

End Item Data Package (EIDP)

SPIRE - Photometer Calibration Source (PCal) - CQM

SPIRE Ref.: SPIRE-UCF DOC-002096 Cardiff Ref.: HSO-CDF-EIDP-053 Issue 1.0 13 July 2004

Prepared by: Peter Hargrave Cardiff SPIRE Technical Manager

Approved by: Ian Walker Cardiff AIG Programme Manager

Distribution list

RAL	Eric Sawyer	ATC	Phil Parr-Burman
	Eric Clark		
	Judy Long		
	Bruce Swinyard		
	Doug Griffin		
Cardiff	Peter Ade		
	Matt Griffin		
	lan Walker		

Astronomy Instrumentation Group, Department of Physics & Astronomy, University of Wales, Cardiff, 5 The Parade, Cardiff CF24 3YB +44 (0)2920 876682 H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-issued.doc

Change Record

Issue	Section	Date	Changes
1.0		13/07/04	First issue

Table of contents

SECTION 01 - SHIPPING DOCUMENTS	6
SECTION 02 - TRANSPORTATION, PACKING, HANDLING & INTEGRATION PROCEDURES	
SECTION 03 - CERTIFICATE OF CONFORMANCE	
SECTION 04 - QUALIFICATION STATUS LIST / COMPLIANCE MATRIX	
SECTION 05 - TOP LEVEL DRAWINGS (INC. FAMILY TREE)	12
SECTION 06 - INTERFACE DRAWINGS	13
SECTION 07 - FUNCTIONAL, BLOCK & MECHANICAL DRAWINGS	15
SECTION 08 – ELECTRICAL CIRCUIT DIAGRAMS	21
SECTION 09 - AS BUILT CONFIGURATION ITEMS STATUS LIST	23
SECTION 10 – SERIALISED COMPONENTS LIST	24
SECTION 11 - LIST OF WAIVERS	24
SECTION 12 - COPIES OF WAIVERS	24
SECTION 13 - OPERATIONS MANUAL	25
SECTION 14 - HISTORICAL RECORD	27

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053- issued.doc	SPIRE - Photometer Calibration Source (PCal) - CQM End Item Data Package (EIDP)	Page 3 of 39	
	g, ()		

SECTION 15 - LOGBOOK / DIARY OF EVENTS	27
SECTION 16 - OPERATING TIME / CYCLE RECORD	28
SECTION 17 – CONNECTOR MATING RECORD	28
SECTION 18 – AGE SENSITIVE ITEMS RECORD	28
SECTION 19 – PRESSURE VESSEL HISTORY / TEST RECORD	28
SECTION 20 - CALIBRATION DATA RECORD	28
SECTION 21 - TEMPORARY INSTALLATION RECORD	29
SECTION 22 - OPEN WORK / DEFERRED WORK / OPEN TESTS	29
SECTION 23 - LIST OF NON-CONFORMANCE REPORTS	29
SECTION 24 - COPIES OF NON-CONFORMANCE REPORTS	29
SECTION 25 - TEST REPORTS	30
SECTION 27 - REFERENCE LIST OF EIDP'S	37
SECTION 28 - MASS RECORDS	38
SECTION 29 - CLEANLINESS STATEMENT	38
SECTION 30 - OTHER USEFUL INFORMATION	38

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 4 of 39
issued.doc	End Item Data Package (EIDP)	

SECTION 31 - DPL/DML ETC	38
SECTION 32 – LIST OF APPENDICES/ATTACHMENTS	38
REFERENCES	39
APPENDIX A	39
APPENDIX B	39

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 5 of 39
issued.doc	End Item Data Package (EIDP)	_

SECTION 01 - Shipping Documents

PCal CQM was hand carried to RAL by P. Hargrave on 29th September 2003. Incoming inspection was carried out by P. Hargrave and E. Clark (RAL).

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 6 of 39
issued.doc	End Item Data Package (EIDP)	

SECTION 02 - Transportation, Packing, Handling & Integration Procedures

Handling

- Full ESD precautions to be observed when handling PCal.
- Inspection may be carried out in class-100 clean air cabinet.
- The rear cover must not be removed unless an authorised member of Cardiff personnel is present.
- Outer surface may be cleaned using a clean-room wipe impregnated with iso-propyl alcohol, with a piece of Kapton tape covering the aperture.
- PCal must be stored in the shipping container provided.
- Installation of PCal will be carried out by an ESA-approved soldering technician at RAL, according to the PCal ICD.

