

Tcl/TOPE Reverse Engineering to
MOIS

Version: Draft

Date: 10-Sep-2003

Author: Damien Callet

Reference: ALC-MOIS-RQ-RHEA-0001

Filename: Converter RequirementsCurrent.doc

Approved
by:

Keith Turner
Managing Director

Rhea System S.A.
New Tech Center,
Avenue Einstein 2a,
B-1348 Louvain-La-Neuve,
Belgium

TEL : + 32 10 48 72 50
FAX : + 32 10 45 25 07
www.rheagroup.com

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page ii10 Sepdraft

DISTRIBUTION

Name Number of Copies

DOCUMENT STATUS SHEET

Date Version Author Reason for change

09/09/2003 Draft Damien Callet Draft

DOCUMENT CHANGE RECORD

Date Version Changed Pages/Paragraphs

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page iii10 Sepdraft

TABLE OF CONTENTS
1 INTRODUCTION... 1

1.1 Purpose .. 1
1.2 Overview ... 1
1.3 Coding Standards – This section contains the coding standards for Tcl/TOPE, derived
from the language analysis.Definitions ... 1
1.4 Language Definitions .. 1
1.5 Acronyms and Abbreviations.. 2
1.6 Applicable Documents .. 2
1.7 Reference Documents ... 3

2 LANGUAGE ANALYSIS IN THE CONTEXT OF MOIS... 4

2.1 Tcl Control Structures ... 4
2.1.1 After .. 4
2.1.2 Break ... 4
2.1.3 Catch.. 4
2.1.4 Continue .. 5
2.1.5 Error .. 5
2.1.6 Eval.. 6
2.1.7 For ... 6
2.1.8 Foreach .. 7
2.1.9 If .. 7
2.1.10 Return .. 8
2.1.11 Switch.. 8
2.1.12 Update ... 9
2.1.13 Uplevel .. 9
2.1.14 Vwait ... 10
2.1.15 While ... 10

2.2 Conditions ... 10
2.3 Parameter Access .. 11

2.3.1 Conversion to MOIS TLM Statements ... 12
2.3.2 Conversion To Directive / Function Structures... 13

2.4 TOPE Statements .. 15
2.4.1 Fetch .. 15
2.4.2 GetPARAMETERdata .. 16
2.4.3 Subscribe ... 17
2.4.4 Subscribeset... 18
2.4.5 Unsubscribe... 18
2.4.6 getPACKETdata.. 19
2.4.7 Subscribepacket... 19
2.4.8 Unsubscribepacket .. 20
2.4.9 Nametospid.. 20
2.4.10 Spidtoname.. 20
2.4.11 Tcsend ... 21
2.4.12 getTC_STATUSdata ... 25
2.4.13 attach ... 26
2.4.14 detach .. 26
2.4.15 authorise .. 26
2.4.16 connect .. 27

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page iv10 Sepdraft

2.4.17 disconnect.. 27
2.4.18 newtmdumpfile.. 27
2.4.19 setparameter .. 28
2.4.20 enableparam .. 28
2.4.21 inhibitparam .. 29
2.4.22 enablepacket .. 29
2.4.23 inhibitpacket .. 29
2.4.24 enablegroup ... 30
2.4.25 inhibitgroup ... 30
2.4.26 patchlocation ... 30
2.4.27 patchscript ... 31
2.4.28 patchnumericalcurve ... 32
2.4.29 patchtextualcurve .. 32
2.4.30 patchpolynomialcurve ... 33
2.4.31 patchcurveused .. 33
2.4.32 patchlimit... 34
2.4.33 waittime... 34
2.4.34 call ... 35
2.4.35 callasync .. 35
2.4.36 waitfor ... 36
2.4.37 getshared.. 37
2.4.38 setshared .. 37
2.4.39 lockshared.. 38
2.4.40 unlockshared.. 39
2.4.41 Tellsequence.. 39
2.4.42 Suspend ... 40
2.4.43 putlog... 40
2.4.44 syslog... 40
2.4.45 setrevision.. 40
2.4.46 verified .. 41
2.4.47 prompt ... 41
2.4.48 displaystatus .. 42
2.4.49 bintohex... 43
2.4.50 hextobin... 43
2.4.51 asdtomsec .. 44
2.4.52 Asdtosec .. 44

2.5 Tcl Statements ... 44
2.5.1 append - Append to variable ... 44
2.5.2 array - Manipulate array variables .. 45
2.5.3 bgerror - Command invoked to process background errors.............................. 45
2.5.4 binary - Insert and extract fields from binary strings .. 45
2.5.5 cd - Change working directory.. 47
2.5.6 clock - Obtain and manipulate time .. 47
2.5.7 close - Close an open channel. .. 49
2.5.8 concat - Join lists together... 49
2.5.9 eof - Check for end of file condition on channel... 50
2.5.10 exec - Invoke subprocess(es)... 50
2.5.11 exit - End the application .. 50
2.5.12 expr - Evaluate an expression.. 51
2.5.13 fblocked - Test whether last input operation exhausted all input...................... 52

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page v10 Sepdraft

2.5.14 fconfigure - Set and get options on a channel ... 52
2.5.15 fcopy - Copy data from one channel to another. ... 53
2.5.16 fileevent - Execute a script when a channel becomes readable or writable 54
2.5.17 file - Manipulate file names and attributes.. 54
2.5.18 format - Format a string in the style of sprintf .. 57
2.5.19 gets - Read a line from a channel .. 58
2.5.20 global - Access global variables.. 58
2.5.21 glob - Return names of files that match patterns... 59
2.5.22 incr - Increment the value of a variable... 61
2.5.23 info - Return information about the state of the Tcl interpreter 61
2.5.24 join - Create a string by joining together list elements 61
2.5.25 lappend - Append list elements onto a variable .. 62
2.5.26 lindex - Retrieve an element from a list .. 62
2.5.27 linsert - Insert elements into a list ... 63
2.5.28 list - Create a list.. 63
2.5.29 llength - Count the number of elements in a list ... 64
2.5.30 lrange - Return one or more adjacent elements from a list 64
2.5.31 lreplace - Replace elements in a list with new elements 65
2.5.32 lsearch - See if a list contains a particular element ... 66
2.5.33 lsort - Sort the elements of a list.. 66
2.5.34 memory - Control Tcl memory debugging capabilities. 67
2.5.35 namespace - create and manipulate contexts for commands and variables 67
2.5.36 open - Open a file-based or command pipeline channel 67
2.5.37 pid - Retrieve process id(s).. 68
2.5.38 puts - Write to a channel ... 68
2.5.39 pwd - Return the current working directory.. 69
2.5.40 read - Read from a channel ... 69
2.5.41 regexp - Match a regular expression against a string .. 70
2.5.42 regsub - Perform substitutions based on regular expression pattern matching . 71
2.5.43 rename - Rename or delete a command .. 72
2.5.44 scan - Parse string using conversion specifiers in the style of sscanf 72
2.5.45 seek - Change the access position for an open channel..................................... 73
2.5.46 set - Read and write variables ... 74
2.5.47 socket - Open a TCP network connection... 74
2.5.48 source - Evaluate a file or resource as a Tcl script.. 75
2.5.49 split - Split a string into a proper Tcl list... 75
2.5.50 string - Manipulate strings... 76
2.5.51 subst... 89
2.5.52 tell - Return current access position for an open channel 90
2.5.53 time - Time the execution of a script... 90
2.5.54 trace - Monitor variable accesses .. 90
2.5.55 unknown - Handle attempts to use non-existent commands 90
2.5.56 unset - Delete variables ... 91
2.5.57 upvar - Create link to variable in a different stack frame.................................. 91
2.5.58 variable - create and initialise a namespace variable .. 91

2.6 Generic Requirements ... 91
2.6.1 Functions & Directives.. 92

3 ASSUMPTIONS.. 93

3.1 Untranslated Statements.. 93

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page vi10 Sepdraft

3.2 Conditions ... 93
3.3 Function / Directive Definitions.. 93

4 CODING STANDARDS... 95

4.1 Tcl Language Constraints.. 96
4.2 Other Supported Tcl Statements ... 96
4.3 General TOPE Constraints .. 97

4.3.1 TOPE statements directly reverse ... 97
4.3.2 TOPE statements structure reverse ... 97

4.4 Individual restrictions.. 98

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 110 Sepdraft

1 INTRODUCTION
1.1 Purpose

This document defines the requirements to enable the conversion from a Tcl/TOPE
script to a MOIS procedures.

It also provides a set of coding standards, based on the requirements, which can be used
by authors of Tcl/TOPE procedures to facilitate conversion to MOIS.

1.2 Overview
The requirements here deal systematically with all of the TOPE extensions. Tcl control
structures are also dealt with systematically. Other Tcl commands are dealt with on a
case by case basis (according to their perceived utility in a control system). Tcl
commands not dealt with here will not be supported.

This document consists of the following sections :-

• Language Analysis in the Context of MOIS – This section details the Tcl/Tope
commands and how it should be implemented.

• Assumptions– This section details the assumptions made (generally about changes
to be made to MOIS) that underpin the requirements definition.

1.3 Coding Standards – This section contains the coding standards
for Tcl/TOPE, derived from the language analysis.Definitions

Tcl

An open source, interpreted scripting language. More information can be found at
http://www.tcl.tk/.

Tcl/TOPE

An extension to Tcl for the Herschel / Planck ground control system. This allows flight
procedures to be written in Tcl. The extensions include commands to examine telemetry
and transmit telecommands.

1.4 Language Definitions
Two types of meta language have been used to describe the Tcl/TOPE. In all cases meta
language is written in courier font in this document.

The first corresponds to the statement definitions taken from the Tcl package
documentation and AD1. The formulation is not completely consistent and is generally
used to introduce the Tcl/TOPE statement.

• Bold is used to identify keywords

• Variables may be in normal or italic, and may or may not be contained in angle
brackets (< >).

• Question marks are used to bracket elements that are optional (e.g. if <item> is an
optional argument, it is written ?<item>?).

• An ellipsis (…) is used to denote iterated items (e.g. if <item> is a repeated
argument, it is written <item> … or perhaps <item1> <item2> …).

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 210 Sepdraft

The second is (hopefully) used rather more rigourously, and appears mainly in the
requirements definitions.

• Variables or expressions (or anything that is expanded in more details elsewhere) is
contained in angle brackets (< >).

• Question marks (?) are used as a suffix to indicate the preceding item is optional
(i.e. zero or one occurrences). E.g. if <item> is an optional argument, then it is
written <item>?.

• Plus signs (+) are used as a suffix to indicate repetition one or more times. E.g. if
<item> is a repeated argument that appears at least once, it is written <item>+

• Asterix signs (*) are used as a suffix to indicate repetition zero or more times. E.g. if
<item> is an optional repeated argument , it is written <item>*

• Normal brackets () are used to denote groups. E.g. if <first_item> and
<second_item> are both optional arguments, but both are either present or
absent together, it is written (<first_item> <second_item>)?

• The pipe sign (|) is used as a logical or operator. E.g. if <item> can be either
<alt_1> or <alt_2>, it is written <item> = <alt_1> | <alt_2>

• Other characters stand for themselves. E.g. we could write a Tcl variable reference
as $<var-name> (Tcl variable references are identified by the variable name
prefixed with the dollar sign). Importantly for Tcl, braces { } and square brackets [
] all appear for themselves.

1.5 Acronyms and Abbreviations
OL Operations Language

MOIS Mission Operation Information System

1.6 Applicable Documents
List all the documents with which this document must comply.

ID Document Reference

AD1 Herschel Planck Central Checkout System, System
User Manual v 2.2

H-P-4-TE-MA-0010

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 310 Sepdraft

1.7 Reference Documents
List all the documents referred to in this document, other than applicable documents.

ID Document Reference

RD1

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 410 Sepdraft

2 LANGUAGE ANALYSIS IN THE CONTEXT OF MOIS
2.1 Tcl Control Structures
This section describes if and how the Tcl control structures will be converted into MOIS
structures. Each Tcl control structure (taken from the Tcl package documentation) is discussed
in the subsections below.

2.1.1 After
after <ms>
after <ms> ?script script script ...?
after cancel <id>
after cancel script script script ...
after idle ?script script script ...
after info ?id?
Only the first formulation is handled by MOIS. This suspends execution for a number of
milliseconds identified by the <ms> argument.

This statement will be implemented as a MOIS CTL/PSE statement with the wait period
derived from the supplied <ms> argument.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter will recognise simple Tcl/TOPE statements of the form
‘after <ms>’ described above and convert these to a MOIS CTL/PSE
statement.

b. The converter will raise an error and fail the statement conversion if the
<time> argument (interpreted as a literal) is not a positive integer.

2.1.2 Break
break
This statement is used to terminate loop execution early.

This statement will be implemented as a directive in MOIS procedure.

The requirements on the MOIS converter are as follows:-

a. The converter will recognose compound Tcl/TOPE statements of the form
‘break’ and convert these as a MOIS directive statement.

2.1.3 Catch
catch <script> ?<varName>?
This statement is used to execute a script and catch any resultant errors. The
<script> is executed as a Tcl/TOPE and the statement returns a boolean value
identifying whether or not the <script> executed without errors.

<varName> is an optional variable name argument. If the <script> executes with
errors, the corresponding variable is set to the error description. Otherwise the variable
is set to the result of the <script> execution.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 510 Sepdraft

The statement is implemented as a MOIS function with two arguments :-

• <script> - String, contains the Tcl/TOPE to be executed. Mandatory.

• <varName> - String, contains a variable name. Optional.

The MOIS function will return a value of Boolean type

The requirements on the MOIS converter are as follows :-

a. The converter will recognise compound Tcl/TOPE statements of the form ‘
[catch {<script>} <varName>?]’ and convert these as a MOIS
function call to the catch function.

b. The converter will create a MOIS local variable of Boolean type, assuming a
variable of this name does not already exist.

c. The converter will raise an error and fail the statement conversion if a MOIS
variable already exists with the same name and this is not of the Boolean type.

d. If <varName> is specified, the converter will create a MOIS local variable with
the name <varName> of the String type, assuming a variable of this name does
not already exist.

e. If <varName> is specified, the converter will raise an error and fail the
statement conversion if a MOIS variable already exists with name <varName>
and this is not of the String type.

2.1.4 Continue
continue
This statement is used to terminate the current loop iteration early, and move to the
next.

This statement will be implemented as a MOIS directive statement.

The requirements on the MOIS converter are as follows:-

a. The converter will recognise compound Tcl/TOPE statements of the form
‘continue’ and convert it to the corresponding MOIS directive statement.

2.1.5 Error
error message ?info? ?code?
Statement Raises an error – particularly for propagating unhandled errors out of a catch
statement script.

This statement will be implemented as a MOIS directive statement.

• Message – String containing the explanation of error, it’s a mandatory
argument.

• Info – Variable containing usefull information of the error, optional.

• Code – Variable containing the error code happened, optional.

The requirements on the MOIS converter are as follows:-

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 610 Sepdraft

The converter will recognise compound Tcl/TOPE statements of the form ‘error’
and convert it to the corresponding MOIS directive statement.

The requirements on the MOIS convreter are as follows:-

a. The converter will recognise compound Tcl/TOPE statements of the
form ‘error message ?info? ?code?’ and convert it to the
defined MOIS directive statement.

b. MOIS converter will raise an error and fail the conversion if
‘message’ is not there.

2.1.6 Eval
eval arg ?arg ...?
Executes the arguments (arbitrary length Tcl script) as a script in a new instance of the
Tcl interpreter and returns the result or the error code. .

This statement will be implemented as a MOIS function. This defined function should
have one mandatory argument and several optional arguments.

The requirements on the MOIS converterare as follows :-

a. The converter will recognise compound Tcl/TOPE statements of the form
‘eval {<script>}’. This statement shall be converted as an FCT statement
with the previously defined characteristics.

2.1.7 For
for start test next body
This is a Tcl ‘for loop’ structure. The body is repeatedly executed while the test
evaluates to true. The start argument is Tcl code executed prior to the first iteration
of the loop (usually initialising the loop control variable). The next argument is Tcl
code executed at the end of each loop iteration (usually modifying the loop control
variable).

This will be converted into a MOIS while loop. The start argument is inserted
immediately prior to the start of the while loop, the next argument is appended to the
body of the loop and the test argument is used as the while loop condition. The body
argument is used as the while loop body.

The requirements on the MOIS converter are as follows :-

a. The converter shall recognise compound Tcl/TOPE statements of the form ‘for
{<start>} {<test>} {<next>} {<body>}’. Such statements shall be
converted as a MOIS While structure.

b. The <start> argument shall be treated as Tcl/TOPE code and converted to
MOIS procedure steps/statements. These steps/statements shall be inserted
immediately prior to the While step.

c. The <test> argument shall be treated as a Tcl/TOPE condition and translated
according to the requirements in section 2.2. The MOIS version of the condition
shall be inserted as the condition for the While step.

d. The <body> argument shall be treated as Tcl/TOPE code and converted to
MOIS procedure steps/statements. These steps/statements shall be inserted as

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 710 Sepdraft

subordinates to the MOIS loop body step, which is immediately after the While
step.

e. The <next> argument shall be treated as Tcl/TOPE code and converted to
MOIS procedure steps/statements. These steps/statements shall be appended as
subordinates to the MOIS loop body step (i.e. these statements are executed in
the loop body, but after the code corresponding to the <body>.

2.1.8 Foreach
foreach varname list body
foreach varlist1 list1 ?varlist2 list2 ...? body
The foreach command implements a loop where the loop variable(s) take on values
from one or more lists. In the simplest case there is one loop variable, varname, and one
list, list, that is a list of values to assign to varname. The body argument is a Tcl script.
For each element of list (in order from first to last), foreach assigns the contents of the
element to varname as if the lindex command had been used to extract the element,
then calls the Tcl interpreter to execute body.

In the general case there can be more than one value list (e.g. list1 and list2), and each
value list can be associated with a list of loop variables (e.g. varlist1 and varlist2).
During each iteration of the loop the variables of each varlist are assigned consecutive
values from the corresponding list. Values in each list are used in order from first to
last, and each value is used exactly once. The total number of loop iterations is large
enough to use up all the values from all the value lists. If a value list does not contain
enough elements for each of its loop variables in each iteration, empty values are used
for the missing elements.

This Tcl structure can’t be mapped to any loop structure in MOIS.However it will be
possible to implement it as a MOIS directive with three mandatory arguments.

• <varname> - variable into the foreach control structure. It will be a string
argument into the directive

• <varlist1> - list of variables. It will be a string argument into the directive.

• <list> -list of parameter used into the <foreach> body.

• <body> - A string representing the list of Tcl/TOPE commands to execute by
going through the list of parameter previously defined.

a. The requirement on the MOIS converter are as follows:-MOIS converter will
recognise the two following formulation:

• foreach <varname> {list} {body}

• foreach <varlist1> {list1} ?<varlist2> {list2
}...? {body}

b. Converter will raise an error and the conversion will fail if the three
mandatory paramters are not correct.

2.1.9 If
if expr1 ?then? body1 elseif expr2 ?then? body2 elseif ...
?else? ?bodyN?

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 810 Sepdraft

This construct provides if-then-else functionality, it also effectively provides a switch
functionality through the repeated elseif clauses.

MOIS will handle all variants of this structure. Simple if-then or if-then-else structures
shall be converted to MOIS IF step. More complex forms, with any number of elseif
clauses shall be converted to the MOIS switch statements.

Note that the handling of conditions is defined in this document – see section 2.2.

The requirements on the MOIS converter are as follows :-

a. The converter shall recognise compound Tcl/TOPE statements of the form ‘if
{<condition>} (then)? {<then-clause>} ((else)? {<else-
clause>})?’. These shall be converted into MOIS if step structures.

b. An MOIS ‘if’ step shall be created. This shall contain one or more statements to define
the condition specified in <condition>.

c. A MOIS step shall be inserted after the ‘if’ step and shall contain the steps / statements
converted from the <then-clause>.

d. If the <else-clause> is specified, a further MOIS step shall be appended and shall
contain the steps / statements converted from the <else-clause>.

e. The converter shall recognise compound Tcl/TOPE statements of the form ‘if
{<condition>} (then)? {<then-clause>} (elseif {<condition>}
(then)? {<elseif-clause>})+ ((else)? {<else-clause>})?’. These
shall be converted into MOIS switch structures.

f. An MOIS ‘switch’ step shall be created. This shall contain several sub-steps (one for
each then or elseif clause). Each sub-step shall contain one or more statements to define
the condition specified in <condition> for the clause.

g. A MOIS step shall be appended after the ‘switch’ step corresponding to each then, elseif
or else clause. Each step shall contain the steps / statements converted from the <then-
clause>, <elseif-clause> or <else-clause> as appropriate.

2.1.10 Return
return ?-code code? ?-errorinfo info? ?-errorcode code?
?string?

This statement returns control from a procedure to the calling code.

