SUBJECT:

PREPARED BY:

DOCUMENT No:

| SSUE:

Specifying Data Productsin the Her schel I nteractive

Analysis System

S.Guest

SPIRE-RAL-DOC-001964

0.2

Date:

14" June 2004

Document Ref: SPIRE-RAL-DOC-

001964
Issue: 0.2
spf)RE Specifying Data Productsin the Her schel Date 14™ June 2004
Interactive Analysis System Page: 20of11
Change Record
ISSUE DATE
0.1 draft 10" February 2004 First draft

0.1 draft 2 5" March 2004 Second draft
0.1 18" March 2004 First wider distribution
0.2 14™ June 2004 Latest numeric; quantities

Ref: SPIRE-RAL-DOC-
Document 001964
-) - _ Issue: 0.2
I =PFIRE Specifying Data Productsin the Her schel Date 14™ June 2004
Interactive Analysis System Page: 3o0f11
Table of Contents
| |1 INTRODUGCT ION ...ttt ettt e et sa e bt he e e e s e beseeeR e s bt eh e eRe e e e s e ss e beseeehe e e enneneennenne e 4 |
[e N 2 = 4
[.2 CONVENTIONSUSED IN THISDOCUMENTcovoceveeceeeseeceerseeeeenseeeseeieesesseensescesnseeesseseessnssssesssssssssesessces 4
T3 PURPOSEoooioooooooooeeeeeemmeessossossooooooooeeeeeeeeemeeeeessssssssssoeeeeeeeeeeeeeemeeeeesssssssssooeoeeeeeeeeeeeeeeeeessssssssseseeeree !
2 =TT LN — 5 |
A=Y 5
22N 5
| .3 [= 5
[B4 [T T T U P 6
| p EXAMPLE PRODUCT SPECIFICATION ..ottt snenne e 7 |
[T NN = = 8
L%.z N =T = U 9
1 DON'T MAKE DATA ELEMENTS TOO BIG: .. vuevvrieeresreemsenesmseessmssessreesemseseseeseoeesereesseseemreseseesesesseseeees 11
B.2 USETHEPROVIDED APl ..ottt 11

Ref: SPIRE-RAL-DOC-

Document " 001964
- Issue: 0.2
' spf)RE Specifying Data Productsin the Her schel Date: 14" June 2004
Interactive Analysis System Page: 4o0f11

1 INTRODUCTION

1.1 Acronyms

API Application Programming Interface
HDU Header and Data Unit (FITS)

FITS Flexible Image Transport System
1A Interactive Analysis

SPG Standard Product Generation

TBD To Be Defined

1.2 Conventionsused in this document

Words that are written in bold indicate special keywords that can be used in a product specification.
Thecouri er fontisused toindicate that the text should be taken literally, for example an actua
class name or name of a metadata item.

1.3 Purpose

Firstly, the purpose of this document is not to specify the standard data products that will be produced
by the Herschel mission. That responsibility lies elsewhere.

The purpose of this document is to specify how to specify a data product for use within the Herschel
Interactive Analysis framework. Thiswill alow interfaces between processing modules to be defined
in a standard, coherent and common way.

This specification is deliberately independent of programming languages, file formats, and database
management systems. Guidelines for implementing it within specific environments are given in
appendices.

Ref: SPIRE-RAL-DOC-

Document " 001964
- } Issue: 0.2
' spf)RE Specifying Data Productsin the Her schel Date: 14" June 2004
Interactive Analysis System Page: 5o0f 11

2 DEFINITIONS

FITS analogies are used as examples in these definitions for clarity. The definitions are however
completely independent of FITS format, and other export formats are also possible.

2.1 Metadata
A metadata item correspondsto a FITS header keyword. Metadata items consist of:

* Thename of theitem asastring keyword

* Thevalue of theitem

* A description of theitemasastring

e A quantity of theitemi.e. its units. The Java implementation uses the nanoTITAN Quantity
Library for this (see Appendix A).