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 7 of 39
issued.doc	End Item Data Package (EIDP)	

SECTION 03 - Certificate of Conformance

Cardiff University Astronomy Instru	umentation Group h	ereby certifies that the following equipment,
Spac	cecraft / Project:	Herschel
· · ·	Instrument:	SPIRE
	Model:	CQM
	Subsystem:	Photometer Calibration Source
	Serial No:	PCAL-CQM-000
As described in this End Item Data	Package: HSO-CDF	-EIDP-053
Complies with the requirements se	t out in: <mark>SPIRE-RAL</mark>	-PRJ-000034
Responsible Authority		Signature
Cardiff Product Assurance	Dr I.W	alker
Cardiff SPIRE Management	Dr P.Ha	rgrave

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 8 of 39
issued.doc	End Item Data Package (EIDP)	

SECTION 04 - Qualification Status List / Compliance Matrix

Test	Status	Applicable document / Test reference	Test Institute
Dimension and tolerances to specification	Compliant	HSO-CDF-ICD-013 issue 3.0	UWC
Visual inspection (internal & external)	Passed		UWC
Mass	Compliant	HSO-CDF-ICD-013 issue 3.0	UWC
Thermal / vacuum cycles	Passed. Prior to delivery, PCal-CQM underwent a total of four thermal / vacuum cycles to <15-K, in addition to two performance test cool-downs		UWC
Power consumption	Compliant	SPIRE-RAL-PRJ-000034 Issue 1.2	UWC
Vibrations 300K	Passed	AIV-2003-008-VIB	RAL
Vibrations 4K	Passed	AIV-2003-008-VIB	RAL
Environmental condition - Vacuum 3x10 ⁻¹ mBar	Complete		UWC
Differential pressure (a pumping-out rate of 10mB/sec)	Compliant	Routine lab tests and thermal cycling exceed this pump-out rate (initial pump-out rate is usually ~50mB/sec)	RAL
Pre-bake out (not exceeding 80°C)	Performed & compliant		UWC
Outgassing	Not tested. All materials & parts used are on ESA / NASA approved list.		UWC
Cleanliness checks, by visual inspection.	Passed		UWC
Degradation due to high energy radiation.	Not tested. All materials & parts used are on ESA / NASA approved list.		UWC

Compliance with IRD

Requirement ID	Description	Value	Compliant?	
IRD-CALP-R01	Nominal operating output	The area:surface brightness product of the calibrator aperture shall be =1% of the area:surface brightness product of the telescope image at the position of M4 (with an assumed telescope temperature of 80 K and emissivity of 4%) for 200 < λ < 700µm.	Yes – see test data	
IRD-CALP-R02	Operating range	Commandable in 256 steps, with at least 124 steps covering the range from zero output to 2% of the power from the telescope	Yes – 12-bit DAC current drive in range 0-7mA. Nominal output achieved at 2.4mA	
IRD-CALP-R03	Equivalent obscuration of aperture through BSM mirror	The outside envelope of the calibrator housing shall not foul on any part of the BSM for any operational angular position of the BSM	This is the same as IRD-CALP-R09! The old requirement referred to equivalent obscuration of the telescope primary at the BSM pupil	
IRD-CALP-R04	Speed of response	Response to step change in applied power, 90% settling time of radiant power output <350ms (70ms)	Compliant with requirement, but goal not met. See test data.	
IRD-CALP-R05	Repeatability	RMS of output signal better than 1% over 20 cycles on to off during a calibration operation of less than 2 minutes. Drift less than10% over lifetime of the mission. Repeatability of signal 1% for 12 calibration operations equi-spaced over a period of 12 hours, with uniform base temperature and drive current.	Yes. See life test report.	
IRD-CALP-R06	Operation	Nominally once per hour for no more than 10 seconds.	Yes	
IRD-CALP-R07	Frequency	Continuously or pseudo continuously variable between 0 and 2 Hz.	Yes	
IRD-CALP-R08	Interface	The calibrator will be integrated into the beam steering mechanism.	Yes – see PCAL ICD. HSO-CDF-ICD-013-3.0	
IRD-CALP-R09	Volume envelope	This shall be compatible with the space available within the BSM enclosure as described in the BSM specification document.	Yes	
IRD-CALP-R10	Thermal isolation	The thermal conductance between the calibrator body and the SPIRE optical bench shall be > 2 mW/K.	TBD. Determined by BSM structure.	
H:\Cardiff workpage	H:\Cardiff workpackages\Deliverables\Shipped\PCal\COM\PCAL_COM_HSQ-CDE-FIDP-053SPIRE - Photometer Calibration Source (PCal) - COMPage 10 of 39			

