Tcl/TOPE Reverse Engineering to
MOIS

N

] N
Version: Draft
Date: 10-Sep-2®3\ \/ /
Author: Damien Callet /
Reference: ALC-MOIS-RQ-RHEA/OOOI Rhea System S.A.
Filename: Converter RequirementsCurrent.doc New Tech Center,
Avenue Einstein 23,
Approved B-1348 Louvain-La-Neuve,
by: Belgium
TEL : + 321048 7250
Keith Turner FAX : + 32 10 45 25 07
Managing Director www.rheagroup.com

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

DISTRIBUTION
Name Number of Copies
K (/\\A \/\)
DOCUMENT STATUS SHEE
Date Version Author (@on fNa%e\ /
09/09/2003 | Draft Damien Gall \/@{aft >
ENT/CHANGE RECORD
Date Version Changed I%S/Paragraphs
Avaft 1N Can

Page i1

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001
TABLE OF CONTENTS

1 INTRODUCTION 1
| B o 'y 1 1O OO URTP 1
L2 OVETVIEW ..ottt ettt b ettt ettt 1
1.3 Coding Standards — This section contains the coding standards for Tcl/TOPE, derived
from the language analysis. Definitions.........ccceevviieriiiiiieeriecrrie e e e esrae e 1
1.4 Language DEefINItiONScccvierieeiiieecieeeree ettt esrte e reesteeesteeesereessereessseeessseesssseesssaeenes 1
1.5 Acronyms and ADDIeviations.........ccccecvveeeereeed DN vt eeereeerree st erree e e s ereesree e 2
1.6 Applicable DOCUMENLScc.eeriiiiieiieieie e e NG Attt 2
1.7 Reference DOCUMENLSc.ccociiiiiieieee e dorreriieneeeee e N eeeseeeeneeeeeeneeeseeeeeeneeenseenns 3

2 LANGUAGE ANALYSIS IN THE CONT

2.1 Tecl Control Structures
2.1.1
2.1.2
2.13
214
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
2.1.11
2.1.12
2.1.13
2.1.14

T

2.1.1

2.2 Conditpo

2.3 Paramet
2.3.1
2.3.2

2.4 TOPE Statements
2.4.1
2.4.2 GEtPARAMETERGATAooovviiiiieiie ettt 16
243 SUDSCIIDE ...t e e e e e e e s e s aaaaaereeeeean 17
2.4.4 SUDSCIIDESEL ...ttt ettt e e e e e ettt e e e e e s e s s aaaaaeeeeeeeas 18
2.4.5 UNSUDSCIIDE ...ttt e et e e e e e e e e s eaaaeeeas 18
2.4.6 GEtPACKETAALA.......coivieeieiieiieieeee ettt 19
2.4.7 SUDSCIIDEPACKET ... eeeiieiieiiiiieiie ettt ettt te et aeesbe e e e ssaessaeens 19
2.4.38 UNSUDSCTIDEPACKETovvieeiiiiieiiieieeieeete ettt eere e eebe e esaeesnnes 20
2.4.9 NAMELOSPIA....ecuvieiiieiieteecee ettt et ser e e be e teesraeeaaeesbeestaeeaseesseeseeens 20
2.4.10 SPIALONAIME......viiitieeiieriecieeeiee et etee et e et e ereesteesteeebe e reessaessseeseesseessseesseesseessnas 20
o 1 R Ko7 1 T O TRRRRRPRRR 21
2412 getTC _STATUSAALAeeiiiieiieceieieeeee ettt e e 25
O S TR 1 7: Y] + BTSRRI 26
L | 11 - Yo AT 26
2415 AULROTISE cooeiiiiieeeeeeeeee ettt et e et e e e e e e e aa e 26
N LS oo) o4 1T o] ST 27

Avafr 1N Can Page 111

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

2407 AISCOMNECEeeuiieieiieitieieeieetete ettt sttt sttt et be et e steeneenaesanens
2.4.18 newtMAUMPTIIC.......oooiiiiiiiicie e e
2,419 SELPATAIMEGLETecuveeeeeiieeiieeeiieeeieeeeteestreestteesteeeetreeesssaessseeessseessseesnseesssseesnsees
W 30 B F:1 o) (57 o 1 1 ' APPSR
B 300 W 10113 o} Ui o 1 1 4 APPSR
2422 enablepacket........coeiieiiiiieee e
2.4.23 InhIDIPACKELeeeiieieeee e
W < F:1 o) (<7 {00 o BRSPS
2.4.25 INIIDIEEIOUP «eeovvieiieeiieiieeiieeieeieecie e e]G rre et e sneeete e tee s e e enseenbeensaeenseenseenseennnas
2426 patChlOCAtiONc.eevvieiieiieiieeieeeeee e Ao ere e e e e ereeie e e e eeeeee e
2.4.27 PALCHSCTIPL covvieerieiiieiieieeeeceeeepageee e e es e e e\ esreeerreenneeseeseseenneesseessneenns
2.4.28 patchnumericalCurvecc... e NN eevreeveeesfereeieeieesieesresreesseeseneesseenns
2.429 patchteXtualcurvecoceeeee foveenvcedorilonnini e Dt
2.430 patchpolynomialcurve

2431 patChCUIVEUSEd ...cccvviiiiiieiee e e Gereeerereenneegderee s rereeesesiTroneeNeeessseeersreesssneaes
2432 patchlimit.......coooiiiiiiiiiiiicieece s e S e e e errreesnneeesefoessreesreeensneees
2433 WAILHIME ...eoeiiiiieieeeieeieeeeeesee e ereeseee e ee s geeeemee e g eees

2434 Cll i e I\ e e e NGttt ettt entesae et

2.5

Avafr

2.4.35 callasync
2436 waitforccoeeveveeeeee fe
2.4.37
2.4.38
2.4.39
2.4.40
2.4.41
2.4.42
2443
2.4.44
2448
2.4.46
2.4.47
2.4.48
2.4.49

2.4.50 REXODININeeveeiereirierie ittt sttt
2451 aSALOMISEC ..\ evvenverere ettt ettt ettt sttt b ettt e b st e b sae et
2.4.52 ASALOSEC c.vveee e D ree ettt ettt ettt
Tl StAteMENLS ... Nttt
2.5.1 append - Append to variablecccoocviiviiiiiiie e 44
252 array - Manipulate array variablesccoocieriiiiiiiieneeeeeee e 45
253 bgerror - Command invoked to process background errors............ccceeeeneenee. 45
254 binary - Insert and extract fields from binary Strings..........ccccccceeeeveieeseenennnee. 45
2.5.5 cd - Change Working dir€CtOTYcueeeueerierierieeiiereeeteete et eeeee e eeeeens 47
2.5.6 clock - Obtain and manipulate timecccceeveeriieriiesierieee e 47
2.5.7 close - Close an open channel.cccoeeeeviiiieeiieieeeceeee e 49
2.5.8 concat - JOIn lists tOZEthET.........cccvieiiiiiiieiieiieeeecee e 49
259 eof - Check for end of file condition on channel...........c..ccccooveniniiniiiencnnene. 50
2.5.10 execC - INVOKE SUDPIOCESS(ES)...cuveerrreerieirieriienieeereesteesteesseeereesseesseeesseesseessesssnns 50
2.5.11 exit- End the applicationccccvieviiiiiiiiieiiecie et 50
2.5.12 expr - Evaluate an eXpresSSiOn.. ... i ieiereeeieeieeeee e ereesieeseneseveeneesenesene e 51
2.5.13 fblocked - Test whether last input operation exhausted all input...................... 52

1N Qan Page iv

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001
2.5.14 fconfigure - Set and get options on a channelcccccveviievienciiicieerieeeeene, 52
2.5.15 fcopy - Copy data from one channel to another.c..ccoeevevciiecrienieniee, 53
2.5.16 fileevent - Execute a script when a channel becomes readable or writable 54
2.5.17 file - Manipulate file names and attributes..........cccceeeveeverieiriieeicie e 54
2.5.18 format - Format a string in the style of sprintf............ccccceveiiiviiiinieeniie e, 57
2.5.19 gets - Read a line from a channelccoooiiiniiiiii e, 58
2.5.20 global - Access global variables............cceriieriiriiiiiieieee e 58
2.5.21 glob - Return names of files that match patterns..........ccccceeeeeieeniencieeceeceennen. 59

2.5.22 incr - Increment the value of a variable
2.5.23 info - Return information about the state of the.Tcl interpreter
2.5.24 join - Create a string by joining t q ;

2.5.25 lappend - Append list elementg Gntone

2.5.26 lindex - Retrieve an element
2.5.27 linsert - Insert elements iNt0 a\IST ... 0. 0NN - pcereeemreeadereesopgenseeseesnsessseesseesees
2.528 list - Create @ list.....cceeuierierece N reeereeeeeeee Beee N ereeree el N reeemeeeveesneesnnes
2.5.29 llength - Count the number of elemients in Ali

2.5.30 Irange - Return one or more adj ace
2.5.31 lreplace Replace elements in-a
2.5.32]
2.5.33
2.5.34
2.5.35
2.5.36
2.5.37
2.5.38
2.5.39
2.5.40
2.541

2.5.52 tell - Return current access position for an open channelccccoecreernen. 90
2.5.53 time - Time the execution 0f @ SCTIPL.......ceceeiierieiiieeeeere e 90
2.5.54 trace - Monitor variable aCCESSESeererrirerireriienieeieereeeteeee e seee e e 90
2.5.55 unknown - Handle attempts to use non-existent commands............c.cceeveeneen. 90
2.5.56 unset - Delete variablescceocveeciierienieee e 91
2.5.57 upvar - Create link to variable in a different stack frame.............ccccoocevveninnen. 91
2.5.58 wvariable - create and initialise a namespace variableccceeevirciiecreennnennen. 91
2.6 GENEriC REQUITCIMENTSeevuiieiieiieriieeiteeieesteesteeteeteesteeeseeseessseesseenseesseeesseenseesseessnes 91
2.6.1 FUnctions & DITECHIVES........cueiririiririieiinieniesiestest ettt 92

3 ASSUMPTIONS 93
3.1 Untranslated STAtEMENTSccooiieeeeeeeeeeee et e e e e et e e e e e eeeeereeeeeeeeeseeeereeeeeeeeeaas 93

Avafr 1N Can Page \%

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001
3.2 CONAITIONS eevveeieeeee ettt et e e e e e e e e et e e e eeeeeee st teeeeeseeaseaaaeeeeeesseesseraareeeeenaas 93
3.3 Function / DIrective DefINItIONScveieiiieeeeeieeeeeee et eeeeeeeee et eeeeeseeeeeeaaeeeeeseeans 93
4 CODING STANDARDS 95
4.1 Tcl Language CONSIIAINTS.ceecierreeiieriieseeetiereesteesteesseesseesseesssesssessessssessseesseesses
4.2 Other Supported Tcl StatemeEntscceeevierieiiiiiiieiecee et
4.3 GeNETal TOPE CONSITAINES ...t ee e eeeeeeeeeeeeeeeeeeeeseeeeeeeseeeeeeeeeeeeeeeeeeees
43.1 TOPE statements dir€Ctly TEVEISEevvvvviieiiiiiiie et
4.3.2 TOPE statements structure reverse
4.4 Individual reStrictionsS.......cceeeeeeeeeeeeeeeeeeeeeennen

Avafr 1N Can Page Vi

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

1 INTRODUCTION

1.1 Purpose

This document defines the requirements to enable the conversion from a Tcl/TOPE
script to a MOIS procedures.

It also provides a set of coding standards, based on the requirements, which can be used
by authors of Tcl/TOPE procedures to facilitatg.conversion to MOIS.

1.2 Overview

with\all of the POPE extensions. Tecl control
Otler Tcl commands are dealt with on a

The requirements here deal systematically
structures are also dealt with systemdticallyg

Two types of meta languagediave been used to describe the Tcl/TOPE. In all cases meta
language is written in courier font in this document.

The first corresponds to the statement definitions taken from the Tcl package
documentation and AD1. The formulation is not completely consistent and is generally
used to introduce the Tcl/TOPE statement.

e Bold is used to identify keywords

e Variables may be in normal or italic, and may or may not be contained in angle
brackets (< >).

e Question marks are used to bracket elements that are optional (e.g. if <item> is an
optional argument, it is written ?<item>?).

e An ellipsis (...) is used to denote iterated items (e.g. if <item> is a repeated
argument, it is written <item> ... or perhaps <iteml> <item2> ..).

Avafr 1N Can Page 1

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

The second is (hopefully) used rather more rigourously, and appears mainly in the
requirements definitions.

e Variables or expressions (or anything that is expanded in more details elsewhere) is
contained in angle brackets (<>).

e Question marks (?) are used as a suffix to indicate the preceding item is optional
(i.e. zero or one occurrences). E.g. if <item> is an optional argument, then it is
written <item>?.

e Plus signs (+) are used as a suffix to indidabde repetition one or more times. E.g. if
<item> is a repeated argument that appears at fegét\qnce, it is written <i tem>+

e Asterix signs (*) are used as a suffiX to indicate repetition zero or more times. E.g. if

. if <item> can be either
N> | <alt 2>

8 entified by the variable name
@ Tcl, bfaces { } and square brackets [

1.6 Applicable Documents

List all the documents with which this document must comply.

ID Document Reference

AD1 |Herschel Planck Central Checkout System, System |H-P-4-TE-MA-0010
User Manual v 2.2

Avafr 1N Can Page 2

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

1.7 Reference Documents

List all the documents referred to in this document, other than applicable documents.

ID Document Reference

RD1

Q&%

Avafr 1N Can Page 3

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

2 LANGUAGE ANALYSIS IN THE CONTEXT OF MOIS

2.1 Tcl Control Structures

This section describes if and how the Tcl control structures will be converted into MOIS
structures. Each Tcl control structure (taken from the Tcl package documentation) is discussed
in the subsections below.

2.1.1 After

2.1.2 Break

after <ms>

after <ms> ?script script sg
after cancel <id>
after
after

after

break
This statement is™wged to terminatg'loop execution early.
This statement will be implginented as a directive in MOIS procedure.
The requirements on the MOIS converter are as follows:-

a. The converter will recognose compound Tcl/TOPE statements of the form
‘break’ and convert these as a MOIS directive statement.

2.1.3 Catch

Avafr

catch <script> ?<varName>?

This statement is used to execute a script and catch any resultant errors. The
<script> is executed as a Tcl/TOPE and the statement returns a boolean value
identifying whether or not the <script> executed without errors.

<varName> is an optional variable name argument. If the <script> executes with
errors, the corresponding variable is set to the error description. Otherwise the variable
is set to the result of the <script> execution.

10 Con Page 4

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

2.1.4 Continue

2.1.5 Error

Avaft

The statement is implemented as a MOIS function with two arguments :-

e <script> - String, contains the Tcl/TOPE to be executed. Mandatory.
e <varName> - String, contains a variable name. Optional.