MOIS can’t manage a return result of a called procedure. The only behaviour supported
by MOIS procedure will be to exit the procedure on a return Tcl statement, which will
be implemented as a directive. See section 2.5.11.

2.1.11 Switch
switch ?options? string pattern body ?pattern body ...?
switch ?options? string {pattern body ?pattern body ...?}
The switch command matches its string argument against each of the pattern arguments
in order. As soon as it finds a pattern that matches string it evaluates the following body
argument by passing it recursively to the Tcl interpreter and returns the result of that

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 910 Sepdraft

evaluation. If the last pattern argument is default then it matches anything. If no pattern
argument matches string and no default is given, then the switch command returns an
empty string.

The options determine the type of pattern matching performed (exact, glob or regexp).

The practicality of implementing a conversion is somewhat dependent on the condition
definitions. However, such a conversion would involve mapping the pattern
comparisons back to complete conditions in the MOIS switch construct.

• This command is supported by MOIS and will be implemented as a MOIS
switch step. Only the default pattern matching will be implemented by MOIS
procedure(exact matching).String – It will a variable name of type string.

• Pattern – The value against which the string argument will be matched.

• Body – Part to evaluate if the corresponding pattern matches the string
argument.

The requirements on MOIS converter are as follows:-

a. MOIS converter will recognise compound Tcl/TOPE statements of the
form:‘switch ?options? string {pattern body
?pattern body ...?}’

b. For any value of options, the matche type will the default one ie the exact
one.

c. If the compound structure is not as the one defined in section a. then the
MOIS converter will raise an error and fail the conversion.

2.1.12 Update
update ?idletasks?
This command is used to bring the application ‘up to date’ by entering the event loop
repeatedly until all pending events (including idle callbacks) have been processed. If the
idletasks keyword is specified as an argument to the command, then no new events or
errors are processed; only idle callbacks are invoked. This causes operations that are
normally deferred, such as display updates and window layout calculations, to be
performed immediately.

This statement will be implemented as a MOIS directive with a single optional
argument :-

idletasks – optional switch argument

The requirements on the MOIS converter are as follows :-

a. The converter shall recognise simple Tcl/TOPE statements of the form
‘update (idletasks)?’ and convert these as MOIS update directives.

2.1.13 Uplevel
uplevel ?level? arg ?arg ...?
This statement allows a Tcl script to be executed within a procedure call scope above
the current scope. E.g. if the variable p is defined in procedures x & y and the procedure
x calls procedure y, then a call to uplevel in y would allow script to operate on the

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 1010 Sepdraft

variable p in the scope of procedure x (instead of the scope of procedure y as would
normally be the case).

MOIS converter won’t implement this statement.

2.1.14 Vwait
vwait varName
This command enters the Tcl event loop to process events, blocking the application if
no events are ready. It continues processing events until some event handler sets the
value of variable varName. Once varName has been set, the vwait command will return
as soon as the event handler that modified varName completes. varName must globally
scoped (either with a call to global for the varName, or with the full namespace path
specification).

This statement should be implemented as a MOIS directive with a single mandatory
argument :-

• varName – optional switch argument

The requirements on the MOIS converter are as follows :-

a. The converter shall recognise simple Tcl/TOPE statements of the form ‘vwait
<var-name>’ and convert these as MOIS vwait directives.

2.1.15 While
while test body
This statement defines a while loop structure. The Tcl script body is executed
repeatedly until the Tcl script test evaluates to false.

The prototype converter converts these Tcl structures directly into the MOIS while
construct.

Note that the handling of conditions is defined in section 2.2. The current prototype just
converts the Tcl/TOPE condition script as a comment statement.

a. The requirements on the MOIS converter are as follows :-The converter shall
recognise compound Tcl/TOPE statements of the form ‘while
{<condition>} {<body>}’. These shall be converted into MOIS
while structures.

b. A MOIS ‘while’ step shall be created. This shall contain one or more statements
to define the condition specified in <condition>.

c. A MOIS step shall be inserted after the ‘while’ step and shall contain the steps /
statements converted from the <body>.

2.2 Conditions
The current implementation of MOIS allows conditions to be expressed as logical
combinations of VAR and TLM statement types (i.e. checks on the values of either
MOIS variables or telemetry parameters). The syntax allows the use of AND and OR
operators to combine the condition elements. The syntax also allows the use of brackets
to control the evaluation order of the logical expressions.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 1110 Sepdraft

For Tcl/TOPE, in fact, this formulation could generate arbitrary conditions by using
expr statements to pre-evaluate complex conditions into Boolean variables which can
then be used in simple MOIS condition definition. In order to effect conversion,
however, the original Tcl/TOPE would have to be defined in the same way.

The discussion below therefore relates only to the simple VAR / TLM formulation,
linked by AND and OR operators.

The definition of the conditions that can be translated is given below :-
<condition> = \(<condition-element> (<logical-operator>
<condition-element>)* \)

<logical-operator> = && | \|\| (i.e. either && or | |, the two Tcl logical
operators)
<condition-element> = <tm-check> | <var-check>

<tm-check> = see section 2.3.1.1. for the definition of a TM check as used in a
condition
<var-check> = $<var-name> <comparison-operator> ($<var-
name> | <value> | <tm-value>)

<comparison-operator> = a Tcl/TOPE comparison operator equivalent to the
comparison operators available to the MOIS VAR statement (== | != | > | <
| >= | <=)

<tm-value> = [getengvalue [fetch <tm_name>]]

The MOIS requirements are as follows :-

a. The MOIS converter shall identify and convert conditions defined
according to the definition of <condition> above.

b. Each <condition-element> shall be translated as a separate MOIS
statement within the same step.

c. The created MOIS statements shall appear in the same order as they
appear in the <condition>.

d. In cases where the <condition-element> is associated with a <logical-
operator>, the step, in which statements has just been defined, will define
the condition in the step expression builder.

e. Each <var-check> shall be translated as a MOIS VAR statement.

f. Each <tm-check> shall be translated as a MOIS TLM statement.

2.3 Parameter Access
MOIS allows verification of TM parameter references against the s/c database, so it is
important to ensure that all TM references made within Tcl/TOPE can be translated into
the relevant MOIS structures. Any TM references that are not converted will be missed
from the automatic validation provided by MOIS.

The MOIS TLM statements, to which the Tcl/TOPE parameter references will be
converted, can be used either in a condition (e.g. for an if or while stucture) or as part of
a step. In the latter case, the MOIS TLM statement represents a telemetry check with no

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 1210 Sepdraft

explicit action as a result of check pass or failure (although the action might be
described in a comment).

Tcl/TOPE includes several parameter access structures which will not fit into the MOIS
TLM statement model, but for which access via MOIS will be permitted. These are
implemented as MOIS directives & functions (as described in section 2.4.2).

2.3.1 Conversion to MOIS TLM Statements
The following subsections deal with the conversion of parameter access statements from
Tcl/TOPE to MOIS. These are the preferred structures for dealing with parameter
access statements as they effect the generation of the TLM statements in MOIS.

2.3.1.1 As Used in Conditions
When used as part of a condition, the Tcl/TOPE must match the following pattern,
which must in turn be recognised by the MOIS converter.
{[getengvalue [fetch <tm_name>]] <operator> <eng_value>}

where :-

• <tm_name> is a literal string corresponding to a TM parameter name

• <operator> is a Tcl/TOPE comparison operator equivalent to the comparison
operators available to the MOIS TLM statement (== | != | > | < | >= |
<=)

• <eng_value> is a literal string or numeric value with which the TM parameter is
compared

As it was defined in section 2.2, Several coditions can be combined in a same step with
the expression builder, which allows the handling of AND and OR operators and the
handling of brackets.

The MOIS converter must match patterns of this form, creating a TLM statement
corresponding to each and relating to other TLM (and other) statements according to the
condition context.

Mois converter requirements :-

a. The converter shall recognise compound Tcl/TOPE statements in the form
described above, within the context of a condition definition, and convert these
to a MOIS TLM statement within an equivalent condition context in MOIS.

b. The converter shall raise an error and fail the statement conversion if the TM
parameter <tm_name> is not found in the s/c DB.

c. The converter shall raise an error and fail the conversion if the <eng_value> is
inconsistent with the TM parameter as defined in the s/c DB (numeric value out
of range, numeric value outside calibration range, text value not matrching a
defined alias).

2.3.1.2 As Used Outside Conditions
The converter should be able to recognize the following formulation and then convert it
in MOIS procedure as a PERFORM step containing one verify TM statement.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 1310 Sepdraft

if {[getengvalue [fetch <tm_name>]] <operator>
<eng_value>}{ … exit}

where :-

• <tm_name> is a literal string corresponding to a TM parameter name

• <operator> is a Tcl/TOPE comparison operator equivalent to the comparison
operators available to the MOIS TLM statement (== | != | > | < | >= |
<=)

• <eng_value> is a literal string or numeric value with which the TM parameter is
compared

Mois converter requirements :-

a. The converter shall recognise compound Tcl/TOPE statements in the form
described above and convert these to a MOIS TLM statement.

b. The converter shall raise an error and fail the statement conversion if the TM
parameter <tm_name> is not found in the s/c DB.

c. The converter shall raise an error and fail the conversion if the <eng_value> is
inconsistent with the TM parameter as defined in the s/c DB (numeric value out
of range, numeric value outside calibration range, text value not matrching a
defined alias).

2.3.2 Conversion To Directive / Function Structures
The detailed requirements here are described in section 2.4, but these introduce some
constraints that may not be immediately obvious. These are described here.

2.3.2.1 TM Parameter Access
The parameter access statements in Tcl/TOPE are detailed in sections 2.4.1 to 2.4.5. In
all cases the MOIS converter will only handle parameter access conforming to the
following pattern.

Tcl/TOPE allows the way to set up the TM parameter attributes using either a fecth or
subscribe whereas MOIS allows to set up the value of TM parameter in a variable.

Then MOIS will recognise Tcl statement corresponding to the patterns described in the
relevant section i.e.:-

• set <var> [getrawvalue[fetch <param-name>]]

• set <var> [getengvalue[fetch <param-name>]]

MOIS will implement it as a MOIS SET Var statement telemetry.

If the TM parameter attributes use subscribe then MOIS will implement it as a
directive see section 2.4.3.

The <var> must be a variable of type depending to the return type of functions called.

The <param-name> must be a string literal representing the TM parameter name.
Only literals are allowed here so that the TM parameter can be verified against the s/c
DB.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 1410 Sepdraft

The subscribe function will be recognized by converter and will be implemented as a
directive – see section 2.4.3.

The unsubscribe function can be called at any time (using the literal TM parameter
name as argument) to cancel a subscription and will be implemented as a directive.

The key points here are as follows :-

• Obtaining useful access to a TM parameter attribute requires three Tcl/TOPE
statements (a set / fetch followed by a set / getPARAMETERdata)

• This rather rigid structure is required to facilitate the recognition and conversion
of the Tcl/TOPE into MOIS.

• The MOIS converter can only handle conversion of simple statements (i.e. those
without embedded command substitutions) plus compound statements that
conform to specific structures defined in this document.

2.3.2.2 TM Packet Access
The packet access statements in Tcl/TOPE are detailed in sections 2.4.6 to 2.4.8. In all
cases the MOIS converter will only handle packet access conforming to the following
pattern.

Set up a variable containing the TM packet attributes using a subscribepacket.
The variable name must be new (not used before in the procedure) or an old one that
was originally set by a call to subscribepacket.MOIS converter will implement a
MOIS wait for packet as soon as the following relevant pattern is detected:-

• subscribepacket <spid> referby <varname>
waitfor ?–timeout <time>? <varname>

unsubscribepacket <spid>

The <spid> must be a literal representing the TM packet id. Only literals are allowed
here so that the TM packet id can be verified against the s/c DB.

Note that once a variable is set up with the TM packet attribute list, it can be used as an
argument in a call to waitfor as in the previous pattern. Otherwise it can be used as
an argument to one of the getPACKETdata functions to extract one of the packet
attributes and set it to the variable, i.e. :-

• set <var_1> [<getPACKETdata> <var>]

Once the final variable <var_1> is set up, it can be used in any operation appropriate
to its type (corresponds to the return type of the getPACKETdata function.

The unsubscribepacket function can be called at any time (using the literal TM
packet id as argument) to cancel a subscription.

The key points here are as follows :-

• This rather rigid structure is required to facilitate the recognition and conversion of
the Tcl/TOPE into MOIS.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 1510 Sepdraft

• The packet access traces back to the literal packet id as the argument to the
subscribepacket. Using a literal here ensures that MOIS can validate the TM
packet id used against the s/c DB.

• The MOIS converter can only handle conversion of simple statements (i.e. those
without embedded command substitutions) plus compound statements that conform
to specific structures defined in this document.

2.4 TOPE Statements
This section addresses each of the commands in the TOPE extensions to Tcl. All of the
commands are discussed in turn, with a brief description of the command. The
implementation of the command in MOIS is detailed along with the requirements on the
MOIS converter to achieve the conversion. Any constraints on the conversion or
implementation of the command are also covered.

2.4.1 Fetch
Fetch <param-name>

This statement returns a list of the TM parameter attributes (including current value),
which can then be accessed by the GetPARAMETERdata convenience functions.

Fetch command use will depend of the way it will be used. Examples of the use of
Fetch command are described in the relevant section i.e.:-

• TCL Code:’set real1000 [getrawvalue [fetch SSC01000]]’
will be implemented to a MOIS Set Var Statement telemetry having a radix
raw.

• TCL code:’while { [getengvalue [fetch YZS17900]] ==
"CONNECTED" }’ will be implemented to a MOIS WHILE step with a
condition being a MOIS verify TLM statement having an alias radix.

To summarize the fetch command will be implemented in MOIS procedure, either as a
MOIS SET variable statement telemtry or as a MOIS verify TLM statement.The
requirements on the MOIS converter are as follows:

a. The converter shall recognise Tcl/TOPE compound statements of the form

Set <var-name> [<fn> [fetch <param-name>] or shall recognize (IF|WHILE) {[<fn>
[fetch <param-name>] == <value>}. <fn> should be one of functions defined in
next part.

b. The converter shall create a MOIS local variable in case of Set statement with
the name <var-name> depending of the return type of <fn> function used.

c. It will raise an error and fail the conversion if MOIS local variable already exists
and this is not the appropriate type.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 1610 Sepdraft

2.4.2 GetPARAMETERdata
This consists of a set of functions for accessing the specific attributes from a list of all
the variable attributes (returned from the Fetch command).

• getname <parval>

• getrawvalue <parval>

• israwvaluevalid <parval>

• getrawvalidity <parval>

• getengvalue <parval>

• isengvaluevalid <parval>

• getengvalidity <parval>

• getdefaultvalue <parval>

• isdefaultvaluevalid <parval>

• getdefaultvalidity <parval>

• getextractedvalue <parval>

• getsccstate <parval>

• getoolstate <parval>

• gettimestamp <parval>

• <parval> -It representing the return value of a fecth command.

• getname –Since TM name is passed as paramater to fetch TM characteristic,
getname is obvious. Return value will be a string.

• getrawvalue – As it is defined above it will depend of the context in which it
will be used.

• israwvaluevalid –The converter shall implement it as a function, which will
return a boolean

• getrawvalidity – The converter shall implement it as a function, which will
return an integer.

getengvalue – It will be implemented as getrawvalue, as described above.

• isengvaluevalid – The converter will implement it as a function returning a
boolean.

• getengvalidity – The converter will implement it as a function returnong an
integer.

• getdefaultvalue – It will be implemented as a function, return value needs to
be dfined.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 1710 Sepdraft

• isdefaultvaluevalid –The converter will implement it as a function
returning a boolean.

• getdefaultvalidity – The converter will implement it as a function
returnong an integer.

• getextractedvalue – The converter shall implement it as a function, the return vaue
needs to be defined.

• getsccstate – The converter shall implement it as a function, which will return one of
the four following values: “SCC_INIT”, “SCC_UNINT”, “SCC_DISABLE” or
“SCC_OFF”.

• getoolstate – The converter shall implement it as a function returning a string
(‘NOMINAL’, ‘WARNING’ or ‘ALARM’)

• gettimestamp – The converter shall implement it as a function returning a
string.

Each function describes above will be implemented as a MOIS FCT statement except
getrawvalue and getengvalue. These function will take two parameters:

• fetch will be a delimeter .

• <param-name> will be the name of parameter of type string.

The requirements on the MOIS converter are as follows :-

a. The converter shall recognise compound Tcl/TOPE statements ‘[<fn> fetch
<param-name>]’ (with <fn> corresponding to each of the
GetPARAMETERdata statements, which shall be implemented as function) and
convert these as MOIS FCT statement. Then a MOIS local variable will be
created to get the return value of functions.

b. The converter shall recognise compound Tcl/TOPE statements of the form ‘set
<var-name> [<fn> fetch <param-name>]’ and convert this as MOIS
SET variable statement of set type telemetry. It should be happened when <fn>
is ‘getrawvalue’ or ‘getengvalue’.

d. The `converter shall recognise compound Tcl/TOPE statements of the form
‘<control>([<fn> fetch <param-name>]== <value>’ and
convert this as MOIS VERIFY Telemetry statement. <control> shall be a
step of type decision(IF) or loop(WHILE/REPEAT). It will happenif <fn> is
‘getrawvalue’ or ‘getengvalue’.

e. If the converter needs to create a local variable, it shall raise an error and fail the
statement conversion if a MOIS variable already exists with name <var-
name> and this is not of the appropriate type.

2.4.3 Subscribe
subscribe <param-name> referby <var>

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 1810 Sepdraft

This statement associates a TM parameter with a variable name similarly to the Fetch
statement. However, in this case the variable is updated with the current list of TM
parameter attributes each time the TM parameter changes. It can be used in conjunction
with the waitfor statement to perform some task whenever the TM value changes.

This statement should be implemented as a MOIS directive with three mandatory
arguments:

• <param-name> - MOIS can supply value as a TM name.

• referby – fixed parameter

• <var> - string argument representing a variable name

The requirements on the MOIS converter are as follows :-

a. The converter shall recognise simple Tcl/TOPE statements of the form
‘subscribe <param-name> referby <var>’ and convert these as
MOIS subscribe directives.

b. The converter shall raise an error and fail the statement conversion if the
<param-name> argument is not a valid TM name defined in the s/c DB.

2.4.4 Subscribeset
subscribeset <param-list> referby <var>

This statement is similar to the Subscribe statement. However, in this case a set of TM
parameters is associated with a root variable name. In fact a set of variables with names
in the form ‘<var>_<param>’ are created.

This statement will be implemented by MOIS procedure as a directive . The directive
will have the following parameters:

• <param-list> String containing the list of parameters.

• Referby <var> String being the name of variable with the referby
delimiter.

The requirement of MOIS converter are as follows:-

a. The converter shall recognise simple Tcl/TOPE statements of the form
‘subscribeset <param-list> referby <var>’ and convert
these as MOIS subscribeset directives.

b. The converter shall raise an error and fail the statement conversion if the
<param-list> argument is not a correct.

2.4.5 Unsubscribe
unsubscribe <param-name>

unsubscribe <param-list>

unsubscribe -all

This statement cancels a previous subscription to one or more TM parameters.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 1910 Sepdraft

In this statement, the TM parameter name(s) used as the argument in the first two cases
should be validated by MOIS. Due to the complications of handling a list of parameters
in the second case, this second form of the statement is not supported by MOIS.The
different forms of the statement mean that it must be implemented as a three MOIS
directives. The first will be called ‘unsubscribe’ with the mandatory argument :-

• <param-name> - MOIS can supply value as a TM name.

The second will be called ‘unsubscribe’ with the mandatory argument:-

• <param-list> - It sill be a string containing the list of parameters.

The third will be called ‘unsubscribe –all’ and won’t have arguments.

The requirements on the MOIS converter are as follows :-

a. The unsubscribe statements operating on a single parameter shall be
implemented as a MOIS directive.

b. The unsubscribe statement operating on all parameters shall be implemented as a
separate MOIS directive.

c. The converter shall raise an error and fail the statement conversion if the <
param-name> or <param-list> argument is not a valid TM name defined
in the s/c DB.

2.4.6 getPACKETdata
This consists of a set of functions for accessing the attributes of a variable representing
a TM packet (returned as a result of calls to the Subscribepacket statement).

• getrawdata <pktval>

• getpusapid <pktval>

• getpustype <pktval>

• getpussubtype <pktval>

• getfilingtime <pktval>

• getsrcseqcnt <pktval>

These functions can’t be implemented in MOIS procedure because MOIS can’t manage
properly the argument <pktval>,which should be packet attributes.

2.4.7 Subscribepacket
subscribepacket <spid> referby <var>

This statement associates a TM packet with a variable name, the variable is updated
with the current list of packet attributes each time the packet changes. It can be used in
conjunction with the waitfor statement to perform some task whenever the TM packet
changes.

