						SPIRE-ALC	-MOM-002025
▼					REF.: H-I	P-ASP-MN-4106	
ALCA1	EL	HE	RSCHEL/PLA	NCK			
SPACE					DATE : 1	1/12/03	PAGE: 1/8 +10 annexed
COMPTE REN	DU DE REU	NION /	MINUTES OF M	EETING	LIEU / PLAC	CE : ESTEC	
OBJET / PURPOS	E: M/PLM ha	irness	splinter meet	lina	CLASSIFIC	ATION :	
אפת	1 44 ла		-p				
QFI	(サハン						
PARTICIPANITS	SC		SIGNATURE	PAPTIC		SOCIETE	SIGNIATURE
ATTENDEES	F	IRM	SIGNATURE	ATTE	NDEES	FIRM	SIGNATURE
JC Boschel	As	P		F. Cio	mini	ALS	
3 Lang	Ase	D		R. He	hn	ASED	
A. Fehringer	ASE	Q		<i>Ē</i> . Ci	ancetta	ALS	
A. Knobland	n Ast	ED	Kho	B. J.	ackson	EsA	
B. Narchand	* Ast)	34				
G. Doubrovile	As As	P					
N. Sias	AL	5					
REDACTEUR / WRITTEI	N BY : 🛧						
CONCLUSION :					a 19		
DISTRIBUTION :	POUR ACTIO	DN :					
PARTICIPANTS /	FOR FURTHE	RACTION					
ATTENDEES	POUR INFO	RMATION MATION	:				
			APPROLIVE PAR		BY		
NOM / NAME	7-6	Bascup	MCIA	c	- '		
SIGNATURE /				$\frac{1}{2}$			
SIGNATURE 12 Illouis das							

▼ ALCATEL	HERSCHEL/PLANCK	REF. : H-P-ASP-MN-410	5
SPACE		DATE : 11/12/03	PAGE : 2/
COMPTE RENDU DE REU	NION / MINUTES OF MEETING	LIEU / PLACE : ESTEC	
SUITE / CONTINUED :			ACTION
CAD model confi	iguration:		
ASED will now in t issue number i	trace the CAD mod he CAD file name, instead of date	ds with an	
ASED will and	their latest (SIH + C	CH)SUNCAD modul	
to ASP ALS will send th	eir models to ASP		AT. 10 ASET 15/12
All files exe s Asp/Ased/ALS (thall be exchanged official ftp + fax) and trans	Ily between it via ASP20	AT. 16 AUS -15/12
that the evolution	no are technically trace	ed w.r.t. all	
parties. It is a design under ASP	repetted every parties f	indize their	
,			

			· · · · · · · · · · · · · · ·	
▼		REF. :	H-P-ASP-MN-410	6
ALCATEL SPACE	HERSCHE!/PLANCK	DATE :	11/12/03	PAGE : B
COMPTE RENDU DE REU	JNION / MINUTES OF MEETING	LIEU / P	LACE : ESTEC	
SUITE / CONTINUED :				ACTION
SPIRE panel:				
Collision between -bases at left of SUNN/WIH shall to instruct Nes	n CryoH Stand-off and HSDPY_ be slightly re-routed ((hans)	SUNH, ALS/,	/WIH +tie- ASP	AIS ASP (A
CCH : SVNW/WIH obst	ructs GyoH connector	s a(4	255 07	
top side of CCU ASED proposes	a local re-routing of	sunh	/wIH	
suiting GyoH_	This proposal will	be sev	nt as	ATS ASPA
a small lonely NXH ASP/ALS	to instruct NXH &	rawmi get i	Hed to a feedback	+AII ASI
ENC compatibilit	<i>(</i> Y :			
ASED/ASP repr as shield (britt	brt bad experience with le in TV/TB test)_	h Che	ofoil using	
H CryoH bundles	are shielded and double	-shi	ded	
(according to	discussion with Instru	ments)	
CH bundles are =	trichted over shielded			
: Sensitive lines ^(**) o shielded All hrn are twisted (*) receiving noise ound islentified	and harness outside spa I EMC CLASS 4 (28 pe M ALS EICD.	Cecraf er GD Il rights reserve	t vare IR require	uest)

