SPIRE-SBT-REP-002071



SPIRE & PACS Sorption Coolers SPIRE CQM Performance verification  $\begin{array}{rll} DOC \ N^\circ: & HSO-SBT-TN-106\\ Iss/Rev: & 1.0\\ DATE: & June \ 28^{th} \ 2004\\ PAGE: & I \end{array}$ 

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

# SPIRE & PACS Sorption Coolers SPIRE CQM – PERFORMANCE VERIFICATION

SBT internal ref : SBT/CT/2004-43

|                     | Name & Function                    | Date | Signature |
|---------------------|------------------------------------|------|-----------|
| Prepared            | L. Duband - Cooler project manager |      |           |
| SBT PA<br>Check     | M. Dubois – Cooler PA manager      |      |           |
| SPIRE<br>Approval   | N/A                                |      |           |
| PACS<br>Approval    | N/A                                |      |           |
| PA<br>Approval      | N/A                                |      |           |
| Project<br>Approval | N/A                                |      |           |
| Project<br>Approval | L. Duband - Cooler project manager |      |           |

Service des Basses Températures (SBT) Département de Recherche Fondamentale sur la Matière Condensée (DRFMC) COMMISSARIAT A L'ENERGIE ATOMIQUE - GRENOBLE (CEA-Grenoble) 17, rue des Martyrs 38054 GRENOBLE Cédex 9, France.



#### **Document Status**

| Issue | Revision | Date                     | Nb of pages |             | Modifications |
|-------|----------|--------------------------|-------------|-------------|---------------|
| 0     | 0        | June 21 <sup>st</sup> 04 |             | First draft |               |
| 1     | 0        | June 28 <sup>th</sup> 04 |             | First issue |               |



DOC N°: HSO-SBT-TN-106 Iss/Rev : 1.0 DATE : June 28<sup>th</sup> 2004 PAGE : III

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

# Table of Contents

| 1 | Scop | be of the document                        | 1  |
|---|------|-------------------------------------------|----|
| 2 | Doc  | uments                                    | 2  |
|   | 2.1  | Applicable documents                      | 2  |
|   | 2.2  | Reference documents                       | 2  |
| 3 | Ther | mal results                               | 3  |
|   | 3.1  | Cooling power                             | 3  |
|   | 3.2  | Autonomy tests                            | 4  |
|   | 3.3  | Test of the Cooler Drive Electronic (CDE) | 6  |
|   | 3.4  | Kevlar tension history                    | 8  |
| 4 | Con  | clusion                                   | 9  |
| 5 | App  | endix                                     | 10 |



DOC N°: HSO-SBT-TN-106 Iss/Rev : 1.0 DATE : June 28<sup>th</sup> 2004 PAGE : IV

### SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

### List of Acronyms

| AD    | Applicable Document                           |                               |     |
|-------|-----------------------------------------------|-------------------------------|-----|
| CEA   | Commissariat à l' Energie Atomique            |                               |     |
| CDR   | Critical Design Review                        | Revue de conception détaillée | RCD |
| CQM   | Cryogenic Qualification Model                 |                               |     |
| EV    | Evaporator                                    |                               |     |
| FIRST | Far Infrared and SubmillimetreTelescope       |                               |     |
| FS    | Flight spare                                  |                               |     |
| HSE   | Heat Switch (on evaporator)                   |                               |     |
| HSP   | Heat Switch (on sorption pump)                |                               |     |
| N/A   | Not Applicable                                |                               |     |
| PACS  | Photoconductor. Array Camera and Spectrometer |                               |     |
| PFM   | ProtoFlight Model                             |                               |     |
| RD    | Reference Document                            |                               |     |
| SAp   | Service d'Astrophysique                       |                               |     |
| SBT   | Service des Basses Températures               |                               |     |
| SCO   | Sorption Cooler (full unit)                   |                               |     |
| SP    | Sorption pump                                 |                               |     |
| SPIRE | Spectral & Photometric Imaging Receiver       |                               |     |
| SST   | Support Structure                             |                               |     |
| TS    | Thermal Shunt                                 |                               |     |
| TSES  | Thermal Strap to Evaporator Switch            |                               |     |
| TSPS  | Thermal Strap to Pump Switch                  |                               |     |



#### 1 Scope of the document

The SPIRE CQM sorption cooler, delivered to RAL in December 2004, has been integrated in the SPIRE instrument. The instrument went through thermal tests followed by vibration tests. The vibration tests were performed at low temperature.

The SPIRE project has then decided to send back the cooler to CEA-SBT for a performance verification (health check).

This note summarizes the various results obtained.