This statement should be implemented as a MOIS directive with three mandatory
arguments

• <spid> - packet id type, such that MOIS can validate the supplied value as a
packet name.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 2010 Sepdraft

• referby – fixed parameter

• <var> - string argument representing a variable name

The requirements on the MOIS converter are as follows :-

a. The subscribe statement shall be converted as a MOIS directive.

b. The <var> argument represents a variable name. The converter shall create an
appropriate MOIS local variable corresponding to this argument if it does not
already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
local variable corresponding to the <var> argument already exists, but is of an
inappropriate type (must be a string).

The converter shall raise an error and fail the statement conversion if the <spid> argument is
not a valid packet id defined in the s/c DB.

2.4.8 Unsubscribepacket
unsubscribepacket <spid>

This statement cancels a previous subscription to a single TM packet.

This statement should be implemented as a MOIS directive with a single mandatory
argument :-

• <spid> - packet id type, such that MOIS can validate the supplied value as a
packet name.

The requirements on the MOIS converter are as follows :-

a. The unsubscribepacket statement shall be implemented as a MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<spid> argument is not a valid packet id defined in the s/c DB.

2.4.9 Nametospid
Nametospid <pktName>

This statement convert packet name from name in the SDB to SCOS2000 packet ID
(SPID)

This statement will be implemented as a MOIS function with a single mandatory
argument:

• <pktName> - packet name, type will be a string. If this packet name doesn’t
exist then an empty string will be returned.

2.4.10 Spidtoname
Spidtoname <spid>

Convert SCOS2000 packet ID (SPID) to packet name stored in the SDB

This statement will be implemented as a MOIS function with a single mandatory
argument:

• <spid> - packet id, type will be an integer. If this packet id doesn’t exist then
an empty string will be returned.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 2110 Sepdraft

2.4.11 Tcsend
tcsend <command-name> ?referby <var>? ?<Options>...?
?<Parameters...>?

This statement is used to send telecommands to the s/c. The statement requires the
<command-name> parameter, in order for MOIS to validate this against the available
commands, this must be specified as a literal.

The optional referby <var> clause is used to associate the command with a
variable in order to trace the command progress (PTV, CEV, etc). The variable values
should be accessed using the getTC_STATUSdata convenience functions.

The optional <Parameters> list defines the command parameter values to be used
for this instance of the command. Each parameter is defined by a Tcl list (contained in
braces) in the following format.
{ <name> <value> ?<format>? ?RAW|ENG|DEFAULT? }
Where :-

• <name> - Parameter name

• <value> - Parameter value.

• <format> - Format of the value:

¾ SH - short

¾ LO - long

¾ US - unsigned short

¾ UL - unsigned long

¾ FL - float

¾ DO - double

¾ CH - char

¾ BO - Boolean

¾ OC - octet

¾ ST – string (default if format is not specified)

¾ BS - binary string

¾ TI - time

• RAW|ENG|DEFAULT

¾ RAW - specifies that this is a raw (uncalibrated) value (default if no option is
specified).

¾ ENG - specifies that this is an engineering (calibrated) value.

¾ DEFAULT - specifies to use the default value from the SDB

Note that :-

• If the DEFAULT keyword is used, an empty string should be used for <value>
and <format>. Any specified values will be replaced by the s/c DB defaults for
the command parameter.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 2210 Sepdraft

• Tcl/TOPE allows a file to be referenced for a parameter value by prefixing the
<value> with a “@” character (file path follows the “@”). This formulation is not
supported by MOIS.

• Multiple parameters are specified by adding further parameter definitions, separated
by spaces, e.g. tcsend X123 {P001 1} {P002 2} defines the command
X123 to be sent with parameters P001 set to 1 and P002 set to 2.

The main complication of the statement lies in the formatting of the optional
<options>. In general, each of these options consists of a keyword followed by a
single argument or an argument list (contained in braces). The keywords, their
arguments and a discussion of the function in each case is given below.

• releasetime <time>
The absolute time when the command shall be released. <time> must be an
absolute or (positive) relative time in the TOPE/SCOS2000 time format. If
unspecified, the default value is ASAP.

• executiontime <time>
The absolute time when the command shall be executed (i.e. the execution timetag).
<time> must be an absolute time in the TOPE/SCOS2000 time format. If
unspecified, the default value is ASAP (i.e. the command should be executed
directly by the spacecraft).

• checks {<staticPTVflag> <dynamicPTVflag> <CEVflag>} or
• checks <checkFlag>

Defines which of the dynamic & static PTV (Pre Transmission Verification) and
CEV (Command Execution Verification) checks should be performed for the current
command. There are two formulations, one allowing individual control of the check
flags and the other switching all the check flags on or off together. The allowed flag
values are given below :-
¾ staticPTVflag = SPTV | SPTV_OFF

¾ dynamicPTVflag = DPTV | DPTV_OFF

¾ CEVflag = CEV | CEV_OFF

¾ checkFlag = ALL | NONE

If unspecified, the default value is ALL.

• ack <ackflags>
Specifies the CEV reporting to be applied for the command. <ackflags> consists of
a list of one or literals (if more than one, they appear in braces in a space separated
list as per normal Tcl rules). The presence of each literal indicates that the
corresponding CEV reporting should be performed, absence indicates the reporting
should not be performed. The literals are :-

¾ ACCEPT

¾ START

¾ PROGRESS

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 2310 Sepdraft

¾ COMPLETE

¾ ALL – indicates all the reporting should be performed

¾ NONE – indicates no reporting should be performed

If unspecified, defaults are taken from the s/c DB (presumably from the command
definition – TBC).

• id <id>
This option is used to specify a TC ID (or “Observation ID”). This TC ID will be
included in the command history archive of the CCS. The value is an arbitrary
positive integer number of default value 0 (this value appears in the archive if the
option is not used).

• NOCRC
When specified, suppresses the CRC checksum calculation by the CCS.

• patch { { <offset> <mask> <value> }.. }
Specifies a list of patches to be applied to the encoded TC packet. This is not dealt
with in detail here, as it can’t be supported by MOIS. It also seems unlikely that it
would be used in flight.

This statement will be implemented as a MOIS CMD statement.

In all cases, the tcsend arguments must be literal values (i.e. not results of command
substitutions or variable values) in order to be translated and verified by MOIS.

a. The converter shall attempt to convert all Tcl/TOPE tcsend statements to
MOIS CMD statements.

b. The converter shall raise an error and fail the statement conversion if the
<command-name> (when translated as a literal value) does not correspond to a
TC in the s/c DB.

c. The converter shall identify the presence of the referby keyword in the statement
and identfy the subsequent referby parameter name (as a literal). The parameter
shall be created as a MOIS local parameter, type of it needs to be confirmed.

d. The converter shall raise an error and fail the statement conversion if the referby
parameter already exists as a MOIS local parameter and is not of the type it
should be.

e. The converter shall associate the created MOIS CMD statement with the
identified referby parameter (assuming an error was not generated above).

f. The converter shall identify each TC parameter defined in the statement.

g. For each parameter, the converter shall raise an error and fail the statement
conversion if the parameter name specified (as a literal) does not match a
parameter for the TC defined in the s/c DB.

h. For each parameter, the converter shall raise an error and fail the statement
conversion if the specified parameter attributes (value & format) are inconsistent
with the parameter definitions for the TC defined in the s/c DB. Inconsistencies
include (but are not restricted to) the following :- numeric value out of range,
alias value not defined in DB, types not convertible. This does not apply if the

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 2410 Sepdraft

parameter is set to DEFAULT (i.e. use s/c DB defaults) – in this case we don’t
care what the parameter attributes are.

i. For each DEFAULT parameter, the converter shall build the MOIS CMD
statement using the s/c DB defaults for the current parameter.

j. For each non DEFAULT parameter, the converter shall build the MOIS CMD
statement using the supplied parameter value and attributes.

k. For TC parameters which are required (according to the s/c DB), but for which
no parameter data is supplied, the converter shall build the MOIS CMD
statement using the s/c DB defaults for the current parameter. All TC parameters
should be included in the CMD statement.

l. The converter shall identify occurrences of each of the tcsend options in the
statement along with any option arguments.

m. The converter shall raise an error and fail the statement conversion if any option
has arguments that do not match the expected pattern (defined above).

n. The converter shall validate & copy the <time> argument value for the
releasetime option to the command_Uplink_Time. NB – the current
implementation restricts this to relative times only (Time tag tab of TC form).

o. The converter shall validate & copy the <time> argument value for the
executiontime option to the command_Execution_Time(Time tag tab of
TC form).

p. The converter shall set the PTV and CEV flags according to the checks option
arguments described above if the checks option is defined. Note that
dynamicPTV are not supported by MOIS procedure.

q. The converter shall not support the ack option (see above) if this option is
present.

r. The converter shall not support the observation id if this option is present.

s. The converter shall not support the suppress CRC flag if the NOCRC option is
present in the statement.

t. The converter shall NOT support the patch option. If found, an error shall be
raised and the statement conversion failed.

u. The converter shall raise an error and fail the statement conversion if the
statement as a whole contains elements which are inconsistent with the tcsend
statement pattern. E.g. unhandled or unknown options

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 2510 Sepdraft

2.4.12 getTC_STATUSdata
This consists of a set of functions for accessing the attributes of a variable representing
a telecommand (returned as a result of calls to the referby option of the Tcsend
statement).

• getrequestid <vval>

• getstage <vval>

• getstatus <vval>

• getstagehistory <vval>

• getcompleted <vval>

• getupdatetime <vval>

All these statement will be implemented as MOIS functions with a single mandatory
argument :-

<vval> - It will be the refer by variable name used in tcsend command.

The return type is dependent on the individual function, these are listed below. Note that
some of these are TBC pending some investigation into the exact nature of the return
value.

• getrequestid – integer, the request id (not the observation id).

• getstage – integer, representing the current stage of TC transmission (value
represented by a mnemonic)

• getstatus – integer, representing the status of the current stage of TC
transmission (value represented by a mnemonic)

• getstagehistory – string. The string contains a single letter corresponding to
each transmission stage representing the status of that stage.

• getcompleted – boolean, identifies whether the TC is complete (i.e. no further
verification reports expected) or not.

• getupdatetime – string, timestamp corresponding to the current verification
report.

The requirements on the MOIS converter are as follows :-

a. The converter shall recognise compound Tcl/TOPE compound statements of
the form ‘set <var-name> [<fn> <vval>]’ (with <fn>
corresponding to each of the GetTC_STATUSdata statements) and convert
these as a MOIS function calls to the appropriate function.

b. The converter shall create a MOIS local variable with the name <var-
name> of the type appropriate to the return type of the function, assuming a
variable of this name does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <var-name> and this is not of the
appropriate type.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 2610 Sepdraft

2.4.13 attach
attach <name>

Attach to a SCOE or DFE named <name>. This is a preliminary for sending commands
which are bound for this SCOE/DFE. The sequence remains attached until detach is
called or until the test sequence terminates.

This statement should be implemented as a MOIS directive with a single mandatory
argument :-

• <name> - SCOE/DFE/IS name type, such that MOIS can validate the supplied
value as a SCOE/DFE/IS name.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<name> argument (interpreted as a literal) does not correspond to a
SCOE/DFE/IS name in the s/c DB.

2.4.14 detach
detach <name>

Dettach from a SCOE or DFE named <name>.

This statement will be implemented as a MOIS directive with a single mandatory
argument :-

• <name> - SCOE/DFE/IS name type, such that MOIS can validate the supplied
value as a SCOE/DFE/IS name.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<name> argument (interpreted as a literal) does not correspond to a
SCOE/DFE/IS name in the s/c DB.

2.4.15 authorise
authorise ?-revoke? <name>

Authorise the current sequence for the command <name>. The next tcsend <name>
will be authorised, even if other requests are submitted between authorise and
tcsend. The option -revoke causes any previous authorisation of <name> to be
revoked.

This statement will be implemented as a MOIS directive with two arguments :-

• -revoke - Switch argument with a single allowed value (‘-revoke’). Optional.

• <name> - TC name type, such that MOIS can validate the supplied value as a TC
name. Mandatory.

The requirements on the MOIS converter are as follows :-

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 2710 Sepdraft

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<name> argument (interpreted as a literal) does not correspond to a
SCOE/DFE/IS name in the s/c DB.

2.4.16 connect
connect <name>

Instructs the CCS to establish a connection to the SCOE/DFE/IS called <name>. Note:
These names are configured in the spacecraft database.

This statement will be implemented as a MOIS directive with a single mandatory
argument :-

• <name> - SCOE/DFE/IS name type, such that MOIS can validate the supplied
value as a SCOE/DFE/IS name.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<name> argument (interpreted as a literal) does not correspond to a
SCOE/DFE/IS name in the s/c DB.

2.4.17 disconnect
disconnect <name>

Instructs the CCS to terminate a connection to the SCOE/DFE/IS called <name>.

This statement will be implemented as a MOIS directive with a single mandatory
argument :-

• <name> - SCOE/DFE/IS name type, such that MOIS can validate the supplied
value as a SCOE/DFE/IS name.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<name> argument (interpreted as a literal) does not correspond to a
SCOE/DFE/IS name in the s/c DB.

2.4.18 newtmdumpfile
newtmdumpfile <vcid> ?<dumpname>?

The newtmdumpfile command reopens the dump for Virtual Channel <vcid> on
a new file, which will contain <vcid> and <dumpname> in its name. A previously
opened dump will be closed automatically by CCS.

This statement will be implemented as a MOIS directive with two arguments :-

• <vcid> - integer (>= 0) corresponding virtual channel id for the s/c. Mandatory.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 2810 Sepdraft

• <dumpname> - string (alphanumeric and underscore characters only)
corresponding to the dump file name. Optional.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<vcid> argument (interpreted as a literal) is not an integer >= 0.

c. The converter shall raise an error and fail the statement conversion if the
<dumpname> argument (interpreted as a literal), if present, is not a string of
alphanumeric and underscore characters only.

2.4.19 setparameter
setparameter ?-raw? <param-name> <value>

Sets a user defined TM parameter (user defined constant) in the control system. The TM
parameter <param-name> is set to <value>. The allowable range of values
depends on the s/c DB definition of the engineering value of the parameter.

If option -raw is specified, <value> is a raw (uncalibrated) value. In this case only
unsigned integer values are allowed.

This statement will be implemented as a MOIS directive with three arguments :-

• -raw - Switch argument with a single allowed value (‘-raw’). Optional.

• <param-name> - TM type such that MOIS can validate the supplied value as a
TM name. NB the type here should really be further restricted to the user defined
TM parameters.

• <value> - string which converts to the appropriate engineering type for the TM
parameter (or an unsigned integer only if –raw is specified). Mandatory.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<param-name> argument (interpreted as a literal) is not a user defined TM
parameter as defined in the s/c DB.

c. The converter shall raise an error and fail the statement conversion if the
<value> argument (interpreted as a literal) does not convert to a valid, in
range value for the TM parameter (as defined in the s/c DB) in cases where
the –raw switch is not specified. Where the –raw switch is specified, the
error should be raised if the <value> is not an unsigned integer or if the
value is too large to fit in the parameter.

2.4.20 enableparam
enableparam <param-list>

Enables the processing of the specified parameter(s) by the ground control system.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 2910 Sepdraft

This statement will be implemented as a MOIS directive with one mandatory argument
:-

• <param-list> - A string representing the list of parameters, it will be delimited
by braces.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
enableparam {<param-list>}and convert these to the corresponding
MOIS directive.

2.4.21 inhibitparam
inhibitparam <param-list>

Inhibits the processing of the specified parameter(s) by the ground control system.

This statement will be implemented as a MOIS directive with one mandatory argument
:-

• <param-list> - A string representing the list of parameters, it will be delimited
by braces.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
inhibitparam {<param-list>} and convert these to the
corresponding MOIS directive.

2.4.22 enablepacket
enablepacket <spid>

Enable the processing of packet identified by <spid>.

This statement should be implemented as a MOIS directive with a single mandatory
argument :-

• <spid> - packet id type, such that MOIS can validate the supplied value as a
packet name.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<spid> argument (interpreted as a literal) is not a valid packet id defined in the
s/c DB.

2.4.23 inhibitpacket
inhibitpacket <spid>

Inhibit the processing of packet identified by <spid>.

This statement will be implemented as a MOIS directive with a single mandatory
argument :-

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 3010 Sepdraft

• <spid> - packet id type, such that MOIS can validate the supplied value as a
packet name.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<spid> argument (interpreted as a literal) is not a valid packet id defined in the
s/c DB.

2.4.24 enablegroup
enablegroup <grpid>

Enable the processing of a group of packets or parameters. (Groups of packets or
parameters can be defined in the spacecraft database). The group ID <grpid> is
expressed as a string.This statement will be implemented as a MOIS directive with a
single mandatory argument :-

• <grpid> - group id type, such that MOIS can validate the supplied value as a
group name.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<grpid> argument (interpreted as a literal) is not a valid group name defined
in the s/c DB.

2.4.25 inhibitgroup
inhibitgroup <grpid>

Inhibit the processing of a group of packets or parameters.

This statement will be implemented as a MOIS directive with a single mandatory
argument :-

• <grpid> - group id type, such that MOIS can validate the supplied value as a
group name.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<grpid> argument (interpreted as a literal) is not a valid group name defined
in the s/c DB.

2.4.26 patchlocation
patchlocation <param-name> <spid> <byteoffset> <bitoffset>

This statement is used to temporarily modify the extraction of a TM parameter. The
packet and location within the packet are both specified.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 3110 Sepdraft

This statement will be implemented as a MOIS directive with four mandatory
arguments :-

• <param-name> - TM type such that MOIS can validate the supplied value as a
TM name.

• <spid> - packet id type, such that MOIS can validate the supplied value as a
packet name.

• <byteoffset> - integer (>= 0) representing the byte offset of the parameter
location

• <bitoffset> - integer (in range 0 -> 7) representing the bit offset of the
parameter location

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert it to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<spid> argument (interpreted as a literal) is not a valid packet id defined in the
s/c DB.

c. The converter shall raise an error and fail the statement conversion if the
<param-name> argument (interpreted as a literal) is not a TM parameter
defined in the s/c DB.

d. The converter shall raise an error and fail the statement conversion if the
<byteoffset> argument (interpreted as a literal) is not a positive integer.

e. The converter shall raise an error and fail the statement conversion if the
<bitoffset> argument (interpreted as a literal) is not an integer in the range
0 -> 7.

2.4.27 patchscript
patchscript <param-name> <script>

This command is used to modify the expression used to derive the value a synthetic
(derived) parameter.

This statement will be implemented as a MOIS directive with two mandatory arguments
:-

• <param-name> - TM type such that MOIS can validate the supplied value as a
TM name (derived parameters only).

• <script> - string (arbitrary length), contains the Tcl/TOPE used to derive the
parameter value.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<param-name> argument (interpreted as a literal) is not a valid synthetic TM
parameter id defined in the s/c DB.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 3210 Sepdraft

Note that the converter (or MOIS) will not make any attempt to translate or validate the
Tcl/TOPE contained in the <script> argument.

2.4.28 patchnumericalcurve
patchnumericalcurve <calibcurveId> <pointId> <newXval>
<newYval>

Statement is used to modify a single point in a linear calibration curve.

This statement will be implemented as a MOIS directive with four mandatory
arguments :-

• <calibcurveId> - Positive integer, represents a valid calibration curve id (from
the CAP_NUMBR field) in the s/c DB.

• <pointId> - Positive integer, identifying the point to be changed

• <newXval> - Unsigned integer representing the new raw value for the point

• <newYval> - Real representing the engineering value for the point

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<calibcurveId> argument (interpreted as a literal) is not calibration curve
id defined in the s/c DB (CAP_NUMBR field).

c. The converter shall raise an error and fail the statement conversion if the values
for the other arguments (interpreted as literals) do not correspond with the
defined types.

2.4.29 patchtextualcurve
patchtextualcurve <calibcurveId> <pointId> <newFrom>
<newTo> <newText>

Statement is used to modify a single point in a text calibration.This statement will be
implemented as a MOIS directive with five mandatory arguments :-

• <calibcurveId> - Positive integer, represents a valid calibration curve id (from
the TXP_NUMBR field) in the s/c DB.

• <pointId> - Positive integer, identifying the point to be changed

• <newFrom> - Unsigned integer representing the low raw value for the range (TBC)

• <newTo> - Unsigned integer representing the high raw value for the range (TBC)

• <newText> - String representing the text alias for the defined range

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<calibcurveId> argument (interpreted as a literal) is not calibration curve
id defined in the s/c DB (CAP_NUMBR field).

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 3310 Sepdraft

c. The converter shall raise an error and fail the statement conversion if the values
for the other arguments (interpreted as literals) do not correspond with the
defined types.