The MOIS function will return a value of Boolean type

The requirements on the MOIS converter are as follows :-

3

a. The converter will recognise compound Tcl/TOPE statements of the form
[catch {<script>} <varNameX?]’ and convert these as a MOIS
function call to the catch function.

d. If <varName> is specified, the con i gcal variable with
the name <varName> of the Stri

statement conversion if a ; ¥ts with name <varName>
and this is not of the Str}

continue

next.

error message ?2infd? ?code?

Statement Raises an error — particularly for propagating unhandled errors out of a catch
statement script.

This statement will be implemented as a MOIS directive statement.

e Message - String containing the explanation of error, it’s a mandatory
argument.

e Info - Variable containing usefull information of the error, optional.
e Code - Variable containing the error code happened, optional.

The requirements on the MOIS converter are as follows:-

1N Can Page 5

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

2.1.6 Eval

21.7 For

Avafr

The converter will recognise compound Tcl/TOPE statements of the form ‘error’
and convert it to the corresponding MOIS directive statement.

The requirements on the MOIS convreter are as follows:-

a. The converter will recognise compound Tcl/TOPE statements of the
form ‘error message ?info? ?code?’ and convert it to the
defined MOIS directive statement.

b. MOIS converter will raise an error and fail the conversion if
‘message’ is not there.

eval arg ?arg ...?

a. The converter will recog
‘eval {<script>}’.
with the previously defi

for start test

a. The converter shall recognise compound Tcl/TOPE statements of the form ‘for
{<start>} {<test>} {<next>} {<body>}’. Such statements shall be
converted as a MOIS While structure.

b. The <start> argument shall be treated as Tcl/TOPE code and converted to
MOIS procedure steps/statements. These steps/statements shall be inserted
immediately prior to the While step.

c. The <test> argument shall be treated as a Tcl/TOPE condition and translated
according to the requirements in section 2.2. The MOIS version of the condition
shall be inserted as the condition for the While step.

d. The <body> argument shall be treated as Tcl/TOPE code and converted to
MOIS procedure steps/statements. These steps/statements shall be inserted as

1N Can Page 6

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

subordinates to the MOIS loop body step, which is immediately after the While
step.

e. The <next> argument shall be treated as Tcl/TOPE code and converted to
MOIS procedure steps/statements. These steps/statements shall be appended as
subordinates to the MOIS loop body step (i.e. these statements are executed in
the loop body, but after the code corresponding to the <body>.

2.1.8 Foreach
foreach varname list body

For each element of /ist (in order from f
element to varname as if the lindex cory

last, and each value is used/exs . The Yotal number of loop iterations is large
enough to use up all the e listg/ If a value list does not contain
enough elements for eag

a. The requirement on the MOIS converter are as follows:-MOIS converter will
recognise the two following formulation:

e foreach <varname> {list} {body}

e foreach <varlistl> {listl} ?<varlist2> {list2
}...? {body}

b. Converter will raise an error and the conversion will fail if the three
mandatory paramters are not correct.

219 If

if exprl ?then? bodyl elseif expr2? ?then? body? elseif
7else? ?bodyN?

Avafr 1N Can Page 7

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

2.1.10 Return

This construct provides if-then-else functionality, it also effectively provides a switch
functionality through the repeated elseif clauses.

MOIS will handle all variants of this structure. Simple if-then or if-then-else structures
shall be converted to MOIS IF step. More complex forms, with any number of elseif
clauses shall be converted to the MOIS switch statements.

Note that the handling of conditions is defined in this document — see section 2.2.
The requirements on the MOIS converter are as follows :-

The converter shall recognise compound T¢I/XOPE statements of the form ‘if
{<condition>} (then) ? {<then-g¢lausé> ((else)? {<else-
clause>}) 2. These shall be convertedintd MQIS if step gtructures.

An MOIS ‘if” step shall be created. Thi
the condition specified in <conditio

A MOIS step shall be inserted after the ‘i
converted from the <then-clause>.

more statements to define

The converter shall recognise tatgments of the form ‘if
{<condition>} (then) ’ (elseif {<condition>}
(then)? {<elseif-cl) ? {#gelse-clause>}) ?’. These
shall be converted into MOIS\

An MOIS : is shall/contain several sub-steps (one for
each then g elseif ¢ ain one or more statements to define
the cong

A MAQIS step itch’ step corresponding to each then, elseif
or else slause eps / statements converted from the <then-
clause>

return ?-code code? ?-errorinfo info? ?-errorcode code?

?string?

This statement returns contred from a procedure to the calling code.

MOIS can’t manage a return result of a called procedure. The only behaviour supported
by MOIS procedure will be to exit the procedure on a return Tcl statement, which will
be implemented as a directive. See section 2.5.11.

2.1.11 Switch

Avafr

switch ?options? string pattern body ?pattern body ...?
switch ?options? string {pattern body ?pattern body ...?}

The switch command matches its string argument against each of the pattern arguments
in order. As soon as it finds a pattern that matches string it evaluates the following body
argument by passing it recursively to the Tcl interpreter and returns the result of that

1N Can Page 8

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

evaluation. If the last pattern argument is default then it matches anything. If no pattern
argument matches s#ring and no default is given, then the switch command returns an
empty string.

The options determine the type of pattern matching performed (exact, glob or regexp).

The practicality of implementing a conversion is somewhat dependent on the condition
definitions. However, such a conversion would involve mapping the pattern
comparisons back to complete conditions in thg NMOIS switch construct.

e Pattern - The value againstwhichthe t ywill be matched.
e Body - Part to evaluate if thg pattern majches the string
argument.

a. MOIS converter
form: ‘switch
?pattern bed

ampownd TclyTOPE statements of the
string {pattern body

errors are procesded; only idle cdllbacks are invoked. This causes operations that are
normally deferred, Such as diplay updates and window layout calculations, to be
performed immediately®

This statement will be implemented as a MOIS directive with a single optional
argument :-

idletasks — optional switch argument
The requirements on the MOIS converter are as follows :-

a. The converter shall recognise simple Tcl/TOPE statements of the form
‘update (idletasks) ?’ and convert these as MOIS update directives.
2.1.13 Uplevel
uplevel ?level? arg ?arg ...?
This statement allows a Tcl script to be executed within a procedure call scope above

the current scope. E.g. if the variable p is defined in procedures x & y and the procedure
x calls procedure y, then a call to uplevel in y would allow script to operate on the

Avafr 1N Can Page 9

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

variable p in the scope of procedure x (instead of the scope of procedure y as would
normally be the case).

MOIS converter won’t implement this statement.
2.1.14 Vwait

vwait varName

This command enters the Tcl event loop to p
no events are ready. It continues processing ¢ til some event handler sets the
value of variable varName. Once varNamg has|been ¥et, the vwait command will return
as soon as the event handler that modifted viagNgme completes. varName must globally
scoped (either with a call to global for the @arName, or with the full namespace path
specification).

meess events, blocking the application if

This statement should be implemented
argument :-

directive with a single mandatory

e varName — optional switch argumen
The requirements on the MOIS couverter are as\pllov

a. The converter shall recognise d

2.1.15 While
while test body

recognise comppund Tcl/TOPE statements of the form ‘while
{<conditigfi>} {<body>}’. These shall be converted into MOIS

b. A MOIS ‘while’ step shall be created. This shall contain one or more statements
to define the condition specified in <condition>.

c. A MOIS step shall be inserted after the ‘while’ step and shall contain the steps /
statements converted from the <body>.

2.2 Conditions

The current implementation of MOIS allows conditions to be expressed as logical
combinations of VAR and TLM statement types (i.e. checks on the values of either
MOIS variables or telemetry parameters). The syntax allows the use of AND and OR
operators to combine the condition elements. The syntax also allows the use of brackets
to control the evaluation order of the logical expressions.

Avafr 1N Can Page 10

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

For Tcl/TOPE, in fact, this formulation could generate arbitrary conditions by using
expr statements to pre-evaluate complex conditions into Boolean variables which can
then be used in simple MOIS condition definition. In order to effect conversion,
however, the original Tcl/TOPE would have to be defined in the same way.

The discussion below therefore relates only to the simple VAR / TLM formulation,
linked by AND and OR operators.

The definition of the conditions that can be translated is given below :-

<condition> = \(<condition-elen
<condition-element>)* \)

nt> (<logical-operator>

S

<logical-operator> = && | & or | |, the two Tcl logical
operators)

<condition-element> =

<tm-check> = $ { ’a TM check™gs used in a

condition

<var-check> = $<var-name> ATy S<var-
name> | <value> | <tm-va

<comparison-operator> partsQn gperator equivalent to the
comparison operators availabl b (== 1 !=1 > 1| <
| >= | <=

<tm-value> ame>]]

The MOIS requi

<condition-element> is associated with a <logical-
, in which statements has just been defined, will define

the conditis the step expression builder.
e. Each <var-check> shall be translated as a MOIS VAR statement.

f. Each <tm-check> shall be translated as a MOIS TLM statement.

2.3 Parameter Access

Avafr

MOIS allows verification of TM parameter references against the s/c database, so it is
important to ensure that all TM references made within Tcl/TOPE can be translated into
the relevant MOIS structures. Any TM references that are not converted will be missed
from the automatic validation provided by MOIS.

The MOIS TLM statements, to which the Tcl/TOPE parameter references will be
converted, can be used either in a condition (e.g. for an if or while stucture) or as part of
a step. In the latter case, the MOIS TLM statement represents a telemetry check with no

1N Qan Page 11

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

explicit action as a result of check pass or failure (although the action might be
described in a comment).

Tcl/TOPE includes several parameter access structures which will not fit into the MOIS
TLM statement model, but for which access via MOIS will be permitted. These are
implemented as MOIS directives & functions (as described in section 2.4.2).

2.3.1 Conversion to MOIS TLM Statements

2311

The following subsections deal with the conversion of parameter access statements from
Tcl/TOPE to MOIS. These are the preferred\structures for dealing with parameter

<)

a. The converter ccognise compound Tcl/TOPE statements in the form
described above, in the context of a condition definition, and convert these
to a MOIS TLM statement within an equivalent condition context in MOIS.

b. The converter shall raise an error and fail the statement conversion if the TM
parameter <tm name> is not found in the s/c DB.

c. The converter shall raise an error and fail the conversion if the <eng_value> is
inconsistent with the TM parameter as defined in the s/c DB (numeric value out
of range, numeric value outside calibration range, text value not matrching a
defined alias).

2.3.1.2 As Used Outside Conditions

Avafr

The converter should be able to recognize the following formulation and then convert it
in MOIS procedure as a PERFORM step containing one verify TM statement.

1N Qan Page 12

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

2.3.2 Conversion To Directive

2.3.21

Avafr

if {[getengvalue [fetch <tm name>]] <operator>
<eng value>}{ .. exit}

where :-
e <tm name> is a literal string corresponding to a TM parameter name

e <operator> is a Tcl/TOPE comparison operator equivalent to the comparison

operators available to the MOIS TLM statement (== | != | > | < | >= |
<=)

e <eng value> is a literal string or numerjc va ith which the TM parameter is
compared

Mois converter requirements :-

a. The converter shall recognisg

defined alias).

Then MOIS will resggnise Tcl
relevant section i.e.:-

atement corresponding to the patterns described in the

e set <var> [gefrawvaluel[fetch <param-name>]]
e set <var> [getengvalue[fetch <param-name>]]
MOIS will implement it as a MOIS SET Var statement telemetry.

If the TM parameter attributes use subscribe then MOIS will implement it as a
directive see section 2.4.3.

The <var> must be a variable of type depending to the return type of functions called.

The <param-name> must be a string literal representing the TM parameter name.
Only literals are allowed here so that the TM parameter can be verified against the s/c
DB.

1N Qan Page 13

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

The subscribe function will be recognized by converter and will be implemented as a
directive — see section 2.4.3.

The unsubscribe function can be called at any time (using the literal TM parameter
name as argument) to cancel a subscription and will be implemented as a directive.

The key points here are as follows :-

e Obtaining useful access to a TM parargeter attribute requires three Tcl/TOPE
statements (a set / fetch followedlby\a set / getPARAMETERdata)

e This rather rigid structure is req
of the Tcl/TOPE into MOIS.

ned tolfacilitate the recognition and conversion

ents (i.e. those

23.2.2

the procedure) or an old one that
.MOIS converter will 1mplement a

argument in a call to wai t Z0r as in the previous pattern. Otherwise it can be used as
an argument to one of the”get PACKETdata functions to extract one of the packet
attributes and set it to the variable, i.e. :-

e set <var 1> [<getPACKETdata> <var>]

Once the final variable <var 1> is set up, it can be used in any operation appropriate
to its type (corresponds to the return type of the get PACKETdata function.

The unsubscribepacket function can be called at any time (using the literal TM
packet id as argument) to cancel a subscription.

The key points here are as follows :-

e This rather rigid structure is required to facilitate the recognition and conversion of
the Tcl/TOPE into MOIS.

Avafr 1N Can Page 14

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

e The packet access traces back to the literal packet id as the argument to the
subscribepacket. Using a literal here ensures that MOIS can validate the TM
packet id used against the s/c DB.

e The MOIS converter can only handle conversion of simple statements (i.e. those
without embedded command substitutions) plus compound statements that conform
to specific structures defined in this document.

2.4 TOPE Statements

This section addresses each of the com:
commands are discussed in turn

241 Fetch
Fetch <param-name>

[getengvalue [fetch YZS17900]] ==

Set <var-name> [<fnX [{étch <param-name>] or shall recognize (IF|WHILE) {[<fn>

[fetch <param-name>] == <value>}. <tn> should be one of functions defined in
next part.

b. The converter shall create a MOIS local variable in case of Set statement with
the name <var-name> depending of the return type of <fn> function used.

c. It will raise an error and fail the conversion if MOIS local variable already exists
and this is not the appropriate type.

Avafr 1N Can

Page 15

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001
2.4.2 GetPARAMETERdata

This consists of a set of functions for accessing the specific attributes from a list of all
the variable attributes (returned from the Fetch command).

getname <parval>
getrawvalue <parval>
israwvaluevalid <parval>
getrawvalidity <parval>
getengvalue <parval>
isengvaluevalid <parval
getengvalidity <parval>
getdefaultvalue <parval>

isdefaultvaluevalid <parval

getdefaultvalidity <pgz

getrawvalwe — As it is defined above it will depend of the context in which it
will be used.

israwvaluevalid —Ahe converter shall implement it as a function, which will
return a boolean

getrawvalidity — The converter shall implement it as a function, which will
return an integer.

getengvalue — It will be implemented as getrawvalue, as described above.