		REF. : H-P-ASP-MN-4106	
ALCATEL	HERSCHEL/PLANCK	-	
SPACE		DATE : 11/12/03	PAGE : 💋
COMPTE RENDU DE REU	NION / MINUTES OF MEETING	LIEU / PLACE : ESTEC	
SUITE / CONTINUED :			ACTION
Grounding :			
ASP will confir	m that grounding rai	s underneath	
(ryoth on upper (closure panels are not	needed	AINO
((ryobrackets shall	l be grounded to sun	bond)	
Solar Array ho	ar ness		
ASP will send	the Applicable drawing	to ASED	AT IN
ASED will send to (with DS) via a c Situation to be in	the SA harness routing CAD model (from SA to vestigated then.	they performed SVN shin conn. plate)	AIN
The routing is n Pin allocation d Checked by As (ALS baseline =	eeded by ALS for definited by ALS and A P EICD issue 3)	ition of MLI. SED shall be	

	HERSCHEL/PLANCK	REF.: H-P-ASP-MN-410	06
SPACE		DATE : 11/12/03	PAGE : 7/
COMPTE RENDU DE REU	JNION / MINUTES OF MEETING	LIEU / PLACE : ESTEC	
SUITE / CONTINUED :			ACTION
Umbilical conne	ectors		
ASED will send Connectors accom be fiven. ALS will Check the bracket impl - either confirm - or propose a It is agreed be I/FBracket will To be evaluated	the brackets CAD w moderion, type & pin allo with CASA the feasi ementation and position proposed by AS proper location thread on STM. C ed for FM.	model ecation shall ibility of "ED the new PLM/SVM Deption to use insert	AI13 AI14 -ALS
ASED points by the proj additional n monts about with be con ASP remember bouline = Cr	cal that there will conte introduced by a is in scope of the sidered to be covered this is walk parts yo themos Ronty Partic	be a decision hother the the ague. move or thy a GR. of the cabot ip the cabot	

▼		ACTION ITEM LIST	REF. :	
	Ĺ	MEETING TITLE:	DATE :	
		HERSCHEL/PLANCK	PAGE : 8	
		ACTION		DATE
INITIATOR Firm / person	N°	DESCRIPTION	ACTIONEE Firm / person	DUE
ASP /AUS	13	Send latest Cryot (AD models TS ASP	ASED /ALS	15/12
ASED	2	Update LCU routing	ASPLACS	19/12
	3	Up-Converter CryOH routing on - I prevel to be performed	ASED	30/01/04
	4	Up- Converter aryoft routing on -Y-Z paul to be performed	AJED	30/01/04
	5	ASED will shift up wands Grys Bundles on bottom of FCU	AJED	30/01/04
	6	ASED to re-route (ryoH around BOLC	ASED	30/01/04
	7	Check with PACS clearance volume possible reduction	ASP	15/01/04
	8	suith/with to be locally re-routed	ASP/ALS	13/12
	3	Nodify SUNH/WIH on top of CCU according to ASED proposal	ASP/ALS	15/12
	10	Confirm no need for grounding rails below Cryott (upper panel)	ASP	15/01/04
· · · · · · · · · · · · · · · · · · ·	11	Send SA shin connectors applicable drawing	As P	15/12
	n	send SA routing to SVA (CAD model)	ASED	15/12
	13	send umbilical PLA bracket CAD model	ASED	15/12
	14	feedback on PLA bracket(unhilical) location	ALS	13/12

ANNEX #5

ANNEX #7

ANNEX#8

STRH Relocation

THERMAL DESIGN

STRH Relocation

STR main requirements (@ SC side)

