24	50.476	100.0000	2.000	54	4.255	398.1072	2.600
25	46.415	104.7129	2.020	55	3.984	416.8694	2.620
26	42.667	109.6478	2.040	56	3.736	436.5158	2.640
27	39.203	114.8154	2.060				
28	36.003	120.2264	2.080				
29	33.043	125.8925	2.100				
30	30.306	131.8257	2.120				

X28265 SCAL-B redundant SOB thermometer

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 109 of
	115

Calibration Report (CX28265)

Document Ref.: Cardiff Ref.: Issue: 1.0

Prepared by: Iris Didschuns Last Modified on: 19 August 2004 Approved by:

Distribution list

Instrumentation Group, Physics & Astronomy Department, Cardiff University, 5 The Parade, Cardiff CF24 3YB +44 (0) 29 2078 6464 H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Cal ibration-files\Thermometers\Cx28265\Calibration Report_CX28265.doc Last updated 17/02/2004 14:07 by Iris Didschuns

)¥լ₽

Ref.:SPIRE Issue: 1.0 Date: 17 February 2004 Page: 2 of 7

Calibration Report- (CX28265)

Table of Contents

1.	Sco	ope	
2.	Ov	erview of experimental set-up	
2.	.1	Cryostat set-up	
2.	.2	Data Acquisition	4
2	.3	Data Calibration	5
3.	Res	sults	

Ref.:SPIRE Issue: 1.0 Date: 17 February 2004 Page: 3 of 7

Calibration Report– (CX28265)

1. Scope

This document describes the calibration procedure and results for the Lakeshore Cernox High temperature thermometer (type: CX-1030-SD-HT; Serial No.: X28265).

2. Overview of experimental set-up

2.1 Cryostat set-up

The thermometer calibration was carry out under vacuum in a Helium 4 cryostat. The temperature range was from room temperature down to 4.2 K and through pumping on the He4 bath it was extend to 1.5 K. Therefore the three thermometers where mounted onto the 4 K plate next to the calibrated thermometers see Figure 1. The thermometers are calibrated against a calibrated Lakeshore Cernox thermometer (type: CX-1030-SD-HT-1.4L; Serial No.: X25820). The Lakeshore Cernox thermometer is calibrated from 1.4 K up to 325 K.

Figure 1: experimental set-up inside the cryostat

A 4 K and 77 K radiation shield was mounted over all temperature sensors to significantly decrease the radiation input form the surrounding. The data were taken during the warming up period of the cryostat to ensure a good thermal equilibrium of the sensor. The warming up rate until 4 K was 1K per 68min (Figure 2) and from 4 K until 300 K was 1K per 5min (Figure 3).

Instrumentation Group,
Physics & Astronomy Department,
Cardiff University,
5 The Parade,
Cardiff CF24 3YB
+44 (0) 29 2078 6464

H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Cal ibration-files\Thermometers\Cx28265\Calibration Report_CX28265.doc Last updated 17/02/2004 14:07 by Iris Didschuns

Figure 2: Typical warming up curve in temperature range between 1.5 K and 4.2 K

Figure 3: Typical warming up curve in temperature range between 4.2 K and 300 K

Figure 4: Power dissipation of the Lakeshore Temperature Monitor LS218E at the calibrated CERNOX thermometer

2.2 Data Acquisition

The resistance of all temperature sensors were monitor with the Lakeshore Temperature Monitor Model 218. The Lakeshore Temperature Monitor was used according to the manual. This means on each of the two groups of four inputs was the same type sensor connected. The calibrated CERNOX thermometer (CX25820) was connected to the 1st input and the to calibrate Cernox thermometer were connected to the 2nd, 3rd and 4th inputs. These inputs were configured for the sensor type "Cernox RTD" (see below). A LabVIEW program was used to control the temperature monitor as well to record the resistance data.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Cal
Physics & Astronomy Department,	ibration-files\Thermometers\Cx28265\Calibration
Cardiff University,	Report_CX28265.doc
5 The Parade,	Last updated 17/02/2004 14:07 by Iris Didschuns
Cardiff CF24 3YB	
+44 (0) 29 2078 6464	

Ref.:SPIRE Issue: 1.0 Date: 17 February 2004 Page: 5 of 7

Introduction

Calibration Report- (CX28265)

Lake Shore Model 218 Temperature Monitor User's Manual

Table 1-2, model 216 Sensor input Fenormance Gha	Table 1-2. Model 218	Sensor Input	Performance	Charl
--	----------------------	--------------	-------------	-------

		-			
Sensor Type	Silicon Diode	GaAlAs Diode	100 Ω Platinum RTD 500 Ω Full Scale	1000 Ω Platinum RTD	Cemox™ RTD
Temperature Coefficient	Negative	Negative	Positive	Positive	Negative
Sensor Units	Volts (V)	Volts (V)	Ohms (Ω)	Ohms (Ω)	Ohms (Ω)
Input Range	0 - 2.5 V	0 – 7.5 V	0 – 500 Ω	0 – 5000 Ω	0 – 7500 Ω
Sensor Excitation (Constant Current)	10 μA ±0.01%	10 µA ±0.01%	1 mA ±0.3%	1 mA ±0.3%	10 μA ±0.01%
Display Resolution (Sensor Units)	100 uV	100 uV	10 mΩ	100 mΩ	100 mΩ
Example LSCI Sensor	DT-470-CO-13 with 1.4H Cal.	TG-120SD with 1.4H Cal.	PT-103 with 14J Cal.	PT-1001 ² with 1.4 J Cal.	CX-1050-SD with 4L Cal.
Temperature Range	1.4 – 475 K	1.4 – 475 K	30 – 800 K	30 – 800 K	3.5 – 400 K
Standard Sensor Curve	LSCI Curve 10	Requires Calibration	DIN 43760	Scaled from DIN 43670	Requires calibration
Typical Sensor Sensitivity	-30 m V/K at 4.2 K -1.9 m V/K at 77 K -2.4 m V/K at 300 K -2.2 m V/K at 475 K	-180 mV/K at 10 K -1.25 mV/K at 77 K -2.75 mV/K at 300 K -2.75 mV/K at 475 K	0.19 Ω/K at 30 K 0.42 Ω/K at 77 K 0.39 Ω/K at 300 K 0.35 Ω/K at 675 K 0.33 Ω/K at 800 K	1.9 Ω/K at 30 K 4.2 Ω/K at 77 K 3.9 Ω/K at 300 K 3.3 Ω/K at 800 K	-770 Ω/K at 4.2 K -1.5 Ω/K at 77 K -0.1 Ω/K at 300 K
Measurement Resolution: Sensor Units	20 uV 1 mK at 4.2 K	20 uV 1.mK at 10 K	2 mΩ 10.6 mK at 30 K	20 mΩ 10 6 mK at 30 K	50 mΩ 1 mK at 4.2 K
	11 mK at 77 K 10 mK at 300 K 10 mK at 475 K	16 mK at 77 K 10 mK at 300 K 10 mK at 475 K	10 mK at 77 K 10 mK at 300 K 10 mK at 675 K 10 mK at 800 K	10 mK at 77 K 10 mK at 300 K 10 mK at 800 K	33.3 mK at 77 K 500 mK at 300 K
Electronic Accuracy:					
Sensor Units	±160 uV ±0.01% RDG	±160 uV ±0.02% RDG	±0.004 Ω ±0.02% RDG	±0.06 Ω ±0.04% RDG	±0.1 Ω ±0.04% RDG
Temperature Equivalence	±11 mK at 4.2 K ±138 mK at 77 K ±88 mK at 300 K ±77 mK at 475 K	±6 mK at 10 K ±300 mK at 77 K ±150 mK at 300 K ±110 mK at 475 K	±25 mK at 30 K ±18 mK at 77 K ±70 mK at 300 K ±162 mK at 675 K ±187 mK at 800 K	±40 mK at 30 K ±33 mK at 77 K ±135 mK at 300 K ±370 mK at 800 K	±1 mK at 4.2 K ±88 mK at 77 K ±1.144 K at 300K
Temperature Accuracy including electronic accuracy, CalCurve™ and calibrated sensor	±31 mK at 4.2 K ±193 mK at 77 K ±138 mK at 300 K ±177 mK at 475 K	±21 mK at 10 K ±390 mK at 77 K ±140 mK at 300 K ±210 mK at 475 K	±45 mK at 30 K ±38 mK at 77 K ±105 mK at 300 K ±262 mK at 675 K ±287 mK at 800 K	±60 mK at 30 K ±53 mK at 77 K ±170 mK at 300 K ±470 mK at 800 K	±9 mK at 4.2 K ¹ ±138 mK at 77 K ¹ ±1.284 K at 300K ¹
Magnetic Field Use	Recommended for T ≥ 60 K & B ≤ 3 T	Recommended for T > 4.2 K & B \leq 5 T	Recommended for T > 40 K & B ≤ 2.5 T	Recommended for T > 40 K & B \leq 2.5 T	Recommended for $T \ge 2 K \& B \le 19 T$

¹ Specified accuracy includes no effects of thermal EMF voltages. An error of 3 mΩ results from each 1 µV of thermal EMF voltage. In well-designed systems, thermal EMF voltage should be less than 10 µV ² No longer available from Lake Shore.