Avaft

isengvaluevalid — The converter will implement it as a function returning a
boolean.

getengvalidity — The converter will implement it as a function returnong an
integer.

getdefaultvalue — It will be implemented as a function, return value needs to
be dfined.

1N Qan Page 16

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

isdefaultvaluevalid -The converter will implement it as a function
returning a boolean.

getdefaultvalidity — The converter will implement it as a function
returnong an integer.

getextractedvalue — The converter shall implement it as a function, the return vaue
needs to be defined.

getsccstate — The converter shall implement it as a function, which will return one of
the four following values: “SCC_INIT”,| “"SCC_UNINT”, “SCC_DISABLE” or
“SCC_OFF”.

getoolstate — The converter ¢ a function returning a string

(‘NOMINAL’, “WARNING’ or ‘4

fiction returning a

statement except
take two parameters:

‘[<fn> fetch
to each of the

found Tcl/TOPE statements of the form ‘set
etch” <param-name>]’ and convert this as MOIS

gognise compound Tcl/TOPE statements of the form
‘<control> fetch <param-name>]== <value>’ and
convert this as WS VERIFY Telemetry statement. <control> shall be a
step of type decision(IF) or loop(WHILE/REPEAT). It will happenif <fn> is
‘getrawvalue’ or ‘getengvalue’.

e. Ifthe converter needs to create a local variable, it shall raise an error and fail the
statement conversion if a MOIS variable already exists with name <var-
name> and this is not of the appropriate type.

2.4.3 Subscribe
subscribe <param-name> referby <var>

Avaft

1N Qan Page 17

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
This statement associates a TM parameter with a variable name similarly to the Fetch
statement. However, in this case the variable is updated with the current list of TM

parameter attributes each time the TM parameter changes. It can be used in conjunction
with the waitfor statement to perform some task whenever the TM value changes.

This statement should be implemented as a MOIS directive with three mandatory
arguments:

e <param-name> - MOIS can supply value as a TM name.

e referby — fixed parameter

e <var> - string argument representing.q variable Hamd

‘subscribe <param-namex X and\convert these as
MOIS subscribe directives.

a. The convert€r shall recognise simple Tcl/TOPE statements of the form
‘subscribeset <param-list> referby <var>’ and convert
these as MOIS subscribeset directives.

b. The converter shall raise an error and fail the statement conversion if the
<param-11st> argument is not a correct.

2.4.5 Unsubscribe

unsubscribe <param-name>
unsubscribe <param-list>
unsubscribe -all

This statement cancels a previous subscription to one or more TM parameters.

Avafr 1N Can Page 18

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

2.4.6 getPACKETdata

In this statement, the TM parameter name(s) used as the argument in the first two cases
should be validated by MOIS. Due to the complications of handling a list of parameters
in the second case, this second form of the statement is not supported by MOIS.The
different forms of the statement mean that it must be implemented as a three MOIS
directives. The first will be called ‘unsubscribe’ with the mandatory argument :-

e <param-name> - MOIS can supply value as a TM name.

The second will be called ‘unsubscribe’ with the mandatory argument:-

param-name> or <pars
in the s/c DB.

This consists of a set of fu ions or agcessi ¥ttfbutes of a variable representing
ribepacket statement).

getfilringtime\<pktvalp
e getsrcseqgcrt <pktva

These functions can’t b
properly the argument <p

ented in MOIS procedure because MOIS can’t manage
al>,which should be packet attributes.

2.4.7 Subscribepacket

Avaft

subscribepacket <spid> referby <var>

This statement associates a TM packet with a variable name, the variable is updated
with the current list of packet attributes each time the packet changes. It can be used in
conjunction with the waitfor statement to perform some task whenever the TM packet
changes.

This statement should be implemented as a MOIS directive with three mandatory
arguments

e <spid> - packet id type, such that MOIS can validate the supplied value as a
packet name.

1N Qan Page 19

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

e referby —fixed parameter

e <var> - string argument representing a variable name
The requirements on the MOIS converter are as follows :-
a. The subscribe statement shall be converted as a MOIS directive.

b. The <var> argument represents a variable name. The converter shall create an
appropriate MOIS local variable corresponding to this argument if it does not
already exist.

inappropriate type (must be a sfring).

The converter shall raise an error and fail the Statemesn
not a valid packet id defined in the s/c DB.

2.4.8 Unsubscribepacket
unsubscribepacket <spid>

This statement cancels a previous sabscriptiontQ a s packet
This statement should be implemente with a single mandatory
argument :-

o <spid> - packet id t Such' that M@can vAlidate the supplied value as a
packet name.

The requircmae

e from name in the SDB to SCOS2000 packet ID

This statement cdavert packet ng
(SPID)

This statement will beNyimplemented as a MOIS function with a single mandatory
argument:

e <pktName> - packet name, type will be a string. If this packet name doesn’t
exist then an empty string will be returned.

2.4.10 Spidtoname
Spidtoname <spid>

Convert SCOS2000 packet ID (SPID) to packet name stored in the SDB

This statement will be implemented as a MOIS function with a single mandatory
argument:

e <spid> - packet id, type will be an integer. If this packet id doesn’t exist then
an empty string will be returned.

Avafr 1N Can Page 20

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
2.4.11 Tcsend

tcsend <command-name> ?referby <var>? ?<Options>...7?
?<Parameters...>?

This statement is used to send telecommands to the s/c. The statement requires the
<command-name> parameter, in order for MOIS to validate this against the available
commands, this must be specified as a literal.

The optional referby <var> clause is used to associate the command with a
variable in order to trace the command progreps (PTV, CEV, etc). The variable values
should be accessed using the getTC_STATUSdataspnxgnience functions.

The optional <Parameters> list defthel\th& commandjparameter values to be used

Where :-
e <name> - Parameter name

e <value> - Parameter value.

e <format> - Format of the vk
SH - short
LO - long

if format is not specified)

BS - binary string

YV V.V V VYV V VY V V V V

Tl - time
e RAW|ENG|DEFAULT

» RAW - specifies that this is a raw (uncalibrated) value (default if no option is
specified).

» ENG - specifies that this is an engineering (calibrated) value.
» DEFAULT - specifies to use the default value from the SDB
Note that :-

o If the DEFAULT keyword is used, an empty string should be used for <val ue>
and <f or mat >. Any specified values will be replaced by the s/c DB defaults for
the command parameter.

Avafr 1N Can Page 21

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

e Tcl/TOPE allows a file to be referenced for a parameter value by prefixing the
<value> with a “@” character (file path follows the “@). This formulation is not
supported by MOIS.

e Multiple parameters are specified by adding further parameter definitions, separated
by spaces, e.g. tcsend X123 {P001 1} {P002 2} defines the command
X123 to be sent with parameters POO1 set to 1 and P002 set to 2.

The main complication of the statement lies in the formatting of the optional
<options>. In general, each of these optiops consists of a keyword followed by a
single argument or an argument list (contgined ipn braces). The keywords, their
arguments and a discussion of the functiopin each caSe is\given below.

e releasetime <time>

unspecified, the default value is ASAF/

e executiontime <time>

| SPTV_OFF
| DPTV_OFF
» CEVflag V_OFF
» checkFlag
If unspecified, the default value is ALL.
e ack <ackflags>

Specifies the CEV reporting to be applied for the command. <ackflags> consists of
a list of one or literals (if more than one, they appear in braces in a space separated
list as per normal Tcl rules). The presence of each literal indicates that the
corresponding CEV reporting should be performed, absence indicates the reporting
should not be performed. The literals are :-

» ACCEPT
» START
» PROGRESS

Avafr 1N Can Page 22

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
» COMPLETE

» ALL — indicates all the reporting should be performed

» NONE - indicates no reporting should be performed

If unspecified, defaults are taken from the s/c DB (presumably from the command
definition — TBC).

e id <id>

This option is used to specify a TC ID (o1 XObservation ID”). This TC ID will be
included in the command history archive|of the/CCS. The value is an arbitrary
positive integer number of default vatwe 0|(this valuesappears in the archive if the
option is not used).

e NOCRC

In all cases, the tcsend argimenxs # (i.e. not results of command
substitutions or variable yaligs) i : 1 and verified by MOIS.

cl/TOPE tcsend statements to

parameter alread
should be.

e. The converter shall associate the created MOIS CMD statement with the
identified referby parameter (assuming an error was not generated above).

fsts as a MOIS local parameter and is not of the type it

f. The converter shall identify each TC parameter defined in the statement.

g. For each parameter, the converter shall raise an error and fail the statement
conversion if the parameter name specified (as a literal) does not match a
parameter for the TC defined in the s/c DB.

h. For each parameter, the converter shall raise an error and fail the statement
conversion if the specified parameter attributes (value & format) are inconsistent
with the parameter definitions for the TC defined in the s/c DB. Inconsistencies
include (but are not restricted to) the following :- numeric value out of range,
alias value not defined in DB, types not convertible. This does not apply if the

Avafr 1N Can Page 23

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

Avafr

parameter is set to DEFAULT (i.e. use s/c DB defaults) — in this case we don’t
care what the parameter attributes are.

i. For each DEFAULT parameter, the converter shall build the MOIS CMD
statement using the s/c DB defaults for the current parameter.

j- For each non DEFAULT parameter, the converter shall build the MOIS CMD
statement using the supplied parameter value and attributes.

k. For TC parameters which are required (acgording to the s/c DB), but for which
no parameter data is supplied, the ¢onvewer\shall build the MOIS CMD
statement using the s/c DB defapdts Tor the current parameter. All TC parameters

has arguments that do not match the exge t d above).

releasetime option fo thg=s ink Ti#me. NB — the current
fine tag tab of TC form).

ags according to the checks option
the checks option is defined. Note that
OIS procedure.

fe ack option (see above) if this option is

t. The converter sh OT support the patch option. If found, an error shall be
raised and the statement conversion failed.

u. The converter shall raise an error and fail the statement conversion if the
statement as a whole contains elements which are inconsistent with the tcsend
statement pattern. E.g. unhandled or unknown options

10 Con Page 24

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

2.4.12 getTC_STATUSdata

Avaft

This consists of a set of functions for accessing the attributes of a variable representing
a telecommand (returned as a result of calls to the referby option of the Tcsend
statement).

e getrequestid <vval>
e getstage <vval>

e getstatus <vval>

e getstagehistory <vval>
e getcompleted <vval>
e getupdatetime <vval>

All these statement will be implemented
argument :-

The return type is dependent on th
some of these are TBC pending
value.

e getstage - integér, \epregenting age of TC transmission (value
represented by a mrfe

. representing

the status of the current stage of TC

getupdatet
report.

The requirements on the MOIS converter are as follows :-

a. The converter shall recognise compound Tcl/TOPE compound statements of
the form ‘set <var-name> [<fn> <vval>]’ (with <fn>
corresponding to each of the GetTC STATUSdata statements) and convert
these as a MOIS function calls to the appropriate function.

b. The converter shall create a MOIS local variable with the name <var-
name> of the type appropriate to the return type of the function, assuming a
variable of this name does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <var-name> and this is not of the
appropriate type.

1N Qan Page 25

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001
2.4.13 attach

2.4.14 detach

2.4.15 authorise

Avafr

attach <name>

Attach to a SCOE or DFE named <name>. This is a preliminary for sending commands
which are bound for this SCOE/DFE. The sequence remains attached until detach is
called or until the test sequence terminates.

This statement should be implemented as a MOIS directive with a single mandatory
argument :-

e <name> - SCOE/DFE/IS name type, sudh\that MOIS can validate the supplied
value as a SCOE/DFE/IS name.

The requirements on the MOIS converg€r are\gs Yollows :-

a. The MOIS converter shall figcognise sunple Tcl/TQPE statements of the form

<name> argument (interpreted
SCOE/DFE/IS name in the s

detach <name>

authorise ?-revoke? <name>

Authorise the current sequence for the command <nanme>. The nextt csend <nane>
will be authorised, even if other requests are submitted between aut hori se and
t csend. The option - r evoke causes any previous authorisation of <name> to be
revoked.

This statement will be implemented as a MOIS directive with two arguments :-
e -revoke - Switch argument with a single allowed value (‘-revoke”). Optional.

e <name> - TC name type, such that MOIS can validate the supplied value as a TC
name. Mandatory.

The requirements on the MOIS converter are as follows :-

1N Qan Page 26

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<name> argument (interpreted as a literal) does not correspond to a
SCOE/DFE/IS name in the s/c DB.
2.4.16 connect

connect <name>

Instructs the CCS to establish a connection to tha SCOE/DFE/IS called <name>. Note:
These names are configured in the spacecraft database/

This statement will be implemented /4
argument :-

e <name> - SCOE/DFE/IS name 1% /alidate the supplied
value as a SCOE/DFE/IS name.

described abowe apd convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<name> argument (interpreted as a literal) does not correspond to a
SCOE/DFE/IS name in the s/c DB.

2.4.18 newtmdumpfile
newtmdumpfile <vcid> ?<dumpname>?

The newt nrdunpfi | e command reopens the dump for Virtual Channel <vci d> on
a new file, which will contain <vci d> and <dunpnamnme> in its name. A previously
opened dump will be closed automatically by CCS.

This statement will be implemented as a MOIS directive with two arguments :-

e <vcid> -integer (>= 0) corresponding virtual channel id for the s/c. Mandatory.

Avafr 1N Can Page 27

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

e <dumpname> - string (alphanumeric and underscore characters only)
corresponding to the dump file name. Optional.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<vcid> argument (interpreted as a literal) is not an integer >= 0.

2.4.19 setparameter

setparameter ?-raw? <param

Sets a user defined TM parameter (user def
parameter <par am name> is set to
depends on the s/c DB definition of theemgi

This statement will be impleparntsd ag@ MOIPdirectivewith three arguments :-
e —raw - Switch argument wi i ‘@' alyg (‘-raw’). Optional.

The convexter shallfaise an error and fail the statement conversion if the
<param-nahe>Argument (interpreted as a literal) is not a user defined TM
parameter as defined in the s/c DB.

c. The converter shall raise an error and fail the statement conversion if the
<value> argument (interpreted as a literal) does not convert to a valid, in
range value for the TM parameter (as defined in the s/c DB) in cases where
the —raw switch is not specified. Where the —raw switch is specified, the
error should be raised if the <value> is not an unsigned integer or if the
value is too large to fit in the parameter.

2.4.20 enableparam
enableparam <param-list>

Enables the processing of the specified parameter(s) by the ground control system.

Avafr 1N Can Page 28

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
This statement will be implemented as a MOIS directive with one mandatory argument

e <param-list> - A string representing the list of parameters, it will be delimited
by braces.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
enableparam {<param-1ist>}and convert these to the corresponding
MOIS directive.

2.4.21 inhibitparam

inhibitparam <param-list>

/TOPE statements of the form
convert these to the

a. The MOIS convertér shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<spid> argument (interpreted as a literal) is not a valid packet id defined in the
s/c DB.