- 2 STR On $T_{max} = 30 \degree C$ (w/o Stability)
- 1 STR On $T_{ref} = 0 \circ C$ (with Stability)
- Max STR feet $\Delta T = 0.4 \ ^{\circ}C$
- Stability (time gradient) = 0.25°C/100seconds
- Max Heat Flux to CVV = 150 mW

STRH Relocation Radiator Plate Design

- High Conductivity CFRP skins (+X=2 mm, -X=3mm)
- 33650 mm² Silver Teflon radiator areas around STR Heads
- 8 heaters in parallel in 1 heater line, controlled at °0 by thermistor on STR feet
- Plate-STR feet I/F with good contact conductivity (avoid thermal filler):
 - planarity=0.01mm
 - roughness=1.6 micron

STRH Relocation Struts Design

- Glass Fiber (GFRP): \$\\$ 30mm * 0.8 mm (or 20*1.2)
- Glass Fiber length 426 mm out of 466 mm (distance between CVV I/F - STR plate I/F = 574 mm)
- Compatible with buckling analysis MLI covered pool
- GFRP Struts covered with MLI
- MLI pool (shown in figure over-leaf)
- Thermal closure (sub-platform) design, two alternatives:
 - with cross reinforcement
 - w/o cross reinforcement (shown in figure over-leaf)

STRH Relocation

Support Plate Design

STRH Relocation

Design Verification Analysis

- 20 axial and 4 radial nodes per struts
- CVV Boundary temperatures (at SAA = -30° , 0° , $+30^{\circ}$)
- GF thermal conductivity variable with temperature
- 512 (inside Sunshade) nodes + 18 (outside Sunshade) nodes per each support plate face.
- Support Plate equivalent conductivity 350 W/m/K
- New STR detailed TMM with thermal washers between Primary Baffle and STR

STRH Relocation

Design Verification Analysis - Results

Thermal Cases	E0L7	E0L7	EOL0	EOL2	EOL-10	EOL-20
SAA	-30°	-30°	0°	+30°	-10° (1)	-20° (1)
STR ON	2 STR	1 STR	1 STR	1 STR	1 STR	1 STR
Q to CVV	146mW	138mW	130mW	123mW	135mW	138mW
Q Heater	-	-	9.5 W	9.6 W	6.8 W	4.0 W
STR temp (2)	28.7 °C	-0.4 °C	-0.3 °C	-0.3 °C	-0.3 °C	-0.3 °C
Max feet ΔT	N/A	0.40 °C	0.39 °C	0.39 °C	0.39 °C	0.39 °C

1) PLM boundary temperatures as per EOL0

2) Active STR reference point (foot)

STRH Relocation

Plate temperature Summary

Case EOL7

		-3.1	-2.9	-2.7	-2.6		_
	-3.5	-3.3	-3.0	-2.6	-2.3	-2.1	
-3.8	-3.7	-3.5	-3.0	-2.5	-2.0	-1.7	-1.7
-4.0	-3.9	-3.7	-3.1	-2.3	-1.4	-1.2	-1.5
-4.0	-3.9	-3.7	-3.1	-2.4	-1.4	-1.2	-1.5
-3.9	-3.8	-3.5	-3.1	-2.5	-1.9	-1.7	-1.7
-3.8	-3.7	-3.4	-3.0	-2.5	-2.1	-1.9	-1.8

-X

↓ +Z

Side

		-2.7	-2.5	-2.4	-2.2		
	-3.1	-2.9	-2.6	-2.3	-1.9	-1.6	
-3.8	-3.7	-3.5	-3.0	-2.5	-2.0	-1.7	-1.7
-4.0	-3.9	-3.7	-3.1	-2.3	-1.4	-1.2	-1.5
-4.0	-3.9	-3.7	-3.1	-2.4	-1.4	-1.2	-1.5
-3.9	-3.8	-3.5	-3.1	-2.5	-1.9	-1.7	-1.7
-3.5	-3.3	-3.0	-2.6	-2.2	-1.7	-1.5	-1.5
	$\rightarrow + Y$,		÷			· · · ·