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053- issued.doc	SPIRE - Photometer Calibration Source (PCal) - CQM End Item Data Package (EIDP)	Page 10 of 39

IRD-CALP-R11	Operating temperature	<6K	Yes
IRD-CALP-R12	Cold power dissipation	Shall be within the specification given in RD8	?
IRD-CALP-R13	Warm power dissipation	Requirement removed	
IRD-CALP-R14	Operating voltage	Less than 28V at input power level of 5mW	Yes - see PCAL ICD. HSO-CDF-ICD-013-3.0
IRD-CALP-R15	Redundancy	Cold redundancy for the thermal source	Yes
IRD-CALP-R16	Lifetime	The calibration source shall be capable of up to 250,000 operational cycles at the nominal electrical power.	Yes. See life test report.

SECTION 05 - Top Level Drawings (Inc. Family Tree)

Hardware tree

The hardware tree for PCal is shown in Figure 1. Note that the part numbers are given by the general form "PCAL-XXX-nnn", where "XXX" is the model designation (CQM, PFM etc) and "nnn" is the number given in the hardware tree. For instance, the part number for the PCal flight model rear cover would be "PCAL-PFM-205".

Figure 1 Hardware tree for PCal components.

TOP LEVEL DRAWING LIST

Drawing No.	Title

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053- issued.doc	SPIRE - Photometer Calibration Source (PCal) - CQM End Item Data Package (EIDP)	Page 12 of 39

SECTION 06 - Interface Drawings

INTERFACE DRAWING LIST

Drawing No.	Title	Notes
PCAL-ICD-000-B	PCal Interface Control Drawing	

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 13 of 39
issued.doc	End Item Data Package (EIDP)	

Figure 2 Interface drawing for PCal-CQM

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053- issued.doc	SPIRE - Photometer Calibration Source (PCal) - CQM End Item Data Package (EIDP)	Page 14 of 39

SECTION 07 - Functional, Block & Mechanical Drawings

Component drawings are given in this section.

FUNCTIONAL & BLOCK DRAWING LIST

Drawing No.	Title

MECHANICAL COMPONENT DRAWING LIST

Drawing No.	Title	Notes
SPIRE-PCAL-000-001-2.0	PCAL BODY	
SPIRE-PCAL-000-001-3.0	PCAL SOURCE MOUNT	
SPIRE-PCAL-000-001-4.0	PCAL REAR COVER	
SPIRE-PCAL-000-001-5.0	PCAL SOURCE HOLDER	
SPIRE-PCAL-000-001-6.0	PCAL HARNESS CLAMP	

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 15 of 39
issued.doc	End Item Data Package (EIDP)	_

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 16 of 39
issued.doc	End Item Data Package (EIDP)	

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 17 of 39
issued.doc	End Item Data Package (EIDP)	

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 18 of 39
issued.doc	End Item Data Package (EIDP)	-

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 19 of 39
issued.doc	End Item Data Package (EIDP)	

	1		2	3	4	5	6		7	8	9	10	11	12
ļ	4											I CLEAN & BI	REAK ALL SHAF 	RP EDGES
E	3			1	7.	15	Ø5, R1,	00 35						
(1 2.00	0.20×45*	SECTION A : A								
[APF DRA CHE APF	NTRACT NO. PROVALS AWN BJK ECKED BY: > PROVED BY: SUE	DATE 17.11.03 X X X 2	AMENDMENT REDRAWN REPLACES ISSUE 1	MATERIAL & SPEC FINISH: NICKEL & GOLI QUANTITY: 1 CAD FILE	E : ALUMINIUM 606 D PLATED ESTD ACTL	1 WT. WT.	SCALE 10 DIMENS IN N PROJECT	:1 SIONS MM	TOLERANCE OTHERWISE LINEAR - ANGULAR -	ES UNLESS STATED +/- 0.10 +/- 0.15*	ASTRONOMY & INSI CARDIFF UN QUEENS BUILDING NEWPORT ROAD TEL 02920 8762 E-MAIL Brign.K DRAWING NO S	RUMENTATION GROU VERSITY 5 THE PARADE CARDIFF CF24 3YB 69 FAX 02920 87 Ciernan@astro.cf.u PIRE-PCAL-000-00	4056 oc.uk
	L	T			T:/SPIRE/PCAL	/PCAL		SPIRE	7	PCA	L HARNESS CLAMP	SHEE	T 1 OF 1	A2
	1		2	3	4	5	ь		, ,	8	9	10	11	12

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 20 of 39
issued.doc	End Item Data Package (EIDP)	

SECTION 08 – Electrical Circuit Diagrams

The four prime PCAL wires (part of the BSM/PCal prime harness) are terminated on the two prime solder terminals. This harness is duplicated for the redundant systems. The PCAL wiring will consist of an insulated, screened, twisted quad sub-harness. The maximum harness impedance requested for PCAL is 10 Ohms per wire. A schematic of the BSM prime connector wiring is shown in Figure 3. The redundant wiring will be an exact copy of this harness.