A metadata value has one of the following forms:
e string (Unicode sequence)
* boolean
* double (64-bit floating point)
* long (64-bit signed integer)
» date (including the time to millisecond resolution)

2.2 Data

A data item corresponds to a FITS array or column of atable. It isimportant to be clear that a data
itemisan array — single data items should be treated as metadata. Data can have the following types:

* boolean

* byte (8-bit signed)

» complex (64-bit signed pair)

* double (64-bit signed)

» float (32-bit signed)

e integer (32-bit signed)

* long (64-bit signed)

e short (16-bit signed)

e string (sequence of Unicode characters)
It is also necessary to specify the dimensionality of data arrays. Thisis done by appending “-nd”,
where ‘n’ isthe number of dimensions, safor example, float-2d. The maximum size of ‘n’ isthree,
except for the string type, where it isone™~ An array can only contain data of asingle type (for
example, you can’'t mix float and integer in asingle array).

2.3 Dataset

A dataset correspondsto a FITS extension (eg a binary table), ie a non-primary HDU, though more
complex structures are possible than are supported by the FITS standard. It is used to define data
structures at a higher level than arrays, such as tables, images or spectra.

! The reason for this restriction is that it is what the current implementation supports. There does not appear to be
any obvious need for string arrays of more than one dimension.

Ref: SPIRE-RAL-DOC-
Document 001964
- I Issue: 0.2
| EF'IJRE Specifying Data Productsin the Her schel Date 14™ June 2004
Interactive Analysis System Page: 60f11

A dataset has these elements associated with it:
* metadata, though no particular items are required
* A description asastring

The following types of dataset may be specified:

* Anarray dataset that contains a data item (remember that adata item isan array). This can
be used for images, cubes, single spectra etc. This correspondsto a FITS primary HDU or
image extension. This should be used in preference to a data item when relevant metadata
exists.

» A tabledataset that contains one of more columns of data items. Specifically, acolumn is
comprised of:

- adataarray of any dimension (not restricted to 1-d arrays)

- adescription, asastring (optional)

- aquantity (optional)

The types of data in the columns can be mixed. All columns must have the same length i.e.
number of rows. This corresponds to a FITS binary table extension.

* A composite dataset that is composed of one or more datasets, which in turn could also be
composite themselves. Note that this allows the possibility of hierarchically structured data.
Thereis no equivalent in the FITS standard of this, though a proposal does now exist for
hierarchical associations of related FITSfiles.

2.4 Product

A product isthe highest level of data structure, similar to a composite dataset, but also providing a
number of extrafeatures. Despite the FITS analogies, there is no requirement that products ever have
apersistent format such as afile or as an object in the database. Persistent in this sense just means that
it is somehow “saved”, and has alifetime longer than asingle A session. These persistent formats
should be regarded only as an external form of the product. It istherefore valid for a product to be
purely transient, i.e. exist only in computer memory and never be saved. This data structure is suitable
for standard~or non-standard products®, and for calibration products.

A product is comprised of the following components:

* A typeby whichit can easily beidentified™, asastring

* A description, asastring

* metadata

e Zeroor more datasets, i.e. more than one or none at all are both valid

* A processing history
It corresponds to an entire FITS file. The metadata belonging to the product correspond to the
keywords in the primary header.

The following metadata items are required to be present in a product:
e creator asastring
 creationDate asadate
e instrunent asastring
 nodel Nanme asastring

2 In the SPG sense, i.e. “official” products output from a pipeline
% In the general sense, not the specific product sense of this specification
* Not currently implemented in her schel . i a. dat aset

Ref: SPIRE-RAL-DOC-
Document 001964
- I Issue: 0.2
| EF'IJRE Specifying Data Productsin the Her schel Date 14™ June 2004
Interactive Analysis System Page: 70f11

» startDate asadate

 endDate asadate
Note that the Herschel IA FITS interface automatically translates these namesto the equivalent FITS
keywords.

The definition of the processing history is currently beyond the scope of this document. The creation
and maintenance of the history isthe responsibility of the processing modules*that create and update
the product. It is accepted that it would be useful to list the elements that must be contained in such a
history, however this has not yet been defined.