1-4

2.3 Data Calibration

A polynomial equation based on the Chebychev polynomials has been fit to the calibration data. This equation is of the form:

$$T(x) = \sum_{i=0}^{n} a_i \cdot \cos(i \cdot \arccos(x))$$

where T(x) represents the temperature in Kelvin and a_i represents the Chebychev coefficients. The parameter x is a normalized variable given by:

$$x = \frac{(Z - Zl) - (ZU - Z)}{(ZU - ZL)}$$

Z is $Z = log_{10}(R)$. ZL and ZU designate the lower and upper limit of the variable Z over the fit range.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Cal
Physics & Astronomy Department,	ibration-files\Thermometers\Cx28265\Calibration
Cardiff University,	Report_CX28265.doc
5 The Parade,	Last updated 17/02/2004 14:07 by Iris Didschuns
Cardiff CF24 3YB	
+44 (0) 29 2078 6464	

3. Results

Figure 5: A polynomial equation based on the Chebychev polynomials has been fit to the calibration data and the coefficients are shown for each temperature range.

Instrumentation Group, Physics & Astronomy Department, Cardiff University, 5 The Parade, Cardiff CF24 3YB +44 (0) 29 2078 6464 H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Cal ibration-files\Thermometers\Cx28265\Calibration Report_CX28265.doc Last updated 17/02/2004 14:07 by Iris Didschuns

Figure 6: This graph shows the difference between calculated temperature and measured temperature.

Instrumentation Group, Physics & Astronomy Department, Cardiff University, 5 The Parade, Cardiff CF24 3YB +44 (0) 29 2078 6464 H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Cal ibration-files\Thermometers\Cx28265\Calibration Report_CX28265.doc Last updated 17/02/2004 14:07 by Iris Didschuns

Appendix B

Report from Cryogenic Vibration Tests

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 110 of
	115

SST DEPARTMENT VIBRATION TEST FACILITY

REPORT REF: AIV-2003-091-VIB

HERSCHEL : CARDIFF COMPONENTS

RUTHERFORD APPLETON LABORATORY Vibration Facility Chilton, Didcot, Oxfordshire OX11 OQX

Tel: 44 (0) 1235 446617

CONTENTS

1)	TEST ITEI	M DESCRIPTION	2
2)	TEST SPE	ECIFICATION	2
3)	ACCELER	OMETER CALIBRATION STATUS	3
4)	CLEANLII	NESS	3
5)	FIXTURE L	DETAILS	4
6)	TEST SUM	IMARY	5
7)	CONCLUS	SION	7
AN	NEX A:	ACCELEROMETER PLOT FIGURES 1 – 5	
AN	NEX B:	COOLDOWN/WARM UP GRAPH	

1) TEST ITEM DESCRIPTION

The test items consisted of :-

- Scal-B nominal flight spare, reduced power option SCAL-FS-000-FLIGHT COMPONENT
- Pcal DM lifetest source in DM structure non-flight, but flight replica
- 300mK System 1 photometer support & 1 light baffle both DM, but flight replica. Configuration as per previous shake.
- 2 additional Pcal sources (in sealed chambers). One mica device, one sapphire device.
- Beam divider in CQM Mount (flight replica)
- Black tiles
- Representative hot-pressed filter material in SPIRE-type mount

Testing would be carried out on the head of the shaker within the Cryostat.

2) TEST SPECIFICATION

The components were to be tested to Spire Qualification levels. A sine survey was to be initially carried out at ambient temperature/atmospheric pressure. A further sine survey followed by a random and post random sine survey would be carried out at sub 10 Kelvin/ Vacuum. A final sine survey at ambient temperature/atmospheric pressure would be undertaken.

A single axis accelerometer was to be used for monitoring.

SINE SURVEY TEST

One sweep @ 0.25g from 10 Hz to 2000 Hz at 2 octaves per minute.

RANDOM

FREQUENCY (Hz)	TEST LEVEL
20 - 100	+3 dB/oct
100 – 138.5	0.06 g ² / Hz
138.5 - 170	$0.06 - 0.7 \text{ g}^2/\text{Hz}$
170 - 200	0.7 g ² / Hz
200 - 220	0.7 – 0.1 g ² / Hz
220 - 300	0.1 g ² / Hz
300 - 2000	-9 dB/oct

Overall Test Level = 8.0 g rms. for 30 Seconds

3) ACCELEROMETER CALIBRATION STATUS

SINGLE AXIS - ENDEVCO 2272 & B&K 4393

SERIAL	CALIBRATION		SIGNAL
NUMBER	PC/g	Date	CONDITIONER
A66B	12.67	11/03/04	ENDEVCO
YG32	13.77	11/03/04	2775A
1434587	3.16	N/A	

<u>NOTE</u>

Due to the temperature effects, a reduction of 10% in the sensitivity values was used during all cold testing.

See test summary for details on S/N 1434587

Signal Conditioners: Endevco 2775A Calibrated on: September 2002

4) CLEANLINESS

Approved cleanroom gloves to be worn when handling the test items.

5) FIXTURE DETAILS

FIXTURE CONFIGURATION

A view of the test items mounted on their vibration fixture. The control strategy implemented involved taking the average response from the two accelerometers attached to the fixture.

6) TEST SUMMARY

Test Dates: 23 March 2004 to 25 March 2004

Observers: Dr. Peter Hargrave and Facility Staff

Organisation : Cardiff University

CHANNEL ALLOCATION:

CONTROL:-

Channel No.	Accelerometer Type/Serial No.	Testing Axis	Mounting Position
1	Endevco A66B	N/A	Fixture
2	Endevco YG32	N/A	Fixture

MONITORING:-

Channel No.	Accelerometer Type/Serial No.	Testing Axis	Mounting Position
3	B&K 1434587	N/A	300mK Busbar

<u>NOTE</u>

Accelerometer B&K 1434587 was an uncalibrated unit, which was not specified to have a working temperature range at the low temperatures it would be subjected too. As such the data collected should only be viewed as an indication of frequency response. The amplitude data has no relevance.

ACTION	DATE	TIME
Pumpdown Started	23/03/04	16:45
Cooldown Started	23/03/04	21:30
Cold Vib. Testing	24/03/04	11:30
Start Warm Up	24/03/04	12:00
Ambient Testing	25/03/04	08:40
Test Item Removed	25/03/04	11:00

ACCELEROMETER TEST PLOTS

ATMOSPHERIC/AMBIENT TEST CONDITIONS 23/03/04

RUN 00002 SINE SURVEY FIG 1

COLD TEST CONDITIONS 24/03/04

RUN 00003 SINE SURVEY FIG 2

RUN 00001 RANDOM FIG 3

RUN 00005 SINE SURVEY FIG 4

ATMOSPHERIC/AMBIENT TEST CONDITIONS 25/03/04

RUN 00006 SINE SURVEY FIG 5

7) CONCLUSION

The test items were subjected to the Spire Qualification levels of vibration. On inspection, post vibration testing, it was discovered that 3 of the 4 fasteners securing the photometer support to the fixture were loose. These had been torqued too 0.2 NM prior to testing.

A visual inspection revealed no further problems with any other components.

FACILITY OPERATOR: -

ANNEX: A ACCELEROMETER PLOTS ANNEX: B COOLDOWN/WARM-UP GRAPH

BSM 300mK Components Cooldown/Warmup Data

Appendix C

SCal-B Calibration Report

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 111 of
	445

115

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 1 of 19

Results – (Calibration - SCAL B)

Results (Calibration - SCAL B) 7 May 2004

ARDI

UNIVERSITY

PRIFYSGOL

AERDY

Document Ref.: HSO-CDF-RP-080 Issue: 1.0 Test Date

Prepared by: Iris Didschuns Last Modified on: 6 August 2004 Approved by:

Distribution list

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade, Cardiff CF24 3YB +44 (0)29 2078 6464	

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 2 of 19

$\overline{\text{Results} - (\text{Calibration} - \text{SCAL B})}$

The equilibrium temperatures for all sources of SCAL B were determine in the same way. A constant power was applied to the heater until the thermometer showed a stable temperature (equilibrium temperature) with $\Delta T=\pm 0.1$ K.

The warm-up time was determine by using the time until the temperature reach 90% of the equilibrium temperature with an base temperature is 4.2 K. The cool down time was determine similar only the time until the temperature drops by 90% from equilibrium temperature was used. There are only some complete warm-up/cool-down curves due to the way the measurements were carried out. The main goal of the measurements were to determine the equilibrium temperature at a certain power for each source of SCAL B.