2.4.23 inhibitpacket
inhibitpacket <spid>

Inhibit the processing of packet identified by <spid>.

This statement will be implemented as a MOIS directive with a single mandatory
argument :-

Avafr 1N Can Page 29

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

e <spid> - packet id type, such that MOIS can validate the supplied value as a
packet name.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<spid> argument (interpreted as a literal) is not a valid packet id defined in the
s/c DB.
2.4.24 enablegroup
enablegroup <grpid>

single mandatory argument :-

e <grpid> - group id type, suc
group name.

the statement conversion if the
is not a valid group name defined

argument :-

e <grpid> - growp id typesuch that MOIS can validate the supplied value as a

group name.
The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<grpid> argument (interpreted as a literal) is not a valid group name defined
in the s/c DB.

2.4.26 patchlocation
patchlocation <param-name> <spid> <byteoffset> <bitoffset>

This statement is used to temporarily modify the extraction of a TM parameter. The
packet and location within the packet are both specified.

Avafr 1N Can Page 30

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

Avaft

This statement will be implemented as a MOIS directive with four mandatory
arguments :-

<param-name> - TM type such that MOIS can validate the supplied value as a
TM name.

<spid> - packet id type, such that MOIS can validate the supplied value as a
packet name.

<byteoffset> - integer (>= 0) represgnting the byte offset of the parameter
location

<bitoffset> - integer (in range~) -3 7) representing the bit offset of the
parameter location

<param-name> - TM type such that MOIS can validate the supplied value as a
TM name (derived parameters only).

<script> - string (arbitrary length), contains the Tcl/TOPE used to derive the
parameter value.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<param-name> argument (interpreted as a literal) is not a valid synthetic TM
parameter id defined in the s/c DB.

1N Qan Page 31

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

Note that the converter (or MOIS) will not make any attempt to translate or validate the
Tcl/TOPE contained in the <script> argument.

2.4.28 patchnumericalcurve

Avafr

patchnumericalcurve <calibcurveId> <pointId> <newXval>
<newYval>

Statement is used to modify a single point in a linear calibration curve.

This statement will be implemented as a MOIS directive with four mandatory
arguments :-

the TXP_NUMBRﬁ d¥in the s/c DB.
e <pointId> - Positive integer, identifying the point to be changed

e <newFrom> - Unsigned integer representing the low raw value for the range (TBC)
e <newTo> - Unsigned integer representing the high raw value for the range (TBC)

e <newText> - String representing the text alias for the defined range

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<calibcurveId> argument (interpreted as a literal) is not calibration curve
id defined in the s/c DB (CAP_NUMBR field).

1N Qan Page 32

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

c. The converter shall raise an error and fail the statement conversion if the values
for the other arguments (interpreted as literals) do not correspond with the
defined types.

2.4.30 patchpolynomialcurve

Avafr

patchpolynomialcurve <calibcurvelId> <coefficientId>
<newCoeffValue>

Statement is used to modify a single point in a polynomial curve calibration.

This statement will be implemented as a MQIS directive with three mandatory
arguments :-

e <calibcurveId> - Positive intgger,

e <coefficientId> - Integer
coefficient to be changed.

patch <newCurveld>

patchcurxeused Xpayam-n

me> <pos> <newCurveld>

These commands\patch the curve gsed by the referenced parameter for calibration.

In the first variant, the defaul¢/ calibration curve is switched to <newCurveId> for
TM. In the second vatantg/the conditional calibration curve at position <pos> is
switched. In both cases, <newCurveId> must refer to a curve of the same type
(numerical, textual, polynomial) as the one originally defined in the spacecraft database.

e The formulation here is a bit of a problem, as we have two variants which are only
identifiable by the different argument list. Unfortunately, the <pos> argument is
not at the end (if it was we could just make it optional).

So only the second formulation will be implemented in a MOIS procedures

This statement will be implemented as a MOIS directive with three mandatory
arguments :-

e <param-name> - TM type such that MOIS can validate the supplied value as a
TM name (derived parameters only).

1N Qan Page 33

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

e <pos> - Positive integer, represents the <pos>. Mandatory.

e <newCurveId> - Positive integer, represents the <newCurveId>
The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<param-name> argument (interpreted\as a literal) is not a TM parameter name
defined in the s/c DB.

c. The converter shall raise an erropand fail the statelent conversion if the values
for the other arguments (intefpreted>as>dliterals){do not correspond with the
defined types.

2.4.32 patchlimit

patchlimit <param-name> <typg
?<highValue>?

> <po <lowValue>

This statement patches the limit cur icab ¢ specified parameter in the
ground control system.

The requirements on the MOI¥ converter are as follows :-

a. The MOIS convertef shall recognise simple Tcl/TOPE statements of the form
described above and convert these to the corresponding MOIS directive.

b. The converter shall raise an error and fail the statement conversion if the
<param-name> argument (interpreted as a literal) is not a TM parameter id
defined in the s/c DB.

¢. The converter shall raise an error and fail the statement conversion if the values
for the other arguments (interpreted as literals) do not correspond with the
defined types.

2.4.33 waittime

walttime <time>

Suspends execution for a period identified by the <t ime> argument.

Avafr 1N Can Page 34

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

This statement will be implemented as a MOIS CTL/PSE statement with the wait period
derived from the supplied <t ime> argument (this is specified as a TOPE delta time).

The requirements on the MOIS converter are as follows :-

c. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘waittime <time>’ described above and convert these to a MOIS CTL/PSE
statement.

d. The converter shall raise an error and fail the statement conversion if the
<time> argument (interpreted as a litexal) is not a positive delta time in the

TOPE time format.
2.4.34 call
call <name> ?arg...?
Invokes (synchronously) the test sequ an optional list of
arguments. The sequence is expected to yeside i bel in the test

sequence source directory. The optional
required for the called procedure.

2.4.35 callasync
callasync
Invokes (asynchronvysly) the st sequence named <name> with an optional list of
arguments. The sequense is £€xpected to reside in the file <name>. tcl in the test

sequence source directory™The optional arguments represent the procedure arguments
required for the called procedure.

This statement will be implemented as a MOIS FOP statement with the called procedure
name set to <name>. The asynchronous option will be set in MOIS FOP statement.

NB. The referby option is also an issue, it will not supported by MOIS procedure.
The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘callasync ?-referby var? <name>’ and convert these to a MOIS
FOP statement.

Avafr 1N Can Page 35

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

2.4.36 waitfor

Avafr

b. The converter shall raise an error and fail the statement conversion if the
<name> argument (interpreted as a literal) is not a valid procedure name.

c. If the —referby switch is present, the converter shall raise an error and fail the
conversion if no corresponding variable name is specified.

d. Ifthe referby variable is present, the converter will not take it into account.

waltfor ?-timeout <time>?(<va t> ?<sondition>?

In the first formulation, the statement waits variables given
in <var - | i st> (variables used in the ubscription, TC
send request, or callasync request). me>’ specifies a
maximum amount of time to wait. St'i

whenever any of the variables, i is wgdated. If <condition>
evaluates to true, waiting is/Tigished; [continues to wait for the
next update or the maximu ;

fmeout switch, and is therefore mandatory if the -
sent and must not be included if the —timeout switch is

associated with the\-
timeout switch is pr
not present.

e <var-1list> - Variable name. Mandatory. List of variables won’t be supported by
MOIS.

e <condition> - String representing a Tcl/TOPE condition definition. Optional.

For the functions, the return value is boolean.

NB - MOIS will perform no validation on the Tcl/TOPE contained in the
<condition> argument.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘waitfor ?-timeout <time>? <var-list> ?<condition>?’

1N Qan Page 36

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

and convert these to a MOIS directive statement depending of the way it will be
used.

b. The converter shall raise an error and terminate the statement conversion if the
<var-11ist> argument (interpreted as a literal) does not correspond to a MOIS
local variable.

c. The converter shall raise an error andMail the statement conversion if the
<time> argument (interpreted as a literal) is\dot s valid positive delta time.

d. The converter shall raise an errg > is not only one varaiable.

2.4.37 getshared
getshared <name>

Returns the current value of the shared variable\gamed

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <var—-name> and this is not of the type
String.

d. The converter shall create a MOIS global variable with the name <name> of
the type String, assuming a variable of this name does not already exist.

e. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <name> and this is not of the type String.

2.4.38 setshared

setshared <name> <value>
Sets the current value of the shared variable <name> to <value>.

The statement will be implemented as a MOIS SET statement.

Avafr 1N Can Page 37

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

2.4.39 lockshared

Avafr

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘setshared <name> <value>’ and convert these to a MOIS SET
statement (setting global variable <name> to literal value <value>).

b. The converter shall create a MOIS global variable with the name <name> of
the type String, assuming a variable of this name does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
global variable already exists with nale <name> and this is not of the type
String.

lockshared ?-timeout <timj

option is not specified, | ockshar ed
lock is maintained until unl ockshare

arfd is therefore mandatory if the -
Rust not be included if the —timeout switch is

recognise simple Tcl/TOPE statements of the form
eout <time>? <name>’ and convert these to a

b. The MOIS converter shall recognise compound Tcl/TOPE statements of the
form ‘set <return> [lockshared ?-timeout <time>?
<name>]’ and convert these to a MOIS function statement.

c. The converter shall create a MOIS global variable (of type String) corresponding
to the <name> argument (interpreted as a literal) if a variable of this name does
not already exist.

d. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <name> and this is not of the type String.

e. The converter shall raise an error and fail the statement conversion if the
<time> argument (interpreted as a literal) is not a valid positive delta time.

1N Qan Page 38

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

f. In the case of a function, the converter shall create a local MOIS variable
(Boolean) corresponding to the <return> argument (interpreted as a literal),
provided a variable of the same name does not already exist.

g. In the case of a function, the converter shall raise an error and fail the statement
conversion if a MOIS variable corresponding to <return> already exists and
is not of Boolean type.

2.4.40 unlockshared
unlockshared <name>

Unlocks the shared variable <name>.This statg ./ WH] be implemented as a MOIS
directive with a single mandatory argumert :>

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘Tellsequence <id> <action>’ and convert them to a MOIS directive
statement.

b. The converter shall create a MOIS global variable with the name <name> of the
type String, assuming a variable of this name does not already exist.

c. The converter shall raise an error and fail if the two mandatory parameters are
not defined.

d. The converter shall raise an error and fail if the two mandatory parameters are
not defined.

Avafr 1N Can Page 39

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
e. The converter shall raise an error and fail if the <id> is not defined child
sequence.
2.4.42 Suspend
Suspend

It interrupts the execution of the current sequence. If it receives a resume notification, it
will continue. While a sequence is suspended, it will ignore incoming telemetry data.

This statement will be implemented as a MOIS directive statement.

This statement writes the log message <e>
as an error or warning if the appropriate-s

The statement showld be implemesited as a MOIS directive with two arguments :-

e Switch — statementswitch gaking values ‘-error’, ‘-warn’ or ‘—*. Optional.
e <expr> - quoted string’containing the logging message text.
The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘syslog ?(-error | -warn | —--)? <expr>’ and convert these to a
MOIS directive statement.

2.4.45 setrevision

setrevision <expr>
This statement stores the string <expr> as the revision information for the sequence.

The statement should be implemented as a MOIS directive with a single mandatory
argument:-

e <expr> - quoted string containing the revision information

Avafr 1N Can Page 40

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘setrevision <expr>’ and convert these to a MOIS directive statement.

NB — in MOIS Writer, use of this directive should ideally provide a mechanism for
setting the current version of the MOIS procedure as the value of <expr>.
2.4.46 verified

verified ?-timestamp <time>? -tg <cmd> ?<param>...7?

report fil.

<time> - The absolute tim

?—timestamp <time>?|--) -tc <cmd>

e verified ?-timestamp <time>? -tm <parameter>
Then it will convert it to a MOIS directive statement.

b. If <time> is defined and its format is not correct, the converter will raise an error
and the Tcl/TOPE command conversion will fail.

c. The converter will raise an error if mandatory parameters are not defined and the
Tcl/TOPE command conversion will fail.

2.4.47 prompt
prompt ?<type>? <message>

This statement displays a dialogue to the user of the control system. The dialogue
displays the text in <message>, and requests the user to provide an input, which is

Avafr 1N Can Page 41

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

then returned. The dialogue buttons and the type of the user input / return value depend
on <type>.

<type> = signed | unsigned | float | bool | abstime |
reltime

Some of this functionality is represented in MOIS by the SET statement with the user
input option set. In cases where the <t ype> maps directly to a MOIS variable type, the
statement will be implemented as a SET statement. Cases where there is no
corresponding MOIS type anyway can’t be implegmented. The title of the SET statement
will be set to the text in the <message> argument

The case in which no <type> is defined be implememyed as a MOIS directive. The
return value is irrelevant in this case/the dj2logne simpl§ delays procedure execution

fable of a type corresponding to
to the <return> argument
i8 name does not already exist.

The OIS conyfrter sh
‘prompL <messagg
directive statements

1 recognise simple Tcl/TOPE statements of the form
’. Such statements shall be translated into MOIS

2.4.48 displaystatus

displaystatus <message>
This statement displays a status message on the control system.

This statement will be implemented as a MOIS directive with a single mandatory
argument :-

e <message> - String containing the status message.
The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl/TOPE statements of the form
‘displaystatus <message>’ and convert these to the corresponding
MOIS directive.

Avafr 1N Can Page 42

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
2.4.49 bintohex

bintohex <string>

Convert <string> to a readable (hexadecimal) dump of the binary data. <string>
is an arbitrary binary Tcl string. It may contain null and all kinds of special characters.

This statement will be implemented as a MOIS function with a single mandatory
argument and returning a string value :-

e <string> - String containing the binary data.

a. The MOIS converter shall recoggise compound
form ‘set <return> [bintoke
corresponding MOIS functio

e <string> - String containing the hex data.
The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise compound Tcl/TOPE statements of the
form ‘set <return> [hextobin <hex-string>]’ and convert these
to the corresponding MOIS function.

b. The converter shall create a MOIS local variable of string type and with name
corresponding to the <return> argument (interpreted as a literal) if a variable
of this name does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return> and this is not of the string type.

Avafr 1N Can Page 43

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
2.4.51 asdtomsec

asdtomsec <delta-time-string>

Convert <del t a-ti me-string> to an integer number of milliseconds.

This statement will be implemented as a MOIS function with a single mandatory
argument and returning an integer value :-

e <del ta-time-string> - String containing the delta time.
The requirements on the MOIS converter are afNollows :-

a. The MOIS converter shall recognise compgund Tcl/TOPE statements of the

corresponding to the <return>
of this name does not already exist

y¢nise compound Tcl/TOPE statements of the
[asdtomsec <time-string>]’ and convert

The converter shall raise an error and fail the statement conversion if a MOIS variable
already exists with name <return> and this is not of the integer type.