The Health Check Report sheet is also included at the end of the document.



DOC N°: HSO-SBT-TN-106 Iss/Rev : 1.0DATE : June  $28^{th} 2004$ PAGE : 2

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

### 2 **Documents**

#### 2.1 Applicable documents

N/A

#### 2.2 <u>Reference documents</u>

|      | Title                                                          | Reference      |
|------|----------------------------------------------------------------|----------------|
| RD01 | SPIRE and PACS Sorption Coolers – SPIRE CQM Tests report       | HSO-SBT-RP-085 |
| RD02 | SPIRE and PACS Sorption Coolers – Hold time anomaly - Analysis | HSO-SBT-TN-091 |



SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

### 3 Thermal results

The cooler was integrated in the test cryostat CRYOTEDI III (see RD1 and RD2). The following set of tests have been carried out :

- cryostat pumped down to its ultimate temperature. Level 0 and Level 1 at their "natural" temperature (no regulation) :
  - o ultimate temperature in the rightside-up, horizontal and upside down position
  - rightside up position : cooling power curve
- Level 0 interface (heat switch evaporator) regulated at 1.7 K, and Level 1 (structure) regulated at 4 K :
  - o Autonomy tests under various load

#### 3.1 Cooling power

No particular problem was spotted during the various cooler recycling. The cooling power curve is displayed in the following graph.



The results are consistent with previous measurement on the cooler, and the performance remain unchanged whether the cooler is operated rightside-up, horizontal or upside-down. During a subsequent test the cooler was left overnight operating at its ultimate temperature (no applied load). For a cryostat cold plate of 1.6 K and a structure at 1.86 K, the ultimate temperature with the cooler rightside up (tilted at  $60^\circ$ ) was found to be 263 mK.



#### 3.2 <u>Autonomy tests</u>

The autonomy of the cooler was then measured for various applied loads. These tests were all done in the same initial thermodynamic conditions, a condensation at 2.1 K at the evaporator and a sorption pump temperature of 45 K. One can then assume the amount of liquid at  $\approx 300$  mK at the beginning of the low temperature phase is the same for each experiment carried out. In addition the operating temperatures are close enough the latent heat (L) can be considered constant (yet we have also reported the corrected results taking into account the variation of the latent heat). We can then simply write the amount of "cold" joules produced is equal to the total load times the autonomy :  $m_0 \ge L = (P_{applied} + P_{parasitics}) \ge 1000$  (where  $m_0$  is quantity of liquid at the beginning of the low temperature phase).

Plotting 1/time versus  $P_{applied}$  should then give a curve of slope 1/( $m_0 \times L$ ) and of ordinate  $P_{parasities}$  /( $m_0 \times L$ ).

This analysis is reported on the following curves and is summarized in the tables hereafter.

| T condens. (K)<br>(evaporator) | Т ритр (K) | Applied load<br>(µW) | Ultimate T<br>(mK) | Hold time  |
|--------------------------------|------------|----------------------|--------------------|------------|
| 2.06                           | 44.2       | 20                   | 289                | 38 h 30 mn |
| 2.2                            | 45         | 30                   | 296                | 30 h       |
| 2.08                           | 44         | 100                  | 327                | 11 h 08 mn |
| 2.12                           | 43.2       | 250                  | 361                | 5 h 4 mn   |





Note : theoretical curve calculated assuming 100% nominal charge

| Data      | Parasitics<br>experimental | Parasitics<br>predicted | Ratio m <sub>0</sub> /m <sub>total</sub><br>experimental | Ratio m <sub>0</sub> /m <sub>total</sub><br>predicted |
|-----------|----------------------------|-------------------------|----------------------------------------------------------|-------------------------------------------------------|
| Raw       | 13 µW                      | 11.5 μW                 | 66%                                                      | 72%                                                   |
| Corrected | 13.2 μW                    | 11.5 μW                 | 65%                                                      | 72%                                                   |

Obviously the results indicate as before the cooler is undercharged by about 10%. The parasitic load extracted from the experimental data is pretty much consistent with prediction; the 1.5  $\mu$ W excess is within the uncertainties (from calculations and experimental conditions (radiative load)). Assuming the cooler is undercharged by 10%, we have reported in the table below the measured and the predicted hold time.

| Applied load Ultimate T<br>(µW) (mK) |     | Hold time<br>Experimental | Hold time<br>Predicted |
|--------------------------------------|-----|---------------------------|------------------------|
| 20                                   | 289 | 38 h 30 mn                | 38 h 47 mn             |
| 30                                   | 296 | 30 h                      | 29 h 32 mn             |
| 100                                  | 327 | 11 h 08 mn                | 11 h 8 mn              |
| 250                                  | 361 | 5 h 4 mn                  | 4 h 48 mn              |

The predicted and experimental hold time match fairly well.