Figure 3 Schematic of pin allocations for PCal/BSM prime and redundant connectors. Both prime and redundant connectors are MDM-37 way socket connectors, with jackposts.

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 21 of 39
issued.doc	End Item Data Package (EIDP)	

Table 1 Pin allocations for PCal-CQM electrical connectors (refer also to ICD).

BSM Prime connector Pin#	Label (in accordance with Harness Definition Document)	Function
28	Prime I+_A	Current drive
29	Prime IA	Current return
10	Prime I+_B	Voltage sense +
11	Prime IB	Voltage sense -
BSM Redundant	Label (in accordance with	Function
	•	
connector Pin#	Harness Definition	
connector Pin#	Harness Definition Document)	
connector Pin#	Harness Definition Document) Red I+_A	Current drive
connector Pin# 28 29	Harness Definition Document) Red I+_A Red IA	Current drive Current return
connector Pin# 28 29 10	Harness Definition Document) Red I+_A Red IA Red I+_B	Current drive Current return Voltage sense +

SECTION 09 - As Built Configuration Items Status List

Item	Reference	Location	Notes
PCal drawings and manufacturing files		\\Darkstar\Astroworld\Projects\SPIRE\Cardiff_workpackages\Configur ed_documents\drawing_archive\PCal	
Material certificates of conformance		Available at Cardiff for inspection	
Calibration data files		\\Darkstar\Astroworld\Projects\SPIRE\Cardiff_workpackages\deliverab les\shipped\PCAL\CQM\Data	
Test data		\\Darkstar\Astroworld\Projects\SPIRE\Cardiff_workpackages\deliverab les\shipped\PCAL\CQM\Data	
Test reports		\\Darkstar\Astroworld\Projects\SPIRE\Cardiff_workpackages\deliverab les\shipped\PCAL\CQM\Test_reports	
Calibration analysis worksheet		\\SPIRE\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\CQM -PCal-Analysis\CQM-PCal-calib-pch.mcd	

Part number	Description	Details
PCAL-CQM-100	HB8 – PCal CQM source assembly	Mounting ring manufactured and gold-plated at Cardiff. Source assembled by Haller- Beeman Associates
PCAL-CQM-201	PCAL BODY	Manufactured by Electromec
PCAL-CQM-202	PCal rear cover	Manufactured by Electromec
PCAL-CQM-203	PCal harness clip	Manufactured by Electromec
PCAL-CQM-204	Stand offs	Wearnes-Cambion
PCAL-CQM-205	Bolts	PTC

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 23 of 39
issued.doc	End Item Data Package (EIDP)	

SECTION 10 – Serialised Components List

SECTION 11 - List of Waivers

No waivers.

SECTION 12 - Copies of Waivers

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 24 of 39
issued.doc	End Item Data Package (EIDP)	

SECTION 13 - Operations Manual

13.1 PCal Overview

Refer to Appendix B – PCal Subsystem Design Description – HSO-CDF-DD-034.

13.2 PCal CQM Specifications as delivered

Specification	Related Requirement	Value	Comments
Thermal source ID		HB8	Mica substrate, 25 µm brass wires, silver
			ероху
Thermal source redundancy	IRD-CALP-R15	Prime and redundant	
		sources are provided	
Prime source impedance – 300K		252.7 Ω	
Prime source impedance – 77K		253.0 Ω	
Prime source impedance – 4K		253.0 Ω	
Redundant source impedance – 300K		241.8 Ω	
Redundant source impedance – 77K		241.7 Ω	
Redundant source impedance – 4K		243.2 Ω	
Prime source 90% rise time	IRD-CALP-R04	140 ms	Value for 2mW applied power. Time constant varies as a function of applied power.
Prime source 90% fall time	IRD-CALP-R04	60ms	Value for 2mW applied power. Time constant varies as a function of applied power.
Redundant source 90% rise time	IRD-CALP-R04	122ms	Value for 2mW applied power. Time constant varies as a function of applied power.
Redundant source 90% fall time	IRD-CALP-R04	49ms	Value for 2mW applied power. Time constant varies as a function of applied power.
Power dissipation at nominal operating output	IRD-CALP-R01, IRD- CALP-R12	1.45mW	
Current drive for nominal operating output		2.4mA	
Nominal (safe) current range	IRD-CALP-R02	0 – 4.5mA	This current range is for a maximum power
			dissipation of 5mW
Absolute maximum current rating	IRD-CALP-R02	7mA	This current level will dissipate 12.3mW in the PCal emitter.