				-X	Side		_	
			-2.7	-2.6	-2.4	-2.3		
Case EOL2		-3.2	-2.9	-2.7	-2.3	-2.0	-1.7	
	-3.8	-3.7	-3.5	-3.0	-2.5	-2.0	-1.7	-1.7
	-4.0	-3.9	-3.7	-3.1	-2.3	-1.4	-1.2	-1.5
	-4.0	-3.9	-3.7	-3.1	-2.4	-1.4	-1.2	-1.5
	-3.9	-3.8	-3.5	-3.1	-2.5	-1.9	-1.7	-1.7
	-3.6	-3.4	-3.1	-2.7	-2.2	-1.8	-1.6	-1.5

09-12 December 2003

STRH Relocation

Parametric Analysis Verification

Additional analysis to evaluate the effects of the design sensitivity:

- all GF struts Thermal conductivity values increased by 20%
- Support plate equivalent thermal conductivity reduced from 350 W/m/K to 300 W/m/K
- Requested Heater power increased to compensate the 9 °C usual temperature uncertainty at the STR feet
- Radiator Plate areas reduced from 33650 mm2 to 22500 mm2
- All analyses with EOL 7 (SAA=-30°) conditions

STRH Relocation

Parametric Analysis Results

	E0L7	E0L7	EOL0	EOL2
Case	GFR k	Plate eq. k	Heaters	Red. Rad.
STR ON	1 STR	1 STR	1 STR	2 STR
Q to CVV	156mW	138mW	130mW	
Q Heater	-	-	9.5 W	-
STR temp (2)	-0.3 °C	-0.5 °C	-0.3 °C	44°C
Max feet ΔT	0.40 °C	0.42 °C	0.39 °C	°C

2) Active STR reference point (foot)

STRH Relocation

Thermal Conclusions

The proposed design meets all the thermal requirements and provides the temperature distribution which allows to meet the thermo-elastic requirements (see next pages). No problems are expected from the (still in progress) thermal stability analysis (time gradient):

same control law of HIFI requirement less tight than HIFI

The parametric analysis showed that there are some margins on the design assumptions.

STRH Relocation

THERMAL ELASTIC ANALYSIS

STRH Relocation

STR alignment stability requirement

- Present target for Thermal Elastic analysis
 - **Rx**, **Ry**, **Rz** $\leq 3.84\text{E-6} \text{ rad} \approx 0.8$ "
- Derivative requirement:
 - $Rx \le 0.8$ "
 - P ≤ $\sqrt{2}$ * 0.8" ≈ 1.13"

STRH Relocation

Thermal-elastic cases and results

 $SAA = -30^{\circ}, 0^{\circ}, + 30^{\circ}$

Δ (SAA)	Rx (1)	P(1)
(- 30 °)-(0 °)	5.49E-04	0.13
(-30°)-(+30°)	-2.10E-02	0.08
(0 °)-(+ 30 °)	-2.17E-02	0.05

(1) All values in arcsec

STRH Relocation

T.E. Analysis Conclusions

- Significant improvement w.r.t. to the previous runs:
 - STR detailed thermal model was revised by Galileo
 - baffle and head were isolated by means of thermal washer (this had been neglected in the model previously received from Galileo)
 - thermal inputs for T.E. were re-defined and ΔT between plate upper and lower skins was shown to be very much sensitive to STR thermal model/configuration
- Alignment stability requirements are met:
 - with margins
 - all over the pointing range

STRH Relocation

T.E. Sensitivity Analysis

- Several analyses have been run to verify **alignment stability sensitivity** to the variation of the following thermal-elastic model parameters:
 - Geometrical
 - Material characteristics (Strut Coefficient of Thermal Expansion CTE)
 - Thermal distribution inputs