2.4.30 patchpolynomialcurve
patchpolynomialcurve <calibcurveId> <coefficientId>
<newCoeffValue>

Statement is used to modify a single point in a polynomial curve calibration.

This statement will be implemented as a MOIS directive with three mandatory
arguments :-

• <calibcurveId> - Positive integer, represents a valid calibration curve id (from
the TXP_NUMBR field) in the s/c DB.

• <coefficientId> - Integer (in range 0 Æ 4), identifying the polynomial
coefficient to be changed.

• <newCoeffValue> - Real representing the new coefficient value (TBC)

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<calibcurveId> argument (interpreted as a literal) is not calibration curve
id defined in the s/c DB (MCF_IDENT field).

c. The converter shall raise an error and fail the statement conversion if the values
for the other arguments (interpreted as literals) do not correspond with the
defined types.

2.4.31 patchcurveused
patchcurveused <param-name> <newCurveId>

patchcurveused <param-name> <pos> <newCurveId>

These commands patch the curve used by the referenced parameter for calibration.

In the first variant, the default calibration curve is switched to <newCurveId> for
TM. In the second variant, the conditional calibration curve at position <pos> is
switched. In both cases, <newCurveId> must refer to a curve of the same type
(numerical, textual, polynomial) as the one originally defined in the spacecraft database.

• The formulation here is a bit of a problem, as we have two variants which are only
identifiable by the different argument list. Unfortunately, the <pos> argument is
not at the end (if it was we could just make it optional).

So only the second formulation will be implemented in a MOIS procedures

This statement will be implemented as a MOIS directive with three mandatory
arguments :-

• <param-name> - TM type such that MOIS can validate the supplied value as a
TM name (derived parameters only).

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 3410 Sepdraft

• <pos> - Positive integer, represents the <pos>. Mandatory.

• <newCurveId> - Positive integer, represents the <newCurveId>

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<param-name> argument (interpreted as a literal) is not a TM parameter name
defined in the s/c DB.

c. The converter shall raise an error and fail the statement conversion if the values
for the other arguments (interpreted as literals) do not correspond with the
defined types.

2.4.32 patchlimit
patchlimit <param-name> <type> <pos> <lowValue>
?<highValue>?

This statement patches the limit currently applicable to the specified parameter in the
ground control system.

This statement will be implemented as a MOIS directive with five arguments :-

• <param-name> - TM type such that MOIS can validate the supplied value as a
TM name (derived parameters only).

• <type> - Character (‘H’, ‘S’ or ‘D’) representing the limit type (hard, soft or
delta). Mandatory.

• <pos> - Positive integer, represents the entry in the OCP table to be modified.
Mandatory.

• <lowValue> - Unsigned integer (TBC) representing the minimum in limit value
(or the delta value if this is a delta limit). Mandatory.

• <highValue> - Unsigned integer (TBC) representing the maximum in limit
value. Not specified if this is a delta limit. Optional.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<param-name> argument (interpreted as a literal) is not a TM parameter id
defined in the s/c DB.

c. The converter shall raise an error and fail the statement conversion if the values
for the other arguments (interpreted as literals) do not correspond with the
defined types.

2.4.33 waittime
waittime <time>

Suspends execution for a period identified by the <time> argument.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 3510 Sepdraft

This statement will be implemented as a MOIS CTL/PSE statement with the wait period
derived from the supplied <time> argument (this is specified as a TOPE delta time).

The requirements on the MOIS converter are as follows :-

c. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘waittime <time>’ described above and convert these to a MOIS CTL/PSE
statement.

d. The converter shall raise an error and fail the statement conversion if the
<time> argument (interpreted as a literal) is not a positive delta time in the
TOPE time format.

2.4.34 call
call <name> ?arg...?

Invokes (synchronously) the test sequence named <name> with an optional list of
arguments. The sequence is expected to reside in the file <name>.tcl in the test
sequence source directory. The optional arguments represent the procedure arguments
required for the called procedure.

This statement will be implemented as a MOIS FOP statement with the called procedure
name set to <name>. The synchronous option will be set in MOIS FOP statement.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘call <name> ?arg…?’ and convert these to a MOIS FOP statement.

b. The converter shall raise an error and fail the statement conversion if the
<name> argument (interpreted as a literal) is not a valid procedure name.

c. The converter shall raise an error and fail the statement conversion if procedure
arguments are not consistent with procedure arguments in configuration control..

2.4.35 callasync
callasync ?-referby var? name ?arg...?

Invokes (asynchronously) the test sequence named <name> with an optional list of
arguments. The sequence is expected to reside in the file <name>.tcl in the test
sequence source directory. The optional arguments represent the procedure arguments
required for the called procedure.

This statement will be implemented as a MOIS FOP statement with the called procedure
name set to <name>. The asynchronous option will be set in MOIS FOP statement.

NB. The referby option is also an issue, it will not supported by MOIS procedure.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘callasync ?-referby var? <name>’ and convert these to a MOIS
FOP statement.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 3610 Sepdraft

b. The converter shall raise an error and fail the statement conversion if the
<name> argument (interpreted as a literal) is not a valid procedure name.

c. If the –referby switch is present, the converter shall raise an error and fail the
conversion if no corresponding variable name is specified.

d. If the referby variable is present, the converter will not take it into account.

2.4.36 waitfor
waitfor ?-timeout <time>? <var-list> ?<condition>?

waitfor ?-timeout <time>? -all <var-list>

In the first formulation, the statement waits for the update of any of the variables given
in <var-list> (variables used in the referby clause of a TM subscription, TC
send request, or callasync request). The switch ‘-timeout <time>’ specifies a
maximum amount of time to wait. <time> must be a positive delta time.

The optional argument <condition> is a Tcl code fragment which will be evaluated
whenever any of the variables in <var-list> is updated. If <condition>
evaluates to true, waiting is finished; otherwise, waitfor continues to wait for the
next update or the maximum time.

In the second formulation, the command statement waits for all of the specified
variables to be updated at least once before returning.

The statement returns 0 (logical false) if the specified timeout has expired or 1 (logical
true) otherwise.

The way that this command will be implemented in a MOIS procedure will depend of
the way this command will be called. It will be explained in coding standards part::-

• -timeout – Optional switch defining whether a timeout should be applied.

• <time> - Positive delta time corresponding to the timeout period. The argument is
associated with the –timeout switch, and is therefore mandatory if the –
timeout switch is present and must not be included if the –timeout switch is
not present.

• <var-list> - Variable name. Mandatory. List of variables won’t be supported by
MOIS.

• <condition> - String representing a Tcl/TOPE condition definition. Optional.

For the functions, the return value is boolean.

NB – MOIS will perform no validation on the Tcl/TOPE contained in the
<condition> argument.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘waitfor ?-timeout <time>? <var-list> ?<condition>?’

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 3710 Sepdraft

and convert these to a MOIS directive statement depending of the way it will be
used.

b. The converter shall raise an error and terminate the statement conversion if the
<var-list> argument (interpreted as a literal) does not correspond to a MOIS
local variable.

.

c. The converter shall raise an error and fail the statement conversion if the
<time> argument (interpreted as a literal) is not a valid positive delta time.

d. The converter shall raise an error if the <var-list> is not only one varaiable.

2.4.37 getshared
getshared <name>

Returns the current value of the shared variable named < name>.

In MOIS, shared variables are handled as global variables, which could in principle be
used anytime a local variable is used. This creates complications with the Tcl/TOPE
construct, as it is not practical to allow substitution of ‘[getshared <name>]’ in
place of any variable usage.

The solution is to allow the copy of the global variable to a local variable, using the
MOIS set statement.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise compound Tcl/TOPE statements of the
form ‘set <var-name> [getshared <name>]’ and convert these to
a MOIS SET statement (setting local variable <var-name> to global
variable <name>).

b. The converter shall create a MOIS local variable with the name <var-
name> of the type String, assuming a variable of this name does not already
exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <var-name> and this is not of the type
String.

d. The converter shall create a MOIS global variable with the name <name> of
the type String, assuming a variable of this name does not already exist.

e. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <name> and this is not of the type String.

2.4.38 setshared
setshared <name> <value>

Sets the current value of the shared variable <name> to <value>.

The statement will be implemented as a MOIS SET statement.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 3810 Sepdraft

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘setshared <name> <value>’ and convert these to a MOIS SET
statement (setting global variable <name> to literal value <value>).

b. The converter shall create a MOIS global variable with the name <name> of
the type String, assuming a variable of this name does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
global variable already exists with name <name> and this is not of the type
String.

2.4.39 lockshared
lockshared ?-timeout <time>? <name>
Locks the shared variable <name>, which prevents other test sequences from setting it.
The option -timeout allows to specify a timeout value as a positive delta time. If this
option is not specified, lockshared will not wait if it cannot obtain the lock. The
lock is maintained until unlockshared is called or the sequence holding the lock
terminates.

The statement returns a Boolean value indicating whether or not the lock was
obtained.This statement will be implemented as both a MOIS directive and a function,
each with three arguments :-

• -timeout – Optional switch defining whether a timeout should be applied

• <time> - Positive delta time corresponding to the timeout period. The argument is
associated with the –timeout switch, and is therefore mandatory if the –
timeout switch is present and must not be included if the –timeout switch is
not present. TBC.

• <name> - String representing a variable name. Mandatory.

For the function, the return value is boolean.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘lockshared ?-timeout <time>? <name>’ and convert these to a
MOIS directive statement.

b. The MOIS converter shall recognise compound Tcl/TOPE statements of the
form ‘set <return> [lockshared ?-timeout <time>?
<name>]’ and convert these to a MOIS function statement.

c. The converter shall create a MOIS global variable (of type String) corresponding
to the <name> argument (interpreted as a literal) if a variable of this name does
not already exist.

d. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <name> and this is not of the type String.

e. The converter shall raise an error and fail the statement conversion if the
<time> argument (interpreted as a literal) is not a valid positive delta time.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 3910 Sepdraft

f. In the case of a function, the converter shall create a local MOIS variable
(Boolean) corresponding to the <return> argument (interpreted as a literal),
provided a variable of the same name does not already exist.

g. In the case of a function, the converter shall raise an error and fail the statement
conversion if a MOIS variable corresponding to <return> already exists and
is not of Boolean type.

2.4.40 unlockshared
unlockshared <name>

Unlocks the shared variable <name>.This statement will be implemented as a MOIS
directive with a single mandatory argument :-

• <name> - String representing a variable name

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘unlockshared <name>’ and convert these to a MOIS directive statement.

b. The converter shall create a MOIS global variable (of type String) corresponding
to the <name> argument (interpreted as a literal) if a variable of this name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <name> and this is not of the type String.

2.4.41 Tellsequence
Tellsequence <id> <action>

The execution state is an asynchronous(detached) child sequence can be changed using
the tellsequence command.

This statement will be implemented as a MOIS directive statement with two single
mandatory arguments:

<id> identifier of the target sequence as returned by the callasync command. It
will be implemented as the name of the sequence in MOIS procedure TBD.

<action> must be one of the following keywords “SUSPEND”, “RESUME”
and “TERMINATE”.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘Tellsequence <id> <action>’ and convert them to a MOIS directive
statement.

b. The converter shall create a MOIS global variable with the name <name> of the
type String, assuming a variable of this name does not already exist.

c. The converter shall raise an error and fail if the two mandatory parameters are
not defined.

d. The converter shall raise an error and fail if the two mandatory parameters are
not defined.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 4010 Sepdraft

e. The converter shall raise an error and fail if the <id> is not defined child
sequence.

2.4.42 Suspend
Suspend

It interrupts the execution of the current sequence. If it receives a resume notification, it
will continue. While a sequence is suspended, it will ignore incoming telemetry data.

This statement will be implemented as a MOIS directive statement.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘Suspen’ and convert it to a MOIS directive statement.

2.4.43 putlog
putlog ?-error? ?-warn? ?--? <expr>

This statement writes the log message <expr> to the logbook. The log entry is tagged
as an error or warning if the appropriate switch is set.

The statement will be implemented as a MOIS directive with two arguments :-

• Switch – statement switch taking values ‘-error’, ‘-warn’ or ‘—‘. Optional.

• <expr> - quoted string containing the logging message text.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘putlog ?(-error | -warn | --)? <expr>’ and convert these to a
MOIS directive statement.

2.4.44 syslog
syslog ?-error? ?-warn? ?--? <expr>

This statement writes the log message <expr> to the system event log. The log entry is
tagged as an error or warning if the appropriate switch is set.

The statement should be implemented as a MOIS directive with two arguments :-

• Switch – statement switch taking values ‘-error’, ‘-warn’ or ‘—‘. Optional.

• <expr> - quoted string containing the logging message text.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘syslog ?(-error | -warn | --)? <expr>’ and convert these to a
MOIS directive statement.

2.4.45 setrevision
setrevision <expr>

This statement stores the string <expr> as the revision information for the sequence.

The statement should be implemented as a MOIS directive with a single mandatory
argument:-

• <expr> - quoted string containing the revision information

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 4110 Sepdraft

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘setrevision <expr>’ and convert these to a MOIS directive statement.

NB – in MOIS Writer, use of this directive should ideally provide a mechanism for
setting the current version of the MOIS procedure as the value of <expr>.

2.4.46 verified
verified ?-timestamp <time>? -tc <cmd> ?<param>...?

verified ?-timestamp <time>? -tm <parameter>

The verified command is a convenience function for adding records to the report
file. The revision information stored by the setrevision command is included in
the report file. If the setrevision command has been omitted, the revision of the
current test sequence will be "unspecified".

Each command formulation will be implemented as a directive.

• -timestamp - Optional switch defining a time, which will be written in the
report fil.

• <time> - The absolute time value to write in the report file.

• -tc – Switch defining a telecommand verified.

• <cmd> - Name of the command incase of telecommand verified.

• <param> - Optional argument listing the name of telecommand parameters.

• -tm – Switch defining a telemetry verified.

• <parameter> - Name of the telemetry to verified.

The requirements on the MOIS converter are as follows:-

a. MOIS converter will recognise the two following formulations Tcl/TOPE
command:-

• verified (?-timestamp <time>?|--) -tc <cmd>
?<param>...?

• verified ?-timestamp <time>? -tm <parameter>

Then it will convert it to a MOIS directive statement.

b. If <time> is defined and its format is not correct, the converter will raise an error
and the Tcl/TOPE command conversion will fail.

c. The converter will raise an error if mandatory parameters are not defined and the
Tcl/TOPE command conversion will fail.

2.4.47 prompt
prompt ?<type>? <message>

This statement displays a dialogue to the user of the control system. The dialogue
displays the text in <message>, and requests the user to provide an input, which is

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 4210 Sepdraft

then returned. The dialogue buttons and the type of the user input / return value depend
on <type>.

<type> = signed | unsigned | float | bool | abstime |
reltime

Some of this functionality is represented in MOIS by the SET statement with the user
input option set. In cases where the <type> maps directly to a MOIS variable type, the
statement will be implemented as a SET statement. Cases where there is no
corresponding MOIS type anyway can’t be implemented. The title of the SET statement
will be set to the text in the <message> argument.

The case in which no <type> is defined will be implemented as a MOIS directive. The
return value is irrelevant in this case, the dialogue simply delays procedure execution
until the dialogue ‘Ok’ button is hit. The directive shall have a single mandatory
argument :-

• <message> - String representing the message to display.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise compound Tcl/TOPE statements of the
form ‘set <return> [prompt <type> <message>]’ where the
<type> corresponds to a MOIS variable type. Such statements shall be
translated into MOIS SET statements with the user input option set.

b. The converter shall create a MOIS local variable of a type corresponding to
<type> and with name corresponding to the <return> argument
(interpreted as a literal) if a variable of this name does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return> and this is not of the
appropriate type.

d. The converter shall set the SET statement title to the text contained in the
<message> argument.

e. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘prompt <message>’. Such statements shall be translated into MOIS
directive statements.

2.4.48 displaystatus
displaystatus <message>

This statement displays a status message on the control system.

This statement will be implemented as a MOIS directive with a single mandatory
argument :-

• <message> - String containing the status message.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘displaystatus <message>’ and convert these to the corresponding
MOIS directive.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 4310 Sepdraft

2.4.49 bintohex
bintohex <string>

Convert <string> to a readable (hexadecimal) dump of the binary data. <string>
is an arbitrary binary Tcl string. It may contain null and all kinds of special characters.

This statement will be implemented as a MOIS function with a single mandatory
argument and returning a string value :-

• <string> - String containing the binary data.

In general the handling of Tcl/TOPE statement arguments has been restricted to literals.
However, in this case the statement is only likely to be applied to values returned from
other statements (no one is going to create a literal binary string). In this case the
argument is assumed to be a variable of type string.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise compound Tcl/TOPE statements of the
form ‘set <return> [bintohex $<var>]’ and convert these to the
corresponding MOIS function.

b. The MOIS function shall be created such that <string> argument is assigned
the value of the variable <var>.

c. The converter shall raise an error and fail the statement conversion if <var> is
not a MOIS local variable of type String.

d. The converter shall create a MOIS local variable of string type and with name
corresponding to the <return> argument (interpreted as a literal) if a variable
of this name does not already exist.

e. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return> and this is not of the string type.

2.4.50 hextobin
hextobin <hex-string>

Convert <hex-string> to a binary Tcl string.

This statement will be implemented as a MOIS function with a single mandatory
argument and returning a string value :-

• <string> - String containing the hex data.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise compound Tcl/TOPE statements of the
form ‘set <return> [hextobin <hex-string>]’ and convert these
to the corresponding MOIS function.

b. The converter shall create a MOIS local variable of string type and with name
corresponding to the <return> argument (interpreted as a literal) if a variable
of this name does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return> and this is not of the string type.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 4410 Sepdraft

2.4.51 asdtomsec
asdtomsec <delta-time-string>

Convert <delta-time-string> to an integer number of milliseconds.

This statement will be implemented as a MOIS function with a single mandatory
argument and returning an integer value :-

• <delta-time-string> - String containing the delta time.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise compound Tcl/TOPE statements of the
form ‘set <return> [asdtomsec <delta-time-string>]’ and
convert these to the corresponding MOIS function.

b. The converter shall create a MOIS local variable of integer type and with name
corresponding to the <return> argument (interpreted as a literal) if a variable
of this name does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return> and this is not of the integer type.

2.4.52 Asdtosec
Asdtosec <time-string> ?<secs-var> <usecs_var>?

Convert <delta-time-string> to integer number of seconds and microseconds
from EPOCH.

This statement will be implemented as a MOIS function with a single mandatory
argument and returning an integer value :-

• < time-string > - String containing the delta time.

The requirements on the MOIS converter are as follows :-

d. The MOIS converter shall recognise compound Tcl/TOPE statements of the
form ‘set <return> [asdtomsec <time-string>]’ and convert
these to the corresponding MOIS function.

e. The converter shall create a MOIS local variable of integer type and with name
corresponding to the <return> argument (interpreted as a literal) if a variable
of this name does not already exist.

The converter shall raise an error and fail the statement conversion if a MOIS variable
already exists with name <return> and this is not of the integer type.

2.5 Tcl Statements
This section details the converter requirements relating to basic Tcl statements not
covered in section 2.1, above. It is assumed that only the Tcl statements in section 8.2 of
AD1 need to be addressed here. Other Tcl statements are not implemented by the MOIS
converter.

2.5.1 append - Append to variable
append varName ?value value value ...?
Append all of the value arguments to the current value of variable varName. If varName
doesn't exist, it is given a value equal to the concatenation of all the value arguments.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 4510 Sepdraft

This command provides an efficient way to build up long variables incrementally. For
example, ``append a $b'' is much more efficient than ``set a ab'' if $a is long.

This statement will be implemented as a MOIS function, returning a string value. The
function has a single repeated argument :-

• <value> - String containing the data to be appended to the <varName> variable.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form
‘append <varName> <value>+’ and convert these to the MOIS
append function.

b. The converter shall create a MOIS local variable of string type and with name
corresponding to the <varName> argument (interpreted as a literal) if a
variable of this name does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <varName> and this is not of the string
type.

2.5.2 array - Manipulate array variables
array option arrayName ?arg arg ...?
This command consists of a range of alternate structures to support array handling in
Tcl. MOIS does not support array types or array handling, so none of the array variants
are supported for the conversion.

2.5.3 bgerror - Command invoked to process background errors
bgerror message
The bgerror command doesn't exist as built-in part of Tcl. Instead, individual
applications or users can define a bgerror command (e.g. as a Tcl procedure) if they
wish to handle background errors. A background error is one that occurs in an event
handler or some other command that didn't originate with the application. For example,
if an error occurs while executing a command specified with the after command, then it
is a background error. For a non-background error, the error can simply be returned up
through nested Tcl command evaluations until it reaches the top-level code in the
application; then the application can report the error in whatever way it wishes. When a
background error occurs, the unwinding ends in the Tcl library and there is no obvious
way for Tcl to report the error.

