

SUBJECT: Specifying Data Products in the Herschel Interactive
Analysis System

PREPARED BY: S.Guest

DOCUMENT No: SPIRE-RAL-DOC-001964

ISSUE: 0.2 Date: 14th June 2004

Ref: SPIRE-RAL-DOC-
001964

Issue: 0.2
Date: 14th June 2004
Page: 2 of 11

Document

Specifying Data Products in the Herschel

Interactive Analysis System

CChhaannggee RReeccoorrdd

ISSUE DATE
0.1 draft 10th February 2004 First draft

0.1 draft 2 5th March 2004 Second draft
0.1 18th March 2004 First wider distribution
0.2 14th June 2004 Latest numeric; quantities

Ref: SPIRE-RAL-DOC-
001964

Issue: 0.2
Date: 14th June 2004
Page: 3 of 11

Document

Specifying Data Products in the Herschel

Interactive Analysis System

Table of Contents
1 INTRODUCTION...4

1.1 ACRONYMS...4
1.2 CONVENTIONS USED IN THIS DOCUMENT...4
1.3 PURPOSE ...4

2 DEFINITIONS ..5
2.1 METADATA ...5
2.2 DATA ..5
2.3 DATASET...5
2.4 PRODUCT ..6

3 EXAMPLE PRODUCT SPECIFICATION ...7
A.1 JYTHON EXAMPLE...8
A.2 JAVA EXAMPLE...9
B.1 DON’T MAKE DATA ELEMENTS TOO BIG: ...11
B.2 USE THE PROVIDED API ..11

Ref: SPIRE-RAL-DOC-
001964

Issue: 0.2
Date: 14th June 2004
Page: 4 of 11

Document

Specifying Data Products in the Herschel

Interactive Analysis System

1 INTRODUCTION

1.1 Acronyms
API Application Programming Interface
HDU Header and Data Unit (FITS)
FITS Flexible Image Transport System
IA Interactive Analysis
SPG Standard Product Generation
TBD To Be Defined

1.2 Conventions used in this document
Words that are written in bold indicate special keywords that can be used in a product specification.
The courier font is used to indicate that the text should be taken literally, for example an actual
class name or name of a metadata item.

1.3 Purpose
Firstly, the purpose of this document is not to specify the standard data products that will be produced
by the Herschel mission. That responsibility lies elsewhere.

The purpose of this document is to specify how to specify a data product for use within the Herschel
Interactive Analysis framework. This will allow interfaces between processing modules to be defined
in a standard, coherent and common way.

This specification is deliberately independent of programming languages, file formats, and database
management systems. Guidelines for implementing it within specific environments are given in
appendices.

Ref: SPIRE-RAL-DOC-
001964

Issue: 0.2
Date: 14th June 2004
Page: 5 of 11

Document

Specifying Data Products in the Herschel

Interactive Analysis System

2 DEFINITIONS
FITS analogies are used as examples in these definitions for clarity. The definitions are however
completely independent of FITS format, and other export formats are also possible.

2.1 Metadata
A metadata item corresponds to a FITS header keyword. Metadata items consist of:

• The name of the item as a string keyword
• The value of the item
• A description of the item as a string
• A quantity of the item i.e. its units. The Java implementation uses the nanoTITAN Quantity

Library for this (see Appendix A).

A metadata value has one of the following forms:

• string (Unicode sequence)
• boolean
• double (64-bit floating point)
• long (64-bit signed integer)
• date (including the time to millisecond resolution)

2.2 Data
A data item corresponds to a FITS array or column of a table. It is important to be clear that a data
item is an array – single data items should be treated as metadata. Data can have the following types:

• boolean
• byte (8-bit signed)
• complex (64-bit signed pair)
• double (64-bit signed)
• float (32-bit signed)
• integer (32-bit signed)
• long (64-bit signed)
• short (16-bit signed)
• string (sequence of Unicode characters)

It is also necessary to specify the dimensionality of data arrays. This is done by appending “-nd”,
where ‘n’ is the number of dimensions, so for example, float-2d. The maximum size of ‘n’ is three,
except for the string type, where it is one1. An array can only contain data of a single type (for
example, you can’t mix float and integer in a single array).