2.5 Tcl Statements

This section details the converter requirements relating to basic Tcl statements not
covered in section 2.1, above. It is assumed that only the Tcl statements in section 8.2 of
ADI1 need to be addressed here. Other Tcl statements are not implemented by the MOIS
converter.

2.5.1 append - Append to variable

append varName ?value value value ...?

Append all of the value arguments to the current value of variable varName. If varName
doesn't exist, it is given a value equal to the concatenation of all the value arguments.

Avafr 1N Can Page 44

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

This command provides an efficient way to build up long variables incrementally. For
example, “append a $b" is much more efficient than *“set a ab" if $a is long.

This statement will be implemented as a MOIS function, returning a string value. The
function has a single repeated argument :-

e <value> - String containing the data to be appended to the <varName> variable.
The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form
‘append <varName> <valug>>
append function.

variable already exists with na
type.

This command consists of 314 X to support array handling in
so none of the array variants

can report the error in whatever way it wishes. When a
nwinding ends in the Tcl library and there is no obvious
way for Tcl to report the error.

When Tcl detects a background error, it saves information about the error and invokes
the bgerror command later as an idle event handler. Before invoking bgerror, Tcl
restores the errorInfo and errorCode variables to their values at the time the error
occurred, then it invokes bgerror with the error message as its only argument. Tcl
assumes that the application has implemented the bgerror command, and that the
command will report the error in a way that makes sense for the application.

The bgerror command may or may not be implemented in Tcl/TOPE, but certainly this
command is not one for use in operational procedures. It will be not implemented in
MOIS or the MOIS converter.

2.5.4 binary - Insert and extract fields from binary strings
binary format formatString ?arg arg ...?

Avafr 1N Can Page 45

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

Avafr

binary scan string formatString ?varName varName ...?

This command provides facilities for manipulating binary data. The first form, binary
format, creates a binary string from normal Tcl values. For example, given the values
16 and 22, on a 32 bit architecture, it might produce an 8-byte binary string consisting
of two 4-byte integers, one for each of the numbers. The second form of the command,
binary scan, does the opposite: it extracts data from a binary string and returns it as
ordinary Tcl string values.

The binary format command will be imple
string representing the binary number as forma
arguments :-

ented as a MOIS function, returning a
ttsd. The command takes the following

e formatString — String represgnting yheNformattigg to be applied to the other

arguments. Mandatory.
e arg — Repeated string argument de

The binary scan command will be imple
follows :-

e string — String containing thg’binary repgesent be converted. Mandatory.

e formatString — String
string. Mandatory.

e varName — Repeated| argymént repr g
are placed\according tq

Forthe <arg> arguments, the converter shall recognise either single words
(that 1>\undelimited striigs with no spaces) or lists (strings containing spaces
delimited\yy braces

c. The convertenghalf'create a MOIS local variable of String type with the name
corresponding tf <binary-string>, provided a variable of that name
does not already exist.

d. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <binary-string> and this is not of the

string type.

e. The MOIS converter shall recognise simple Tcl statements of the form
‘binary scan <binary> <format-string> <var-name>+’ and
convert these to the ‘binary scan” MOIS directive.

f. The converter shall create a MOIS local variable of String type with the name
corresponding to <var-name>, provided a variable of that name does not
already exist for each instance of the <var-name> argument.

10 Con Page 46

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

g. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <var-name> and this is not of the string
type for any instance of the <var—-name> argument.

2.5.5 cd - Change working directory

2.5.6 clock - Obtain and manipulate time

Avafr

cd ?dirName?

Change the current working directory to dirName, or to the home directory (as specified
in the HOME environment variable) if dirName is not given. Returns an empty
string.The cd command will be implemented s a MOIS directive with the following
argument :-

e dirName — Optional string argume

a. The MOIS converter shall r

<dir-name>?’ and convert the

clock format clockValué
clock scan dateString

clock seconds

1 be implemented as a MOIS function with the following

arguments and returning andnteger value :-

13

e -milliseconds — Optional switch argument with a single allowed value “-
milliseconds”.

The clock format form will be implemented as a MOIS function with the following
arguments and returning a string containing the formatted time.

e clockValue — Integer value representing a clock time (as returned from clock
seconds). Mandatory.

e —format — Optional switch argument with a single allowed value of “-format”.

e <format-string> - String containing formatting instructions for the time value.
It is associated with the —format switch and is present if and only if the ~-format
switch is present.

10 Con Page 47

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

Avafr

e —gmt — Optional switch argument with a single allowed value of “-gmt”.

e <gmt-switch> - Boolean value identifying whether the time value should be
defined as a GMT or local time. It is associated with the —gmt switch and is present
if and only if the —gmt switch is present.

The clock scan form will be implemented as a MOIS function with the following
arguments and returning an integer value representing the system time.

e <date-string> - String containing thexdate and/or time formatted for display.

Mandatory.

e -base — Optional switch argument y

to this command. It is associated wq v itch and is gresent if and only if
the —base switch is present.

pound Tcl statements of the form
[clock clicks (-

an error and fail the statement conversion if a MOIS
ith name <time-millisecs> and this is not of

er shall recognise compound Tcl statements of the form
‘set <time-string> [clock format <clock-value> (-
format <format-string>)? (-gmt <gmt-switch>)?]’ and
convert these to the ‘clock format” MOIS function.

e. The converter shall create a MOIS local variable of String type with the name
corresponding to <time-string>, provided a variable of that name does
not already exist.

f. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <time-string> and this is not of the
String type.

g. The MOIS converter shall recognise compound Tcl statements of the form
‘set <time-value> [clock scan <time-string> (-base

1N Qan Page 48

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

b

<base-value>)? (-gmt <gmt-switch>)?]’ and convert these to

the ‘clock scan’ MOIS function.

h. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <t ime-value>, provided a variable of that name
does not already exist.

1. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <time-value> and this is not of the
Integer type.

j. The MOIS converter shall recognis¢ compOund Tcl statements of the form
> and convert these to the

2.5.8 concat - Join lists togethe

concat ?arg arg ...?

Avafr

This command treats each argument as a list and concatenates them into a single list. It
also eliminates leading and trailing spaces in the arg's and adds a single separator space
between arg's. It permits any number of arguments. For example, the command
‘concat a b {c d e} {f {g h}} willreturn‘a b ¢c d e f {g h} asits
result. If no args are supplied, the result is an empty string.

This command will be implemented as a MOIS function with a single repeated
argument and returns a string value containing the concatenated list.

e <arg> - Repeated string argument containing a list item

The MOIS converter requirements are as follows :-

10 Con Page 49

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <list-string> [concat <list-item>+]’ and convert
these to the ‘concat’ MOIS function.

b. For the <list-item> arguments, the converter shall recognise either
single words (that is undelimited strings with no spaces) or lists (strings
containing spaces delimited by braces { }).

c. The converter shall create a MOIS local variable of String type with the name
corresponding to <list-stringX provided a variable of that name does
not already exist.

d. The converter shall raise an eyx ‘ tement conversion if a MOIS
variable already exists witll name » ing> and this is not of the
string type.

2.5.9 eof - Check for end of file condition ¢
eof channelId

e channelId - String ide g cha
The MOIS converter requiresgentgare a§ follows”:-
[eof <channel-id>]’ and convert these to

IS local variable of Boolean type with the
esult>, provided a variable of that name

isefan error and fail the statement conversion if a MOIS
ith name <eof-result> and this is not of the

This command is used to trigger execution of subprocesses.This Tcl command will not
be implemented in MOIS procedures.

2.5.11 exit - End the application

exit ?returnCode?

Terminate the process, returning returnCode to the system as the exit status. If
returnCode isn't specified then it defaults to 0.

This command will be implemented as a MOIS CTL/XIT statement, but with no
support for the return code. The MOIS converter requirements are as follows :-

The MOIS converter shall recognise simple Tcl statements of the form ‘exit’ and
convert these to the MOIS CTL/XIT statement.

Avafr 1N Can Page 50

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001
2.5.12 expr - Evaluate an expression

Avafr

expr arg ?7arg arg ...?

Concatenates arg's (adding separator spaces between them), evaluates the result as a Tcl
expression, and returns the value. The operators permitted in Tcl expressions are a
subset of the operators permitted in C expressions, and they have the same meaning and
precedence as the corresponding C operators. Expressions almost always yield numeric
results (integer or floating-point values). For example, the expression ‘expr 8.2 +
6’ evaluates to 14.2. Tcl expressions differ fromn C expressions in the way that operands
are specified. Also, Tcl expressions suppprt non-numeric operands and string
comparisons.

with the repreated arguments, as e
bracket, variable reference, etc. A si
function with a single string argument
the statement terminator is assumed to b
that virtually no validation can be performed
command must be implemented so
references will be able to be made wi

procedures would have to use the string variant
idtg variant as required.

expr real —returns
The requirements for the MOIS converter are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <expr-result> [expr <expression>]’ and convert these to
the ‘expr’ MOIS function (i.e. the version returning a string value).

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <expr-result>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <expr-result> and this is not of the

String type.

1N Qan Page 51

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

d. The converter shall treat everything following the expr keyword up to the ‘]’
bracket as the <expression> argument. It is not expected that the
argument is a delimited string (although it may be). This contradicts the
normal handling of string arguments which are single words or delimited
strings.

e. The converter shall insert a MOIS comment statement prior to the function
call to indicate that the expression has been converted by default to the string
return variant, and may require manual edit to a correctly typed return
variant.

2.5.13 fblocked - Test whether last input op
fblocked channelId

ration exhausted all input

pound Tcl statements of the form
> and convert these to

2.5.14 fconfigure - Set and get gptions on a channel
fconfigure channelId

fconfigure channelId name
fconfigure channelId name value ?name value ...?

The fconfigure command sets and retrieves options for channels. Channelld identifies
the channel for which to set or query an option. If no name or value arguments are
supplied, the command returns a list containing alternating option names and values for
the channel. If name is supplied but no value then the command returns the current
value of the given option. If one or more pairs of name and value are supplied, the
command sets each of the named options to the corresponding value; in this case the
return value is an empty string.

Avafr 1N Can Page 52

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

2.5.15 fcopy - Copy data fro

Avafr

This command is implemented as a function to cover the first two forms and a directive
to handle the third form. The directive will not, however, support multiple option
settings, as a repeated pair or arguments is not supported in the envisaged extensions to
the function / directive mechanism. Further, only a single return type (string) will be
supported for the functions, despite the different types returned depending on the
specified options.

The first two forms of the command will be implemented by a MOIS function, returning
a string value and taking the following arguments :-

e channelId—Mandatory string containing
e Name — Optional string identifying the

The last form of the copmmand i
following arguments :-

e channelId— Mandatory string contajning the

e Name — Mandatory string identifying ths

a. The MOIS conve g gcognise compQund¥Icl statements of the form
- kconf gure <channel-id>

nel-id> <name> <value>]’ and convert
¢ MOIS directive.

ong channel to another.

fcopy inchan outciMn ?-size size? ?-command callback ?

The fcopy command copies data from one I/O channel, inchan to another I/O channel,
outchan. The feopy command leverages the buffering in the Tcl I/O system to avoid
extra copies and to avoid buffering too much data in main memory when copying large
files to slow destinations like network sockets.

This command will be implemented using a MOIS directive taking the following
arguments :-

e inchan — Mandatory string identifying the channel id of the input channel
e outchan — Mandatory string identifying the channel id of the output channel

e -size — Switch argument with allowed value “-size”

1N Qan Page 53

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

Avafr

e size — Integer argument identifying the number of bytes to copy. This argument is
associated with the —size switch argument and is present if and only if the —size
argument is present.

e -—command — Switch argument with allowed value “-command”

e callback — String argument representing the Tcl commands to be executed when
the copy is complete. This argument is associated with the —command switch
argument and is present if and only if the —command argument is present. Note that
the Tcl defined here will not be validated by MOIS in any way.

directive.

b. The converter shall recognise <cs
arbitrary string delimited b

process cam
block.

This is a set of commands for operating on a file's name or attributes. Name is the name
of a file; if it starts with a tilde, then tilde substitution is done before executing the
command. Option indicates what to do with the file name. Any unique abbreviation for
option is acceptable (in Tcl, but not in any MOIS conversion).

The valid options are given below with their argument patterns and a brief description :-
file atime name

Returns an integer representing the time at which file name was last accessed, as
a number of seconds from an epoch (c.f. clock seconds).

file atime name time

Sets the access time for the file name.

10 Con Page 54

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

Avafr

file attributes name

Returns the complete list of file attribute names and their values for the file name.
file attributes name option

Returns the value of the attribute specified by option for the file name.
file attributes name option value ?option value..

Sets the value of the one or more attributes (specified by option) to the value
for the file name.

file channels ?pattern?

st of names of all registered
pecified, only those names

If pattern isn't specified, the Lommand
open channels in this interprefer. If {axt
matching the pattern are returned

file copy ?-force? ?- -? soupce tafget

> character).

file copy ?-force? 2

file dirname\name

Returns the diredtory pgth extracted from the file path defined by name.
file executable na

Returns a Boolean identifying whether the file defined by name is executable by
the current user.

file exists name
Returns a Boolean identifying whether the file defined by name exists.
File extension name

Returns a string identifying the file extension extracted from the file path defined
by name.

file isfile name

Returns a Boolean identifying whether the item defined by name is a file.

1N Qan Page 55

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
file isdirectory name

Returns a Boolean identifying whether the item defined by name is a directory.
file join name ?name ...?

Returns a string representing the file path constructed from the path elements
defined by the instances of the name argument.

file l1lstat name varName
Invokes the Istat kernel call on name, an

hold information returned from the ke
variable.

file mkdir dir ?dir ...-?

Creates the directories defined 1

file mtime name ?time?

Returns a string représenting the value of the symbolic link given by name (i.e.
the name of the file it points to).

file rename ?-force? ?- -? source target

Moves the file or directory source to the pathname defined in target. The —

force switch forces overwrite of existing files if present. The - - switch
terminates the switch list (allowing source to be defined with a leading ‘-’
character).

file rename ?-force? ?- -? source ?source ...? targetDir

Moves the files or directories defined in each instance of source to the existing
directory defined by targetDir. The —force switch forces overwrite of
existing files if present. The - - switch terminates the switch list (allowing
source to be defined with a leading -’ character).

Avafr 1N Can Page 56

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

2.5.18 format - Format a stxing in #

Avafr

file rootname name

Returns a string representing the path defined in name excluding the file
extension and associated period.

file size name
Returns an integer representing the size of the file defined in name.
file split name

Returns a string containing a Tcl list of\the path elements defined in the path

name.

file stat name varName

variable.

file tail name

Returns a string consisting g
extracted from the path defin

file type name

It statement Wqll not beximplementdd in MOIS procedures.

e style of sprintf

format formatStriwgf ?arg arg ...?