#### 3.3 Test of the Cooler Drive Electronic (CDE)

A laboratory drive electronic (CDE) has been developed by CEA-SBT for the cooler operation. A prototype of this electronic has been delivered to RAL.

The CDE features the same algorithm developed by CEA-SBT for the space version of the flight electronic (SAp). It thus interesting to check whether this algorithm allow for efficient cooler recycling and operation. The tests carried out have proven to be successful. The following set of pictures show the CDE display and a typical recycling.



CDE display overview



DOC N°: HSO-SBT-TN-106 Iss/Rev : 1.0DATE : June  $28^{th} 2004$ PAGE : 7

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]



*Typical recycling (fully automatic)* 

|--|

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

#### 3.4 Kevlar tension history

The tension in the external Kevlar string (sorption pump side) has been measured. The tension history since delivery, shown on the following figure, indicates the tension has not been affected by the various thermal cycling and environmental tests. The new tensioning procedure used for this unit is satisfactory.



This document is CEA-SBT property and cannot be reproduced or communicated without its authorization



#### 4 Conclusion

The performance of the SPIRE CQM unit have been checked and found to be satisfactory and consistent with prediction. The performance were verified after the CQM unit had been integrated in the SPIRE instrument, had underwent thermal tests and vibration tests (including a vibration test at low temperature).

It is reminded the SPIRE unit was initially delivered to RAL in December 2003 with a new strap material : thin copper wires, not braided, ultra flexible, same section and mass as the original one (see RD02). This new set of results further qualify the use of this strap since thermal as well as environmental tests have been carried out on the cooler.

Of course the results indicate again the cooler is undercharged by roughly 10%. This problem is regarded as minor : a new filling procedure has been discussed which will allow to charge (or overcharged if necessary) the flight coolers to the nominal helium load.

The tension in the Kevlar suspension system was checked on the sorption side, external string. The measured tension shows almost no variation of tension since the delivery in December 2003. This result is crucial as the CQM unit was retensioned over 6 months ago prior to delivery using the new procedure established to stabilize the Kevlar strings (problem of creep under tension and thermal cycling). This new procedure is consequently validated.



 $\begin{array}{rll} DOC \ N^\circ: & HSO-SBT-TN-106\\ Iss/Rev: & 1.0\\ DATE: & June \ 28^{th} \ 2004\\ PAGE: & 10 \end{array}$ 