1. Before cold vibration

1.1 4% primary source

The raw data can be found:

UNIVERSIT

PRIFYSGOL

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 3 of 19

Results - (Calibration - SCAL B)

equilibrium temperature:

Figure 2: Equilibrium temperature for different applied power value of the 4% prime source measured before the cold vibration test.

Figure 3: Warming up time which is the time between 4.2K and 90% of T_{eq.} for different applied power value of the 4% prime source measured before the cold vibration test.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

cooling-down time:

Figure 4: Cooling down time which is the time between T_{eq.} and 10% of T_{eq.} for different applied power value of the 4% prime source measured before the cold vibration test.

1.2 2% primary source

No measurement were carry out for the 2% prime source.

1.3 4% redundant source

The raw data can be found:

 $\label{eq:scal_asympt} $$ \ SCAL Assembly & test SCAL_PFM_F & S\ test data before cold vibration redundant source & so$

Figure 5: Temperature versus time data of the 4% redundant source measured at different days and before the cold vibration test.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 5 of 19

Results - (Calibration - SCAL B)

equilibrium temperature:

PRIFYSGOL

Figure 6: Equilibrium temperature for different applied power value of the 4% redundant source measured before the cold vibration test.

warming-up and cooling-down time:

P (mW)	time _{cool-down} (min)	P (mW)	time _{warm-up} (min)
1	66.215	5	60.522

1.3.1 2% source

The raw data can be found:

\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_F S\Test data\before cold vibration\redundant source\2% source\

Figure 7: Temperature versus time data of the 2% redundant source measured at different days and before the cold vibration test.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 6 of 19

Results - (Calibration - SCAL B)

equilibrium temperature:

PRIFYSGOL

Figure 8: Equilibrium temperature for different applied power value of the 2% redundant source measured before the cold vibration test.

warming-up time:

Figure 9: Warming up time which is the time between 4.2K and 90% of T_{eq.} for different applied power value of the 2% redundant source measured before the cold vibration test.

Figure 10: Cooling down time which is the time between T_{eq.} and 10% of T_{eq.} for different applied power value of the 2% redundant source measured before the cold vibration test.

Instrumentation Group,	H:\Cardiff workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 7 of 19

Results – (Calibration - SCAL B)

2. After cold vibration

2.1 4% primary source

The raw data can be found in:

VERSIT

PRIFYSGOL

Figure 11: Temperature versus time data of the 4% prime source measured at different days and after the cold vibration test.

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 8 of 19

Results - (Calibration - SCAL B)

equilibrium temperature:

P (mW)	T _{equilibrium} (K)
0.025	9.42
0.050	12.95
0.100	17.81
0.200	25.19
0.400	35.62
0.600	43.65
0.800	50.80
1.000	56.97
1.500	70.17
2.000	80.97
2.500	90.41
3.000	98.50
3.500	105.65
4.000	112.21
4.500	118.00
5.000	123.29
6.000	132.82
8.000	148.42
9.980	159.22

Figure 12: Equilibrium temperature for different applied power value of the 4% prime source measured at different days and after the cold vibration test.

warming-up time:

Figure 13: Warming up time which is the time between 4.2K and 90% of T_{eq.} for different applied power value of the 4% prime source measured after the cold vibration test.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

cooling-down time:

Figure 14: Cooling down time which is the time between T_{eq.} and 10% of T_{eq.} for different applied power value of the 4% prime source measured after the cold vibration test.

2.2 2% primary source

The raw data can be found in:

\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_F S\Test data\after cold vibration\prime source\2% source\

Figure 15: Temperature versus time data of the 2% prime source measured at different days and after the cold vibration test.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 10 of 19

Results - (Calibration - SCAL B)

SPIRE

equilibrium temperature:

Figure 16: Equilibrium temperature for different applied power value of the 2% prime source measured at different days and after the cold vibration test.

Figure 17: Warming up time which is the time between 4.2K and 90% of T_{eq.} for different applied power value of the 2% prime source measured after the cold vibration test.

Instrumentation Group	H:\Cardiff workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department	reports/HSO-CDF-RP-080-SCAL B calib res.doc
Cardiff University.	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade.	······································
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 11 of 19

Results - (Calibration - SCAL B)

cooling-down time:

PRIFYSGOL

Figure 18: Cooling down time which is the time between T_{eq.} and 10% of T_{eq.} for different applied power value of the 2% prime source measured after the cold vibration test.

2.3 4% redundant source

The raw data can be found in:

\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_F S\Test data\after cold vibration\redundant source\4% source\

Figure 19: Temperature versus time data of the 4% redundant source measured after the cold vibration test.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 12 of 19

Results – (Calibration - SCAL B)

equilibrium temperature:

Figure 20: Equilibrium temperature for different applied power value of the 4% redundant source measured at different days and after the cold vibration test.

Figure 21: Warming up time which is the time between 4.2K and 90% of T_{eq.} for different applied power value of the 4% redundant source measured after the cold vibration test.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

cooling-down time:

Figure 22: Cooling down time which is the time between T_{eq.} and 10% of T_{eq.} for different applied power value of the 4% redundant source measured after the cold vibration test.

2.4 2% redundant source

The raw data can be found in:

\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCAL_PFM_F S\Test data\after cold vibration\redundant source\2% source\

Figure 23: Temperature versus time data of the 2% redundant source measured after the cold vibration test.

Instrumentation Group	H:\Cardiff_workpackages\Daliverables\Shinned\SCal\BEM\Test
instrumentation Group,	H. (Cardin_workpackages/Denverables/Sinpped/SCar/PFIVI/Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 14 of 19

Results – (Calibration - SCAL B)

equilibrium temperature:

Figure 24: Equilibrium temperature for different applied power value of the 2% redundant source measured at different days and after the cold vibration test.

Figure 25: Warming up time which is the time between 4.2K and 90% of T_{eq.} for different applied power value of the 2% redundant source measured after the cold vibration test.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

cooling-down time:

Figure 26: Cooling down time which is the time between T_{eq.} and 10% of T_{eq.} for different applied power value of the 2% redundant source measured after the cold vibration test.

3. Summary

Figure 27: Comparison of the equilibrium temperature versus applied power for 4% prime source before and after the cold vibration test.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Table 1: Parameters and coefficients of the Chebychev fit for 4% prime source after the cold vibration test.

3.2 2% primary source

The was no measurement taken for 2% prime source before the cold vibration test.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

PRIFYSGOL

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 17 of 19

Results - (Calibration - SCAL B)

fit equation	coefficient	error
	m1 = 69.527	0.041256
$T(P) = \sum_{0}^{9} m_{i} \cos\left[i \cdot \cos^{-1}\left(\frac{(\log P - PL) - (PU - \log P)}{PU - PL}\right)\right]$ PU = 1.0024	m2 = 75.69	0.068996
	m3 = 21.765	0.058256
	m4 = 2.5715	0.041003
	m5 = -0.72045	0.028792
	m6 = -0.37803	0.038444
	m7 = 0.017292	0.055935
PL = -1.3109	m8 = 0.037832	0.060874
	m9 = 0.022366	0.04554

Table 2: Parameters and coefficients of the Chebychev fit for 2% prime source after the cold vibration test.

Figure 28: Comparison of the equilibrium temperature versus applied power for 4% redundant source before and after the cold vibration test.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 18 of 19

Results - (Calibration - SCAL B)

fit equation		coefficient	error
		m1 = 60.168	0.14263
$T(P) = \sum_{0}^{9} m_{i} \cos \left[i \cdot \cos^{-1} \left(\frac{(\log P - PL) - (PU - \log P)}{PU - PL} \right) \right]$ PU = 0.8972 PL = -1.6159		m2 = 68.205	0.23435
	m3 = 20.838	0.14169	
	m4 = 2.8534	0.012794	
	m5 = -0.58275	0.093839	
		m6 = -0.41683	0.14872
		m7 = 0.00032901	0.14523
	m8 = 0.047701	0.093517	
		m9 = 0.037595	0.047889

Table 3: Parameters and coefficients of the Chebychev fit for 4% redundant source after the cold vibration test.

Figure 29: Comparison of the equilibrium temperature versus applied power for 2% redundant source before and after the cold vibration test.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-080-SCAL_B_calib_res.doc
Cardiff University,	Last updated 18/08/2004 14:04 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

UNIVERSIT

PRIFYSGOL

ʹ^{ΑΕ}RDΥ_ΙΦ

Ref.:SPIRE Issue: 1.0 Date: 18 August 2004 Page: Page 19 of 19

Results – (Calibration - SCAL B)

fit equation	coefficient	error
	m1 = 61.551	0.10638
$T(P) = \sum_{0}^{9} m_{i} \cos \left[i \cdot \cos^{-1} \left(\frac{(\log P - PL) - (PU - \log P)}{PU - PL} \right) \right]$	m2 = 70.52	0.14104
	m3 = 22.318	0.14428
	m4 = 3.3467	0.095438
	m5 = -0.64679	0.080251
	m6 = -0.49679	0.087555
PU = 0.8994	m7 = 0.023365	0.12297
PL = -1.6141	m8 = 0.10975	0.12033
	m9 = 0.095858	0.1425

Table 4: Parameters and coefficients of the Chebychev fit for 2% redundant source after the cold vibration test.