This command generates a formatted string in the same way as the ANSI C sprintf
procedure (it uses sprintf in its implementation). FormatString indicates how to format
the result, using % conversion specifiers as in sprintf, and the additional arguments, if
any, provide values to be substituted into the result. The return value from format is the
formatted string.

The repeated arg arguments are a problem here as they could be of any MOIS types.
Probably the easiest way to deal with this is to take the same approach as for the expr
command, assuming that everything following the formatString is part of a single
string argument. As in the case of expr, this will mean that variable references can be
made that are not verified by MOIS.

Therefore, it will be implemented the command as a MOIS function, returning a string
value and taking the following arguments

1N Qan Page 57

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

e formatString— Mandatory string containing the formatting instructions

e formatArgs — Optional string containing all of the values to be formatted
The requirements for the MOIS converter are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <format-result> [format <format-string>
<format-args>?]’ and convert these to the ‘format” MOIS function.

b. The converter shall create a MOIS ldsal variable of String type with the name
corresponding to <format-result yqvided a variable of that name
does not already exist.

c. The converter shall raise an/error gatd fail the sttement conversion if a MOIS

eturns everything in the line up to
), and discards the end-of-line

a. The MOIS converter shall recognise simple Tcl statements of the form
‘gets <channel-id> <var-name>’ and convert these to the ‘gets’
MOIS directive.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <var-name>, provided a variable of that name does not
already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <var-name> and this is not of the String

type.
2.5.20 global - Access global variables
global varname ?varname ...7?

Avafr 1N Can Page 58

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

2.5.21 glob - Return names of files that match patterns

Avafr

This command is ignored unless a Tcl procedure is being interpreted. If so then it
declares the given varname's to be global variables rather than local ones. Global
variables are variables in the global namespace. For the duration of the current
procedure (and only while executing in the current procedure), any reference to any of
the varnames will refer to the global variable by the same name.

MOIS is able to handle local, global and system variables. Then it will be possible to
handle global variables.

glob ?switches? pattern ?patter

This allows searching of
characters without the need

Xllows an empty 113t

-types typelist

Only list files or directories which match #ypeList, where the items in the list have
two forms. The first form is like the -type option of the Unix find command: b
(block special file), ¢ (character special file), d (directory), f (plain file), /
(symbolic link), p (named pipe), or s (socket), where multiple types may be
specified in the list. Glob will return all files which match at least one of the types
given.

The second form specifies types where all the types given must match. These are
r, w, x as file permissions, and readonly, hidden as special permission cases. On
the Macintosh, MacOS types and creators are also supported, where any item
which is four characters long is assumed to be a MacOS type (e.g. TEXT). Items
which are of the form {macintosh type XXXX} or {macintosh creator XXXX} will
match types or creators respectively. Unrecognised types, or specifications of
multiple MacOS types/creators will signal an error. The two forms may be mixed,

1N Qan Page 59

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

Avafr

so -types {d f r w} will find all regular files OR directories that have both read
AND write permissions.

Marks the end of switches. The argument following this one will be treated as a
pattern even if it starts with a -.

The pattern arguments may contain any of the following special characters:

The command will be implemented as a
taking the following arguments.

? Matches any single character.

* Matches any sequence of zero or more charaste

<dir-name> - This is string
it is present if and only Y
directory in which the

<type-1ist>\ This is sfing argument associated with the —types switch, it is
present if and only X the £t ypes switch is present. It defines a list of file types for
which the file search is™0 be made.

- - - This is a switch argument that takes the value ‘- -°. It is used to indicate the
end of the switches in cases where the pattern begins with a ‘-* character.

pattern — Repeated string argument defining the file name matching pattern(s) to
be used.

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form

‘set <file-list> [glob <switches>* (- -)? <pattern>+
1’ where ‘<switches> = -directory <dir-name> | -Jjoin |
-nocomplain | -path <path-prefix> | -types <type-

1ist>’ and convert these to the ‘glob’ MOIS function.

1N Qan Page 60

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <file-1ist>, provided a variable of that name does not
already exist.

The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <file-1ist> and this is not of the String

type.
2.5.22 incr - Increment the value of a variable

incr varName ?increment?

2.5.24 join - Create a string by joining together list elements

join list ?joinString?

The list argument must be a valid Tcl list. This command returns the string formed by
joining all of the elements of /ist together with joinString separating each adjacent pair
of elements. The joinString argument defaults to a space character.

This command will be implemented as a MOIS function, returning a string value and
taking the following arguments :-

e 1ist — Mandatory string containing the list of items to be joined.
e JoinString — Optional string identifying the separator character(s).

The MOIS converter requirements are as follows :-

Avafr 1N Can Page 61

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <join-string> [join <string-list>
<separator>?]’ and convert these to the ‘join’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <join-string>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name {Noin-string> and this is not of the
String type.

ple Tcl statements of the form
and convert these to the ‘lappend’

lindex list index

This command treats /ist as a Tcl list and returns the index'th element from it (0 refers to
the first element of the list). In extracting the element, /index observes the same rules
concerning braces and quotes and backslashes as the Tcl command interpreter;
however, variable substitution and command substitution do not occur. If index is
negative or greater than or equal to the number of elements in value, then an empty
string is returned. If index has the value end, it refers to the last element in the list, and
end-integer refers to the last element in the list minus the specified integer offset.

The command will be implemented as a MOIS function returning a string value and
taking the following arguments :-

e 1ist — Mandatory string representing a Tcl list.

Avafr 1N Can Page 62

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

e index — Mandatory string representing the index position (needs to be a string to
handle the ‘end’ and ‘end-x’ formats).

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [lindex <list-string> <index>]’ and
convert these to the ‘lindex” MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>| provided a variable of that name does
not already exist.

N
L, P

type.
2.5.27 linsert - Insert elements into a list

The command W111 be
taking the fole

shall recognise compound Tcl statements of the form
set \ val> [linsert <list-string> <index>
<new-element>*]" and convert these to the ‘linsert” MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the String

type.
2.5.28 list - Create a list
list ?arg arg ...?

This command returns a list comprised of all the args, or an empty string if no args are
specified. Braces and backslashes get added as necessary, so that the index command

Avafr 1N Can Page 63

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

may be used on the result to re-extract the original arguments, and also so that eval may
be used to execute the resulting list, with arg/ comprising the command's name and the
other args comprising its arguments. List produces slightly different results than
concat: concat removes one level of grouping before forming the list, while list works
directly from the original arguments. For example, the command ‘1ist a b {c d
e} {f {g h}}P willreturn ‘a b {c d e} {f {g h}}’ while concat with the
same arguments will return ‘a b ¢ d e £ {g h}’.

The command will be implemented as a MOIS function, returning a string value and
taking the following arguments :-

e arg — Optional, repeated string argument defini ew elements to be inserted.

b. The converter shall create a MOISNgeal variakle of Strimgfype with the name
avariable of that name does
not already exist.

The converter shall raise il tt epgent conversion if a MOIS
variable already existgwitt > and this is not of the String
type.

2.5.29 llength - Count the n

§ representing a Tcl list.
are as follows :-

ghall recognise compound Tcl statements of the form
[llength <1ist>]’ and convert these to the

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the Integer
type.
2.5.30 Irange - Return one or more adjacent elements from a list
lrange list first last
List must be a valid Tcl list. This command will return a new list consisting of elements
first through last, inclusive. First or last may be end (or any abbreviation of it) to refer

to the last element of the list. If first is less than zero, it is treated as if it were zero. If
last is greater than or equal to the number of elements in the list, then it is treated as if it

Avafr 1N Can Page 64

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

were end. If first is greater than /ast then an empty string is returned. The command will
be implemented as a MOIS function returning a string value and taking the following
arguments :-

e 1ist —Mandatory string representing a Tcl list.

e first — Mandatory string representing the index position (needs to be a string to
handle the ‘end’ and ‘end-x’ formats).

e last — Mandatory string representing the index position (needs to be a string to

handle the ‘end’ and ‘end-x’ formats).

The MOIS converter requirements are as fallows :-

a. The MOIS converter shall fecog Tcl statements of the form
‘set <return-val> <first>
<last>]’ and convert these

b. The converter shall create a MQIS local with the name

corresponding to <return-va
not already exist.

gleted; the new elements are simply inserted before
ffy zero or more new arguments to be added to the list

first and last are simply deléted. If list is empty, any element arguments are added to the

end of the list.

The command will be implemented as a MOIS function returning a string value and
taking the following arguments :-

e 1ist — Mandatory string representing a Tcl list.

e first — Mandatory string representing the index position (needs to be a string to
handle the ‘end’ and ‘end-x’ formats).

e last — Mandatory string representing the index position (needs to be a string to
handle the ‘end’ and ‘end-x’ formats).

e FElement — Optional repeated string argument defining the new list elements to be
inserted.

Avafr 1N Can Page 65

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [lreplace <list-string> <first>
<last> <list-element>*]’ and convert these to the ‘lreplace’ MOIS
function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

type.

e mode — Switch argu
may not be specified).

ognise compound Tcl statements of the form
[lsearch <mode-switch>? <list-
1’ and convert these to the ‘Isearch’ MOIS function.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

2.5.33 Isort - Sort the elements of a list

Avafr

lsort 2options? list

This command sorts the elements of /ist, returning a new list in sorted order. The
implementation of the Isort command uses the merge-sort algorithm which is a stable
sort that has O(n log n) performance characteristics.

The command will be implemented as a MOIS function, returning a string value and
taking the arguments defined below. Note that for simplicity, the ~command option is
not supported by MOIS.

1N Qan Page 66

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

e sort-type — Optional switch argument taking the values ‘-ascii’ (this is the
default), ‘-dictionary’, ‘-integer’ or ‘-real’. Defines the type of sort to be performed.

e sort-direction — Optional switch argument taking the values ‘-increasing’ or
‘-decreasing’

e sort-index — Optional switch argument taking the value ‘-index’

e index — String argument associated with the sort-index switch above. It is
present if and only if sort-index is set tQ_‘-index’.

a. The MOIS converter shall rex
‘set <return-val> <3qrt-typep? <sort-
direction>? (<sort-index> <index>) AKunifue>? <list-
string>]’ and convert t

tring type with the name
iable of that name does

4h efror il the gfatement conversion if a MOIS
i e<Xre —val> and this is not of the

corresponding to <r
not already exist.

2.5.35 namespace - create and manipulate contexts for commands and variables

namespace ‘option? ?arg ...?

The namespace command lets you create, access, and destroy separate contexts for
commands and variables.

This command will not be implemented in MOIS procedures.

2.5.36 open - Open a file-based or command pipeline channel
open fileName

open fileName access

open fileName access permissions

Avafr 1N Can Page 67

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

This command opens a file, serial port, or command pipeline and returns a channel
identifier that may be used in future invocations of commands like read, puts, and
close. If the first character of filename is not | then the command opens a file: fileName
gives the name of the file to open, and it must conform to the conventions described in
the filename manual entry. The access argument, if present, indicates the way in which
the file (or command pipeline) is to be accessed.

The third form is not supported by MOIS, this is because the arguments are somewhat
ill-conditioned (they can only be identified by their value rather than by type or
position).

directive.

2.5.37 pid - Retrieve process id(s)
pid ?fileId?

refers to %

The MOIS converte s are as follows :-

a. The MOIS coaveer shall recognise compound Tcl statements of the form
‘set <returH¥-val> [pid <file-id>?]’ and convert these to the
‘pid’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

K requiremen

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.
2.5.38 puts - Write to a channel
puts ?-nonewline? ?channelId? string

Writes the characters given by string to the channel given by channelld. Channelld
must be a channel identifier such as returned from a previous invocation of open or

Avafr 1N Can Page 68

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

socket. It must have been opened for output. If no channelld is specified then it defaults
to stdout. Puts normally outputs a newline character after string, but this feature may
be suppressed by specifying the -nonewline switch.

This command is rather poorly specified, as it includes an optional argument which is
not a switch and also not at the end of the argument list. The channelld will be defined
as a mandatory argument, but the MOIS converter will set the value to *° (empty string)
if the argument is not included.

The command will be implemented as a MOIS directive with the following arguments :-

e nonewline — Optional switch argument taking

a. The MOIS converter shall ref
‘puts <nonewline>?
convert these to the ‘puts’ 2

1l recognise compound Tcl statements of the form
pwd’ and convert these to the ‘pwd’ MOIS

b. The convexter shall
corresponding
not already exist:

eate a MOIS local variable of String type with the name
return-val>, provided a variable of that name does

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

2.5.40 read - Read from a channel
read ?-nonewline? channelId

read channelId numChars

In the first form, the read command reads all of the data from channelld up to the end
of the file. If the -nonewline switch is specified then the last character of the file is
discarded if it is a newline. In the second form, the extra argument specifies how many
characters to read. Exactly that many characters will be read and returned, unless there
are fewer than numChars left in the file; in this case all the remaining characters are

Avafr 1N Can Page 69

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

2.5.41 regexp - Match a regular expressions

Avafr

returned. If the channel is configured to use a multi-byte encoding, then the number of
characters read may not be the same as the number of bytes read.

The command will be implemented as a MOIS directive with the following arguments :-
e nonnewline — Optional switch argument, taking the value ‘-nonnewline’.
e channelId - Mandatory string argument identifying the channel to be read from.

e numChars — Optional integer argument identifying the number of characters to be
read

The MOIS converter requirements are as follwgs :-

a. The MOIS converter shall fecox
7‘read <nonewline>?
convert these to the ‘read’

fcl statements of the form
<num-chars>?’ and

13¢ simple

regexp ?switches? exp string
subMatchvVar ...?

If additional arguments are specified 1 are treated as the names of
variables in which to returf i ti art(s) of string matched exp.
MatchVar will be set to atched all of exp. The first
subMatchVar will coptain Mth ters in sfing that matched the leftmost
parenthesized—subexpressjion wiNi the ng&t subMatchVar will contain the

o expandedi Optional'switch argument taking the value ‘-expanded’

e indices — Optignal switclfargument taking the value ‘-indices’

e line —Optional switchArgument taking the value ‘-line’

e linestop — Optional switch argument taking the value ‘-linestop’

e lineanchor — Optional switch argument taking the value ‘-lineanchor’
e nocase — Optional switch argument taking the value ‘-nocase’

e all — Optional switch argument taking the value “-all’

e inline — Optional switch argument taking the value ‘-inline’

e start — Optional switch argument taking the value ‘-start’

e startIndex — Integer argument defining the search start position, associated with
the start switch such that it is present if and only if the start switch is present.

e - — Optional switch argument taking the value ‘--’

1N Qan Page 70

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

e regularExp — Mandatory string argument defining the regular expression to be
used in the match.

e matchStr — Mandatory string argument defining the string to be matched against
the regular expression

e matchVar — Optional, repeated string argument defining variable names in which
the matched string segments are to be placed.