When Tcl detects a background error, it saves information about the error and invokes
the bgerror command later as an idle event handler. Before invoking bgerror, Tcl
restores the errorInfo and errorCode variables to their values at the time the error
occurred, then it invokes bgerror with the error message as its only argument. Tcl
assumes that the application has implemented the bgerror command, and that the
command will report the error in a way that makes sense for the application.

The bgerror command may or may not be implemented in Tcl/TOPE, but certainly this
command is not one for use in operational procedures. It will be not implemented in
MOIS or the MOIS converter.

2.5.4 binary - Insert and extract fields from binary strings
binary format formatString ?arg arg ...?

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 4610 Sepdraft

binary scan string formatString ?varName varName ...?
This command provides facilities for manipulating binary data. The first form, binary
format, creates a binary string from normal Tcl values. For example, given the values
16 and 22, on a 32 bit architecture, it might produce an 8-byte binary string consisting
of two 4-byte integers, one for each of the numbers. The second form of the command,
binary scan, does the opposite: it extracts data from a binary string and returns it as
ordinary Tcl string values.

The binary format command will be implemented as a MOIS function, returning a
string representing the binary number as formatted. The command takes the following
arguments :-

• formatString – String representing the formatting to be applied to the other
arguments. Mandatory.

• arg – Repeated string argument defining the values to be formatted.

The binary scan command will be implemented as a MOIS directive, with arguments as
follows :-

• string – String containing the binary representation to be converted. Mandatory.

• formatString – String containing the formatting instructions for the binary
string. Mandatory.

• varName – Repeated argument representing variable names into which the
converted binary values are placed according to the formatting instructions. Note
that these variables could be numeric or string types, but there is no way to know
without parsing the format string. MOIS must treat them all as strings.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <binary-string> [binary format <format-string>
<arg>+]’ and convert these to the ‘binary format’ MOIS function.

b. For the <arg> arguments, the converter shall recognise either single words
(that is undelimited strings with no spaces) or lists (strings containing spaces
delimited by braces { }).

c. The converter shall create a MOIS local variable of String type with the name
corresponding to <binary-string>, provided a variable of that name
does not already exist.

d. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <binary-string> and this is not of the
string type.

e. The MOIS converter shall recognise simple Tcl statements of the form
‘binary scan <binary> <format-string> <var-name>+’ and
convert these to the ‘binary scan’ MOIS directive.

f. The converter shall create a MOIS local variable of String type with the name
corresponding to <var-name>, provided a variable of that name does not
already exist for each instance of the <var-name> argument.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 4710 Sepdraft

g. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <var-name> and this is not of the string
type for any instance of the <var-name> argument.

2.5.5 cd - Change working directory
cd ?dirName?
Change the current working directory to dirName, or to the home directory (as specified
in the HOME environment variable) if dirName is not given. Returns an empty
string.The cd command will be implemented as a MOIS directive with the following
argument :-

• dirName – Optional string argument representing the new directory path.

The requirerments on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form ‘cd
<dir-name>?’ and convert these to the ‘cd’ MOIS directive.

2.5.6 clock - Obtain and manipulate time
clock clicks ?-milliseconds?
clock format clockValue ?-format string? ?-gmt boolean?
clock scan dateString ?-base clockVal? ?-gmt boolean?
clock seconds

This is a set of commands for manipulating and obtaining the system time. The different
forms are outlined in the bullets below :-

• Clicks – returns an integer representing a high resolution time corresponding to the
number of clock ticks since some arbitrary time. The returned value is only suitable
for measuring elapsed time.

• Format – converts an integer time to a formatted date and / or time string.

• Scan – converts a date / time string into a an integer time.

• Seconds – returns an integer time, representing the number of seconds elapsed since
a baseline epoch.

The clock clicks form will be implemented as a MOIS function with the following
arguments and returning an integer value :-

• -milliseconds – Optional switch argument with a single allowed value “-
milliseconds”.

The clock format form will be implemented as a MOIS function with the following
arguments and returning a string containing the formatted time.

• clockValue – Integer value representing a clock time (as returned from clock
seconds). Mandatory.

• -format – Optional switch argument with a single allowed value of “-format”.

• <format-string> - String containing formatting instructions for the time value.
It is associated with the –format switch and is present if and only if the –format
switch is present.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 4810 Sepdraft

• -gmt – Optional switch argument with a single allowed value of “-gmt”.

• <gmt-switch> - Boolean value identifying whether the time value should be
defined as a GMT or local time. It is associated with the –gmt switch and is present
if and only if the –gmt switch is present.

The clock scan form will be implemented as a MOIS function with the following
arguments and returning an integer value representing the system time.

• <date-string> - String containing the date and/or time formatted for display.
Mandatory.

• -base – Optional switch argument with a single allowed value of “-base”.

• <clock-value> - Integer representing a clock time to specify the date relating
to this command. It is associated with the –base switch and is present if and only if
the –base switch is present.

• -gmt – Optional switch argument with a single allowed value of “-gmt”.

• <gmt-switch> - Boolean value identifying whether the time value should be
defined as a GMT or local time. It is associated with the –gmt switch and is present
if and only if the –gmt switch is present.

The clock seconds form will be implemented as a MOIS function with no
arguments and returning an Integer value representing the current time.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <time-millisecs> [clock clicks (-
millseconds)?]’ and convert these to the ‘clock clicks’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <time-millisecs>, provided a variable of that
name does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <time-millisecs> and this is not of
the Integer type.

d. The MOIS converter shall recognise compound Tcl statements of the form
‘set <time-string> [clock format <clock-value> (-
format <format-string>)? (-gmt <gmt-switch>)?]’ and
convert these to the ‘clock format’ MOIS function.

e. The converter shall create a MOIS local variable of String type with the name
corresponding to <time-string>, provided a variable of that name does
not already exist.

f. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <time-string> and this is not of the
String type.

g. The MOIS converter shall recognise compound Tcl statements of the form
‘set <time-value> [clock scan <time-string> (-base

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 4910 Sepdraft

<base-value>)? (-gmt <gmt-switch>)?]’ and convert these to
the ‘clock scan’ MOIS function.

h. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <time-value>, provided a variable of that name
does not already exist.

i. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <time-value> and this is not of the
Integer type.

j. The MOIS converter shall recognise compound Tcl statements of the form
‘set <time-value> [clock seconds]’ and convert these to the
‘clock seconds’ MOIS function.

k. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <time-value>, provided a variable of that name
does not already exist.

l. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <time-value> and this is not of the
Integer type.

2.5.7 close - Close an open channel.
close channelId
Closes the channel given by channelId. ChannelId must be a channel identifier such as
the return value from a previous open or socket command. All buffered output is
flushed to the channel's output device, any buffered input is discarded, the underlying
file or device is closed, and channelId becomes unavailable for use.

This command will be implemented as a MOIS directive, with a single mandatory
argument :-

• channelId – String identifying the channel to be closed.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form
‘close <channel-id>’ and convert these to the ‘close’ MOIS directive.

2.5.8 concat - Join lists together
concat ?arg arg ...?
This command treats each argument as a list and concatenates them into a single list. It
also eliminates leading and trailing spaces in the arg's and adds a single separator space
between arg's. It permits any number of arguments. For example, the command
‘concat a b {c d e} {f {g h}}’ will return ‘a b c d e f {g h}’ as its
result. If no args are supplied, the result is an empty string.

This command will be implemented as a MOIS function with a single repeated
argument and returns a string value containing the concatenated list.

• <arg> - Repeated string argument containing a list item

The MOIS converter requirements are as follows :-

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 5010 Sepdraft

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <list-string> [concat <list-item>+]’ and convert
these to the ‘concat’ MOIS function.

b. For the <list-item> arguments, the converter shall recognise either
single words (that is undelimited strings with no spaces) or lists (strings
containing spaces delimited by braces { }).

c. The converter shall create a MOIS local variable of String type with the name
corresponding to <list-string>, provided a variable of that name does
not already exist.

d. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <list-string> and this is not of the
string type.

2.5.9 eof - Check for end of file condition on channel
eof channelId
Returns 1 if an end of file condition occurred during the most recent input operation on
channelId (such as gets), 0 otherwise.This command will be implemented as a MOIS
function, with a single mandatory argument and returning a boolean value :-

• channelId – String identifying the channel to be checked.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <eof-result> [eof <channel-id>]’ and convert these to
the ‘eof’ MOIS function.

b. The converter shall create a MOIS local variable of Boolean type with the
name corresponding to <eof-result>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <eof-result> and this is not of the
Boolean type.

2.5.10 exec - Invoke subprocess(es)
This command is used to trigger execution of subprocesses.This Tcl command will not
be implemented in MOIS procedures.

2.5.11 exit - End the application
exit ?returnCode?
Terminate the process, returning returnCode to the system as the exit status. If
returnCode isn't specified then it defaults to 0.

This command will be implemented as a MOIS CTL/XIT statement, but with no
support for the return code. The MOIS converter requirements are as follows :-

 The MOIS converter shall recognise simple Tcl statements of the form ‘exit’ and
convert these to the MOIS CTL/XIT statement.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 5110 Sepdraft

2.5.12 expr - Evaluate an expression
expr arg ?arg arg ...?
Concatenates arg's (adding separator spaces between them), evaluates the result as a Tcl
expression, and returns the value. The operators permitted in Tcl expressions are a
subset of the operators permitted in C expressions, and they have the same meaning and
precedence as the corresponding C operators. Expressions almost always yield numeric
results (integer or floating-point values). For example, the expression ‘expr 8.2 +
6’ evaluates to 14.2. Tcl expressions differ from C expressions in the way that operands
are specified. Also, Tcl expressions support non-numeric operands and string
comparisons.

For the MOIS conversion it would not seem to be practical to implement this command
with the repreated arguments, as each argument can be a string, number operator,
bracket, variable reference, etc. A simpler solution would be to treat this as a MOIS
function with a single string argument (so that everything after the expr keyword to
the statement terminator is assumed to be part of the expression). This approach means
that virtually no validation can be performed on the expression elements, but clearly this
command must be implemented somehow. The biggest hole here will be that variable
references will be able to be made without any type or existance validation

Another issue is the type of the return value. We can’t identify the return type from the
expression, so we have no choice but to use a string type for the result. This is likely to
cause problems when using the return value as arguments to other functions / directives
and in conditions. Probably the best solution is to define several MOIS functions, all
mapping to the expr command, but returning different MOIS types. Procedures created
using MOIS Writer can then select the variant appropriate to the return type expected
from the expression used. Converted procedures would have to use the string variant
and then manually edit to the appropriate variant as required.

This command will be implemented as a set of MOIS functions, each with a single
mandatory string argument. The MOIS functions and their return value types are given
below :-

• expr – returns string

• expr_boolean – returns Boolean

• expr_integer – returns Integer

• expr_real – returns Real

The requirements for the MOIS converter are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <expr-result> [expr <expression>]’ and convert these to
the ‘expr’ MOIS function (i.e. the version returning a string value).

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <expr-result>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <expr-result> and this is not of the
String type.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 5210 Sepdraft

d. The converter shall treat everything following the expr keyword up to the ‘]’
bracket as the <expression> argument. It is not expected that the
argument is a delimited string (although it may be). This contradicts the
normal handling of string arguments which are single words or delimited
strings.

e. The converter shall insert a MOIS comment statement prior to the function
call to indicate that the expression has been converted by default to the string
return variant, and may require manual edit to a correctly typed return
variant.

2.5.13 fblocked - Test whether last input operation exhausted all input
fblocked channelId
The fblocked command returns 1 if the most recent input operation on channelId
returned less information than requested because all available input was exhausted. For
example, if gets is invoked when there are only three characters available for input and
no end-of-line sequence, gets returns an empty string and a subsequent call to fblocked
will return 1.

This command will be implemented as a MOIS function, with a single mandatory
argument and returning a boolean value :-

• channelId – String identifying the channel to be checked.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <result> [fblocked <channel-id>]’ and convert these to
the ‘fblocked’ MOIS function.

b. The converter shall create a MOIS local variable of Boolean type with the
name corresponding to <result>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <result> and this is not of the Boolean
type.

2.5.14 fconfigure - Set and get options on a channel
fconfigure channelId
fconfigure channelId name
fconfigure channelId name value ?name value ...?
The fconfigure command sets and retrieves options for channels. ChannelId identifies
the channel for which to set or query an option. If no name or value arguments are
supplied, the command returns a list containing alternating option names and values for
the channel. If name is supplied but no value then the command returns the current
value of the given option. If one or more pairs of name and value are supplied, the
command sets each of the named options to the corresponding value; in this case the
return value is an empty string.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 5310 Sepdraft

This command is implemented as a function to cover the first two forms and a directive
to handle the third form. The directive will not, however, support multiple option
settings, as a repeated pair or arguments is not supported in the envisaged extensions to
the function / directive mechanism. Further, only a single return type (string) will be
supported for the functions, despite the different types returned depending on the
specified options.

The first two forms of the command will be implemented by a MOIS function, returning
a string value and taking the following arguments :-

• channelId – Mandatory string containing the channel identifier.

• Name – Optional string identifying the required channel configuration parameter

The last form of the copmmand is implemented as a MOIS directive taking the
following arguments :-

• channelId – Mandatory string containing the channel identifier.

• Name – Mandatory string identifying the required channel configuration parameter

• Value – Mandatory string specifying the new configuration parameter setting

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <config-param> [fconfigure <channel-id>
<name>?]’ and convert these to the ‘fconfigure’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <config-param>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <config-param> and this is not of the
String type.

d. The MOIS converter shall recognise simple Tcl statements of the form
‘fconfigure <channel-id> <name> <value>]’ and convert
these to the ‘fconfigure’ MOIS directive.

2.5.15 fcopy - Copy data from one channel to another.
fcopy inchan outchan ?-size size? ?-command callback ?
The fcopy command copies data from one I/O channel, inchan to another I/O channel,
outchan. The fcopy command leverages the buffering in the Tcl I/O system to avoid
extra copies and to avoid buffering too much data in main memory when copying large
files to slow destinations like network sockets.

This command will be implemented using a MOIS directive taking the following
arguments :-

• inchan – Mandatory string identifying the channel id of the input channel

• outchan – Mandatory string identifying the channel id of the output channel

• -size – Switch argument with allowed value “-size”

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 5410 Sepdraft

• size – Integer argument identifying the number of bytes to copy. This argument is
associated with the –size switch argument and is present if and only if the –size
argument is present.

• -command – Switch argument with allowed value “-command”

• callback – String argument representing the Tcl commands to be executed when
the copy is complete. This argument is associated with the –command switch
argument and is present if and only if the –command argument is present. Note that
the Tcl defined here will not be validated by MOIS in any way.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form
‘fcopy <in-chan-id> <out-chan-id> (-size <size>)? (-
command <callback-tcl>)?’ and convert these to the ‘fcopy’ MOIS
directive.

b. The converter shall recognise <callback-tcl> either as a single word, or as an
arbitrary string delimited by square brackets.

2.5.16 fileevent - Execute a script when a channel becomes readable or writable
fileevent channelId readable ?script?
fileevent channelId writable ?script?
This command is used to create file event handlers. A file event handler is a binding
between a channel and a script, such that the script is evaluated whenever the channel
becomes readable or writable. File event handlers are most commonly used to allow
data to be received from another process on an event-driven basis, so that the receiver
can continue to interact with the user while waiting for the data to arrive. If an
application invokes gets or read on a blocking channel when there is no input data
available, the process will block; until the input data arrives, it will not be able to
service other events, so it will appear to the user to ``freeze up''. With fileevent, the
process can tell when data is present and only invoke gets or read when they won't
block.

This command will not be implemented by MOIS procedures.

2.5.17 file - Manipulate file names and attributes
file option name ?arg arg ...?
This is a set of commands for operating on a file's name or attributes. Name is the name
of a file; if it starts with a tilde, then tilde substitution is done before executing the
command. Option indicates what to do with the file name. Any unique abbreviation for
option is acceptable (in Tcl, but not in any MOIS conversion).

The valid options are given below with their argument patterns and a brief description :-
file atime name

Returns an integer representing the time at which file name was last accessed, as
a number of seconds from an epoch (c.f. clock seconds).

file atime name time
Sets the access time for the file name.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 5510 Sepdraft

file attributes name
Returns the complete list of file attribute names and their values for the file name.

file attributes name option
Returns the value of the attribute specified by option for the file name.

file attributes name option value ?option value...?
Sets the value of the one or more attributes (specified by option) to the value
for the file name.

file channels ?pattern?
If pattern isn't specified, the command returns a list of names of all registered
open channels in this interpreter. If pattern is specified, only those names
matching the pattern are returned.

file copy ?-force? ?- -? source target
Makes a copy of the file or directory source at the pathname defined in
target. The –force switch forces overwrite of existing files if present. The -
- switch terminates the switch list (allowing source to be defined with a leading ‘-
’ character).

file copy ?-force? ?- -? source ?source ...? targetDir
Makes a copy of the files or directories defined in each instance of source in the
existing directory defined by targetDir. The –force switch forces overwrite
of existing files if present. The - - switch terminates the switch list (allowing
source to be defined with a leading ‘-’ character).

file delete ?-force? ?- -? pathname ?pathname ... ?
Removes the file or directory specified by each pathname instance. Non-empty
directories will be removed only if the -force option is specified. The –force
switch forces overwrite of existing files if present. The - - switch terminates the
switch list (allowing pathname to be defined with a leading ‘-’ character).

file dirname name
Returns the directory path extracted from the file path defined by name.

file executable name
Returns a Boolean identifying whether the file defined by name is executable by
the current user.

file exists name
Returns a Boolean identifying whether the file defined by name exists.

File extension name
Returns a string identifying the file extension extracted from the file path defined
by name.

file isfile name
Returns a Boolean identifying whether the item defined by name is a file.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 5610 Sepdraft

file isdirectory name
Returns a Boolean identifying whether the item defined by name is a directory.

file join name ?name ...?
Returns a string representing the file path constructed from the path elements
defined by the instances of the name argument.

file lstat name varName
Invokes the lstat kernel call on name, and uses the variable given by varName to
hold information returned from the kernel call. VarName is treated as an array
variable.

file mkdir dir ?dir ...?
Creates the directories defined in each instance of dir.

file mtime name ?time?
Returns an integer representing the time at which file name was last modified, as
a number of seconds from an epoch (c.f. clock seconds).

file nativename name
Returns a string representing the file path in name formatted according to the
native operating system.

file owned name
Returns a Boolean identifying whether the file defined by name is owned by the
current user.

file pathtype name
Returns the string “absolute”, “relative” or “volumerelative”, identifying the type
of path defined by name.

file readable name
Returns a Boolean identifying whether the file defined by name is readable by the
current user.

file readlink name
Returns a string representing the value of the symbolic link given by name (i.e.
the name of the file it points to).

file rename ?-force? ?- -? source target
Moves the file or directory source to the pathname defined in target. The –
force switch forces overwrite of existing files if present. The - - switch
terminates the switch list (allowing source to be defined with a leading ‘-’
character).

file rename ?-force? ?- -? source ?source ...? targetDir
Moves the files or directories defined in each instance of source to the existing
directory defined by targetDir. The –force switch forces overwrite of
existing files if present. The - - switch terminates the switch list (allowing
source to be defined with a leading ‘-’ character).

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 5710 Sepdraft

file rootname name
Returns a string representing the path defined in name excluding the file
extension and associated period.

file size name
Returns an integer representing the size of the file defined in name.

file split name
Returns a string containing a Tcl list of the path elements defined in the path
name.

file stat name varName
Invokes the stat kernel call on name, and uses the variable given by varName to
hold information returned from the kernel call. VarName is treated as an array
variable.

file tail name
Returns a string consisting of the file name, without directory information,
extracted from the path defined in name.

file type name
Returns the string “file”, “directory”, “characterSpecial”, “blockSpecial”, “fifo”,
“link”, or “socket” identifying the type of file name.

file volume
Returns the absolute paths to the volumes mounted on the system as a Tcl list
string.

file writable name
Returns a Boolean identifying whether the file defined by name is writable by the
current user.

It statement will not be implemented in MOIS procedures.

2.5.18 format - Format a string in the style of sprintf
format formatString ?arg arg ...?
This command generates a formatted string in the same way as the ANSI C sprintf
procedure (it uses sprintf in its implementation). FormatString indicates how to format
the result, using % conversion specifiers as in sprintf, and the additional arguments, if
any, provide values to be substituted into the result. The return value from format is the
formatted string.

The repeated arg arguments are a problem here as they could be of any MOIS types.
Probably the easiest way to deal with this is to take the same approach as for the expr
command, assuming that everything following the formatString is part of a single
string argument. As in the case of expr, this will mean that variable references can be
made that are not verified by MOIS.