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053- issued.doc	SPIRE - Photometer Calibration Source (PCal) - CQM End Item Data Package (EIDP)	Page 25 of 39

Nominal operating voltage	IRD-CALP-R14	0.6V	
Nominal (safe) voltage range		0 – 1.25V	This voltage range is for a maximum power dissipation of 5mW
Stability & repeatability	IRD-CALP-R05	RMS better than 1% over lifetime. Cycle-to-cycle repeatability better than 1%.	Two identical sources (four emitters) have undergone 375,000 cycles each (5mW applied) without any degradation or variation in the performance of the devices.
Frequency	IRD-CALP-R07	Maximum frequency before modulation – 1.8Hz @ 1mW, 0.5Hz @ 5mW	Time constant varies as a function of applied power from 85ms to 300ms (1mW to 5mW)
Operating temperature	IRD-CALP-R11	<10K	PCal must not be operated above 10K ambient.
Lifetime	IRD-CALP-R16	>375,000 cycles	At 5mW power dissipation per cycle
Mass		28.9g	
Volume	IRD-CALP-R09		

13.3 PCal Operation

13.3.1 Drive current

- The PCal drive electronics are specified to provide current drive in the range 0 7mA.
- Nominal output from the PCal aperture is achieved with an applied current of 2.4mA.
- PCal may be safely operated routinely in the current drive range 0 4.5mA.
- If required for diagnostic purposes, PCal may be driven with up to 7mA for **brief** periods, with an excitation frequency no lower than 0.5Hz. The number of cycles carried out at currents above 4.5mA should be explicitly recorded.

13.3.2 Drive frequency

- When operated in the nominal current drive range (0 2.4mA), the frequency of the excitation pulses should be in the range 0.1 2Hz. PCal may be operated at higher frequencies, but the output will be modulated due to the devices time-constant.
- When operated at drive currents above 4.5mA, the excitation frequency should be no lower than 0.5Hz.

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 26 of 39
issued.doc	End Item Data Package (EIDP)	

SECTION 14 - Historical Record

The following table contains *brief* historical details of the manufacture, assembly and testing of PCal-CQM

A *full* historical record of every stage of manufacture for each component is traceable at UWC, in both hard copy log-book format and on a Microsoft Access database.

Date	Event	Notes
20/01/03	STM components accepted	
27/01/03	HB7 STM source photometrically tested in STM/CQM structure	
03/02/03	Ship STM to RAL for vibration qualification	
03/02/03	Installation to RAL vibration facility	
04/02/03	Warm & cryogenic vibration tests at RAL	
05/02/03	De-installation from RAL test facility & ship back to Cardiff	
10/02/03	Post-vibration inspections	
24/02/03	Installation to photometric test dewar	
26/02/03	Photometric tests	
03/03/03	De-installation from photometric test dewar	
	PCal-STM upgraded to PCal-CQM	PCal-CQM assembled using STM structure, but new
		emitter (HB8)
21/07/03	PCal CQM components received	emitter (HB8)
21/07/03 29/04/03	PCal CQM components received Stand-offs accepted (Wearnes-Cambion)	emitter (HB8)
21/07/03 29/04/03 04/08/03	PCal CQM components received Stand-offs accepted (Wearnes-Cambion) PCal emitter received & accepted (Haller-Beeman)	emitter (HB8)
21/07/03 29/04/03 04/08/03 11/08/03	PCal CQM components received Stand-offs accepted (Wearnes-Cambion) PCal emitter received & accepted (Haller-Beeman) PCal CQM assembly	emitter (HB8)
21/07/03 29/04/03 04/08/03 11/08/03 01/09/03	PCal CQM components received Stand-offs accepted (Wearnes-Cambion) PCal emitter received & accepted (Haller-Beeman) PCal CQM assembly PCal CQM installation in photometric test dewar	emitter (HB8)
21/07/03 29/04/03 04/08/03 11/08/03 01/09/03 03/09/03	PCal CQM components received Stand-offs accepted (Wearnes-Cambion) PCal emitter received & accepted (Haller-Beeman) PCal CQM assembly PCal CQM installation in photometric test dewar PCal CQM photometric tests	emitter (HB8)
21/07/03 29/04/03 04/08/03 11/08/03 01/09/03 03/09/03 04/09/03	PCal CQM components received Stand-offs accepted (Wearnes-Cambion) PCal emitter received & accepted (Haller-Beeman) PCal CQM assembly PCal CQM installation in photometric test dewar PCal CQM photometric tests De-installation from test dewar	emitter (HB8)
21/07/03 29/04/03 04/08/03 11/08/03 01/09/03 03/09/03 04/09/03 15/09/03	PCal CQM components received Stand-offs accepted (Wearnes-Cambion) PCal emitter received & accepted (Haller-Beeman) PCal CQM assembly PCal CQM installation in photometric test dewar PCal CQM photometric tests De-installation from test dewar Pre-delivery inspections	emitter (HB8)
21/07/03 29/04/03 04/08/03 11/08/03 01/09/03 03/09/03 04/09/03 15/09/03 16/09/03	PCal CQM components received Stand-offs accepted (Wearnes-Cambion) PCal emitter received & accepted (Haller-Beeman) PCal CQM assembly PCal CQM installation in photometric test dewar PCal CQM photometric tests De-installation from test dewar Pre-delivery inspections Cleaning & bakeout	emitter (HB8)