Appendix D

SCal Lifetest Report

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 112 of
	115

Ref.:HSO-CDF-RP-081 Issue: 1.0 Page: Page 1 of 14

SCAL life test – (Results)

SCAL life test

(Results)

27 July 2004

Document Ref.: HSO-CDF-RP-081 Issue: 1.0

Prepared by: Iris Didschuns Last Modified on: 27 July 2004

Distribution list

5 The Parade, Cardiff CF24 3YB +44 (0)29 2078 6464

	I			
Instrumentation Group, H		H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-		
Physics & Astronomy Department, re		reports\HSO-CDF-RP-081 SCAL life test.doc		
Cardiff University, Last updated 19		dated 19/08/2004 09:52 by Iris Didschuns		

Ref.:HSO-CDF-RP-081 Issue: 1.0 Date:19 August 2004 Page: Page 2 of 14

SCAL life test – (Results)

Table of Content

SC.	AL LIFE TEST	.1
(Results)	.1
1.	INTRODUCTION	.3
2.	CHARACTERIZATION BEFORE THE LIFE TEST	.4
3.	LIFE TEST	.7
4.	CHARACTERIZATION AFTER THE LIFE TEST	10
5.	SUMMARY	12

Ref.:HSO-CDF-RP-081 Issue: 1.0 Date:19 August 2004 Page: Page 3 of 14

SCAL life test – (Results)

1. Introduction

The life test was carried out to demonstrate that the internal SPIRE spectrometer calibrator (SCAL) was capable of 3,000 operational cycles (SPIRE IHDR) during the mission lifetime. The actual number of cycles in the life test was increased by a factor of 1.5 to 4500 operational cycles to ensure a reliable performance well above the requirement.

Results from tests with the SCAL CQM model showed that SCAL had a long time constant during warm-up (t_{80K} =185 min) and cool-down (t_{80K} =80 min). With such long time constants, the life test would take 29 months. A SCAL life test model (SCAL LTM) with significantly shorter Torlon legs than the flight model (Figure 1) and, consequently, an improved cooldown time, was, therefore, used in the life test. The interface to the aluminium head was exactly the same as in the SCAL flight model, so SCAL LTM was considered to be a representative model in crucial properties.

The warm-up time was reduced further to seconds by applying power pulses of 100 mW, which were 30 times higher then normally used, but still recommend maximum power for heater by the manufacture.

The SCAL LTM had a 4% source (S1) on top of a thin Torlon leg (bore \emptyset 2.0 mm, length 7 mm) and a 4% source (S2) on top of an ultra thin Torlon leg (bore \emptyset 2.5 mm, length 10 mm). A 2% source was not included in the SCAL LTM because the interface between the aluminium head and the Torlon leg was the same.

Figure 1: SCAL LTM (a. used in the life test with an close-up view of both sources (b. – S1 on top of the thin Torlon leg; c. – S2 on top of the ultra thin Torlon leg).

The heaters for the S1 and S2 source were identical, and their resistances differed only by 0.04% at 4 K. Due to technical problems during the assembly of SCAL LTM, S2 was only equipped with the heater chip but no thermometer. This was not expected to cause any

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-081_SCAL life test.doc
Cardiff University,	Last updated 19/08/2004 09:52 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

YSGOL

Ref.:HSO-CDF-RP-081 Issue: 1.0 Date:19 August 2004 Page: Page 4 of 14

SCAL life test – (Results)

problems because during the life test the heater voltage was continuously measured and compared with the heater voltage measured from S1. So any problems with the S2 heater, potentially caused by electrical or mechanical failure, could be immediately detected. Due to the longer and thinner-walled Torlon leg it can be assumed that S2 reached at least the same target temperature (80K) then S1 most likely even higher. The temperature of S2 would be as well 80K if use as SCAL flight model. Therefore if S1 shows no problems with the components (interface torlon to aluminium head, interface heater to aluminium head via Epo-Tek layer) the assumption if S1 survive then S2 despite not having a thermometer is justified.

A detailed description of the test procedure and test record can be found in: $\DarkstarAstroworldProjectsSpireCardiff_workpackagesSCALSCAL life testTest procedure and record.doc.$

2. Characterization before the life test

The SCAL source was characterised before the life test by applying a constant power to the heater and simultaneously measuring the temperature.

The warm-up time was defined as the time taken for the temperature to reach 90% of its equilibrium value, with the base temperature remaining at 4.2 K. The cool down time was defined similar as the time taken for the temperature to drop by 90% from this equilibrium once the power over the heater was switched off.

Figure 2 shows the complete temperature curves (warming-up and cooling-down) at different levels of applied power. These power levels were chosen to cover the predicted temperature range necessary to null the telescope background with the SCAL calibrator. The time scale of the different temperature curves has been normalized to zero for clarification.

Figure 2: Temperature response curves for different levels of power applied to the SCAL LTM 4% source before the life test was carried out.

Instrumentation Group,	H:\Cardiff workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-081 SCAL life test.doc
Cardiff University,	Last updated 19/08/2004 09:52 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

The equilibrium temperatures for certain power levels were determined from these results and can be found in Figure 3 and Table 1.

Figure 3: Equilibrium temperatures at different levels of power applied to the SCAL LTM 4% source calculated from Figure 2

Ref.:HSO-CDF-RP-081 Issue: 1.0 Date:19 August 2004 Page: Page 6 of 14

SCAL life test – (Results)

P (mW)	$T_{eq.}(K)$	t_{down} (min)	t _{up} (min)
0.999	24.53	4.03	2.85
1.998	34.68	6.08	3.87
2.994	42.88	8.10	5.27
3.991	50.06	9.47	6.62
4.988	56.59	10.99	7.90
9.967	83.87	16.73	13.16
19.912	126.44	25.60	18.66

Table 1: Equilibrium temperatures and the time constants at various levels of applied power for S1 source.

Since the warming-up and cooling-down time constants were still quite long an enhanced warm-up procedure was employed. This involved powering up the S1 source with 100mW (the recommended power ($P_{max}=200$ mW) to be use for this type of heater by manufacture) for a short time (seconds rather than minutes). Figure 4 shows the temperature response of this enhanced warm-up for 100mW, 150mW and 200mW.

Figure 4: Enhanced warm-up by applied higher power level for a short time of the SCAL LTM S1 source

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-081 SCAL life test.doc
Cardiff University,	Last updated 19/08/2004 09:52 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:HSO-CDF-RP-081 Issue: 1.0 Date:19 August 2004 Page: Page 7 of 14

SCAL life test – (Results)

P (mW)	$\Delta T=T_2-T_1(K)$	t_{up} (sec)	$\Delta T=T_3-T_2 (K)$	t_{down} (min)	t_{80K} (min)	$T_{max}(K)$
100	72.45=79.92-7.47	37.4	72.43=79.92-7.49	17.54	0.65	84.06
150	72.54=80.08-7.54	24.6	72.59=80.08-7.49	16.73	0.42	80.89
200	72.35=80.01-7.66	18.54	72.52=80.01-7.49	17.74		85.29

The same temperature range was used to compare time constants for each applied power. The different maximum temperatures were a result of the power being switched off manually. The cool-down times varied slightly, therefore, with the maximum temperature.

Figure 5 shows the time S1 source need until it reaches 80 K for different applied power values. The time is reduced by a factor of 30 when using 100 mW instead of 10 mW.

3. Life test

The life test was carried out by applying a continuous series of on/off power pulses with constant excitation to the SCAL sources. The time, the voltage across S1 heater (V_{S1}), the voltage across the S2 heater (V_{S2}) and the cycle number were measured and to reduce the size of the data file, however, only every 10th cycle was recorded.

The resistance values of the S1 and S2 heaters as well the S1 thermometer were measure during the first cryostat cool-down (Table 2). The resistances were measured using the 4 wire measurement method and a HP34410 multimeter for the heater a AVS-47 resistance bridge for the thermometer.

Ref.:HSO-CDF-RP-081 Issue: 1.0 Date:19 August 2004 Page: Page 8 of 14

SCAL life test – (Results)

T (K)	$R_{S1}(\Omega)$	$R_{S2}(\Omega)$	$R_{CX28257}\left(\Omega\right)$
300	500	500	35.06
77	501	501	87.4
4.2	501.5	501.3	451.7

Table 2:Resistance values of the S1 and S2 heaters as well the S1 thermometer during the cool-down

This method of running the life test used the TTi PL330DP power supply to provide the applied Voltage (V_{app}). The temperature of the S1 source was measured and recorded at the beginning, middle and end of the life test to prove that the SCAL source was still functional (Figure 6). The data were stored in separated files for S1 source.