Therefore, it will be implemented the command as a MOIS function, returning a string
value and taking the following arguments

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 5810 Sepdraft

• formatString – Mandatory string containing the formatting instructions

• formatArgs – Optional string containing all of the values to be formatted

The requirements for the MOIS converter are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <format-result> [format <format-string>
<format-args>?]’ and convert these to the ‘format’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <format-result>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <format-result> and this is not of the
String type.

d. The converter shall treat everything following the <format-string> up
to the ‘]’ bracket as the <format-args> argument. It is not expected that
the argument is a delimited string (although it may be). This contradicts the
normal handling of string arguments which are single words or delimited
strings.

2.5.19 gets - Read a line from a channel
gets channelId ?varName?
This command reads the next line from channelId, returns everything in the line up to
(but not including) the end-of-line character(s), and discards the end-of-line
character(s). If varName is omitted the line is returned as the result of the command. If
varName is specified then the line is placed in the variable by that name and the return
value is a count of the number of characters returned.

It will be implemented only as a MOIS directive with two mandatory arguments :-

• channelId – String argument representing the channel id of the channel being
read.

• varName – String representing the name of the variable into which the data read
from the channel is placed.

The requirements of the MOIS converter is as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form
‘gets <channel-id> <var-name>’ and convert these to the ‘gets’
MOIS directive.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <var-name>, provided a variable of that name does not
already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <var-name> and this is not of the String
type.

2.5.20 global - Access global variables
global varname ?varname ...?

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 5910 Sepdraft

This command is ignored unless a Tcl procedure is being interpreted. If so then it
declares the given varname's to be global variables rather than local ones. Global
variables are variables in the global namespace. For the duration of the current
procedure (and only while executing in the current procedure), any reference to any of
the varnames will refer to the global variable by the same name.

MOIS is able to handle local, global and system variables. Then it will be possible to
handle global variables.

2.5.21 glob - Return names of files that match patterns
glob ?switches? pattern ?pattern ...?
This command performs file name “globbing” in a fashion similar to the csh shell. It
returns a list of the files whose names match any of the pattern arguments.

If the initial arguments to glob start with - then they are treated as switches. The
following switches are currently supported:
-directory directory

Search for files which match the given patterns starting in the given directory.
This allows searching of directories whose name contains glob-sensitive
characters without the need to quote such characters explicitly. This option may
not be used in conjunction with -path.

-join

The remaining pattern arguments are treated as a single pattern obtained by
joining the arguments with directory separators.

-nocomplain

Allows an empty list to be returned without error; without this switch an error is
returned if the result list would be empty.

-path pathPrefix
Search for files with the given pathPrefix where the rest of the name matches the
given patterns. This allows searching for files with names similar to a given file
even when the names contain glob-sensitive characters. This option may not be
used in conjunction with -directory.

-types typeList
Only list files or directories which match typeList, where the items in the list have
two forms. The first form is like the -type option of the Unix find command: b
(block special file), c (character special file), d (directory), f (plain file), l
(symbolic link), p (named pipe), or s (socket), where multiple types may be
specified in the list. Glob will return all files which match at least one of the types
given.

The second form specifies types where all the types given must match. These are
r, w, x as file permissions, and readonly, hidden as special permission cases. On
the Macintosh, MacOS types and creators are also supported, where any item
which is four characters long is assumed to be a MacOS type (e.g. TEXT). Items
which are of the form {macintosh type XXXX} or {macintosh creator XXXX} will
match types or creators respectively. Unrecognised types, or specifications of
multiple MacOS types/creators will signal an error. The two forms may be mixed,

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 6010 Sepdraft

so -types {d f r w} will find all regular files OR directories that have both read
AND write permissions.

- -

Marks the end of switches. The argument following this one will be treated as a
pattern even if it starts with a -.

The pattern arguments may contain any of the following special characters:

• ? Matches any single character.

• * Matches any sequence of zero or more characters.

• [chars] Matches any single character in chars. If chars contains a sequence of
the form a-b then any character between a and b (inclusive) will match.

• \x Matches the character x.

• {a,b,...} Matches any of the strings a, b, etc.

The command will be implemented as a MOIS function, returning a string value and
taking the following arguments.

• -directory – This is a switch argument that takes the value ‘-directory’.

• <dir-name> - This is string argument associated with the –directory switch,
it is present if and only if the –directory switch is present. It defines the
directory in which the file search is to be performed.

• -join – This is a switch argument that takes the value ‘-join’.

• -nocomplain – This is a switch argument that takes the value ‘-nocomplain’.

• -path – This is a switch argument that takes the value ‘-path’.

• <path-prefix> - This is string argument associated with the –path switch, it is
present if and only if the –path switch is present. It defines a path prefix within
which the file search is to be made.

• -types - This is a switch argument that takes the value ‘-types’.

• <type-list> - This is string argument associated with the –types switch, it is
present if and only if the –types switch is present. It defines a list of file types for
which the file search is to be made.

• - - - This is a switch argument that takes the value ‘- -‘. It is used to indicate the
end of the switches in cases where the pattern begins with a ‘-‘ character.

• pattern – Repeated string argument defining the file name matching pattern(s) to
be used.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <file-list> [glob <switches>* (- -)? <pattern>+
]’ where ‘<switches> = -directory <dir-name> | -join |
-nocomplain | -path <path-prefix> | -types <type-
list>’ and convert these to the ‘glob’ MOIS function.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 6110 Sepdraft

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <file-list>, provided a variable of that name does not
already exist.

The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <file-list> and this is not of the String
type.

2.5.22 incr - Increment the value of a variable
incr varName ?increment?
Increments the value stored in the variable whose name is varName. The value of the
variable must be an integer. If increment is supplied then its value (which must be an
integer) is added to the value of variable varName; otherwise 1 is added to varName.
The new value is stored as a decimal string in variable varName and also returned as
result.

This command will be implemented as a MOIS set statement (as modified to allow
definitions of increments and offsets). The converter requirements are as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form
‘incr <var-name> <inc-value>?’ and convert these to the MOIS
SET statements.

b. The converter shall raise an error and fail the statement conversion if a MOIS
variable corresponding to <var-name> does not exist or corresponds to a
non-numeric type.

c. The converter shall raise an error and fail the statement conversion if the
<inc-value> is not an integer.

d. The converter shall set the increment value to 1 if no <inc-value> is
specified.

2.5.23 info - Return information about the state of the Tcl interpreter
info option ?arg arg ...?
This command provides information about various internals of the Tcl interpreter.

This command will not be implemented in MOIS procedures.

2.5.24 join - Create a string by joining together list elements
join list ?joinString?
The list argument must be a valid Tcl list. This command returns the string formed by
joining all of the elements of list together with joinString separating each adjacent pair
of elements. The joinString argument defaults to a space character.

This command will be implemented as a MOIS function, returning a string value and
taking the following arguments :-

• list – Mandatory string containing the list of items to be joined.

• JoinString – Optional string identifying the separator character(s).

The MOIS converter requirements are as follows :-

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 6210 Sepdraft

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <join-string> [join <string-list>
<separator>?]’ and convert these to the ‘join’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <join-string>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <join-string> and this is not of the
String type.

2.5.25 lappend - Append list elements onto a variable
lappend varName ?value value value ...?
This command treats the variable given by varName as a list and appends each of the
value arguments to that list as a separate element, with spaces between elements. If
varName doesn't exist, it is created as a list with elements given by the value arguments.

The command will be implemented as a MOIS directive with the following arguments :-

• varName – Mandatory string argument identifying the name of the variable to
which the strings defined in value are to be appended.

• value – Repeated string argument identifying the values to be appended to the list.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form
‘lappend <var-name> <value>*’ and convert these to the ‘lappend’
MOIS directive.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <var-name>, provided a variable of that name does not
already exist.

The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <var-name> and this is not of the String
type.

2.5.26 lindex - Retrieve an element from a list
lindex list index
This command treats list as a Tcl list and returns the index'th element from it (0 refers to
the first element of the list). In extracting the element, lindex observes the same rules
concerning braces and quotes and backslashes as the Tcl command interpreter;
however, variable substitution and command substitution do not occur. If index is
negative or greater than or equal to the number of elements in value, then an empty
string is returned. If index has the value end, it refers to the last element in the list, and
end-integer refers to the last element in the list minus the specified integer offset.

The command will be implemented as a MOIS function returning a string value and
taking the following arguments :-

• list – Mandatory string representing a Tcl list.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 6310 Sepdraft

• index – Mandatory string representing the index position (needs to be a string to
handle the ‘end’ and ‘end-x’ formats).

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [lindex <list-string> <index>]’ and
convert these to the ‘lindex’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the String
type.

2.5.27 linsert - Insert elements into a list
linsert list index element ?element element ...?
This command produces a new list from list by inserting all of the element arguments
just before the indexth element of list. Each element argument will become a separate
element of the new list. If index is less than or equal to zero, then the new elements are
inserted at the beginning of the list. If index has the value end, or if it is greater than or
equal to the number of elements in the list, then the new elements are appended to the
list. end-integer refers to the last element in the list minus the specified integer offset.

The command will be implemented as a MOIS function, returning a string value and
taking the following arguments :-

• list – Mandatory string representing a Tcl list.

• index – Mandatory string identifying the index position within the list at which the
new elements are to be inserted.

• element – Mandatory, repeated string argument defining the new elements to be
inserted.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [linsert <list-string> <index>
<new-element>*]’ and convert these to the ‘linsert’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the String
type.

2.5.28 list - Create a list
list ?arg arg ...?
This command returns a list comprised of all the args, or an empty string if no args are
specified. Braces and backslashes get added as necessary, so that the index command

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 6410 Sepdraft

may be used on the result to re-extract the original arguments, and also so that eval may
be used to execute the resulting list, with arg1 comprising the command's name and the
other args comprising its arguments. List produces slightly different results than
concat: concat removes one level of grouping before forming the list, while list works
directly from the original arguments. For example, the command ‘list a b {c d
e} {f {g h}}’ will return ‘a b {c d e} {f {g h}}’ while concat with the
same arguments will return ‘a b c d e f {g h}’.

The command will be implemented as a MOIS function, returning a string value and
taking the following arguments :-

• arg – Optional, repeated string argument defining the new elements to be inserted.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [list <new-element>*]’ and convert these
to the ‘list’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the String
type.

2.5.29 llength - Count the number of elements in a list
llength list

Treats list as a list and returns a decimal string giving the number of elements in it.

This command will be implemented as a MOIS function returning an integer value and
taking the following arguments :-

• list – Mandatory string value representing a Tcl list.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [llength <list>]’ and convert these to the
‘llength’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the Integer
type.

2.5.30 lrange - Return one or more adjacent elements from a list
lrange list first last
List must be a valid Tcl list. This command will return a new list consisting of elements
first through last, inclusive. First or last may be end (or any abbreviation of it) to refer
to the last element of the list. If first is less than zero, it is treated as if it were zero. If
last is greater than or equal to the number of elements in the list, then it is treated as if it

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 6510 Sepdraft

were end. If first is greater than last then an empty string is returned. The command will
be implemented as a MOIS function returning a string value and taking the following
arguments :-

• list – Mandatory string representing a Tcl list.

• first – Mandatory string representing the index position (needs to be a string to
handle the ‘end’ and ‘end-x’ formats).

• last – Mandatory string representing the index position (needs to be a string to
handle the ‘end’ and ‘end-x’ formats).

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [lrange <list-string> <first>
<last>]’ and convert these to the ‘lrange’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the String
type.

2.5.31 lreplace - Replace elements in a list with new elements
lreplace list first last ?element element ...?
lreplace returns a new list formed by replacing one or more elements of list with the
element arguments. first and last specify the first and last index of the range of elements
to replace. 0 refers to the first element of the list, and end (or any abbreviation of it)
may be used to refer to the last element of the list. If list is empty, then first and last are
ignored. If first is less than zero, it is considered to refer to the first element of the list.
For non-empty lists, the element indicated by first must exist. If last is less than zero but
greater than first, then any specified elements will be prepended to the list. If last is less
than first then no elements are deleted; the new elements are simply inserted before
first. The element arguments specify zero or more new arguments to be added to the list
in place of those that were deleted. Each element argument will become a separate
element of the list. If no element arguments are specified, then the elements between
first and last are simply deleted. If list is empty, any element arguments are added to the
end of the list.

The command will be implemented as a MOIS function returning a string value and
taking the following arguments :-

• list – Mandatory string representing a Tcl list.

• first – Mandatory string representing the index position (needs to be a string to
handle the ‘end’ and ‘end-x’ formats).

• last – Mandatory string representing the index position (needs to be a string to
handle the ‘end’ and ‘end-x’ formats).

• Element – Optional repeated string argument defining the new list elements to be
inserted.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 6610 Sepdraft

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [lreplace <list-string> <first>
<last> <list-element>*]’ and convert these to the ‘lreplace’ MOIS
function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the String
type.

2.5.32 lsearch - See if a list contains a particular element
lsearch ?mode? list pattern
This command searches the elements of list to see if one of them matches pattern. If so,
the command returns the index of the first matching element. If not, the command
returns -1. The mode argument indicates how the elements of the list are to be matched
against pattern.
The command will be implemented as a MOIS function returning an Integer value, and
taking the following arguments :-

• mode – Switch argument which can take the value ‘-exact’, ‘-glob’ or ‘-regexp’ (or
may not be specified).

• list – Mandatory string argument representing the Tcl list to be searched.

• pattern – Mandatory string argument specifying the pattern to be matched

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [lsearch <mode-switch>? <list-
string> <pattern>]’ and convert these to the ‘lsearch’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

2.5.33 lsort - Sort the elements of a list
lsort ?options? list
This command sorts the elements of list, returning a new list in sorted order. The
implementation of the lsort command uses the merge-sort algorithm which is a stable
sort that has O(n log n) performance characteristics.

The command will be implemented as a MOIS function, returning a string value and
taking the arguments defined below. Note that for simplicity, the –command option is
not supported by MOIS.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 6710 Sepdraft

• sort-type – Optional switch argument taking the values ‘-ascii’ (this is the
default), ‘-dictionary’, ‘-integer’ or ‘-real’. Defines the type of sort to be performed.

• sort-direction – Optional switch argument taking the values ‘-increasing’ or
‘-decreasing’

• sort-index – Optional switch argument taking the value ‘-index’

• index – String argument associated with the sort-index switch above. It is
present if and only if sort-index is set to ‘-index’.

• unique - Optional switch argument taking the value ‘-unique’

• list – Mandatory string argument representing the list to be sorted.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [lsort <sort-type>? <sort-
direction>? (<sort-index> <index>)? <unique>? <list-
string>]’ and convert these to the ‘lsort’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.34 memory - Control Tcl memory debugging capabilities.
memory option ?arg arg ...?
The memory command gives the Tcl developer control of Tcl's memory debugging
capabilities. The memory command has several suboptions, which are described below.
It is only available when Tcl has been compiled with memory debugging enabled (when
TCL_MEM_DEBUG is defined at compile time).

This command will not be implemented in MOIS procedures.

2.5.35 namespace - create and manipulate contexts for commands and variables
namespace ?option? ?arg ...?
The namespace command lets you create, access, and destroy separate contexts for
commands and variables.

This command will not be implemented in MOIS procedures.

2.5.36 open - Open a file-based or command pipeline channel
open fileName
open fileName access
open fileName access permissions

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 6810 Sepdraft

This command opens a file, serial port, or command pipeline and returns a channel
identifier that may be used in future invocations of commands like read, puts, and
close. If the first character of filename is not | then the command opens a file: fileName
gives the name of the file to open, and it must conform to the conventions described in
the filename manual entry. The access argument, if present, indicates the way in which
the file (or command pipeline) is to be accessed.

The third form is not supported by MOIS, this is because the arguments are somewhat
ill-conditioned (they can only be identified by their value rather than by type or
position).

The first two forms will be implemented by a MOIS directive with the following
arguments :-

• fileName – Mandatory string identifying the file or channel to open.

• access – Optional string identifying the file access required.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form
‘open <file-name> <access>’ and convert these to the ‘open’ MOIS
directive.

2.5.37 pid - Retrieve process id(s)
pid ?fileId?
If the fileId argument is given then it should normally refer to a process pipeline created
with the open command. In this case the pid command will return a list whose elements
are the process identifiers of all the processes in the pipeline, in order. The list will be
empty if fileId refers to an open file that isn't a process pipeline. If no fileId argument is
given then pid returns the process identifier of the current process. All process
identifiers are returned as decimal strings.

The command will be implemented as a MOIS function returning an Integer value and
taking the following arguments :-

• fileId – Optional string identifying the file

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [pid <file-id>?]’ and convert these to the
‘pid’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

2.5.38 puts - Write to a channel
puts ?-nonewline? ?channelId? string
Writes the characters given by string to the channel given by channelId. ChannelId
must be a channel identifier such as returned from a previous invocation of open or

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 6910 Sepdraft

socket. It must have been opened for output. If no channelId is specified then it defaults
to stdout. Puts normally outputs a newline character after string, but this feature may
be suppressed by specifying the -nonewline switch.

This command is rather poorly specified, as it includes an optional argument which is
not a switch and also not at the end of the argument list. The channelId will be defined
as a mandatory argument, but the MOIS converter will set the value to ‘’ (empty string)
if the argument is not included.

The command will be implemented as a MOIS directive with the following arguments :-

• nonewline – Optional switch argument taking value ‘-nonewline’.

• channelId – Mandatory string argument identifying the channel to be written to

• string – Mandatory string argument defining the text to be written.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form
‘puts <nonewline>? <channel-id> <out-string>’ and
convert these to the ‘puts’ MOIS function.

b. The MOIS converter shall recognise simple Tcl statements of the form
‘puts <nonewline>? <out-string>’ and convert these to the ‘puts’
MOIS function. In this case the <channel-id> argument shall be set to ‘’.

2.5.39 pwd - Return the current working directory
pwd

Returns the path name of the current working directory.

The command will be implemented as a MOIS function with no arguments and
returning a string value.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> pwd’ and convert these to the ‘pwd’ MOIS
function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.40 read - Read from a channel
read ?-nonewline? channelId

read channelId numChars

In the first form, the read command reads all of the data from channelId up to the end
of the file. If the -nonewline switch is specified then the last character of the file is
discarded if it is a newline. In the second form, the extra argument specifies how many
characters to read. Exactly that many characters will be read and returned, unless there
are fewer than numChars left in the file; in this case all the remaining characters are

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 7010 Sepdraft

returned. If the channel is configured to use a multi-byte encoding, then the number of
characters read may not be the same as the number of bytes read.

The command will be implemented as a MOIS directive with the following arguments :-

• nonnewline – Optional switch argument, taking the value ‘-nonnewline’.

• channelId – Mandatory string argument identifying the channel to be read from.

• numChars – Optional integer argument identifying the number of characters to be
read

The MOIS converter requirements are as follwos :-

a. The MOIS converter shall recognise simple Tcl statements of the form
7‘read <nonewline>? <channel-id> <num-chars>?’ and
convert these to the ‘read’ MOIS directive.

2.5.41 regexp - Match a regular expression against a string
regexp ?switches? exp string ?matchVar? ?subMatchVar
subMatchVar ...?

Determines whether the regular expression exp matches part or all of string and returns
1 if it does, 0 if it doesn't, unless -inline is specified (see below).

If additional arguments are specified after string then they are treated as the names of
variables in which to return information about which part(s) of string matched exp.
MatchVar will be set to the range of string that matched all of exp. The first
subMatchVar will contain the characters in string that matched the leftmost
parenthesized subexpression within exp, the next subMatchVar will contain the
characters that matched the next parenthesized subexpression to the right in exp, and so
on. If the initial arguments to regexp start with - then they are treated as switches.

The command will be implemented as a MOIS function, returning a boolean value and
taking the following arguments :-

• about – Optional switch argument taking the value ‘-about’

• expanded – Optional switch argument taking the value ‘-expanded’

• indices – Optional switch argument taking the value ‘-indices’

• line – Optional switch argument taking the value ‘-line’

• linestop – Optional switch argument taking the value ‘-linestop’

• lineanchor – Optional switch argument taking the value ‘-lineanchor’

• nocase – Optional switch argument taking the value ‘-nocase’

• all – Optional switch argument taking the value ‘-all’

• inline – Optional switch argument taking the value ‘-inline’

• start – Optional switch argument taking the value ‘-start’

• startIndex – Integer argument defining the search start position, associated with
the start switch such that it is present if and only if the start switch is present.

• - – Optional switch argument taking the value ‘--’

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 7110 Sepdraft

• regularExp – Mandatory string argument defining the regular expression to be
used in the match.