The requirements on the MOIS converter are as follows :-

a. The MOIS converter shall recognise comppund Tcl statements of the form
‘set <return-val> <apout>? <expanded>?
<indices>? <liney? i : <lineanchor>?
<nocase>? <all>? i i X (<staxt> <start-index>)?
<->? <regular-exp 3 h-var>*]’ and
convert these to the ‘regexp’ j

b. an type with the
Qvided a~vatiable of that name

c. nt conversion if a MOIS
> and this is not of the

d. axigble of String type with the name

ch instance of <match-var>,

2.5.42 regsub =) itution gd on regular expression pattern

Avafr

matching

the variable whose nawe is gifen by varName. If there is a match, then while copying
string to varName the pdtidn of string that matched exp is replaced with subSpec. If
subSpec contains a **&" or ""\0", then it is replaced in the substitution with the portion
of string that matched exp. If subSpec contains a "\ n", where 7 is a digit between 1 and
9, then it is replaced in the substitution with the portion of string that matched the n-th
parenthesized subexpression of exp. Additional backslashes may be used in subSpec to
prevent special interpretation of “'&" or "™\0" or \n" or backslash. The use of
backslashes in subSpec tends to interact badly with the Tcl parser's use of backslashes,
so it's generally safest to enclose subSpec in braces if it includes backslashes. If the
initial arguments to regexp start with - then they are treated as switches.

The command will be implemented as a MOIS function, returning a boolean value and
taking the following arguments :-

e all — Optional switch argument taking the value ‘-about’

e expanded — Optional switch argument taking the value ‘-expanded’

1N Qan Page 71

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

e line — Optional switch argument taking the value ‘-line’

e linestop — Optional switch argument taking the value ‘-linestop’

e lineanchor — Optional switch argument taking the value ‘-lineanchor’
e nocase — Optional switch argument taking the value ‘-nocase’

e inline — Optional switch argument taking the value ‘-inline’

e start — Optional switch argument taking fhe value ‘-start’

e regularExp — Mandatory string

the regular expression

e replaceStr — Mandatory giri
replace the matched string.

imple Tcl statements of the form
<line>? <linestop>?
<inline>? (<start> <start-

variable alread ists with name <match-var> and this is not of the

String type.

2.5.43 rename - Rename or delete a command
rename oldName newName
Rename the command that used to be called oldName so that it is now called newName.
If newName is an empty string then oldName is deleted. oldName and newName may
include namespace qualifiers (names of containing namespaces). If a command is

renamed into a different namespace, future invocations of it will execute in the new
namespace. The rename command returns an empty string as result.

This command will not be implemented in MOIS procedures.

2.5.44 scan - Parse string using conversion specifiers in the style of sscanf
scan string format ?varName varName ...?

Avafr 1N Can Page ’72

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

This command parses fields from an input string in the same fashion as the ANSI C
sscanf procedure and returns a count of the number of conversions performed, or -1 if
the end of the input string is reached before any conversions have been performed.
String gives the input to be parsed and format indicates how to parse it, using %
conversion specifiers as in sscanf. Each varName gives the name of a variable; when a
field is scanned from s#ring the result is converted back into a string and assigned to the
corresponding variable. If no varName variables are specified, then scan works in an
inline manner, returning the data that would otherwise be stored in the variables as a
list. In the inline case, an empty string is retusged when the end of the input string is

ing> \<format> <var-name>+’ and convert
an’ MQIS directiye.

d. The MOIS converter shall recognise compound Tcl statements of the form
‘set <element-list> [scan <parse-string> <format>]’
and convert these to the ‘scan’ MOIS function.

e. The converter shall create a MOIS local variable of String type with the name
corresponding to <element-1list>, provided a variable of that name
does not already exist.

f. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <element-1ist> and this is not of the
String type.
2.5.45 seek - Change the access position for an open channel
seek channellId offset ?origin?

Avafr 1N Can Page ’73

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

Changes the current access position for channelld. Channelld must be a channel
identifier such as returned from a previous invocation of open or socket. The offset and
origin arguments specify the position at which the next read or write will occur for
channelld. Offset must be an integer (which may be negative) and origin must be one of
the following:

The command will be implemented as a MOIS directive taking the following arguments

e channelId — Mandatory string argument representing the identifier for the

channel

e offset — Mandatory integer argumén identifying thg byte offset to be applied to

the channel.
e origin — Optional switch argums R V7 : end’ or ‘current’.
The MOIS converter requirements are :-

a. The MOIS converter shall rec i 1My tateménts of the form
‘seek <channel-id> S <origin>?’ and convert these to

efc the first open parenthesis are the
between the parentheses are the index within the

This command Wil be implementgd as a MOIS SET var statement.

e varName — Mandatoxy/string argument identifying the name of the variable to be

set.
e value — Mandatory string argument identifying the value to be set.
The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise simple Tcl statements of the form ‘set
<var-name> <value>’ and convert these to the ‘set’ MOIS directive.

2.5.47 socket - Open a TCP network connection
socket ?options? host port

socket -server command ?options? port

This command opens a network socket and returns a channel identifier that may be used
in future invocations of commands like read, puts and flush. At present only the TCP

Avafr 1N Can Page ’74

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

network protocol is supported; future releases may include support for additional
protocols. The socket command may be used to open either the client or server side of a
connection, depending on whether the -server switch is specified.

This command will not be implemented in MOIS procedures.

2.5.48 source - Evaluate a file or resource as a Tcl script
source fileName

source -rsrc resourceName ?fileName?

source -rsrcid resourceld ?fileName?

This command takes the contents of thg-Specitied file or’tesource and passes it to the

1 and the source
1. The —rsrc and
omputers. These
a TEXT resource. You may

from within the script then the remainds
command will return normally with the re§

If splitChars is an empty string then each character
ent of the result list. SplitChars defaults to the
standard white-spadg characters,

aJdmplémented as a MOIS function, returning a string value
aking the following arguments :-

The command will b
(representing a Tcl list) and

e string-— Mandatory string argument identifying the string to split.
e splitChar — Optional string argument identifying the separator character(s).
The MOIS converter requirements are as follows :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [split <split-string>
<separator>?]’ and convert these to the ‘split” MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

Avafr 1N Can Page 75

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the

String type.

2.5.50 string - Manipulate strings

Avafr

string option arg ?arg ...?

Performs one of several string operations, depending on option. The legal options
(which may be abbreviated) are:

This is a set of commands for operating on a sfrtngs. The valid options are given below
with their argument patterns and a brief description

string bytelength string

where a script cares about the byte lehg
use the string length operation.

he comparison. If -length is negatlve it is
e strings are compared in a case-insensitive

accepted by the index“method), then the search is constrained to start with the
character in string2 specified by the index.

string index string charIndex

Returns the charlndex'th character of the string argument. A charlndex of 0
corresponds to the first character of the string. charlndex may be specified as
follows:

e integer - The char specified at this integral index
e end - The last char of the string.

e end-integer - The last char of the string minus the specified integer
offset (e.g. end-1 would refer to the "c¢" in "abcd"). If charilndex is less than 0
or greater than or equal to the length of the string then an empty string is
returned.

1N Qan Page 76

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
string is class ?-strict? ?-failindex varname? string

Returns 1 if string is a valid member of the specified character class, otherwise
returns 0. If —strict is specified, then an empty string returns 0, otherwise and empty
string will return 1 on any class. If -failindex is specified, then if the function
returns 0, the index in the string where the class was no longer valid will be stored in
the variable named varname. The varname will not be set if the function returns 1.
The following character classes are recognized (the class name can be abbreviated):

e al num - Any Unicode alphabet ordigit character.

e false - Anygf the\forms allo

Jnicode]printing character, including space.

e punct Any Unicog€ punctuation character.

e space

Any Unjfode space character.

e true - Any of
true.

the forms allowed to Tcl_GetBoolean where the value is

e upper - Any upper case alphabet character in the Unicode character set.

e wordchar - Any Unicode word character. That is any alphanumeric
character, and any Unicode connector punctuation characters (e.g.
underscore).

e xdigit - Any hexadecimal digit character ([0-9A-Fa-f]). In the case of
boolean, true and false , if the function will return 0, then the varname will
always be set to 0, due to the varied nature of a valid boolean value.

string last stringl string2 ?startIndex?

Search string2? for a sequence of characters that exactly match the characters in
string1. If found, return the index of the first character in the last such match within

Avafr 1N Can Page 77

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

Avafr

string2. If there is no match, then return -1. If startindex is specified (in any of the
forms accepted by the index method), then only the characters in string2 at or
before the specified startindex will be considered by the search.

string length string

Returns a decimal string giving the number of characters in string. Note that this is
not necessarily the same as the number of bytes used to store the string.

string map ?-nocase? charMap string

Replaces characters in string based on the Key<value pairs in charMap. charMap is a

ding value. If -nocase is
specified, then matching is done se differences. Both key and

value may be multiple characters.

chars, then any character between x and y,
ed with -nocase , the end points of the range

cen the 'Z' and 'a'), with -nocase this is
probably what was meant in the first place).

whose index is first and ending with the character whose index is /ast. An index of 0
refers to the first character of the string. first and last may be specified as for the
index method. If first is less than zero then it is treated as if it were zero, and if /ast
is greater than or equal to the length of the string then it is treated as if it were end.
If first is greater than /ast then an empty string is returned.

string repeat string count
Returns string repeated count number of times.
string replace string first last ?newstring?

Removes a range of consecutive characters from string, starting with the character
whose index is first and ending with the character whose index is /ast. An index of 0
refers to the first character of the string. First and /ast may be specified as for the
index method. If newstring is specified, then it is placed in the removed character

1N Qan Page 78

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

range. If first is less than zero then it is treated as if it were zero, and if /ast is greater
than or equal to the length of the string then it is treated as if it were end. If first is
greater than last or the length of the initial string, or last is less than 0, then the
initial string is returned untouched.

string tolower string ?first? ?last?

Returns a value equal to string except that all upper (or title) case letters have been
converted to lower case. If first is specified, it refers to the first char index in the
string to start modifying. If /ast is specifiednit refers to the char index in the string to
stop at (inclusive). first and last may be spegified as for the index method.

index in the string to stop at (inclusivg). ay be spécified as for the
index method.

Returns a value equal to #fring except that any trailing characters from the set given
by chars are removed. T chars is not specified then white space is removed (spaces,
tabs, newlines, and carriage returns).

string wordend string charIndex

Returns the index of the character just after the last one in the word containing
character charindex of string. charlndex may be specified as for the index method.
A word is considered to be any contiguous range of alphanumeric (Unicode letters
or decimal digits) or underscore (Unicode connector punctuation) characters, or any
single character other than these.

string wordstart string charIndex

Returns the index of the first character in the word containing character charlndex
of string. charlndex may be specified as for the index method. A word is considered
to be any contiguous range of alphanumeric (Unicode letters or decimal digits) or

Avafr 1N Can Page ’79

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

underscore (Unicode connector punctuation) characters, or any single character
other than these.

The implementation and MOIS converter requirements for each variant of string are
detailed in the subsections below.

2.5.50.1 string bytelength

Command will be implemented as a MOIS function, returning an Integer value and
taking a single mandatory argument :-

e string — String for which the length is re
The MOIS converter requirements are :-

a. The MOIS converter shall fecog Tcl statements of the form
' 3 > and

name corresponding to <retu
does not already exist.

Integer type.
2.5.50.2 string compare

The MOIS converter requig

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string compare <nocase>"?
(<length> <length-val>)? <stringl> <string2>]’ and
convert these to the ‘string compare’ MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

Avafr 1N Can Page 80

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
2.5.50.3 string equal

Command will be implemented as a MOIS function, returning an Boolean value and
taking arguments as follows :-

e nocase — Optional switch argument with allowed value ‘-nocase’.
e length — Optional switch argument with allowed value ‘-length’.

e lengthVal — Integer argument representing the comparison length. Argument is
associated with the 1ength switch and is pgesent if and only if the 1ength switch
is present.

e stringl — First comparison string

a.

€ statement conversion if a MOIS
rn-val> and this is not of the

e startIndex\Optional ipfeger argument identifying the start point for the search

The MOIS converter requireients are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string first <stringl> <string2>
<start-index>?]’ and convert these to the ‘string first” MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

2.5.50.5 string index

Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

Avafr 1N Can Page 81

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

e string-— Mandatory string argument representing the text being searched

e charIndex — Mandatory string argument identifying the position of the character
to be returned

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string index <string> <char-
index>]’ and convert these to the ‘string index” MOIS function.

b. The converter shall create a MOIS ldcal\arjable of String type with the name

String type.
2.5.50.6 string is

Command will be implemented as
taking arguments as follows :-

e class — Mandatory switch §
for. The valid values are~

ghall recognise compound Tcl statements of the form
[string 1is <class> <strict>?
(<fail-inde <fail-var>)? <string>’ and convert these to the
‘string is” MOIS function.

b. The converter shall create a MOIS local variable of Boolean type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Boolean type.

d. Ifthe <fail-var> argument is specified, the converter shall create a MOIS
local variable of String type with the name corresponding to <fail-var>,
provided a variable of that name does not already exist.

Avafr 1N Can Page 82

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

e. Ifthe <fail-var> argument is specified, the converter shall raise an error
and fail the statement conversion if a MOIS variable already exists with name
<fail-var> and this is not of the String type.

2.5.50.7 string last

Command will be implemented as a MOIS function, returning an Integer value and
taking arguments as follows :-

e stringl —Mandatory string argument representing the text being searched for

e string2 — Mandatory string argument repgredenting the string being searched

e startIndex — Optional integer argdmentlidentifying\the start point for the search

The MOIS converter requirements are/ :-

a. The MOIS converter shall
‘set <return-val>
<start-index>?]’ and con\ert these t i OIS function.

name corresponding to
does not already exist.

Integer type.
2.5.50.8

string length

nll recognise compound Tcl statements of the form
[string length <string>]’ and convert
> MOIS function.

b. The conventer shallfcreate a MOIS local variable of Integer type with the
name correspORdifg to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

2.5.50.9 string map

Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

e nocase — Optional switch argument with valid value ‘-nocase’

e charMap — Mandatory string argument identifying the key value pairs for the
replacement

e string— Mandatory string argument identifying string to be remapped

Avafr 1N Can Page 83

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string map <nocase>? <char-map>
<string>]’ and convert these to the ‘string map’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

ail the statement conversion if a MOIS
~—val> and this is not of the

c. The converter shall raise an error and
variable already exists with name -

String type.
2.5.50.10 string match
Command will be implemented as a ing axBoolean value and

taking arguments as follows :-

o - i o enti match pattern

ocal variable of Boolean type with the
sturn-val>, provided a variable of that name

2.5.50.11

Command will be implemented/s a MOIS function, returning a String value and taking
arguments as follows :-

e string— Mandatory string argument identifying the source string

e first — Mandatory integer argument identifying the first character of the target
range

e last — Mandatory integer argument identifying the last character of the target
range

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string range <string> <first>
<last>]’ and convert these to the ‘string range’ MOIS function.