SECTION 15 - Logbook / Diary of Events

Not provided – available from subsystem provider upon request.

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 27 of 39
issued.doc	End Item Data Package (EIDP)	

SECTION 16 - Operating Time / Cycle Record

- o 02/09/2003 First photometric characterisation.
- One thermal cycle 300K 4K 300K. Cooling rate of ~40K/Hr. Warming rate of ~15K/Hr.
- Prime and redundant sources underwent around 20 on-off cycles in accordance with the PCal photometric test procedure (<u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\PCAL\Assembly&test\PFM\Experimental Set-up.doc,</u> <u>\\Darkstar\Astroworld\Projects\Spire\Cardiff_workpackages\PCAL\Assembly&test\PFM\pcaltestplan.pdf</u>)

SECTION 17 – Connector Mating Record

SECTION 18 – Age Sensitive Items Record

SECTION 19 – Pressure Vessel History / Test Record

SECTION 20 - Calibration Data Record

The calibration data in this section are presented in terms of the requirement on photometric output, and plotted as Figure 4. The photometric output in this plot is expressed in terms of the area:surface-brightness product of the PCal aperture, as a fraction of the area:surface-brightness product of the telescope image at the position of M4. The required output (>1% of telescope image) is achieved with a power dissipation of 1.7mW (2.59mA).

Figure 4 Area:surface-brightness product (ASBP) of PCal aperture as a fraction of the ASBP of the telescope image at M4, plotted as a function of applied power.

SECTION 21 - Temporary Installation Record

SECTION 22 - Open Work / Deferred Work / Open Tests

SECTION 23 - List of Non-Conformance Reports

SECTION 24 - Copies of Non-Conformance Reports

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 29 of 39
issued.doc	End Item Data Package (EIDP)	-

SECTION 25 - Test Reports

25.1 Calibration test report

PCal CQM was calibrated in a three-stage process. Initial calibration of our primary calibration reference, designated HB1, was carried out in a lowbackground ³He bolometer test facility (BACUS)¹, using a well-characterised cryogenic black-body (CBB) source. A smaller, faster turnaround photodetector test dewar was then calibrated against HB1, and this was then used for calibration of prototype devices against HB1.

25.1.1 Stage one – Primary calibration of HB1 against CBB

³He Bolometer test facility

A ³He bolometer is enclosed by a shield and filter stack, also at ~300-mK, and the whole assembly is then surrounded by a radiation shield at 4.2-K. A filter stack covers an aperture in the 4.2-K shield, and the aperture is closed with the CBB source. The CBB can have a 1-mm or 3-mm diameter aperture. Load curves are then taken as a function of CBB temperature in order to obtain a photometric power calibration for the bolometer system. The CBB is then replaced by the source to be tested, which is placed in a mount with a 1-mm diameter aperture at the same position in space as the CBB aperture. Bolometer load curves are then taken as a function of applied source power. Analysis of the load curves gives the radiant power absorbed by the detector in each case, and comparison of the absorbed power for the CBB and the test source gives us an effective blackbody temperature for the test source.