• matchStr – Mandatory string argument defining the string to be matched against
the regular expression

• matchVar – Optional, repeated string argument defining variable names in which
the matched string segments are to be placed.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [regexp <about>? <expanded>?
<indices>? <line>? <linestop>? <lineanchor>?
<nocase>? <all>? <inline>? (<start> <start-index>)?
<->? <regular-exp> <match-str> <match-var>*]’ and
convert these to the ‘regexp’ MOIS function.

b. The converter shall create a MOIS local variable of Boolean type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Boolean type.

d. The converter shall create a MOIS local variable of String type with the name
corresponding to <match-var> for each instance of <match-var>,
provided a variable of that name does not already exist.

e. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <match-var> (for each instance) and
this is not of the String type.

2.5.42 regsub - Perform substitutions based on regular expression pattern
matching
regsub ?switches? exp string subSpec varName
This command matches the regular expression exp against string, and it copies string to
the variable whose name is given by varName. If there is a match, then while copying
string to varName the portion of string that matched exp is replaced with subSpec. If
subSpec contains a ``&'' or ``\0'', then it is replaced in the substitution with the portion
of string that matched exp. If subSpec contains a ``\ n'', where n is a digit between 1 and
9, then it is replaced in the substitution with the portion of string that matched the n-th
parenthesized subexpression of exp. Additional backslashes may be used in subSpec to
prevent special interpretation of ``&'' or ``\0'' or ``\n'' or backslash. The use of
backslashes in subSpec tends to interact badly with the Tcl parser's use of backslashes,
so it's generally safest to enclose subSpec in braces if it includes backslashes. If the
initial arguments to regexp start with - then they are treated as switches.

The command will be implemented as a MOIS function, returning a boolean value and
taking the following arguments :-

• all – Optional switch argument taking the value ‘-about’

• expanded – Optional switch argument taking the value ‘-expanded’

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 7210 Sepdraft

• line – Optional switch argument taking the value ‘-line’

• linestop – Optional switch argument taking the value ‘-linestop’

• lineanchor – Optional switch argument taking the value ‘-lineanchor’

• nocase – Optional switch argument taking the value ‘-nocase’

• inline – Optional switch argument taking the value ‘-inline’

• start – Optional switch argument taking the value ‘-start’

• startIndex – Integer argument defining the search start position, associated with
the start switch such that it is present if and only if the start switch is present.

• - – Optional switch argument taking the value ‘--’

• regularExp – Mandatory string argument defining the regular expression to be
used in the match.

• matchStr – Mandatory string argument defining the string to be matched against
the regular expression

• replaceStr – Mandatory string argument defining the new string to be used to
replace the matched string.

• matchVar – Mandatory string argument defining the variable name in which the
replaced string is placed.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form
‘regsub <all>? <expanded>? <line>? <linestop>?
<lineanchor>? <nocase>? <inline>? (<start> <start-
index>)? <->? <regular-exp> <match-str> <replace-
str> <match-var>]’ and convert these to the ‘regsub’ MOIS directive.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <match-var>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <match-var> and this is not of the
String type.

2.5.43 rename - Rename or delete a command
rename oldName newName
Rename the command that used to be called oldName so that it is now called newName.
If newName is an empty string then oldName is deleted. oldName and newName may
include namespace qualifiers (names of containing namespaces). If a command is
renamed into a different namespace, future invocations of it will execute in the new
namespace. The rename command returns an empty string as result.

This command will not be implemented in MOIS procedures.

2.5.44 scan - Parse string using conversion specifiers in the style of sscanf
scan string format ?varName varName ...?

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 7310 Sepdraft

This command parses fields from an input string in the same fashion as the ANSI C
sscanf procedure and returns a count of the number of conversions performed, or -1 if
the end of the input string is reached before any conversions have been performed.
String gives the input to be parsed and format indicates how to parse it, using %
conversion specifiers as in sscanf. Each varName gives the name of a variable; when a
field is scanned from string the result is converted back into a string and assigned to the
corresponding variable. If no varName variables are specified, then scan works in an
inline manner, returning the data that would otherwise be stored in the variables as a
list. In the inline case, an empty string is returned when the end of the input string is
reached before any conversions have been performed.

This command will be implemented as both a directive and a function to deal with the
normal and inline forms. The directive form takes the following arguments (note that
the integer return value is not modelled by MOIS) :-

• string – Mandatory string argument, identifying the string to be parsed

• format – Mandatory string argument, identifying the parse instructions

• varName – Mandatory, repeated string argument representing variable names in
which the parsed elements are placed.

The function form returns a string value containing a Tcl list of the parsed elements and
takes the following arguments :-

• string – Mandatory string argument, identifying the string to be parsed

• format – Mandatory string argument, identifying the parse instructions

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form
‘scan <parse-string> <format> <var-name>+’ and convert
these to the ‘scan’ MOIS directive.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <var-name> for each instance of <var-name>,
provided a variable of that name does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <var-name> (for each instance) and this
is not of the String type.

d. The MOIS converter shall recognise compound Tcl statements of the form
‘set <element-list> [scan <parse-string> <format>]’
and convert these to the ‘scan’ MOIS function.

e. The converter shall create a MOIS local variable of String type with the name
corresponding to <element-list>, provided a variable of that name
does not already exist.

f. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <element-list> and this is not of the
String type.

2.5.45 seek - Change the access position for an open channel
seek channelId offset ?origin?

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 7410 Sepdraft

Changes the current access position for channelId. ChannelId must be a channel
identifier such as returned from a previous invocation of open or socket. The offset and
origin arguments specify the position at which the next read or write will occur for
channelId. Offset must be an integer (which may be negative) and origin must be one of
the following:

The command will be implemented as a MOIS directive taking the following arguments
:-

• channelId – Mandatory string argument representing the identifier for the
channel

• offset – Mandatory integer argument identifying the byte offset to be applied to
the channel.

• origin – Optional switch argument, taking the values ‘start’, ‘end’ or ‘current’.

The MOIS converter requirements are :-

a. The MOIS converter shall recognise simple Tcl statements of the form
‘seek <channel-id> <offset> <origin>?’ and convert these to
the ‘seek’ MOIS directive

2.5.46 set - Read and write variables
set varName ?value?
Returns the value of variable varName. If value is specified, then set the value of
varName to value, creating a new variable if one doesn't already exist, and return its
value. If varName contains an open parenthesis and ends with a close parenthesis, then
it refers to an array element: the characters before the first open parenthesis are the
name of the array, and the characters between the parentheses are the index within the
array. Otherwise varName refers to a scalar variable. Normally, varName is unqualified
(does not include the names of any containing namespaces), and the variable of that
name in the current namespace is read or written. If varName includes namespace
qualifiers (in the array name if it refers to an array element), the variable in the specified
namespace is read or written.

This command will be implemented as a MOIS SET var statement.

• varName – Mandatory string argument identifying the name of the variable to be
set.

• value – Mandatory string argument identifying the value to be set.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form ‘set
<var-name> <value>’ and convert these to the ‘set’ MOIS directive.

2.5.47 socket - Open a TCP network connection
socket ?options? host port
socket -server command ?options? port
This command opens a network socket and returns a channel identifier that may be used
in future invocations of commands like read, puts and flush. At present only the TCP

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 7510 Sepdraft

network protocol is supported; future releases may include support for additional
protocols. The socket command may be used to open either the client or server side of a
connection, depending on whether the -server switch is specified.

This command will not be implemented in MOIS procedures.

2.5.48 source - Evaluate a file or resource as a Tcl script
source fileName
source -rsrc resourceName ?fileName?
source -rsrcid resourceId ?fileName?
This command takes the contents of the specified file or resource and passes it to the
Tcl interpreter as a text script. The return value from source is the return value of the
last command executed in the script. If an error occurs in evaluating the contents of the
script then the source command will return that error. If a return command is invoked
from within the script then the remainder of the file will be skipped and the source
command will return normally with the result from the return command. The –rsrc and
-rsrcid forms of this command are only available on Macintosh computers. These
versions of the command allow you to source a script from a TEXT resource. You may
specify what TEXT resource to source by either name or id. By default Tcl searches all
open resource files, which include the current application and any loaded C extensions.
Alternatively, you may specify the filename where the TEXT resource can be found.

This command will not be implemented in MOIS procedures.

2.5.49 split - Split a string into a proper Tcl list
split string ?splitChars?
Returns a list created by splitting string at each character that is in the splitChars
argument. Each element of the result list will consist of the characters from string that
lie between instances of the characters in splitChars. Empty list elements will be
generated if string contains adjacent characters in splitChars, or if the first or last
character of string is in splitChars. If splitChars is an empty string then each character
of string becomes a separate element of the result list. SplitChars defaults to the
standard white-space characters.

The command will be implemented as a MOIS function, returning a string value
(representing a Tcl list) and taking the following arguments :-

• string – Mandatory string argument identifying the string to split.

• splitChar – Optional string argument identifying the separator character(s).

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [split <split-string>
<separator>?]’ and convert these to the ‘split’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 7610 Sepdraft

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.50 string - Manipulate strings
string option arg ?arg ...?
Performs one of several string operations, depending on option. The legal options
(which may be abbreviated) are:

This is a set of commands for operating on a strings. The valid options are given below
with their argument patterns and a brief description :-
string bytelength string

Returns a decimal string giving the number of bytes used to represent string in
memory. Because UTF-8 uses one to three bytes to represent Unicode characters,
the byte length will not be the same as the character length in general. The cases
where a script cares about the byte length are rare. In almost all cases, you should
use the string length operation.

string compare ?-nocase? ?-length int? string1 string2
Perform a character-by-character comparison of strings string1 and string2. Returns
-1, 0, or 1, depending on whether string1 is lexicographically less than, equal to, or
greater than string2. If –length is specified, then only the first length characters are
used in the comparison. If -length is negative, it is ignored. If -nocase is specified,
then the strings are compared in a case-insensitive manner.

string equal ?-nocase? ?-length int? string1 string2
Perform a character-by-character comparison of strings string1 and string2. Returns
1 if string1 and string2 are identical, or 0 when not. If -length is specified, then only
the first length characters are used in the comparison. If -length is negative, it is
ignored. If -nocase is specified, then the strings are compared in a case-insensitive
manner.

string first string1 string2 ?startIndex?
Search string2 for a sequence of characters that exactly match the characters in
string1. If found, return the index of the first character in the first such match within
string2. If not found, return -1. If startIndex is specified (in any of the forms
accepted by the index method), then the search is constrained to start with the
character in string2 specified by the index.

string index string charIndex
Returns the charIndex'th character of the string argument. A charIndex of 0
corresponds to the first character of the string. charIndex may be specified as
follows:

• integer - The char specified at this integral index

• end - The last char of the string.

• end-integer - The last char of the string minus the specified integer
offset (e.g. end-1 would refer to the "c" in "abcd"). If charIndex is less than 0
or greater than or equal to the length of the string then an empty string is
returned.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 7710 Sepdraft

string is class ?-strict? ?-failindex varname? string
Returns 1 if string is a valid member of the specified character class, otherwise
returns 0. If –strict is specified, then an empty string returns 0, otherwise and empty
string will return 1 on any class. If -failindex is specified, then if the function
returns 0, the index in the string where the class was no longer valid will be stored in
the variable named varname. The varname will not be set if the function returns 1.
The following character classes are recognized (the class name can be abbreviated):

• alnum - Any Unicode alphabet or digit character.

• alpha - Any Unicode alphabet character.

• ascii - Any character with a value less than \u0080 (those that are in the
7-bit ascii range).

• boolean - Any of the forms allowed to Tcl_GetBoolean.

• control - Any Unicode control character.

• digit - Any Unicode digit character. Note that this includes characters
outside of the [0-9] range.

• double - Any of the valid forms for a double in Tcl, with optional
surrounding whitespace. In case of under/overflow in the value, 0 is returned
and the varname will contain -1.

• false - Any of the forms allowed to Tcl_GetBoolean where the value is
false.

• graph - Any Unicode printing character, except space.

• integer - Any of the valid forms for an integer in Tcl, with optional
surrounding whitespace. In case of under/overflow in the value, 0 is returned
and the varname will contain -1.

• lower - Any Unicode lower case alphabet character.

• print - Any Unicode printing character, including space.

• punct - Any Unicode punctuation character.

• space - Any Unicode space character.

• true - Any of the forms allowed to Tcl_GetBoolean where the value is
true.

• upper - Any upper case alphabet character in the Unicode character set.

• wordchar - Any Unicode word character. That is any alphanumeric
character, and any Unicode connector punctuation characters (e.g.
underscore).

• xdigit - Any hexadecimal digit character ([0-9A-Fa-f]). In the case of
boolean, true and false , if the function will return 0, then the varname will
always be set to 0, due to the varied nature of a valid boolean value.

string last string1 string2 ?startIndex?
Search string2 for a sequence of characters that exactly match the characters in
string1. If found, return the index of the first character in the last such match within

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 7810 Sepdraft

string2. If there is no match, then return -1. If startIndex is specified (in any of the
forms accepted by the index method), then only the characters in string2 at or
before the specified startIndex will be considered by the search.

string length string
Returns a decimal string giving the number of characters in string. Note that this is
not necessarily the same as the number of bytes used to store the string.

string map ?-nocase? charMap string
Replaces characters in string based on the key-value pairs in charMap. charMap is a
list of key value key value ... as in the form returned by array get. Each instance of a
key in the string will be replaced with its corresponding value. If -nocase is
specified, then matching is done without regard to case differences. Both key and
value may be multiple characters. Replacement is done in an ordered manner, so the
key appearing first in the list will be checked first, and so on. string is only iterated
over once, so earlier key replacements will have no affect for later key matches.

string match ?-nocase? pattern string
See if pattern matches string; return 1 if it does, 0 if it doesn't. If -nocase is
specified, then the pattern attempts to match against the string in a case insensitive
manner. For the two strings to match, their contents must be identical except that the
following special sequences may appear in pattern:

• * - Matches any sequence of characters in string, including a null string.

• ? - Matches any single character in string.

• [chars] - Matches any character in the set given by chars. If a sequence
of the form x-y appears in chars, then any character between x and y,
inclusive, will match. When used with -nocase , the end points of the range
are converted to lower case first. Whereas {[A-z]} matches '_' when matching
case-sensitively ('_' falls between the 'Z' and 'a'), with -nocase this is
considered like {[A-Za-z]} (and probably what was meant in the first place).

• \x - Matches the single character x. This provides a way of avoiding the
special interpretation of the characters *?[]\ in pattern.

string range string first last
Returns a range of consecutive characters from string, starting with the character
whose index is first and ending with the character whose index is last. An index of 0
refers to the first character of the string. first and last may be specified as for the
index method. If first is less than zero then it is treated as if it were zero, and if last
is greater than or equal to the length of the string then it is treated as if it were end.
If first is greater than last then an empty string is returned.

string repeat string count
Returns string repeated count number of times.

string replace string first last ?newstring?
Removes a range of consecutive characters from string, starting with the character
whose index is first and ending with the character whose index is last. An index of 0
refers to the first character of the string. First and last may be specified as for the
index method. If newstring is specified, then it is placed in the removed character

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 7910 Sepdraft

range. If first is less than zero then it is treated as if it were zero, and if last is greater
than or equal to the length of the string then it is treated as if it were end. If first is
greater than last or the length of the initial string, or last is less than 0, then the
initial string is returned untouched.

string tolower string ?first? ?last?
Returns a value equal to string except that all upper (or title) case letters have been
converted to lower case. If first is specified, it refers to the first char index in the
string to start modifying. If last is specified, it refers to the char index in the string to
stop at (inclusive). first and last may be specified as for the index method.

string totitle string ?first? ?last?
Returns a value equal to string except that the first character in string is converted to
its Unicode title case variant (or upper case if there is no title case variant) and the
rest of the string is converted to lower case. If first is specified, it refers to the first
char index in the string to start modifying. If last is specified, it refers to the char
index in the string to stop at (inclusive). first and last may be specified as for the
index method.

string toupper string ?first? ?last?
Returns a value equal to string except that all lower (or title) case letters have been
converted to upper case. If first is specified, it refers to the first char index in the
string to start modifying. If last is specified, it refers to the char index in the string to
stop at (inclusive). first and last may be specified as for the index method.

string trim string ?chars?
Returns a value equal to string except that any leading or trailing characters from the
set given by chars are removed. If chars is not specified then white space is
removed (spaces, tabs, newlines, and carriage returns).

string trimleft string ?chars?
Returns a value equal to string except that any leading characters from the set given
by chars are removed. If chars is not specified then white space is removed (spaces,
tabs, newlines, and carriage returns).

string trimright string ?chars?
Returns a value equal to string except that any trailing characters from the set given
by chars are removed. If chars is not specified then white space is removed (spaces,
tabs, newlines, and carriage returns).

string wordend string charIndex
Returns the index of the character just after the last one in the word containing
character charIndex of string. charIndex may be specified as for the index method.
A word is considered to be any contiguous range of alphanumeric (Unicode letters
or decimal digits) or underscore (Unicode connector punctuation) characters, or any
single character other than these.

string wordstart string charIndex
Returns the index of the first character in the word containing character charIndex
of string. charIndex may be specified as for the index method. A word is considered
to be any contiguous range of alphanumeric (Unicode letters or decimal digits) or

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 8010 Sepdraft

underscore (Unicode connector punctuation) characters, or any single character
other than these.

The implementation and MOIS converter requirements for each variant of string are
detailed in the subsections below.

2.5.50.1 string bytelength
Command will be implemented as a MOIS function, returning an Integer value and
taking a single mandatory argument :-

• string – String for which the length is required

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string bytelength <string>]’ and
convert these to the ‘string bytelength’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

2.5.50.2 string compare
Command will be implemented as a MOIS function, returning an Integer value and
taking arguments as follows :-

• nocase – Optional switch argument with allowed value ‘-nocase’.

• length – Optional switch argument with allowed value ‘-length’.

• lengthVal – Integer argument representing the comparison length. Argument is
associated with the length switch and is present if and only if the length switch
is present.

• string1 – First comparison string

• string2 – Second comparison string

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string compare <nocase>?
(<length> <length-val>)? <string1> <string2>]’ and
convert these to the ‘string compare’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 8110 Sepdraft

2.5.50.3 string equal
Command will be implemented as a MOIS function, returning an Boolean value and
taking arguments as follows :-

• nocase – Optional switch argument with allowed value ‘-nocase’.

• length – Optional switch argument with allowed value ‘-length’.

• lengthVal – Integer argument representing the comparison length. Argument is
associated with the length switch and is present if and only if the length switch
is present.

• string1 – First comparison string. Mandatory.

• string2 – Second comparison string. Mandatory.

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string equal <nocase>? (<length>
<length-val>)? <string1> <string2>]’ and convert these to the
‘string equal’ MOIS function.

b. The converter shall create a MOIS local variable of Boolean type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Boolean type.

2.5.50.4 string first
Command will be implemented as a MOIS function, returning an Integer value and
taking arguments as follows :-

• string1 – Mandatory string argument representing the text being searched for

• string2 – Mandatory string argument representing the string being searched

• startIndex – Optional integer argument identifying the start point for the search

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string first <string1> <string2>
<start-index>?]’ and convert these to the ‘string first’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

2.5.50.5 string index
Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 8210 Sepdraft

• string – Mandatory string argument representing the text being searched

• charIndex – Mandatory string argument identifying the position of the character
to be returned

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string index <string> <char-
index>]’ and convert these to the ‘string index’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.50.6 string is
Command will be implemented as a MOIS function, returning a Boolean value and
taking arguments as follows :-

• class – Mandatory switch argument identifying the character class being checked
for. The valid values are :- ‘alnum’, ‘alpha’, ‘ascii’, ‘boolean’, ‘control’, ‘digit’,
‘double’, ‘false’, ‘graph’, ‘integer’, ‘lower’, ‘print’, ‘punct’, ‘space’, ‘true’, ‘upper’,
‘wordchar’ or ‘xdigit’.

• strict – Optional switch argument with valid value ‘-strict’.

• failIndex – Optional switch argument with valid value ‘-failindex’.

• failVar – String argument representing a variable name. This is associated with
the failIndex switch, and is present if and only if the switch is present.

• String – Mandatory string argument identifying the string to be checked

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string is <class> <strict>?
(<fail-index> <fail-var>)? <string>’ and convert these to the
‘string is’ MOIS function.

b. The converter shall create a MOIS local variable of Boolean type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Boolean type.

d. If the <fail-var> argument is specified, the converter shall create a MOIS
local variable of String type with the name corresponding to <fail-var>,
provided a variable of that name does not already exist.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 8310 Sepdraft

e. If the <fail-var> argument is specified, the converter shall raise an error
and fail the statement conversion if a MOIS variable already exists with name
<fail-var> and this is not of the String type.