Avafr 1N Can Page 84

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the

String type.
2.5.50.12 string repeat

Command will be implemented as a MOIS funftion, returning a String value and taking
arguments as follows :-

e string-— Mandatory string argu

corresponding to <r
not already exist.

¢. The converter sha

last — Mandatory integer #grgument identifying the position of the last character to

be replaced
e newString — Optional string argument identifying the replacement string
The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string replace <string> <first>
<last> <new-string>?]’ and convert these to the ‘string replace’
MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
String type.

Avafr 1N Can Page 85

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
2.5.50.14 string tolower

Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

e string— Mandatory string argument identifying the source string

e first — Optional integer argument identifying position of the first character to be
case lowered

e last — Optional integer argument identify}
case lowered

ng the position of the last character to be

The MOIS converter requirements are :-

a. The MOIS converter shall(recogpise dompound Tcl statements of the form

String type.
2.5.50.15 string totitle

shall recognise compound Tcl statements of the form
. [string totitle <string> <first>?
<last>?]’ and convert these to the ‘string totitle’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the

String type.
2.5.50.16 string toupper
Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

e string-— Mandatory string argument identifying the source string

Avafr 1N Can Page 86

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

e first — Optional integer argument identifying position of the first character to be
case changed

e last — Optional integer argument identifying the position of the last character to be
case changed

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string toupper <string> <first>?
<last>?]’ and convert these to thg “String toupper’ MOIS function.

String type.
2.5.50.17 string trim

arguments as follows :-
e string— Mandatory stri

e chars — Optional
(defaults to whitesp

String type.
2.5.50.18 string trimleft

Command will be implemented as a MOIS function, returning a String value and taking
arguments as follows :-

e string-— Mandatory string argument identifying the source string

e chars — Optional string argument identifying the characters to be trimmed
(defaults to whitespce characters).

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string trimleft <string>
<chars>?]’ and convert these to the ‘string trimleft” MOIS function.

Avafr 1N Can Page 87

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the

String type.
2.5.50.19 string trimright

Command will be implemented as a MOIS funftion, returning a String value and taking
arguments as follows :-

e string-— Mandatory string argu

e chars — Optional string argument
(defaults to whitespce characters).

The MOIS converter requirements are :-

a. The MOIS converter shall recogrisg. compo

b. The converter shall crg
corresponding to
not already exist.

¢ an efror andTail the statement conversion if a MOIS

2.5.50.20

Comsmand wAll be implementsd as_a MOIS function, returning a Integer value and
taking arguments_as follo

e charInde datory stfing argument identifying word for which the end
position is requited

The MOIS converter réquirergents are :-
a. The MOIS converter shall recognise compound Tcl statements of the form

‘set <return-val> [string wordend <string> <char-
index>]’ and convert these to the ‘string wordend” MOIS function.

b. The converter shall create a MOIS local variable of Integer type with the
name corresponding to <return-val>, provided a variable of that name
does not already exist.

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the
Integer type.

2.5.50.21 string wordstart

Command will be implemented as a MOIS function, returning a Integer value and
taking arguments as follows :-

Avafr 1N Can Page 88

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

e string-— Mandatory string argument identifying the source string

e charIndex — Mandatory string argument identifying word for which the start
position is required

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [string wordstart <string> <char-
index>]’ and convert these to the ‘string wordstart’ MOIS function.

¢. The converter shall raise an\error ang{ ent conversion if a MOIS
variable already exists with » 3 his/Ts not of the Integer
type.

2.5.51 subst
subst ?-nobackslashes?| ?-nbcgmmands ariables? string
This command performs vafi y pdl substitutions, and backslash

Avafr

substitutions on its stripg ‘
actly the same way)as for Tcl commands. As a result,
the string grgur i ally shbstituted\twice, gnce by the Tcl parser in the usual

e nobackslashes — Optiopal switch argument taking the value ‘-nobackslashes’

e nocommands — Optigng switch argument taking the value ‘-nocommands’
e novariables — Optional switch argument taking the value ‘-novariables’
e string— Mandatory string argument containing the text to be substituted

The MOIS converter requirements are :-

a. The MOIS converter shall recognise compound Tcl statements of the form
‘set <return-val> [subst <nobackslashes>?
<nocommands>? <novariables>? <string>]’ and convert these
to the ‘subst’ MOIS function.

b. The converter shall create a MOIS local variable of String type with the name
corresponding to <return-val>, provided a variable of that name does
not already exist.

1N Qan Page 89

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

c. The converter shall raise an error and fail the statement conversion if a MOIS
variable already exists with name <return-val> and this is not of the

String type.
2.5.52 tell - Return current access position for an open channel
tell channelId

Returns an integer string giving the current access position in channelld. This value
returned is a byte offset that can be passed to seek in order to set the channel to a
particular position. Note that this value is in fogms of bytes, not characters like read.
The value returned is -1 for channels that do not support seeking.

‘set <return-val>
the ‘tell” MOIS function

trace option ?arg arg ...?

This command causes Tcl commands to be executed whenever certain operations are
invoked. At present, only variable tracing is implemented.

This command will not be implemented in MOIS procedures.

2.5.55 unknown - Handle attempts to use non-existent commands
unknown cmdName ?arg arg ...?
This command is invoked by the Tcl interpreter whenever a script tries to invoke a
command that doesn't exist. The implementation of unknown isn't part of the Tcl core;

instead, it is a library procedure defined by default when Tcl starts up. You can override
the default unknown to change its functionality.

This command ewill not be implemented in MOIS procedures.

Avafr 1N Can Page 90

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001
2.5.56 unset - Delete variables

unset name ?name name ...?

This command removes one or more variables. Each name is a variable name, specified
in any of the ways acceptable to the set command. If a name refers to an element of an
array then that element is removed without affecting the rest of the array. If a name
consists of an array name with no parenthesized index, then the entire array is deleted.
The unset command returns an empty string as result. An error occurs if any of the
variables doesn't exist, and any variables after the non-existent one are not deleted.

corresponding myVar argument.
time of the call; it will be creted the
ordlnary variable. There mugt i

a namespace eval command to create one or
e. Each variable name is initialised with value. The

2.6 Generic Requirements

This section identifies any generic requirements

a. Tcl switch values may be abbreviated, provided the value is unique within the
value list for the switch argument. The MOIS converter shall not support
such abbreviations, if such are found they shall be treated as an unmatched
argument value and the statement conversion failed with an error.

b. In all cases a failure to match a Tcl statement shall result in the statement
being translated as a MOIS CMT (comment) statement. Failure to match may
either be as a result of a specific requirement or as a result of no requirements
existing for a particular structure (or structure variant).

Avafr 1N Can Page 91

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

c. In all cases where requirements call for failure of statement conversion and
error notification, this shall apply only to the current statement. Conversion
for subsequent statements shall be performed normally.

d. Conversion errors shall be reported in the converter interface and also in the
translated MOIS procedure as a CMT (comment) statement immediately
following the failed statement (which will also have been translated as a
CMT).

2.6.1 Functions & Directives

2.6.1.1 Arguments

a. Unless otherwise stated in tHe reqgirendents for™a specific item, the MOIS
converter shall identify funct WECHYE 2 gume s in, the original Tcl as
either literal values or as simple i 3 e’ oRthe form ‘$<var-
name>’).

Avafr 1N Can Page 92

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

3 ASSUMPTIONS

3.1 Untranslated Statements

In the requirements, it is assumed that any statements that are not translated are inserted
into the MOIS Free-text directive. This is the case for all statements which will not be
implemented in MOIS procedures.

This Free-text directive will take as argument.a string, which will be a part of script
couldn’t be implemented in MOIS procedure. [Suxh statements will be treated just as a

3.2 Conditions

In the condition section the require
definitions.

e Multiple command forms

In this case the command has several forms (i.e. argument patterns) depending on a
command qualifier.

verified ?-timestamp <time>? -tc <cmd> ?<param>...7?
verified ?-timestamp <time>? -tm <parameter>

binary format formatString ?arg arg ...?
binary scan string formatString ?varName varName ...?

Each command formulation will be defined as a directive. The reverse tool will
recognise it and reverve it to the correct directive.

Avafr 1N Can Page 93

Tcl/TOPE Reverse Engineering to MOIS

ALC-MOIS-RO-RHEA-0001

Avaft

TM name as argument

In this case, a command uses a TM name as an argument. In fact this may be already
implemented as there is a TELEMETRY value type in the DIR._ ARGUMENTS
table of the common directives DB. Some of the TOPE commands have arguments
which are TM names - clearly it makes sense for MOIS to be able to validate such
arguments to ensure the TM is defined in the s/c DB.

patchlocation <param-name> <spid> <byteoffset>
<bitoffset>

In this case a command argument can 1 i itdqs. In Tcl these would be
written as a space separated list in 'de brates. Yoy s.in the list, the item
could be written inside braces or
parameters could be written ' { W
necessarily a problem - the converds
string.excluded braces to the arg

amp <time>? -tc <cmd> ?<param>...?
verified\Q-tiglestamp <time>? -tm <parameter>

So two directives will™e defined with the following relevant name verifiedtc and
verifiedtm. How to know that the first signature correspond to the verifiedtc
directives and the second one to the verifiedtm directives. Indeed, to avoid any
hardcoding of function ID in reverse tool, a naming convention needs to be defined.

10 Con Page 94

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

4 CODING STANDARDS

It is intended to convert Tcl/TOPE procedures into MOIS procedures for use in flight. MOIS
provides extensive configuration control, validation & formatting features for managing the
procedure set. The procedures will be managed within MOIS, but for execution will be exported
into Tcl/TOPE procedures to be executed by the control system.

MOIS will provide a converter program to convert legagg Tcl/TOPE procedures (e.g. from the
AIT program) into MOIS procedures to act as a basis for the MQIS procedure set. However,

translation.

These coding standards are intended to describ } \ an Tcl/TOPE
procedures in order that they may be translated to™® : S
coding restrictions, it is necessary to understand (i i \ anslation j§ performed.

e Firstly the program structure constructs are an

e Group of statement is checked to s
statements or any of the speci

ey can be converted into MOIS
avalue, directives are similar but do not return a

If an error occurred during the reverse process for any of statements, then the statement
will be implemented as a MOIS comment statement.

As a consequence of the above, the coding standards described here have several levels of
applicability as follows :-
1. Rule is mandatory, failure to apply it may cause complete or partial failure to
translate.

2. Rule is recommended, failure to apply will cause MOIS verifiable statements (e.g.
TM or TC references) to be degraded into non-verifiable elements or less
verifiable elements (functions or directives).

3. Rule is suggested, failure to apply will degrade functions and directives into non-
verifiable elements statements.

Avafr 1N Can Page 95

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

4.1 Tcl Language Constraints

e Braces ({}) have not to be used to define quoted strings, they must be used only to
designate code structure elements (such as the conditionally executed block in an IF
clause). The MOIS converter needs to identify quoted strings and ignore the contents,
obviously code blocks can’t be ignored and therefore the converter assumes that {} do
not represent literal string delimiters. Level 1.

e In program structure constructs (conditions, loops, etc), braces ({}) have always to be
used to delimit elements, even where this is not strictly required by Tcl. E.g. use ‘if
{Scnd} {....}°, butnot ‘if $cnd { ... }’.This anywaymakes the code easier to read and

‘addtime [getrawvalue $obt]
[string trimleft [lindex [spld{t $di
[getrawvalue S$obt]a variable will be setj

[lindex [split $dif] 0] i 1 S e value.
[split S$dif] a variable will Be set fo
[string trimleft [lindek
for the value.
[split $dif] avarighlg

[lindex [split $d

source $anv (HPCCS
} else {

F.STENV) /TSEQ/Tools.tcl
putlog "Can't sourwsg Tools.tcl"
exit

}

This is an example of a modular fashion to make the reverse process easiest.

4.2 Other Supported Tcl Statements

This section details the other Tcl statements that are specifically supported by MOIS. Any other
Tcl statements used will be converted only as a free directive statement.

Most of Tcl statements will be implemented as a MOIS directives/functions in MOIS procedure.
Then the way of directives/functions are managed in MOIS and their limits of implementation is
explained in section 3.3.

Avafr 1N Can Page 96

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

The way that foreach control structure will be implemented in MOIS procedure will not be
represented properly in the MOIS flowcharter since it will be implemented as a directive. Then
Tcl/TOPE scripts should avoid the use of this control structure as possible. Then the MOIS
flowcharter will keep a relevant representation of the Tcl/TOPE script. The same behaviour
should be apply for continue or break Tecl statements since these two Tcl statements will
be implemented as directives.

Note that several Tcl statements won’t be implemented in MOIS procedure, it doesn’t mean that
it will not be taken into account. In fact these statement will be reversed as a MOIS Free text

directives. To be reversed as a MOIS Free-Text directive

reversed to a MOIS Commen statement.

4.3 General TOPE Constraints

4.3.1

4.3.2

Avafr

Tcl statements have to be consistent

Statements sequence can be directly impleme S Or a sequence of
MOIS statements.

TOPE statements directly rev
This part deals with TOPE stateme

Most of TOPE statements . t OIS directives or functions
statements. The TOPE stategent 1 d j defined in TOPE statements part

As Tecl statements;~if an egror ocours, the
MOIS Corfiment stateme

This command sequence will be implemented to a MOIS TC statement followed
by a CTL MOIS statement SEV waiting the end of execution.

= ‘subscribepacket <pktid> referby <varname>
waitfor —-timeout <time> <varname>
unsubscribepacket <pktid>'.

This will be equivalent to a Wait for Packet statement with a timeout. Then only
this structure could be equivalent to a wait for packet in MOIS procedure.

= ‘if {getrawvalue[fetch <param>]} {.. exit}’
‘if {getengvalue[fetch <param>]} {.. exit}’

These two pattern will be implemented in MOIS procedure as a PERFORM step
including a MOIS verify TLM statement.

1N Qan Page 97

Tcl/TOPE Reverse Engineering to MOIS
ALC-MOIS-RO-RHEA-0001

All patterns described above must have the defined formulation to make sure that during the
reverse process , the MOIS statements will appear.

4.4 Individual restrictions

Avaft

Lists and arrays handling shall be avoided in Tcl/TOPE script. Indeed MOIS can’t
manage a such data.

File directories and channel handling: Set up of [the SpegCific files and channels should be
in a configuration file, as this may not pecessaty to be repyicated in MOIS. Then these
instructions should not be used in norm4 gelury

debugging the TCL itself (MEMORY, GLQB etc...)

1N Qan Page 98