2.3 Dataset
A dataset corresponds to a FITS extension (eg a binary table), ie a non-primary HDU, though more
complex structures are possible than are supported by the FITS standard. It is used to define data
structures at a higher level than arrays, such as tables, images or spectra.

1 The reason for this restriction is that it is what the current implementation supports. There does not appear to be
any obvious need for string arrays of more than one dimension.

Ref: SPIRE-RAL-DOC-
001964

Issue: 0.2
Date: 14th June 2004
Page: 6 of 11

Document

Specifying Data Products in the Herschel

Interactive Analysis System

A dataset has these elements associated with it:

• metadata, though no particular items are required
• A description as a string

The following types of dataset may be specified:

• An array dataset that contains a data item (remember that a data item is an array). This can
be used for images, cubes, single spectra etc. This corresponds to a FITS primary HDU or
image extension. This should be used in preference to a data item when relevant metadata
exists.

• A table dataset that contains one of more columns of data items. Specifically, a column is
comprised of:
- a data array of any dimension (not restricted to 1-d arrays)
- a description, as a string (optional)
- a quantity (optional)
The types of data in the columns can be mixed. All columns must have the same length i.e.
number of rows. This corresponds to a FITS binary table extension.

• A composite dataset that is composed of one or more datasets, which in turn could also be
composite themselves. Note that this allows the possibility of hierarchically structured data.
There is no equivalent in the FITS standard of this, though a proposal does now exist for
hierarchical associations of related FITS files.

2.4 Product
A product is the highest level of data structure, similar to a composite dataset, but also providing a
number of extra features. Despite the FITS analogies, there is no requirement that products ever have
a persistent format such as a file or as an object in the database. Persistent in this sense just means that
it is somehow “saved”, and has a lifetime longer than a single IA session. These persistent formats
should be regarded only as an external form of the product. It is therefore valid for a product to be
purely transient, i.e. exist only in computer memory and never be saved. This data structure is suitable
for standard2 or non-standard products3, and for calibration products.

A product is comprised of the following components:

• A type by which it can easily be identified4, as a string
• A description, as a string
• metadata
• Zero or more datasets, i.e. more than one or none at all are both valid
• A processing history

It corresponds to an entire FITS file. The metadata belonging to the product correspond to the
keywords in the primary header.

The following metadata items are required to be present in a product:

• creator as a string
• creationDate as a date
• instrument as a string
• modelName as a string

2 In the SPG sense, i.e. “official” products output from a pipeline
3 In the general sense, not the specific product sense of this specification
4 Not currently implemented in herschel.ia.dataset

Ref: SPIRE-RAL-DOC-
001964

Issue: 0.2
Date: 14th June 2004
Page: 7 of 11

Document

Specifying Data Products in the Herschel

Interactive Analysis System

• startDate as a date
• endDate as a date

Note that the Herschel IA FITS interface automatically translates these names to the equivalent FITS
keywords.

The definition of the processing history is currently beyond the scope of this document. The creation
and maintenance of the history is the responsibility of the processing modules5 that create and update
the product. It is accepted that it would be useful to list the elements that must be contained in such a
history, however this has not yet been defined.

3 EXAMPLE PRODUCT SPECIFICATION
It should be possible to achieve a reasonable degree of standardisation by consistently using the
keywords and by following the rules defined in the preceding section. Here is a suggestion of how a
product specification could be laid out:

product (type=”spectrum”, description=”output of flat-fielding”):

metadata:
long obsid
long bbid

table dataset (description=”time series”):
 metadata:

date creationDate
 string equinox

double-1d time (description=”On-board time, epoch 1958”)
integer-1d dpuCount (description=”DPU clock”)
float-1d specfarray001 (description=”detector”,

quantity=Volts)
…
float-1d specfarray072 (description=”detector”,

quantity=Volts)
array dataset (description=”detector mask”):

boolean-1d mask[72]

The example deliberately leaves out the required metadata for the product as they are implicitly
always present i.e. there is no need to repeatedly specify something that is always the same. The
processing history is similarly always present.