Calibration of HB1 (Figure 5)

Illuminator HB-1 and the cryogenic black body (CBB) were measured using the same aperture (1 mm diameter) and detector distance in BACUS using a ³He bolometer.

The CBB was also measured using a 3mm diameter aperture, and this was used to cross-check the 1mm data. There is good agreement for the 3mm data, both with the 1mm data, and with published data for a similar HB source. Therefore the 3mm data is used (greater S/N) to finally calibrate the HB-1 electrical power vs. effective black-body temperature. Calculations are shown below :-

(extract from MathCad file \\SPIRE\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\CQM-PCal-Analysis\CQM-PCal-calib-pch.mcd)

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 30 of 39
issued.doc	End Item Data Package (EIDP)	-

Figure 5 Extract from MathCad worksheet showing calculation of Blackbody equivalent temperature as a function of applied power for HB1.

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 31 of 39
issued.doc	End Item Data Package (EIDP)	

25.1.2 Stage two – Calibration of photodetector dewar using HB1 (Figure 7)

The calibrated HB1 device was mounted behind a 1mm diameter aperture, in an HD-3 cryostat equipped with an unstressed Ge-Ga photoconductor detector. The experimental arrangement was as indicated in Figure 6.

For all experiments using this photoconductor detector, a detector bias of 250mV was used throughout, and extreme care was taken to ensure light-tightness of the assembly. The detector dark current was recorded at the start and end of each experiment to verify the stray-light background.

Figure 6 Photoconductor test cryostat set-up.

The photodetector voltage was recorded as a function of HB1 applied electrical power, and thus we could assign a black-body equivalent temperature at the aperture to the detector signal. Results are shown in Figure 7.

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 32 of 39
issued.doc	End Item Data Package (EIDP)	

Stage 2: HB-1 illuminator power as a function of photodetector voltage Data from IDL script hbtau.pro

i := 0..120

 $pp_i := \frac{i}{10}$

Photodetector voltage (V)

15

10

5

0 0

1

2

3

HB1photv (0) HB1photpower (pp) HB-1 illuminator power (mW)

4

Photodetector voltage as a function of HB-1 illuminator power (mW)

Detector voltage to temperature function, using electrical power to BB temp. conversion derived from 3mm data

HB1tfromv(V) := T(HB1photpower(V))

Figure 7 Extract from MathCad worksheet showing calibration of photodetector against HB1

5

6

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053- issued.doc	SPIRE - Photometer Calibration Source (PCal) - CQM End Item Data Package (EIDP)	Page 33 of 39

25.1.3 Stage three – Calibration of PCal-CQM

PCal-CQM was then mounted in the photodetector test dewar, in a manner such that the 2.8mm diameter PCal aperture was placed at exactly the same position as the 1mm dia. HB1 aperture from the test described in section 25.1.2.

Power was applied to the prime and redundant sources in turn, and the detector signal was recorded for each power level as a function of time. In this way, we can extract the photometric output of the PCal source assembly and the time constant of each source.

The detector signal as a function of PCal power gives us the black-body temperature for a 1mm diameter aperture at the position of the PCal aperture. However, as the PCal aperture is in fact 2.8mm diameter, the requirement on PCal output is expressed in terms of an area:surface-brightness product as a percentage of the area:surface-brightness product of the telescope image at the position of M4 (BSM) (see section 04 – compliance with IRD).

The required surface brightness (1% of M4 telescope image) at the PCal aperture is achieved with an applied power of 1.7mW.

The requirement calls for a black-body temperature of 35.5K for a 1mm diameter aperture at the position of PCal in SPIRE, and this equates to an effective temperature of 15.2K filling the 2.8mm diameter PCal aperture. The true source temperature will, of course, be greater than this, of the order 60-70K for this photometric output.

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 34 of 39
issued.doc	End Item Data Package (EIDP)	-

Stage 3: PCAL temperature as a function of applied power

For HB8:

Data from IDL script hb8tau.pro originally - now from HB8-results.doc (zero power offset removed)

HB8 photodetector voltage as a function of illuminator power

HB8photy :=			
1		0	1
	0	998.55	0.89992
	1	1992	2.8015
	2	3000.6	4.9013
	3	3998.6	6.7699
	4	4989.7	8.7329
	5		

Spline fit

cvs := cspline $(HB8photv^{\langle 0 \rangle}, HB8photv^{\langle 1 \rangle})$ HB8photpower (P) := interp $(cvs, HB8photv^{\langle 0 \rangle}, HB8photv^{\langle 1 \rangle}, p)$

i := 0.. 50

 $ppp_i := (i + 10) \cdot 100$

Figure 8 Calibration of HB8 – CQM source in PCal structure.