The three curves in Figure 6 were obtained at 3 week intervals during the life test. The data was monitored to reveal signs of changes in SCAL LTM that may have manifested themselves as temperature drop due, for example:

- Minimize power output of the heater due, possibly, connection failure
- Epo-Tek interface between Aluminium head and heater/thermometer due, possibly change of the interface properties (thermal conductance)
- Interfaces between the Torlon leg and Aluminium head due, possibly change mechanical properties (less good heat sink).

There were, however, no significant observable changes.

Figure 6: Temperature respond for 10 cycles measured at the beginning, middle and end of the life test to prove that the SCAL source was still functional.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-081_SCAL life test.doc
Cardiff University,	Last updated 19/08/2004 09:52 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

The amount of current applied to the heater was determining by making daily measurements of the voltage drop over the control resistor (996 Ω). From these measurements the resistance values (Figure 7, Figure 8) were calculated. The calculated resistances show digitisation because the measurements were carried out using a handheld multimeter (Fluke), which only had a 2-digit resolution. The fluctuations of 0.2% for S1 and 0.3% for S2 most likely caused by different base temperature and noise induced in system. Other than this, there were no significant changes in the resistance of either source measured during the life test.

Figure 7: Heater resistance of SCAL LTM S1 source during the life test

Figure 8: Heater resistance of SCAL LTM S2 source during the life test

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-081_SCAL life test.doc
Cardiff University,	Last updated 19/08/2004 09:52 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:HSO-CDF-RP-081 Date:19 August 2004 Page: Page 10 of 14

4. Characterization after the life test

The SCAL source was characterised again after the life test to determine if there had been any changes in the source caused by the life test. The characterization was carried out in the same way as the characterization before the life test by applying a constant power to the heater and simultaneously measuring the temperature.

The temperature response curves obtained in the post-life-test characterization are shown in Figure 9, with the data points displayed in Table 3.

Figure 9: Temperature response curves for different values of power applied to the SCAL LTM S1 source after the life test was carried out.

P (mW)	$T_{eq.}(K)$	t_{down} (min)	t _{up} (min)
1.001	25.51	5.47	3.27
1.999	35.94	7.73	4.99
2.998	44.39	9.73	6.54
4.016	51.96	11.57	8.07
5.018	58.71	13.26	9.47
10.019	87.08	20.13	15.18
20.019	130.90	29.12	20.57

Table 3: Equilibrium temperatures and the time constants at various levels of applied power for SCAL LTM S1 source.

A comparison between the temperature response curves obtained in the characterizations before and after the life test is given in Figure 10, and Figure 11 compares the values of

Instrumentation Group,	H:\Cardiff workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-081 SCAL life test.doc
Cardiff University,	Last updated 19/08/2004 09:52 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

equilibrium temperature obtained by applying various levels of power to the heater before and after the life test.

Figure 10: Comparison of the temperature response at different levels of power applied to the SCAL LTM S1 source before and after the life test

Figure 11: Comparison of equilibrium temperature for certain applied powers of the SCAL LTM S1 source before and after the life test. The solid lines are power fit curves.

The power curve fits in Figure 11 are characterized by the following equations:

- $T_{eq}(P) = (23.018 \pm 0.399) \cdot P^{(0.56752 \pm 0.00705)}$ (red curve)
- $T_{eq}(P) = (23.876 \pm 0.409) \cdot P^{(0.56597 \pm 0.00696)}$ (blue curve).

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-081_SCAL life test.doc
Cardiff University,	Last updated 19/08/2004 09:52 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:HSO-CDF-RP-081 Issue: 1.0 Date:19 August 2004 Page: Page 12 of 14

SCAL life test – (Results)

The equilibrium temperature of the S1 source before and after the life test was calculated from given power values by using the above equation and the result can be seen in Table 4. Table 4 shows as well the fraction difference between the calculated $T_{eq.}$ before and after the life test.

P (mW)	T _{eq.} ^b (K) before LT	T _{eq.} ^a (K) after LT	$ \begin{array}{c} fractional \\ between \ T_{eq.}{}^{b} \ and \ T_{eq.}{}^{a} \end{array} $
1	23.018	23.876	0.037275
2	34.112	35.346	0.036161
3	42.938	44.463	0.03551
4	50.553	52.325	0.035049
5	57.378	59.369	0.034691
10	85.033	87.888	0.03358
20	126.02	130.11	0.03247

 Table 4: Calculated equilibrium temperatures for given power values of the S1 source before and after the life test.

Figure 10 and Figure 11 show a difference in the equilibrium temperature before and after the life test. The equilibrium temperature from S1 source is a 3% higher after the life test then before.

5. Summary

YSGOL

The SCAL sources S1 and S2 survived 4500 cycles of constant powering on and off and, therefore, survived the life test. This number of cycles corresponds to a 4.5 years mission lifetime.

By applying 100mW for a short time (40s), the required maximum temperature was reached very quickly. This enhanced warm-up procedure did not decrease the performance of the heater during the life test.

During the life test there was not significant change in the heaters properties. The heater resistance varies a little ($R_{S1} = 502.02 \pm 0.04 \Omega$, $R_{S2} = 501.030 \pm 0.075 \Omega$)

The only notable different was the 3% increase in the equilibrium temperature for applied powers after the life test, which may be explained by a change in the thermal conductance of the use EPO-TEK 920FL over time (settling down effect).

6. Appendix – CX28257 thermometer calibration

Figure 12: Temperature versus resistance curve for Cernox sensor (serial #28257) used during the life test and the solid line are Chebychev curve fits.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-081_SCAL life test.doc
Cardiff University,	Last updated 19/08/2004 09:52 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Figure 13: Absolute difference between values derived using fit and data points with temperature.

Appendix E

SCal Lifetest Procedure & Record

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 113 of
	115

Ref.:HSO-CDF-PR-082 Issue: 1.0 Date:19 August 2004 Page: 1 of 18

Test procedure and record – (SCAL life test)

Test procedure and record

(SCAL life test) 9 August 2004

Document Ref.: HSO-CDF-PR-082 Issue: 1.0 Test Date

Prepared by: Iris Didschuns Last Modified on: 9 August 2004 Approved by:

Distribution list

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-PR-082-lifetest-procedure-and-record.doc
Cardiff University,	Last updated 19/08/2004 10:08 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Test procedure and record – (SCAL life test)

Table of contents

TEST	PROCEDURE AND RECORD	1
(SCA	L LIFE TEST)	1
1. IN	TRODUCTION	
2. TE	EST EQUIPMENT & SET-UP	
3. LI	FE TEST OPTIONS	5
4. DA	ATA ACOUISITION	
5. TE	EST STRUCTURE	5
5.1	ROOM TEMPERATURE CHECKS	
5.2	77 K CHECKS	
5.3	4 K CHECKS	7
5.4	Preliminary test	7
5.5	LIFE TEST	
5.6	FINAL TEST	
6. AF	PPENDIX A	
7		

Ref.:HSO-CDF-PR-082 Issue: 1.0 Date:19 August 2004 Page: 3 of 18

Test procedure and record – (SCAL life test)

1. Introduction

JIVERSI

This document described the test plan for SCAL life test which included the experimental setup, the preliminary tests, the room temperature, 77 K and 4 K checks as well the data acquisition.

The SCAL LTM had a 4% source (S1) on top of a thin Torlon leg (bore Ø 2.0 mm, length 7 mm) and a 4% source (S2) on top of an ultra thin Torlon leg (bore Ø 2.5 mm, length 10 mm). A 2% source was not included in the SCAL LTM because the interface between the aluminium head and the Torlon leg was the same.

2. Test Equipment & Set-Up

Test set-up

TTi PL330DP

SCAL life test box

Helium4-cryostat (Oxford Instruments No: 38586, provided by QMC instruments)

Temperature measurement

- "AVS 2" Picowatt (RV-Elektroniikka Oy) AC-resistance bridge (AVS-47) with a two-stage IEEE-488 computer interface (AVS47-IB) (GPIB address 19)
- Description below •

Life test

- Power supply TTi PL330DP (GPIB address: 12) •
- Digital multimeter HP 34401A (GPIB address 22)
- Digital multimeter Agilent 34401A (GPIB address 21) •
- Connector box labelled "SCAL life test box" •
- Description below

Figure 1: Schematic diagram of the "SCAL life test box" and the corresponding connection inside the cryostat.

Figure 2: Inside view of the test cryostat which also will be use to carry out the SCAL life test.