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

### 5 Appendix

| $\sim$                                                                         | $\sim$                                    | SPIRE &                            | PA           | ICS Sø                  | rption                   | Cool             | lers                        | Référence ·                                     |                      |
|--------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|--------------|-------------------------|--------------------------|------------------|-----------------------------|-------------------------------------------------|----------------------|
| STILL & THES SUPPLY COULS                                                      |                                           |                                    |              |                         |                          | Kelerence .      |                             |                                                 |                      |
|                                                                                |                                           | EALTH (                            | CH           | ECK F                   | REPOI                    | RT (             | (HCR)                       | HCR#5 SPIE                                      | <b>KE</b>            |
| Greni                                                                          | ble                                       |                                    |              |                         |                          |                  |                             |                                                 |                      |
| Référence cry                                                                  | voréfrigérateu                            | r : Sorption C                     | ooler        | CQM Re                  | f.: 2000-1               | 4 B 00           | 00 S/N : 1                  | Date : Juin 2004                                |                      |
| Raison du contrôle : Nom : L. CLERC / L. DUBAND                                |                                           |                                    |              |                         |                          |                  |                             |                                                 |                      |
| Vérification des                                                               | performances apro                         | ès tests thermi                    | ques e       | et tests vib            | ratoires de              | e l'inst         | trument                     | Signature :                                     |                      |
| SPIRE (Cooler (                                                                | CQM démonté de l                          | l'instrument et                    | renv         | oyé au CE               | A-SBT)                   |                  |                             |                                                 |                      |
| <u>Contrôle méc</u>                                                            | canique / électr                          | rique Visue                        | l : R.       | A.S                     |                          |                  |                             | •                                               |                      |
| Tension des brit                                                               | ıs Kevlar                                 |                                    |              |                         |                          |                  |                             |                                                 |                      |
| Coté pompe : ava                                                               | ant test 105.8 (1/8) /82                  | . 6 (6/8) – après :                |              |                         | Coté évaj                | oorate           | ur : N/A                    |                                                 |                      |
| Contrôle impéde                                                                | ance thermomètre                          | es (T) et chaufj                   | fages        | (C) (à T a              | mbiante, e               | et com           | prenant les                 | fils de mesures)                                |                      |
| (indiquer pour el                                                              | haque composants                          | les valeurs en                     | Ohm          | prises au               | connecteu                | ır prin          | cipal (P) et                | redondé (R))                                    |                      |
| T pompe                                                                        | C pompe                                   | T inter P                          | Ci           | nter. P                 | T évapo                  | orat.            | T inter év                  | ap. C inter évap.                               | T shunt              |
| 52.4/46.8                                                                      | 407.2/407.5                               | 50.9/45.2                          | 407.         | 6/414.3                 | 45.8/5                   | 50               | 48.6/-                      | 407.2/407.1                                     | 46/47                |
| Rapport : confor                                                               | mes.                                      |                                    |              |                         |                          |                  |                             |                                                 |                      |
| Contrôle de f                                                                  | <u>uite</u>                               | Référ                              | ence         | détecteur               | ALCATE                   | EL AS            | M 180                       |                                                 |                      |
| Valeur de fuite n                                                              | nesurée (après): 7 I                      | 0 <sup>10</sup> mB/l.s             |              | Comm                    | entaires :               | R.A.S            | 5                           |                                                 |                      |
| Contrôle the                                                                   | <u>mique</u>                              |                                    |              | •                       |                          |                  |                             |                                                 |                      |
| Cycle A – Phase                                                                | e de condensation                         | :                                  |              |                         |                          |                  |                             |                                                 |                      |
| T bain ⁴He                                                                     | T structure                               | T pompe/Pu                         | uss.         | T évap                  | orateur                  | Тi               | inter P                     | T inter E/Puiss.                                | T shunt              |
| 1.65                                                                           | 2.8                                       | 45/300                             | )            | 2.                      | 1                        |                  | -                           | 20/0.8 mW                                       | 2.46                 |
| Phase basse tem                                                                | pérature – T bain                         | : 1.62                             |              |                         |                          |                  |                             |                                                 |                      |
| Orientation                                                                    | +90° (Endroit)                            | 0° (Horizo                         | ntal)        | - 90° (                 | Envers)                  | Com              | mentaires :                 |                                                 |                      |
| T mini (mK)                                                                    | 268.7                                     | 268.4                              |              | 20                      | 58.5                     |                  |                             |                                                 |                      |
| Courbe de puissa                                                               | ance (Orientation :                       | vertical endro                     | oit)         |                         |                          |                  |                             |                                                 |                      |
| Charge (µW)                                                                    | 0 (Tmini)                                 | 10                                 |              | 20                      | 30                       |                  | 40                          | 50                                              | 100                  |
| T (mK)                                                                         | 268.7                                     | 282.2                              | 2            | 90.2                    | 298.                     | l                | 304.2                       | 308.8                                           | 327.6                |
| Cycle B – Phase                                                                | e de condensation                         | :                                  |              |                         |                          |                  |                             |                                                 |                      |
| T bain <sup>4</sup> He                                                         | T structure                               | T pompe/Pi                         | uss.         | T évap                  | orateur                  | Ti               | inter P                     | T inter E/Puiss.                                | T shunt              |
| 2.1                                                                            | 2.81                                      | 45.5/300 mW 2.12 -                 |              |                         | -                        | 20/0.8 mW        | 2.6                         |                                                 |                      |
| Phase based town with the fore recording to a 17 K at Structure wire used of K |                                           |                                    |              |                         |                          |                  |                             |                                                 |                      |
| Autonomie et ter $30 \ \mu W$ : $30h$ @ .                                      | mpérature sous 20<br>296 mK, 100 μW :     | μW de charge<br>11h08 @ 327        | appl<br>mK e | iquée : 38<br>et 250 μW | h30 @ 28<br>: 5h04 @     | 9 mK<br>361 n    | ıK                          |                                                 |                      |
| Conformité                                                                     |                                           | 01/1                               | -N4          | ЭN                      |                          |                  |                             |                                                 |                      |
| RAPPORT :<br>Hormis le défaut<br>parasites mesure                              | t de remplissage (a<br>ées sont conforme: | déjà trace et à<br>s aux prédictio | corri        | ger sur Fl              | M), les per<br>ntribuent | forma<br>à valie | nces obtenu<br>der la "nouv | es sont satisfaisante:<br>velle" strap évaporat | s. Les pertes<br>eur |
| Visa Projet - 1                                                                | Nom, date et signa                        | iture : <i>Lionel L</i>            | DUBA         | ND - 28 .               | Iuin 2004                |                  |                             |                                                 |                      |