(details over-leaf)

STRH Relocation

Sensitivity Analysis

- Geometrical
 - Strut/panel interface type and location
 - Length of the 6 struts A,B,C,D,E.F
- Strut (A,B,C,D,E,F) material characteristics
 - $CTE_{nominal} = 6*10^{-6} \text{ mm/}^{\circ}\text{K}$
 - CTE spread (relative values) = +10% "pair-by-pair" and "strut-by-strut"
- Temperature distribution on panel upper and lower skins
 - Uniform (average) temperature distribution
 - Real temperature distribution

 $SAA = -30^{\circ}$

Side +X							Average –2.8
		-3.0	-2.9	-2.8	-2.7		_
	-3.3	-3.1	-2.9	-2.8	-2.6	-2.4	
-3.6	-3.4	<mark>-3.2</mark>	-3.0	-2.7	<mark>-2.5</mark>	-2.3	-2.1
-3.6	-3.5	-3.3	-3.0	-2.7	<mark>-2.4</mark>	-2.2	-2.1
-3.6	-3.5	<mark>-3.3</mark>	-3.0	-2.7	<mark>-2.3</mark>	-2.1	-2.1
-3.6	-3.5	-3.3	-3.0	-2.7	<mark>-2.4</mark>	-2.2	-2.1
-3.5	-3.4	<mark>-3.2</mark>	-3.0	-2.7	-2.5	-2.3	-2.2

Side							Average
	-X						-2.7
		-3.1	-2.9	-2.7	-2.6		_
	-3.5	-3.3	-3.0	-2.6	-2.3	-2.1	
-3.8	-3.7	-3.5	-3.0	-2.5	-2.0	-1.7	-1.7
-4.0	-3.9	-3.7	-3.1	-2.3	-1.4	-1.2	-1.5
-4.0	-3.9	-3.7	-3.1	-2.4	-1.4	-1.2	-1.5
-3.9	<mark>-3.8</mark>	-3.5	-3.1	-2.5	-1.9	-1.7	-1.7
<mark>-3.8</mark>	-3.7	-3.4	-3.0	-2.5	-2.1	-1.9	<mark>-1.8</mark>

 $SAA=0^{\circ}$

Side							Average
			-X				2.0
		-2.7	-2.5	-2.4	-2.2		_
	-3.1	-2.9	-2.6	-2.3	-1.9	-1.6	
-3.8	-3.7	-3.5	-3.0	-2.5	-2.0	-1.7	-1.7
-4.0	-3.9	-3.7	-3.1	-2.3	-1.4	-1.2	-1.5
-4.0	-3.9	-3.7	-3.1	-2.4	-1.4	-1.2	-1.5
-3.9	-3.8	-3.5	-3.1	-2.5	-1.9	-1.7	-1.7
-3.5	-3.3	-3.0	-2.6	-2.2	-1.7	-1.5	-1.5

			Side	_	Average –2.8		
		-2.8	-2.7	-2.6	-2.5		
	-3.1	-2.9	-2.7	-2.5	-2.4	-2.2	
-3.6	-3.4	-3.2	-3.0	-2.7	-2.5	-2.3	-2.1
-3.6	-3.5	-3.3	-3.0	-2.7	-2.4	-2.2	-2.1
-3.6	-3.5	-3.3	-3.0	-2.7	-2.3	-2.1	-2.1
-3.6	-3.5	-3.3	-3.0	-2.7	-2.4	-2.2	-2.1
-3.3	-3.2	-3.0	-2.8	-2.5	-2.2	-2.1	-2.0

09-12 December 2003

STRH Relocation

T.E. Conclusions

- Results still under thorough evaluation
- Geometrical and material parameters
 - absolute alignment values differ by order of magnitude
 - however alignment differences (Δ SAA) do stay within requirements
- Temperature distribution
 - the align. differences have been calculated for the w.c. $(-30^{\circ})-(0^{\circ})$ using uniform and real temperature distributions
 - both cases are very similar in both conditions

Herschel Star Tracker Integration

- The following charts present the baseline mounting and alignment concept for the Herschel Star Trackers, as an evolution from the preliminary concepts presented during PM18. Some comments, received from ASP, have been implemented by ALS. There are still some points to be discussed; these points have been listed at the end of this presentation.
- The concept is the same for PFM and STM, where for this latter the CVV is obviously substituted with suitable attachment points on the Thermal Test Adapter.