Instrumentation Group, Physics & Astronomy Department, Cardiff University, 5 The Parade, Cardiff CF24 3YB +44 (0)29 2078 6464 H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Testreports\HSO-CDF-PR-082-lifetest-procedure-and-record.doc Last updated 19/08/2004 10:08 by Iris Didschuns

Ref.:HSO-CDF-PR-082 Issue: 1.0 Date:19 August 2004 Page: 5 of 18

Test procedure and record – (SCAL life test)

3. Life test options

VFRSIT

-	
Total No. cycles (According to SPIRE IHDR)	4500
Total time for life test (Appendix A)	53 days
Time for warm-up (According to test from 12.01.2004 q.v. Appendix B)	40 s
Total time for one cycle (According to test from 12.01.2004 q.v. Appendix B)	17 min
Excitation	V _{max} =10V I _{max} =20mA
Temperature min	10 K
Temperature max	80 K
Estimated hard disk space for data files	3 MB

4. Data Acquisition

The life test will be controlled via computer (Windows2000) and the data acquisition software was written in LabVIEW 6. All LabVIEW programs can be found at <u>\\Darkstar\Astroworld\Projects\SPIRE\LabVIEW\</u>.

5. Test structure

Parameters marked TBD will be constrained after initial tests and all entries in red are records taken during the life test.

5.1 Room temperature checks

- Check for short circuits
- 4-wire-resistance measurement of both heaters
- Connect the cable "SCAL heaters 2% and 4% source" from the cryostat via 10pin Oxford connector "connector 2" to the 15pin connector at the "SCAL life test box"
- From the "SCAL life test box" connect the cables

"SCAL LT 4% V-",
"SCAL LT 4% I-",
"SCAL LT 4% V+",
"SCAL LT 4% I+",
A Disital mariltimestan

with HP34401A Digital multimeter

HP34401A settings		
4-wire-mode	ON	
Autorange	ON	

Test procedure and record – (SCAL life test)

- From the "SCAL life test box" connect the cables "SCAL LT 2% V-", "SCAL LT 2% I-", "SCAL LT 2% V+", "SCAL LT 2% V+", "SCAL LT 2% I+",
- with Agilent34401A Digital multimeter

Agilent34401A settings		
4-wire-mode	ON	
Autorange	ON	

In this life test the 2% source is replaced by a second 4% source which has a ultra thin Torlon leg. This source is referred to as "S2" in this test plan.

date: 08/01/04

H4% "S1"	H4% "S2"
R_{300K} = 500 Ω	R_{300K} = 500 Ω

- 4-wire-resistance measurement of the calibrated thermometer
- Connect the cable "SCAL thermometers 2% and 4% source" from the 10 pin Oxford connector "connector 1" with the AVS-47 bridge
- Convert the impedance value into temperature by using the LabVIEW program "convert_R_to_T(CX28257).vi"
- The calibration data can be found in "Calibration Report_CX2857.doc" which is stored in <u>\\Darkstar\Astroworld\projects\spire\Cardiff_workpackages\thermmometer</u> calibration\Cernox-CX-1030-SD-HT\Cx28257\.

date: 08/01/04

T4% "S1"	
R_{300K} = 35.06 Ω	

5.2 77 K checks

- Check for short circuits
- Check the resistance of the heaters:

date: 08/01/04

H4% "S1"	H4% "S2"
R _{77K} = 501 Ω	R _{77K} = 501 Ω

• Check thermometer resistance:

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-PR-082-lifetest-procedure-and-record.doc
Cardiff University,	Last updated 19/08/2004 10:08 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Test procedure and record – (SCAL life test)

date: 08/01/04

T4% "S1"	
R _{77K} = 87.4 Ω	
T= 79.4 K	

5.3 4 K checks

- Check for short circuits
- Check the resistance of the heaters:

date: 16/01/04

H4% "S1"	H4% "S2"
R_{4K} = 501.5 Ω	R_{4K} = 501.3 Ω

• Check thermometer resistance:

date: 16/01/04

T4% "S1"
R_{4K} = 451.7 Ω
T= 6.64 K

5.4 Preliminary test

The SCAL source S1 is characterised by applying a constant power to the heater and measuring simultaneously the temperature.

- Connect the cable "SCAL thermometers 2% and 4% source" from the 10 pin Oxford connector "connector 1" with the AVS-47 bridge
- Open LabVIEW program "One_temperature_monitoring_no_scan_modev1d.vi" which can be found in \\Darkstar\Astroworld\Projects\SPIRE\Labview\temperature_monitoring_no_scan_m ode_AVS.llb
- Run the program

Figure 3: Program window of "One_temperature_monitoring_no_scan_modev1d.vi" which is monitoring and recording the temperature at T4%.

Program settings:

Function	
Channel	0
Excitation	300µV
Autorange	1
Which thermometer?	CX28257
Which AVS bridge?	AVS 2

File name:

scal_ltm_4percent_09_01_04.txt scal_ltm_4percent_12_01_04.txt

- Turn the power supply TTi330DP "ON" (switch 1)
- Turn at the power supply TTi330DP the switch 3 to "remote", the switch 2 and switch 4 to "ON"
- Connect the current leads from Output 1 of the Power Supply TTi330DP to I+ (red socket) and I- (black socket) of H2%
- Connect the current leads from Output 2 of the Power Supply TTi330DP to I+ (red socket) and I- (black socket) of H4%
- Connect the voltage leads from Digital multimeter Agilent 34401A (GPIB address 21) to V+ (yellow socket) and V- (green socket) H2%

Ref.:HSO-CDF-PR-082 Issue: 1.0 Date:19 August 2004 Page: 9 of 18

Test procedure and record – (SCAL life test)

- Connect the voltage leads from Digital multimeter HP 34401A (GPIB address 22) to V+ (yellow socket) and V- (green socket) H4%
- Open program "TTiPL330_Applied_Power_with_Rv1.vi" which can be found in \\Darkstar\Astroworld\Projects\SPIRE\Labview\Applied_Power_with_control_R.llb
- run the program and apply various power values to the determine the correspond equilibrium temperature

ST	Time from start (mins 0.000	Bath C:\devlabv\acqtemp	record data?
DAC Dev	Ch (0) D	Filename cd05_12_02.txt	🐌 YES
requiered Power in			
control re in Ohm	esistor PCAL/SCAL resitor in Ohm 00 148.55		
0.000 measu Voltage	000 0.00000 red measured e in V Voltage in V		
	0.00 Applied Voltage in V		
applied Powe	er in mW 0.0000		

Figure 4: Program window of "TTiPL330_Applied_Power_with_Rv1.vi" which is controlling as well applying the required power values.

Program settings:

UNIVERSIT

PRIFYSGOL

AERDYD

Function	
Output	OFF
Control Resistor	994 Ω
SCAL resistor	501 Ω
Max. Power (According to heater specification)	200 mW
Recommended Power (According to heater specification)	100 mW

File name:

scal ltm_4percent_09_01_04_summary.txt scal ltm_4percent_12_01_04_summary.txt

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-PR-082-lifetest-procedure-and-record.doc
Cardiff University,	Last updated 19/08/2004 10:08 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:HSO-CDF-PR-082 Issue: 1.0 Date:19 August 2004 Page: 10 of 18

Test procedure and record – (SCAL life test)

5.5 Life test

The life test is carry out by applying a continuous series of on/off pulses with constant excitation to the SCAL sources. The time, V_{S1} , V_{S2} and the No. of cycles are measured and every 10th cycle recorded to reduce the data file size. This method is using the TTi PL330DP power supply to provide " V_{app} ". The temperature of the S1 measured & recorded at the beginning, the middle and the end of the life test in order to prove that the SCAL source is still functional. The data are been stored in two separated files for each source.

Expected values				
P (mW)	$V_{app}(V)$	$I_{app}(mA)$	$V_{S1}(V)$	$V_{drop}(V)$
200	31.22	20	10	19.89
5	4.94	3.16	1.58	3.14

- Turn at the power supply TTi330DP the switch 3 to "remote", the switch 2 and switch 4 to "ON"
- Connect the current leads from Output 1 of the Power Supply TTi330DP to I+ (red socket) and I- (black socket) of H4%
- Connect the current leads from Output 2 of the Power Supply TTi330DP to I+ (red socket) and I- (black socket) of H2%
- Connect the voltage leads from Digital multimeter HP 34401A (GPIB address 22) to V+ (yellow socket) and V- (green socket) H4%
- Connect the voltage leads from Digital multimeter Agilent 34401A (GPIB address 21) to V+ (yellow socket) and V- (green socket) H2%
- Running life test program "SCAL_life_test_part_A.vi" from \\Darkstar\Astroworld\Projects\SPIRE\Labview\SCAL_life_test.llb\ where both source are powered up

Test procedure and record – (SCAL life test)

Figure 5: Program window of "SCAL_life_test_part_A.vi" which is controlling as well monitoring the life test.

Program settings:

UNIVERSI

PRIFYSGOL

4% source		2% source			
Total No. Of cycles	4500	Total No. Of cycles	4500		
SCAL resistance (Ω)	994	SCAL resistance (Ω)	996		
Required power (mW)	100	Required power (mW)	100		
Length of power on pulse (s)	39	Length of power on pulse (s)	39		
Length of power off pulse (min)	17	Length of power off pulse (min)	17		

The temperature versus time curve is measured at the beginning, the middle and the end of the life test to prove that the S1 source still works normally and to do so run the program "SCAL_life_test_part_b.vi" which can be found in:

\\Darkstar\Astroworld\Projects\SPIRE\Labview\SCAL_life_test.llb\.