3 EXAMPLE PRODUCT SPECIFICATION

It should be possible to achieve areasonable degree of standardisation by consistently using the
keywords and by following the rules defined in the preceding section. Here is a suggestion of how a
product specification could be laid out:

product (type="spectruni, description="output of flat-fielding”):
nmet adat a:
| ong obsid
| ong bbid
tabl e dataset (description="tine series”):
nmet adat a:
date creationbDate
string equi nox
doubl e-1d tine (description="On-board tinme, epoch 1958")
i nt eger-1d dpuCount (description="DPU cl ock”)
float-1d specfarray001 (description="detector”,
quantity=Vol ts)

fl oat-1d specfarray072 (description="detector”,
guantity=Vol ts)
array dataset (description="detector mask”):
bool ean- 1d mask|[72]

The example deliberately leaves out the required metadata for the product as they are implicitly
always present i.e. there is no need to repeatedly specify something that is aways the same. The
processing history is similarly always present.

It is currently assumed that such guidelines are sufficient, and that it is not necessary to describe a
specification grammar in more formal terms.

® Herschel A refersto these either as atask (command-line type synchronous, i.e. process to completionin a
single execution), or a process (stream processing).

Document Ref: SHRERAL-DOC-
e d o _ Issue: 0.2
€ SF[JRE Specifying Data Productsin the Her schel Date: 14" June 2004
Interactive Analysis System Page: 8of 11

Appendix A. Javaimplementation

Thereis an existing Javaimplementation in the her schel . i a. dat aset and

herschel . i a. nuneri c packages. The former deals with product, dataset and metadata; the
latter with data. These packages are designed to be convenient to use in a Jython as well as a Java
environment. When a product is created, its required metadata items are automatically inserted,
although only cr eat i onDat e hasits value set. The mappings between the keywords used in this
document and the Java classes and interfaces are given below.

product and dataset metadata
product Pr oduct boolean Bool eanPar anet er
dataset Dat aset double Doubl ePar anet er
array dataset ArrayDat aset long LongPar anet er
table dataset Tabl eDat aset string Stri ngPar anet er
compositedataset | Conposi t eDat aset | date Dat ePar anet er
metadata Met aDat a
data 1d 2-d 3-d
boolean Bool 1d Bool 2d Bool 3d
byte Byt eld Byt e2d Byt e3d
complex Conmpl ex1d Conmpl ex2d Conpl ex3d
double Doubl eld Doubl e2d Doubl e3d
float Fl oat 1d Fl oat 2d Fl oat 3d
integer | nt 1d | nt 2d | nt 3d
long Longld Long2d Long3d
short Short 1d Short 2d Short 3d
string Stringld

A guantity isimplemented using the nanoTITAN Quantity library. See
http://nanotitan.con/software/L ibraries/quantity/index.htm{for full details.

A.1 Jython Example

Here is the example product from section 3, coded in Jython (for illustration only!):

Exanpl e product definition

SG March 2004

from herschel .ia.dataset inport *

from herschel .ia.nuneric inmport *

fromjava.util inport Date

fromnT.quantity. ElectricPotential Difference inport VOLTS

Start with the main product

= Product ("output of flat-fielding")
.meta["obsid"] = LongParaneter (1234)
.meta["bbid'] = LongParaneter (0x89ab)

no type supported yet

Now create a table. TO DO add quantities to the col ums.

= Tabl eDat aset ("tinme series")

.meta["date"] = DateParaneter (Date()) # current date and tine
.met a["equi nox"] = StringParaneter ("1950")

+ =% TOTOTH

http://nanotitan.com/software/Libraries/quantity/index.htm

Ref: SPIRE-RAL-DOC-
Document 001964
- I Issue: 0.2
| EF'IJRE Specifying Data Productsin the Her schel Date 14™ June 2004
Interactive Analysis System Page: 90of11

t["time"] = Columm (Doubleld ([1,2,3]), None, ="On-board tine, epoch
1958")
t["dpuCount”] = Columm (Intld ([10,20,30]), None, “DPU clock”)

Generate the colum nanes for the detectors. This could al so be done with
a loop, but this way denonstrates a powerful |ist-processing feature of
Jython. | anbda defines an anonynous function and nmap applies (maps) it
over all the elements of a list.
ndets = 72
dets = nap (lanmbda x,y: "9%%.2i" % (x,y+1), \
["specfarray"]*ndets, range(ndets))

data are zero in this exanple
for detector in dets: t[detector] = Columm (Float1d(3), VOLTS, “detector”)

Now use an array dataset for the mask
a = ArrayDat aset (Bool 1d(ndets), description="detector nmask")