Sequence of integration activities for **STM**:

Activities at ALS premises on a bench:

- 1. Struts fit-check to baseplate
- 2. Pre-integration of STR (dummies) onto the baseplate
- 3. STR dummies alignment test \rightarrow alignment matrix M2
- 4. STR dummies dismounting
- 5. Delivery of struts, baseplate and STR dummies as loose parts to Astrium

Activities at Astrium premises on the Herschel PLM (MGSE configuration TBD by ASP):

6. Connection of the struts to CVV:

7. Installation of the baseplate on the struts

8. Baseplate alignment test and shimming → alignment matrix M3. The shimming will be carried out at the struts/baseplate interface, as there are 3 interface points defining a plane:

9. Baseplate removal

9-12/December/2003

Activities at Astrium premises on Herschel satellite (on the VIS):

10. SVM-PLM mating

11. SVM subplatform finalization (rays+central disk, TBC).

HERSCHEL/PLANCK QPM - Dec 03

12. MLI pool installation underneath the subplatform (MLI installation on the pool previously performed as off-line activity)

- **13. Installation of the baseplate on the struts**
- 14. Mounting of the STR dummies on the baseplate

HERSCHEL/PLANCK QPM - Dec 03

- **15. Installation of the sunshade MLI support brackets**
- 16. Sunshade MLI installation

17. STR dummies alignment test (and adjustment, if needed). → alignment matrix M5. Note: for the STR alignment test the satellite must be tilted (X-axis in horizontal position).

18. Installation of the lower thermal closure

17. Installation of the secondary baffle (MLI installation around the secondary baffle previously performed as off-line activity).

For clarification, hereafter there is a summary of the alignment sequence (based on ASP proposal)

•STR subco will provide the matrix giving the STR LOS w.r.t. the mirror cube attached to the STR: [M1]

•Alenia will perform, on a bench, the measurement of the position of the STR cubes vs the cube on the baseplate: [M2]. In parallel ASED will perform the measurement of the matrix [M4] giving the instrument LOS w.r.t. the reference cube attached to the PLM

•After baseplate mounting, Alenia/ASED (TBD) will perform the measurement of the position of the baseplate cube vs the PLM cube: [M3]. Knowing the matrix [M1], [M2] and [M4], Alenia/ASP/ASED (TBD) will define the shimming at baseplate/struts interface in order to cope with the requirement by modifying [M3]. *Needs to be further discussed*.

•After final integration of the STR on Herschel satellite the official alignment test will be performed with direct measurement between the reference cube attached to the PLM and the mirror cube attached to the STR's: [M5]. This will be the reference for the following alignment checks.

HERSCHEL/PLANCK QPM - Dec 03

Open issues:

- alignment repeatability (STR vs baseplate and baseplate vs PLM cube). It will not be considered in the alignment budget, as the official alignment test will be performed afterwards.
- •Need of shimming
- MGSE configuration during integration activities at PLM and satellite level are under ASP responsibilities
- alignment test activities at PLM and satellite level. ALS position is that these activities are under ASP responsibilities, in particular shimming determination shall be done by ASP. ALS will support ASP/ASED in the preparation of specification/procedure and test execution.
- centering pins location.
- continuity between Sunshade MLI and secondary baffle
- +X side of the radiator: MLI fixing on dedicated structure (e.g. the bottom of the MLI pool) or on the +X side of the baseplate