Figure 7: This is the 2nd program for the SCAL life test, which the user will run at the beginning, the middle and the end of the life test for the S1 source. This program measures the temperature vs. time from the S1 source.

Program settings:

Function	
Channel	0
Excitation	300µV
Autorange	1
Which AVS bridge?	AVS 2

Figure 8: Flow chart of the program, which records the temperature vs. time of the 4% source.

	File name
Main life test data from S1 source	scal_LTM_4percent_source_16_01_04.txt
Main life test data from S2 source	scal_LTM_2percent_source_16_01_04.txt
T(K) vs. time data from S1 source at begin	<pre>scal_LTM_4percent_source_T(K)_16_01_04.txt</pre>
of life test	
T(K) vs. time data from S1 source at	<pre>scal_LTM_4percent_source_T(K)_11_02_04.txt</pre>
middle of life test	
T(K) vs. time data from S1 source at end	scal_LTM_4percent_source_T(K)_11_03_04.txt
of life test	

Ref.:HSO-CDF-PR-082 Issue: 1.0 Date:19 August 2004 Page: 14 of 18

Test procedure and record – (SCAL life test)

• Check once a day the thermometer CX28257 and the voltage at control resistor V_{drop} of S1 source

1 st wee	k				2 nd week			3 rd week						
Date	Time	$T_{S1}(\Omega)$	$V_{drop S1}(V)$	$V_{drop S1}(V)$	Date	Time	$T_{S1}(\Omega)$	$V_{drop S1}(V)$	$V_{drop S2}(V)$	Date	Time	$T_{S1}(\Omega)$	$V_{drop S1}(V)$	$V_{drop S2}(V)$
16/01	14:08	85.57	7.98	7.98	23/01	14:56	85.57	14.05	14.09	30/01	10:50	89.04	14.04	14.09
17/01	12:34	90.84	7.97	7.97	24/01	13:22	87.77	14.05	14.09	31/01	11:56	86.07	14.04	14.09
18/01	12:29	89.84	7.97	7.98	25/01	11:45	89.99	14.05	14.09	01/02	12:06	86.02	14.05	14.09
19/01	12:29	90.25	14.04	14.1	26/01	12:13	86.28	14.05	14.09	02/02	11:30	89.45	14.04	14.09
20/01	11:58	91.36	14.04	14.09	27/01	11:25	86.33	14.05	14.09	03/02	10:30	86.38	14.04	14.09
21/01	11:35	90.5	14.04	14.08	28/01	11:02	89.01	14.04	14.1	04/02	10:20	89.86	14.04	14.09
22/01	12:00	86.66	14.04	14.1	29/01	10:00	86.3	14.05	14.09	05/02	10:32	98.9	14.04	14.09
4 th wee	k				5 th wee	k				6 th wee	k			
Date	Time	$T_{S1}(\Omega)$	$V_{drop S1}(V)$	$V_{drop S2}(V)$	Date	Time	$T_{S1}(\Omega)$	$V_{drop S1}(V)$	$V_{drop S2}(V)$	Date	Time	$T_{S1}(\Omega)$	$V_{drop S1}(V)$	$V_{drop S2}(V)$
06/02	11:55	86.44	14.05	14.09	13/02	10:40	86.15	14.04	14.08	20/02	13:08	86.84	14.05	14.09
07/02	11:30	86.15	14.04	14.08	14/02	12:55	86.13	14.05	14.09	21/02	12:19	86.7	14.04	14.08
08/02	12:20	86.16	14.05	14.09	15/02	12:33	86.46	14.05	14.09	22/02	12:30	86.27	14.05	14.09
09/02	10:45	86.2	14.05	14.09	16/02	11:35	86.89	14.05	14.09	23/02	12:05	86.15	14.05	14.09
10/02	11:33	86.07	14.05	14.09	17/02	11:16	86.02	14.04	14.09	24/02	12:35	85.71	14.04	14.08
11/02	10:15	86.45	14.05	14.09	18/02	11:05	85.97	14.04	14.09	25/02	19:20	91.5	14.05	14.09
12/02	11:58	86.39	14.05	14.09	19/02	10:42	85.99	14.04	14.08	26/02	11:14	85.92	14.04	14.08
7 th wee	k				8 th wee	k				9 th wee	k			
Date	Time	$T_{S1}(\Omega)$	$V_{drop S1}(V)$	$V_{drop S2}(V)$	Date	Time	$T_{S1}(\Omega)$	$V_{drop S1}(V)$	$V_{drop S2}(V)$	Date	Time	$T_{S1}(\Omega)$	$V_{drop S1}(V)$	$V_{drop S2}(V)$
2/02	10:50	86.26	14.05	14.09	05/03	11:20	86.48	14.04	14.09	12/03	11:00	86.17	14.04	14.09
28/02	11:55	86.48	14.03	14.08	06/03	11:50	86.38	14.04	14.09					
29/02	12:15	87.48	14.04	14.08	07/03	12:40	86.86	14.05	14.09					
01/03	11:32	86.7	14.05	14.09	08/03	10:45	87.1	14.04	14.09					
02/03	11:40	86.47	14.04	14.08	09/03	11:35	86.34	14.04	14.08					
03/03	10:20	86.67	14.04	14.09	10/03	10:50	86.26	14.04	14.09					
04/03	10:30	86.34	14.04	14.09	11/03	11:05	86.15	14.05	14.09					

The blue value are V_{scal} (Voltage across the heater) and not V_{drop} (voltage across the warm control resistor).

Instrumentation Group, Physics & Astronomy Department, Condified University	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-reports\HSO-CDF-PR-082-lifetest-procedure-and- record.doc
5 The Parade, Cardiff CF24 3VB	Last updated 19/08/2004 10:08 by his Didschuns
+44 (0)29 2078 6464	

Ref.:HSO-CDF-PR-082 Issue: 1.0 Date:19 August 2004 Page: 15 of 18

Test procedure and record – (SCAL life test)

5.6 Final test

• According to 5.4

File name:

SCAL_LTM_22_04_04.txt

- According to 5.1
- Check the resistance of the heaters:

date: 15/03/04

H4% S1"	H4% S2
R_{4K} = 500.1 Ω	R_{4K} = 500.1 Ω

• Check thermometer resistance:

date: 15/03/04

T4% "thin"	
R_{4K} = 34.82 Ω	

Ref.:HSO-CDF-PR-082 Issue: 1.0 Date:19 August 2004 Page: 16 of 18

Test procedure and record – (SCAL life test)

6. Appendix A

RDI

UNIVERSIT

PRIFYSGOL

SCAL_Life_Test_Options.mcd				13 Janurary 2004
Mission lifetime (yrs)	Life:= 4.5	Revised requirem	nent	
	Life2:= Life 365.2	25 Life2 = 1644	days	
Fraction of SPIRE time	f_spire := 0.33			
Fraction of SPIRE time used by FSS	f_FTS := 0.5			
Operational hours per day	hrs_day := 21			
No. of hours per operation	hrs_op := 2			
Margin factor	M := 1.5	Revised requirem	nent	
No. of operation per day	$op_day := \frac{hrs_da}{hrs_o}$	p		op_day = 10.5
No. of operations for test	$N_{ops} := \frac{Life2h}{h}$	rs_day ·f_spire ·f_FT hrs_op	<u>S</u> .M	N_ops = 4271
	N_ops := 4500	according to	SPIRE-IHDR	
Time per cycle (min.)	t_cycle := 17			
Total time needed (days) assuming 100% efficiency	$t_{tot} := N_{ops} \cdot \frac{t_{tot}}{t_{tot}}$	$\frac{\text{cycle}}{60} \cdot \frac{1}{24}$	t_tot = 53.1	
Latent heat of He at 4.2 K and 1.01285 bar $(J \text{ gm}^{-1})$	C_He := 20.9	R.A. Haefer:" Anwendunge	Kryo-Vakuumte n", Springer-Vei	chnik:Grundlagen und rlag, Berlin 1981
Density of liquid He at 4.2 K and 1.01285 b (gm cm $^{-3}$)	ar $\rho_{He} := 0.12$	48		
Dewar capacity (Oxford cryostat) (ltr)	Vol:= 1.9			
Mass of Helium (gm)	M_He := Vol 100	$0\rho_{He} = M_{He} =$	237.12	
Total available energy (J)	Energy := M_He·	C_He Energy =	4958.179	
Heater resistance (Ω)	R_heat := 500			
Warm-up time vs. applied power (from SCAL LTM measurements 09-01-04	12-01-04.mcd)	i := 0, 1 4	Applied Power	Time for which power applied
Parameters: Wire length = 30 mm			(mW) P _i :=	(min)
ronon suut, lengur – To Inin, bore – 2 Illi	1			
			20 100 150	20.7 4.3 0.65
			200	0.42 0.32

Ref.:HSO-CDF-PR-082 Issue: 1.0 Date:19 August 2004 Page: 17 of 18

Test procedure and record – (SCAL life test)

Life test for one source at the time

Comments:

FRS

FYSGOL

For large applied power, the required total energy becomes insensitive to the applied power because the warm-up time is so short that little or no energy leaks away during warm-up

With a cool-down time on the order of 10 minutes, there is little to be gained by going above 200 mW applied power since the warm-up time is already less than one minute.