It is currently assumed that such guidelines are sufficient, and that it is not necessary to describe a
specification grammar in more formal terms.

5 Herschel IA refers to these either as a task (command-line type synchronous, i.e. process to completion in a
single execution), or a process (stream processing).

Ref: SPIRE-RAL-DOC-
001964

Issue: 0.2
Date: 14th June 2004
Page: 8 of 11

Document

Specifying Data Products in the Herschel

Interactive Analysis System

Appendix A. Java implementation
There is an existing Java implementation in the herschel.ia.dataset and
herschel.ia.numeric packages. The former deals with product, dataset and metadata; the
latter with data. These packages are designed to be convenient to use in a Jython as well as a Java
environment. When a product is created, its required metadata items are automatically inserted,
although only creationDate has its value set. The mappings between the keywords used in this
document and the Java classes and interfaces are given below.

product and dataset metadata
product Product boolean BooleanParameter

dataset Dataset double DoubleParameter

array dataset ArrayDataset long LongParameter

table dataset TableDataset string StringParameter

composite dataset CompositeDataset date DateParameter

metadata MetaData

data 1-d 2-d 3-d
boolean Bool1d Bool2d Bool3d

byte Byte1d Byte2d Byte3d

complex Complex1d Complex2d Complex3d

double Double1d Double2d Double3d

float Float1d Float2d Float3d

integer Int1d Int2d Int3d

long Long1d Long2d Long3d

short Short1d Short2d Short3d

string String1d

A quantity is implemented using the nanoTITAN Quantity library. See
http://nanotitan.com/software/Libraries/quantity/index.htm for full details.

A.1 Jython Example
Here is the example product from section 3, coded in Jython (for illustration only!):

Example product definition
SG, March 2004
from herschel.ia.dataset import *
from herschel.ia.numeric import *
from java.util import Date
from nT.quantity.ElectricPotentialDifference import VOLTS

Start with the main product
p = Product ("output of flat-fielding") # no type supported yet
p.meta["obsid"] = LongParameter (1234)
p.meta["bbid"] = LongParameter (0x89ab)

Now create a table. TO DO: add quantities to the columns.
t = TableDataset ("time series")
t.meta["date"] = DateParameter (Date()) # current date and time
t.meta["equinox"] = StringParameter ("1950")

http://nanotitan.com/software/Libraries/quantity/index.htm

Ref: SPIRE-RAL-DOC-
001964

Issue: 0.2
Date: 14th June 2004
Page: 9 of 11

Document

Specifying Data Products in the Herschel

Interactive Analysis System

t["time"] = Column (Double1d ([1,2,3]), None, =”On-board time, epoch
1958”)
t["dpuCount"] = Column (Int1d ([10,20,30]), None, “DPU clock”)

Generate the column names for the detectors. This could also be done with
a loop, but this way demonstrates a powerful list-processing feature of
Jython. lambda defines an anonymous function and map applies (maps) it
over all the elements of a list.
ndets = 72
dets = map (lambda x,y: "%s%2.2i" % (x,y+1), \
 ["specfarray"]*ndets, range(ndets))

data are zero in this example
for detector in dets: t[detector] = Column (Float1d(3), VOLTS, “detector”)

Now use an array dataset for the mask
a = ArrayDataset (Bool1d(ndets), description="detector mask")

Finally, put the datasets in the product.
Here the descriptions are used as keys.
p.set (t.description, t)
p.set (a.description, a)