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-issued.doc

So we can calculate the equivalent BB temperature of the PCAL assembly using the results from stage 2 $\,$

PCALt3mm(p) := HB1tfromv(HB8photpower (p))

Summary

Calculated equivalent blackbody temperature for PCAL source HB8 as a function of power dissipated in the illuminator.

Note:

1) Results for the prime and redundant source are almost identical

2) These measurements on the PCAL sources are done with a 3 mm aperture, not the 1 mm used for the calibration sources. However, since the PCAL source is 1 mm square, it will not fill the 3 mm aperture. Therefore no aperture correction is made: these results tell us the equivalent source temperature for a source with a 1 mm aperture, and are an upper limit on the true temperature.

25.1.4 Summary

- Device number HB-1 was calibrated against a well characterised cryogenic black body in a ³He bolometer test facility
- HB-1 was then used to transfer this calibration to a photoconductor detector test dewar, where the black body equivalent temperature at a 1mm diameter aperture was converted into detector signal
- The detector signal was then recorded as a function of power applied to the PCal assembly, which had a 2.8mm diameter aperture at the position of the HB-1 aperture
- The detector signal as a function of PCal power was then converted back to the equivalent black body temperature for a 1mm diameter aperture
- The requirements on PCal, in terms of area:surface brightness product, call for an effective temperature of 35.5K at a 1mm diameter aperture
- This effective temperature is reached with a power applied to PCal of 1.7mW
- This equates to an effective temperature of 15.2K filling the 2.8mm dia. PCal aperture.
- The PCal area-surface brightness product, expressed as a percentage of the telescope background, is plotted as a function of PCal applied power in Figure 9 below. The required PCal:telescope ratio (>1%) is achieved with an applied power of 1.7mW.

Figure 9 PCal area-surface brightness product expressed as a percentage of telescope background.

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 36 of 39
issued.doc	End Item Data Package (EIDP)	

25.2 PCal CQM test report

Attached as Appendix A

25.3 PCAL lifetest report

Attached as Appendix B

SECTION 27 - Reference List of EIDP's

Associated

<u>Title</u> (Listed in alphabetical order)	ID (Serial No.)	<u>Acronym</u>	Document No.	<u>Issue</u>	<u>Date</u>

Lower Level

<u>Title</u> (Listed in alphabetical order)	ID (Serial No.)	<u>Acronym</u>	Document No.	Issue	<u>Date</u>

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053- issued.doc	SPIRE - Photometer Calibration Source (PCal) - CQM End Item Data Package (EIDP)	Page 37 of 39

SECTION 28 - Mass Records

Assembly	Final measured mass
PCal CQM assembly	28.9g

SECTION 29 - Cleanliness Statement

SECTION 30 - Other Useful Information

SECTION 31 - DPL/DML etc

SECTION 32 – List of Appendices/Attachments

Appendix #	<u>Title</u>	Document No.	Issue	Date	Notes
	(Listed in alphabetical order)				
А	PCal-CQM test report	HSO-CDF-RP-066			
В	PCal lifetest report	HSO-CDF-RP-067			

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 38 of 39
ISSUED.doc	End Item Data Package (EIDP)	

References

- 1. Hargrave, P.C., Maffei, B., Hermoso, R., Gannaway, G., Griffin, M.J., Ade, P.A.R., Haynes, C.V., Tucker, C.E., Moseley, S.H., Bock, J.J., Rodriguez, L., Nucl. Inst. Meth. Phys. Res. A 444 (2000) 427-431
- 2. Peter Hargrave, Jeffrey Beeman, Patrick Collins, Iris Didschuns, Matthew Griffin, Brian Kiernan, Giampaolo Pisano, "In-Flight Calibration Sources for Herschel-SPIRE", Proc. of SPIE AS02 Astronomical Telescopes & Instrumentation, Waikoloa, Hawaii, 22-28 August 2002.

Appendix A

Appendix B

H:\Cardiff_workpackages\Deliverables\Shipped\PCal\CQM\PCAL_CQM_HSO-CDF-EIDP-053-	SPIRE - Photometer Calibration Source (PCal) - CQM	Page 39 of 39
issued.doc	End Item Data Package (EIDP)	-