Number of per heliur	of cycles n fill	Hold time per helium fill (days)	Enorgy
$N_cyc_i := \frac{1}{2}$	Energy ΔEi	$t_hold_i := \frac{N_cyc_i \cdot t_cycle}{60.24}$ Check	t_hold_check_i := $\frac{\frac{\text{Energy}}{P_{\text{avg}_i}}}{\frac{1000}{1000}} \cdot 360024$
N_cyc	i =	t_hold _i =	t_hold_check _i =
399]	4.7	4.7
961		11.3	11.3
1271		15.0	15.0
1312	1	15.5	15.5
1291		15.2	15.2

Instrumentation Group,	H:\Cardiff workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-PR-082-lifetest-procedure-and-record.doc
Cardiff University,	Last updated 19/08/2004 10:08 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

FYSGOL

Ref.:HSO-CDF-PR-082 Issue: 1.0 Date:19 August 2004 Page: 18 of 18

Test procedure and record – (SCAL life test)

Life test for both sources at the time

H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Testreports\HSO-CDF-PR-082-lifetest-procedure-and-record.doc Last updated 19/08/2004 10:08 by Iris Didschuns

Appendix F

SCal Enhanced Warm-up Test Report

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 114 of
	115

Ref.:HSO-CDF-RP-083 Issue: 1.0 Date:19 August 2004 Page: 1 of 9

SCAL B – (Enhanced warm-up procedure)

SCAL B

(Enhanced warm-up procedure)

19 August 2004

Document Ref.: HSO-CDF-RP-083 Issue: 1.0

Prepared by: Iris Didschuns Last Modified on: 19 August 2004 Approved by:

Distribution list

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-083-SCAL_enhanced_warmup_procedure.doc
Cardiff University,	Last updated 19/08/2004 10:43 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

Ref.:HSO-CDF-RP-083 Issue: 1.0 Date:19 August 2004 Page: 2 of 9

 $\overline{\text{SCAL }B}$ – (Enhanced warm-up procedure)

1. Introduction

YSGOL

This document describes three different methods to reach the equilibrium temperatures as quick as possible. In all three method an initial maximum power value is applied and the reduced to required equilibrium power value via different methods.

These tests were only carry out for 4% and 2% primary source. It is not necessary to carry out the test with redundant sources due to the identical design of the primary and redundant sources.

A record of all tests carried out on SCAL B can be found in:

\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\S CAL_PFM_FS\SCAL_build-test-log-pfm-fs.doc

2. Method One

The data can be found in:

\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\S CAL_PFM_FS\Test data\enhanced warmup\method one\raw data\

Figure 1: Flow chart of the LabVIEW program that applies constant maximum power and exponential reduces the power until reach the equilibrium power.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-083-SCAL_enhanced_warmup_procedure.doc
Cardiff University,	Last updated 19/08/2004 10:43 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

2.1 4% primary source

Figure 2: Temperature versus time curve during the enhanced warm-up at different maximum power values and parameter of SCAL B 4% prime source.

Figure 3: Temperature versus time curve during the enhanced warm-up at different maximum power values and parameter of SCAL B 2% prime source.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-083-SCAL_enhanced_warmup_procedure.doc
Cardiff University,	Last updated 19/08/2004 10:43 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

3. Method Two

The data can be found in:

\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\S CAL_PFM_FS\Test data\enhanced warmup\method two\raw data\

Figure 4: Flow chart of the LabVIEW program which applies constant maximum power until T=T_{eq}-2K and then the equilibrium power.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-083-SCAL_enhanced_warmup_procedure.doc
Cardiff University,	Last updated 19/08/2004 10:43 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

3.3 2% primary source

Figure 5: Temperature versus time curve during the enhanced warm-up where the maximum power was switch to the required power at T_{eq}.-2K SCAL B 2% prime source.

P _{max} (mW)	$T_{eq}(K)$	T _{start} (K)	T _{end} (K)	t _{warm-up} (min)	t _{cool-down} (min)
15	80.82	4.28		120	95

4. Method Three

The data can be found in:

<u>\arkstar\Astroworld\Projects\Spire\Cardiff_workpackages\SCAL\Assembly&test\SCA</u> <u>L_PFM_FS\Test data\enhanced warmup\method three\raw data\</u>

Figure 6: Flow chart of the LabVIEW program that uses a proportional feedback loop to reach equilibrium temperature fast as possible.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-083-SCAL_enhanced_warmup_procedure.doc
Cardiff University,	Last updated 19/08/2004 10:43 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

4.4 4% primary source

Figure 7: Temperature versus time curve during the enhanced warm-up at different maximum power and gain values of SCAL B 4% prime source.

Figure 8: Temperature versus time curve during the enhanced warm-up at different maximum power and gain values of SCAL B 4% prime source.

Instrumentation Group,	H:\Cardiff_workpackages\Deliverables\Shipped\SCal\PFM\Test-
Physics & Astronomy Department,	reports\HSO-CDF-RP-083-SCAL_enhanced_warmup_procedure.doc
Cardiff University,	Last updated 19/08/2004 10:43 by Iris Didschuns
5 The Parade,	
Cardiff CF24 3YB	
+44 (0)29 2078 6464	

5. Conclusion

All three method can be used to speed up the time until the temperature reaches equilibrium but not every method is optimal to use.

For all three methods we found that 5mW maximum power is suitable to reach the equilibrium temperatures up to 30K and 15mW for higher equilibrium temperatures. This is due the fact that the time constant temperatures up to 30K with 15mW maximum power is below 3 seconds. The data acquisition system that we use hat problems to work with those short time constant.

During the first test we observed that the temperature rise quickly (seconds) with maximum applied power and then when the power is switch to the required equilibrium power the temperature drops (1-2K below T_{eq}) initially before it start to rise again until it reaches the equilibrium temperature. This temperature drop followed by a the rise takes a long time, due to long time constant of the SCAL sources effect, and counteracts the quick warm-up through the initial power boost. This effect we believe is caused by the big heat capacity of the Torlon leg. The Torlon leg stay at a low temperature while the aluminium head warm up very quickly. So when the power is reduce to the required equilibrium power straight away the Torlon leg acts as a heat sink and the temperature drops below the equilibrium temperature. This is can be seen in Figure 5. The use of different ways of switching from the maximum power to the equilibrium power can avoid this effect.

Method One decrease exponential the maximum power to the equilibrium power. For this method it is necessary to determine the right parameters and this process takes a long time and also there will be a small temperature overshoot. The following table shows some parameter we found working best for this algorithm:

source type	P _{required} (mW)	power factor X	Pmax (mW)	time factor τ	T _{eq} (K)	t _{warm-up} (min)	t _{cool-down} (min)
4%	0.15	33	5.1	13	21.6	5	29
4%	0.275	18	5.22	32	29.2	12	
2%	0.15	33	5.1	8.5	21.35	4	18
2%	0.79	18.9	15.01	31.5	49.67	6	47
2%	2	6.5	15	130	81.1	13	53

$$P(t) = P_{required} + P_{max} \cdot e^{-\frac{t}{\tau}}$$
 with $P_{max} = X \cdot P_{required}$.

Ref.:HSO-CDF-RP-083 Issue: 1.0 Date:19 August 2004 Page: 9 of 9

SCAL B – (Enhanced warm-up procedure)

Method Three use a simply proportional feedback to control the heater power. This method was the fastest of all three and showed no overshoot if the right gain value was chosen (Figure 7, Figure 8). A small off-set from the chosen set point (equilibrium temperature T_{eq}) was observed but this can be cancel out by using a additional integrational term in the feedback. At low temperature we observed that our data acquisition system was not fast enough controlling to avoid a temperature overshoot. One way to eliminate the overshoot is decreasing the maximum power from 5mW to probably 4mW or another way is the have a faster control system. The following table shows some parameter we found working best for this algorithm.

source type	gain	P_{max} (mW)	$T_{eq}(K)$	t _{warm-up} (min)	$t_{cool-down}$ (min)
2%	5	15	79.98	4.6	54
2%	5	15	99.99	8	61
2%	0.7	5	16.10	2	13
2%	2	5	24.51	2	
4%	1.5	5	29.25	4.7	34
4%	0.6	5	27.25	3	21
4%	5	15	49.62	3	56
4%	5	15	79.39	6	91
4%	5	15	99.23	9.6	111

Appendix G

Certificates of Conformance & Calibration

SPIRE - Spectrometer Calibration Source (SCal) - PFM - End Item Data Package (EIDP)	Page 115 of
	115