A.2 Java Example
Here is another version of the previous example, this time in Java. Again, this is for illustration
purposes and no attempt has been made to make it more object-oriented!

import herschel.ia.dataset.*;
import herschel.ia.numeric.*;
import java.util.Date;
import java.text.*;
import nT.quantity.ElectricPotentialDifference;

/**
 * Example product definition
 * @author SG, March 2004
 */
public class FlatField {
 public static Product createOutput() {

 // Start with the main product, no type supported yet
 Product p = new Product ("output of flat-fielding");
 MetaData meta = p.getMeta();
 meta.set ("obsid", new LongParameter (1234));
 meta.set ("bbid", new LongParameter (0x89ab));
 p.setMeta (meta);

 // Now create a table
 TableDataset t = new TableDataset ("time series");
 meta = new MetaData();
 meta.set ("date", new DateParameter (new Date()));
 meta.set ("equinox", new StringParameter ("1950"));
 t.setMeta (meta);
 t.addColumn ("time", new Column (new Double1d (new double[] {1,2,3}),

null, ”On-board time, epoch 1958”));
 t.addColumn ("dpuCount", new Column (new Int1d (new int[]{10,20,30}),

null, “DPU clock”));

Ref: SPIRE-RAL-DOC-
001964

Issue: 0.2
Date: 14th June 2004
Page: 10 of 11

Document

Specifying Data Products in the Herschel

Interactive Analysis System

 // Add a column for each detector
 final int NDETS = 72;
 NumberFormat format = new DecimalFormat ("00");

 for (int i = 0; i < NDETS; i++) {
 String colName = "specfarray"+format.format (i+1);
 // data are zero in this example
 t.addColumn (colName, new Column (new Float1d(3),

ElectricPotentialDifference.VOLTS, “detector”));
 }

 // Now use an array dataset for the mask
 ArrayDataset a = new ArrayDataset (new Bool1d(NDETS));
 a.setDescription ("detector mask");

 // Finally, put the datasets in the product.
 // Here the descriptions are used as keys.
 p.set (t.getDescription(), t);
 p.set (a.getDescription(), a);
 return p;
 }

 // test program
 public static void main (String[] args) {
 Product p = createOutput();
 System.out.println (p);
 System.out.println (p.get ("time series"));
 System.out.println (p.get ("detector mask"));
 }
}

Ref: SPIRE-RAL-DOC-
001964

Issue: 0.2
Date: 14th June 2004
Page: 11 of 11

Document

Specifying Data Products in the Herschel

Interactive Analysis System

Appendix B. Storing Products In Versant Databases

This section is written with the Versant Database Management System in mind. It is quite possible that
the same principles also apply elsewhere.

B.1 Don’t make data elements too big:
The current implementations of the data classes represent the data internally as Java primitive arrays.
Versant treats these arrays as single objects. This has some implications where large arrays are
concerned:

• Slow apparent startup time as the entire array has to be transferred across the network before a
single element can be accessed.

• It is not possible to access the array without storing its entirety in memory, which can lead to
poor performance and out-of-memory errors.

Exactly what constitutes “big” is hard to define, and dependent on the hardware specification. More
investigation would be useful, but as a rough rule of thumb, array sizes bigger than a quarter of the
available memory should be avoided.
More generally, split multidimensional arrays of significant size up when it makes sense. For example,
a 2-D array can be represented as a 1-D array of row (or column) objects.

B.2 Use the provided API

There is an API in the herschel.ia.io.dbase package that should be used to create persistent
database products from IA products. It is possible that in future it might be able to automatically
perform certain optimisations such as the memory management discussed above. This package
provides quite a low-level API, but it is planned to add one or more higher-level APIs to perform these
functions.

	1	INTRODUCTION	4
	Introduction
	Acronyms
	
	
	API

	D
	Definitions
	Example Product Specification
	Jython Example
	Java Example
	Don’t make data elements too big:
	Use the provided API