2.5.50.7 string last
Command will be implemented as a MOIS function, returning an Integer value and
taking arguments as follows :-

• string1 – Mandatory string argument representing the text being searched for

• string2 – Mandatory string argument representing the string being searched

• startIndex – Optional integer argument identifying the start point for the search

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string first <string1> <string2>
<start-index>?]’ and convert these to the ‘string last’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

2.5.50.8 string length
Command will be implemented as a MOIS function, returning an Integer value and
taking arguments as follows :-

• string – Mandatory string argument for which the length is required

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string length <string>]’ and convert
these to the ‘string length’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

2.5.50.9 string map
Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

• nocase – Optional switch argument with valid value ‘-nocase’

• charMap – Mandatory string argument identifying the key value pairs for the
replacement

• string – Mandatory string argument identifying string to be remapped

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 8410 Sepdraft

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string map <nocase>? <char-map>
<string>]’ and convert these to the ‘string map’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.50.10 string match
Command will be implemented as a MOIS function, returning a Boolean value and
taking arguments as follows :-

• nocase – Optional switch argument with valid value ‘-nocase’

• pattern – Mandatory string argument representing the match pattern

• string – Mandatory string argument identifying string to be matched

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string match <nocase>? <pattern>
<string>]’ and convert these to the ‘string match’ MOIS function.

b. The converter shall create a MOIS local variable of Boolean type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Boolean type.

2.5.50.11 string range
Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

• string – Mandatory string argument identifying the source string

• first – Mandatory integer argument identifying the first character of the target
range

• last – Mandatory integer argument identifying the last character of the target
range

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string range <string> <first>
<last>]’ and convert these to the ‘string range’ MOIS function.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 8510 Sepdraft

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.50.12 string repeat
Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

• string – Mandatory string argument identifying the source string

• count – Mandatory integer argument identifying the number of iterations

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string repeat <string> <count>]’
and convert these to the ‘string repeat’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.50.13 string replace
Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

• string – Mandatory string argument identifying the source string

• first – Mandatory integer argument identifying position of the first character to
be replaced

• last – Mandatory integer argument identifying the position of the last character to
be replaced

• newString – Optional string argument identifying the replacement string

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string replace <string> <first>
<last> <new-string>?]’ and convert these to the ‘string replace’
MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 8610 Sepdraft

2.5.50.14 string tolower
Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

• string – Mandatory string argument identifying the source string

• first – Optional integer argument identifying position of the first character to be
case lowered

• last – Optional integer argument identifying the position of the last character to be
case lowered

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string tolower <string> <first>?
<last>?]’ and convert these to the ‘string tolower’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.50.15 string totitle
Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

• string – Mandatory string argument identifying the source string

• first – Optional integer argument identifying position of the first character to be
case changed

• last – Optional integer argument identifying the position of the last character to be
case changed

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string totitle <string> <first>?
<last>?]’ and convert these to the ‘string totitle’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.50.16 string toupper
Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

• string – Mandatory string argument identifying the source string

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 8710 Sepdraft

• first – Optional integer argument identifying position of the first character to be
case changed

• last – Optional integer argument identifying the position of the last character to be
case changed

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string toupper <string> <first>?
<last>?]’ and convert these to the ‘string toupper’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.50.17 string trim
Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

• string – Mandatory string argument identifying the source string

• chars – Optional string argument identifying the characters to be trimmed
(defaults to whitespce characters).

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string trim <string> <chars>?]’ and
convert these to the ‘string trim’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.50.18 string trimleft
Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

• string – Mandatory string argument identifying the source string

• chars – Optional string argument identifying the characters to be trimmed
(defaults to whitespce characters).

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string trimleft <string>
<chars>?]’ and convert these to the ‘string trimleft’ MOIS function.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 8810 Sepdraft

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.50.19 string trimright
Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

• string – Mandatory string argument identifying the source string

• chars – Optional string argument identifying the characters to be trimmed
(defaults to whitespce characters).

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string trimright <string>
<chars>?]’ and convert these to the ‘string trimright’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.50.20 string wordend
Command will be implemented as a MOIS function, returning a Integer value and
taking arguments as follows :-

• string – Mandatory string argument identifying the source string

• charIndex – Mandatory string argument identifying word for which the end
position is required

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string wordend <string> <char-
index>]’ and convert these to the ‘string wordend’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

2.5.50.21 string wordstart
Command will be implemented as a MOIS function, returning a Integer value and
taking arguments as follows :-

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 8910 Sepdraft

• string – Mandatory string argument identifying the source string

• charIndex – Mandatory string argument identifying word for which the start
position is required

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string wordstart <string> <char-
index>]’ and convert these to the ‘string wordstart’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the Integer
type.

2.5.51 subst
subst ?-nobackslashes? ?-nocommands? ?-novariables? string
This command performs variable substitutions, command substitutions, and backslash
substitutions on its string argument and returns the fully-substituted result. The
substitutions are performed in exactly the same way as for Tcl commands. As a result,
the string argument is actually substituted twice, once by the Tcl parser in the usual
fashion for Tcl commands, and again by the subst command. If any of the -
nobackslashes, -nocommands, or -novariables are specified, then the corresponding
substitutions are not performed. For example, if -nocommands is specified, no
command substitution is performed: open and close brackets are treated as ordinary
characters with no special interpretation.

The command will be implemented as a MOIS function , returning a string value and
taking the following arguments :-

• nobackslashes – Optional switch argument taking the value ‘-nobackslashes’

• nocommands – Optional switch argument taking the value ‘-nocommands’

• novariables – Optional switch argument taking the value ‘-novariables’

• string – Mandatory string argument containing the text to be substituted

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [subst <nobackslashes>?
<nocommands>? <novariables>? <string>]’ and convert these
to the ‘subst’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 9010 Sepdraft

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.52 tell - Return current access position for an open channel
tell channelId
Returns an integer string giving the current access position in channelId. This value
returned is a byte offset that can be passed to seek in order to set the channel to a
particular position. Note that this value is in terms of bytes, not characters like read.
The value returned is -1 for channels that do not support seeking.

Command will be implemented as a MOIS function returning an integer value and
taking the following arguments :-

• channelId – Mandatory string argument identifying the channel

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [tell <channel-id>]’ and convert these to
the ‘tell’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

2.5.53 time - Time the execution of a script
time script ?count?
This command will call the Tcl interpreter count times to evaluate script (or once if
count isn't specified). It will then return a string of the form ‘503 microseconds
per iteration’ which indicates the average amount of time required per iteration,
in microseconds. Time is measured in elapsed time, not CPU time.

This command will not be implemented in MOIS procedures.

2.5.54 trace - Monitor variable accesses
trace option ?arg arg ...?
This command causes Tcl commands to be executed whenever certain operations are
invoked. At present, only variable tracing is implemented.

This command will not be implemented in MOIS procedures.

2.5.55 unknown - Handle attempts to use non-existent commands
unknown cmdName ?arg arg ...?
This command is invoked by the Tcl interpreter whenever a script tries to invoke a
command that doesn't exist. The implementation of unknown isn't part of the Tcl core;
instead, it is a library procedure defined by default when Tcl starts up. You can override
the default unknown to change its functionality.

This command ewill not be implemented in MOIS procedures.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 9110 Sepdraft

2.5.56 unset - Delete variables
unset name ?name name ...?
This command removes one or more variables. Each name is a variable name, specified
in any of the ways acceptable to the set command. If a name refers to an element of an
array then that element is removed without affecting the rest of the array. If a name
consists of an array name with no parenthesized index, then the entire array is deleted.
The unset command returns an empty string as result. An error occurs if any of the
variables doesn't exist, and any variables after the non-existent one are not deleted.

This command will not be implemented in MOIS procedures.

2.5.57 upvar - Create link to variable in a different stack frame
upvar ?level? otherVar myVar ?otherVar myVar ...?
This command arranges for one or more local variables in the current procedure to refer
to variables in an enclosing procedure call or to global variables. Level may have any of
the forms permitted for the uplevel command, and may be omitted if the first letter of
the first otherVar isn't # or a digit (it defaults to 1). For each otherVar argument, upvar
makes the variable by that name in the procedure frame given by level (or at global
level, if level is #0) accessible in the current procedure by the name given in the
corresponding myVar argument. The variable named by otherVar need not exist at the
time of the call; it will be created the first time myVar is referenced, just like an
ordinary variable. There must not exist a variable by the name myVar at the time upvar
is invoked. MyVar is always treated as the name of a variable, not an array element.
Even if the name looks like an array element, such as a(b), a regular variable is created.
OtherVar may refer to a scalar variable, an array, or an array element.

This command will not be implemented in MOIS procedures.

2.5.58 variable - create and initialise a namespace variable
variable ?name value...? name ?value?
This command is normally used within a namespace eval command to create one or
more variables within a namespace. Each variable name is initialised with value. The
value for the last variable is optional.

The structure of this command does not easily fit into the generic function / directive
definition, as it uses multiple repeated arguments which are dependent on each other.
This command will not be implemented in MOIS procedures.

2.6 Generic Requirements
This section identifies any generic requirements

a. Tcl switch values may be abbreviated, provided the value is unique within the
value list for the switch argument. The MOIS converter shall not support
such abbreviations, if such are found they shall be treated as an unmatched
argument value and the statement conversion failed with an error.

b. In all cases a failure to match a Tcl statement shall result in the statement
being translated as a MOIS CMT (comment) statement. Failure to match may
either be as a result of a specific requirement or as a result of no requirements
existing for a particular structure (or structure variant).

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 9210 Sepdraft

c. In all cases where requirements call for failure of statement conversion and
error notification, this shall apply only to the current statement. Conversion
for subsequent statements shall be performed normally.

d. Conversion errors shall be reported in the converter interface and also in the
translated MOIS procedure as a CMT (comment) statement immediately
following the failed statement (which will also have been translated as a
CMT).

2.6.1 Functions & Directives
2.6.1.1 Arguments

a. Unless otherwise stated in the requirements for a specific item, the MOIS
converter shall identify function / directive arguments in the original Tcl as
either literal values or as simple variable references (i.e. of the form ‘$<var-
name>’).

b. For variable references, the converter shall check that a MOIS variable with
name <var-name> exists and is of the appropriate type for the argument. The
statement conversion shall fail and an error be raised if a variable of the correct
name and type does not exist.

In all cases in which an argument represents a variable name, array references are not allowed
and shall cause the converter to fail the statement conversion and raise an error.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 9310 Sepdraft

3 ASSUMPTIONS
3.1 Untranslated Statements

In the requirements, it is assumed that any statements that are not translated are inserted
into the MOIS Free-text directive. This is the case for all statements which will not be
implemented in MOIS procedures.

This Free-text directive will take as argument a string, which will be a part of script
couldn’t be implemented in MOIS procedure. Such statements will be treated just as a
directive statement by MOIS, but could be exported as Tcl/TOPE code.

However, if an error occurred and a statement couldn’t be translated, a MOIS comment
statement is added instead with the error report.

3.2 Conditions
In the condition section the requirements are based on the existing MOIS condition
definitions.

3.3 Function / Directive Definitions
Many of the Tcl/TOPE statements have argument definitions that conflict with the
current MOIS function / directive definitions.

Problem areas, with examples are :-

• Repeated command argument

In this case the final command argument can be repeated an arbitrary number of
times. This can be modelled in the directive / function mechanism to some extend
by defining a fixed number of optional arguments and then applying a coding rule to
limit the number of allowed repeats. Examples are :-
verified ?-timestamp <time>? -tc <cmd> ?<param>...?

• Multiple command forms

In this case the command has several forms (i.e. argument patterns) depending on a
command qualifier.
verified ?-timestamp <time>? -tc <cmd> ?<param>...?

verified ?-timestamp <time>? -tm <parameter>

binary format formatString ?arg arg ...?
binary scan string formatString ?varName varName ...?
Each command formulation will be defined as a directive. The reverse tool will
recognise it and reverve it to the correct directive.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 9410 Sepdraft

• TM name as argument

In this case, a command uses a TM name as an argument. In fact this may be already
implemented as there is a TELEMETRY value type in the DIR_ARGUMENTS
table of the common directives DB. Some of the TOPE commands have arguments
which are TM names - clearly it makes sense for MOIS to be able to validate such
arguments to ensure the TM is defined in the s/c DB.
patchlocation <param-name> <spid> <byteoffset>
<bitoffset>

setparameter ?-raw? <param-name> <value>

• List arguments

In this case a command argument can be a list of items. In Tcl these would be
written as a space separated list inside braces. If only one item is in the list, the item
could be written inside braces or without the braces. For example, a list of TM
parameters could be written '{W123 X456 Y987 Z765}' . These are not
necessarily a problem - the converter can just assign the whole argument
string.excluded braces to the argument on conversion. Then the directive/function
will define delimiter for this function (braces), which will be added during the
export to Tcl/TOPE.
enableparam <param-list>

inhibitparam <param-list>

• Functions/Directives with several signatures

Most of Tcl/TOPE commands will be implemented as functions or directives and
these commands could have several signatures. Then the idea to support that would
be to define one function/directive per signature. However found the correct
associated function in CommonDirectiveDb database will raise problem if no
naming convention is defined. The example of verified Tcl/TOPE commands is
relevant:-

Two signatures:

• verified ?-timestamp <time>? -tc <cmd> ?<param>...?

• verified ?-timestamp <time>? -tm <parameter>

So two directives will be defined with the following relevant name verifiedtc and
verifiedtm. How to know that the first signature correspond to the verifiedtc
directives and the second one to the verifiedtm directives. Indeed, to avoid any
hardcoding of function ID in reverse tool, a naming convention needs to be defined.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 9510 Sepdraft

4 CODING STANDARDS

It is intended to convert Tcl/TOPE procedures into MOIS procedures for use in flight. MOIS
provides extensive configuration control, validation & formatting features for managing the
procedure set. The procedures will be managed within MOIS, but for execution will be exported
into Tcl/TOPE procedures to be executed by the control system.
MOIS will provide a converter program to convert legacy Tcl/TOPE procedures (e.g. from the
AIT program) into MOIS procedures to act as a basis for the MOIS procedure set. However,
MOIS procedures do not have the same richness of expression and flexibility as the Tcl/TOPE .
In addition there is a cost/function trade off to be made in the converter which also limits the
translation.
These coding standards are intended to describe the restrictions to be placed on Tcl/TOPE
procedures in order that they may be translated to MOIS procedures. In order to understand the
coding restrictions, it is necessary to understand (in outline) how the translation is performed.

• Firstly the program structure constructs are analysed (conditions, loops, etc) and mapped
to equivalent MOIS structures.

• Remaining code blocks are then split into individual Tcl/TOPE statements.
• Group of statement is checked to see if it can be converted into a specific group of

statements or any of the specific types (e.g.telemetry, command, pause, control,etc.).
• Each statement is then checked to see if it can be converted into any of the specific MOIS

statements types (e.g. telemetry, command, pause, control, etc). Statements that can be
translated are added into the MOIS procedure at the appropriate position.

• Untranslated statements are then checked to see if they can be converted into MOIS
functions or directives (functions return a value, directives are similar but do not return a
value). This is a generic method of converting Tcl/TOPE statements into MOIS in a
structured way. A DB contains a list of Tcl/TOPE functions and defines the required
arguments. A conversion is effected if the statement matches any of the function /
directive names and argument set.

• Any statements still untranslated at this stage represent statements not defined in the
directives DB or statements which could not be translated for other reasons (e.g. non-
conformance to coding standards). The translator should convert these as a free
instruction directive taking a string as parameter.

• If an error occurred during the reverse process for any of statements, then the statement
will be implemented as a MOIS comment statement.

As a consequence of the above, the coding standards described here have several levels of
applicability as follows :-

1. Rule is mandatory, failure to apply it may cause complete or partial failure to
translate.

2. Rule is recommended, failure to apply will cause MOIS verifiable statements (e.g.
TM or TC references) to be degraded into non-verifiable elements or less
verifiable elements (functions or directives).

3. Rule is suggested, failure to apply will degrade functions and directives into non-
verifiable elements statements.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 9610 Sepdraft

4.1 Tcl Language Constraints
• Braces ({}) have not to be used to define quoted strings, they must be used only to

designate code structure elements (such as the conditionally executed block in an IF
clause). The MOIS converter needs to identify quoted strings and ignore the contents,
obviously code blocks can’t be ignored and therefore the converter assumes that {} do
not represent literal string delimiters. Level 1.

• In program structure constructs (conditions, loops, etc), braces ({}) have always to be
used to delimit elements, even where this is not strictly required by Tcl. E.g. use ‘if
{$cnd} {….}’, but not ‘if $cnd { … }’.This anyway makes the code easier to read and
better allows the converter to identify the elements of the structure. Level 1.

• Command substitutions (expressions contained in []) will be set in a MOIS local
variable. Thus all expressions into square barckets will be set in a MOIS local variable
and that will be applied recursively, this is described in the relevant example:-:
‘addtime [getrawvalue $obt] [lindex [split $dif .] 0]
[string trimleft [lindex [split $dif .] 1] 0]’.

[getrawvalue $obt]a variable will be set for the value.
[lindex [split $dif] 0] a variable will be set for the value.
[split $dif] a variable will be set for the value.
[string trimleft [lindex [split $dif] 1] 0] a variable will be set
for the value.
[split $dif] a variable will be set.
[lindex [split $dif] 1] a variable will be set.
Note the more the substitution will be done directly in the Tcl/TOPE code, easier will be
the reverse process for the substitution. Then expression as described above should be
avoided as often as possible

• Tests will be coded in modular fashion to allow the conversion of MOIS-Tcl and reverse
to be achieved much quicker. An example is described in the relevant example:-
if { [file exists $env(HPCCSTESTENV)/TSEQ/Tools.tcl] } {

source $env(HPCCSTESTENV)/TSEQ/Tools.tcl
} else {
putlog "Can't source Tools.tcl"
exit
}

This is an example of a modular fashion to make the reverse process easiest.

4.2 Other Supported Tcl Statements
This section details the other Tcl statements that are specifically supported by MOIS. Any other
Tcl statements used will be converted only as a free directive statement.
Most of Tcl statements will be implemented as a MOIS directives/functions in MOIS procedure.
Then the way of directives/functions are managed in MOIS and their limits of implementation is
explained in section 3.3.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 9710 Sepdraft

The way that foreach control structure will be implemented in MOIS procedure will not be
represented properly in the MOIS flowcharter since it will be implemented as a directive. Then
Tcl/TOPE scripts should avoid the use of this control structure as possible. Then the MOIS
flowcharter will keep a relevant representation of the Tcl/TOPE script. The same behaviour
should be apply for continue or break Tcl statements since these two Tcl statements will
be implemented as directives.
Note that several Tcl statements won’t be implemented in MOIS procedure, it doesn’t mean that
it will not be taken into account. In fact these statement will be reversed as a MOIS Free text
directives. To be reversed as a MOIS Free-Text directives, Tcl statements have to be consistent
with their formulation. Any erro on the formalution will raise an error and the statement will be
reversed to a MOIS Commen statement.

4.3 General TOPE Constraints
TOPE reverse implementation in MOIS procedure could be divided into two parts:

• Statements can be directly implemented as a MOIS statement (waittime).
• Statements sequence can be directly implemented as a MOIS statement or a sequence of

MOIS statements.

4.3.1 TOPE statements directly reverse
This part deals with TOPE statements, which can be implemented as a MOIS statement.

Most of TOPE statements will be implemented as MOIS directives or functions
statements. The TOPE statement must match the pattern defined in TOPE statements part
to make sure it will be implemented properly.

As Tcl statements, if an error occurs, the TOPE statement will be implemented as a
MOIS Comment statement.

4.3.2 TOPE statements structure reverse
Some directives should be implemented as directives or functions. However if they are
included in a defined TOPE structure, they can be implemented in a specific MOIS
statement.These TOPE structures are explaind in the relevant examples:-

� ‘tcsend T1 referby rT1
waitfor sT1 –until

getcompleted $rT1’

 This command sequence will be implemented to a MOIS TC statement followed
by a CTL MOIS statement SEV waiting the end of execution.

� ‘subscribepacket <pktid> referby <varname>

waitfor –timeout <time> <varname>

unsubscribepacket <pktid>’.

 This will be equivalent to a Wait for Packet statement with a timeout. Then only
this structure could be equivalent to a wait for packet in MOIS procedure.

� ‘if {getrawvalue[fetch <param>]} {… exit}’
‘if {getengvalue[fetch <param>]} {… exit}’

 These two pattern will be implemented in MOIS procedure as a PERFORM step
including a MOIS verify TLM statement.

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RQ-RHEA-0001

 Page 9810 Sepdraft

All patterns described above must have the defined formulation to make sure that during the
reverse process , the MOIS statements will appear.

4.4 Individual restrictions
• Lists and arrays handling shall be avoided in Tcl/TOPE script. Indeed MOIS can’t

manage a such data.

• File directories and channel handling: Set up of the specific files and channels should be
in a configuration file, as this may not necessary to be replicated in MOIS. Then these
instructions should not be used in normal procedures.

• System instructions handling should not be coded in normal procedures such as CD
command. This also applies to some of the instructions included for specifically
debugging the TCL itself (MEMORY, GLOB etc…)