Finally, put the datasets in the product.
Here the descriptions are used as keys.
.set (t.description, t)

.set (a.description, a)

TOT HH

A.2 Java Example

Here is another version of the previous example, thistimein Java. Again, thisisfor illustration
purposes and no attempt has been made to make it more object-oriented!

i mport herschel . i a. dat aset. *;

i mport herschel .ia.nuneric.*;

i mport java.util.Date;

i mport java.text.?*;

i mport nT.quantity.ElectricPotential Difference;

/**

* Exanpl e product definition
* @uthor SG March 2004
*/
public class FlatField {
public static Product createCQutput() {

/] Start with the main product, no type supported yet
Product p = new Product ("output of flat-fielding");
Met aData meta = p.getMeta();

net a. set ("obsid", new LongParaneter (1234));
nmet a. set ("bbid", new LongParaneter (0x89ab));

p. setMeta (neta);

/1 Now create a table

Tabl eDat aset t = new Tabl eDataset ("tinme series");

meta = new Met aDat a();

net a. set ("date", new DateParaneter (new Date()));

nmet a. set ("equi nox", new StringParameter ("1950"));

t.setMeta (neta);

t.addColum ("tinme", new Colum (new Doubl eld (new double[] {1,2,3}),
null, "On-board tinme, epoch 1958"));

t.addCol um ("dpuCount", new Columm (new Intld (new int[]{10, 20, 30}),
null, “DPU clock”));

Ref: SPIRE-RAL-DOC-
Document 001964
o I Issue: 0.2
{ EF'I'JRE Specifying Data Productsin the Her schel Date: 14" June 2004
Interactive Analysis System Page: 100f 11

// Add a colum for each detector
final int NDETS = 72;
Nunber Format format = new Deci mal Format ("00");

for (int i =0; i < NDETS; i++) {
String col Nane = "specfarray"+format.format (i+1);
/1 data are zero in this exanple
t.addCol umm (col Name, new Col um (new Fl oat 1d(3),
El ectricPotential Di fference. VOLTS, “detector”));
}

/1 Now use an array dataset for the mask
ArrayDat aset a = new ArrayDataset (new Bool 1d(NDETS))
a.setDescription ("detector mask");

/1 Finally, put the datasets in the product.
/1 Here the descriptions are used as keys.
p.set (t.getDescription(), t);

p.set (a.getDescription(), a);

return p;

}

/1 test program

public static void main (String[] args) {
Product p = createCQutput();
Systemout.println (p);
Systemout.println (p.get ("tine series"));
Systemout.println (p.get ("detector mask"));

}
}

Ref: SPIRE-RAL-DOC-
Document 001964
- I Issue: 0.2
| EF'IJRE Specifying Data Productsin the Her schel Date 14™ June 2004
Interactive Analysis System Page: 11of 11

Appendix B. Storing ProductsIn Versant Databases

This section iswritten with the Versant Database Management System in mind. It is quite possible that
the same principles aso apply el sewhere.

B.1 Don’t make dataelementstoo big:

The current implementations of the data classes represent the data internally as Java primitive arrays.
Versant treats these arrays as single objects. This has some implications where large arrays are
concerned:
» Slow apparent startup time as the entire array has to be transferred across the network before a
single element can be accessed.
» Itisnot possibleto access the array without storing its entirety in memory, which can lead to
poor performance and out-of-memory errors.
Exactly what constitutes “big” is hard to define, and dependent on the hardware specification. More
investigation would be useful, but as arough rule of thumb, array sizes bigger than a quarter of the
available memory should be avoided.

More generally, split multidimensional arrays of significant size up when it makes sense. For example,
a 2-D array can be represented as a 1-D array of row (or column) objects.

B.2 Usetheprovided API

Thereisan APl intheher schel . i a. i 0. dbase package that should be used to create persistent
database products from IA products. It is possible that in future it might be able to automatically
perform certain optimisations such as the memory management discussed above. This package
provides quite alow-level API, but it is planned to add one or more higher-level APIsto perform these
functions.

	1	INTRODUCTION	4
	Introduction
	Acronyms
	
	
	API

	D
	Definitions
	Example Product Specification
	Jython Example
	Java Example
	Don’t make data elements too big:
	Use the provided API

