				REF.: H-P	-ASP-MN- 3	421
ALCAT		RSCHEL/PLA	NCK		<u></u>	
SPACE				DATE :	7/7/04	PAGE : 1/
COMPTE REN	DU DE REUNION /	MINUTES OF M	EETING	LIEU / PLAC	E: Alcole	
OBJET / PURPOS	E :			CLASSIFIC	ATION :	
Γt.	erschel i	ustrument	mle	face	0 pen	points
	19	linter Meel	ting.	•		
PARTICIPANTS ATTENDEES	SOCIETE FIRM	SIGNATURE SIGNATURE	PARTIC ATTEI	CIPANTS NDEES	SOCIETE FIRM	SIGNATURE SIGNATURE
-Alcatel t	G, GI, GD, JCS,	JAR MP				
-Astrium W	R, EH, DS, HF, J	L, ML, AVJ, R	H			
-Alenia - M	1C .	1				
-ESA GC	AH CS GP			· · · · · · · · · · · · · · · · · · ·		
-SMRE M	GES					
DACS : O	5		· · · · · · · · · · · · · · · · · · · ·	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
H(BI TLA						
REDACTEUR / WRITTEN	VBY: - Day din	-	-	,		
		40	>			
CONCLUSION :						
DISTRIBUTION : PARTICIPANTS /	POUR ACTION : FOR FURTHER ACTIC	 N				
ATTENDEES	POUR INFORMATION	۷:			<u>, , , , , , , , , , , , , , , , , , , </u>	
		APPROUVE PAR	/ APPROVED	BY		
NOM / NAME	Collaudin					
SIGNATURE / SIGNATURE						
	Το	us droits réservés © Alcat	el Space Al	l rights reserved		M052-1

REF. : H-P-ASP-MN- 3621 HERSCHEL/PLANCK ALCATEL SPACE DATE : PAGE : COMPTE RENDU DE REUNION / MINUTES OF MEETING LIEU / PLACE : SUITE / CONTINUED : ACTION ponits Herschel 0 pen AI1 - graind testing of instrument > End 08/03 instruments to state about recycling of The cooler (feasility) during grand test. (sel AIT Meeting - 25 May 03) - EQM ano Harness (reduction WRT FM) instruments i) All connectors are here on the CQN FPU. 2) harness shall be representation in term of EMC & thermal commenti HIFI: all connecting are moperly terminated (miside dummies) - A fay has been send to molument to rdentify which sighal are used. HIFI states that they do not would the Car harness [c be reduced. AIL - PACS Juill recoufirm. end of nestweek 25/7/03 & SPIRET Astrum & Alcale the position in that non used calles could be brased logelhe to be thermally & ETT(representative) M052-1

REF. : H-P-ASP-MN- 3421 HERSCHEL/PLANCK ALCATEL SPACE DATE : PAGE 🏈/ COMPTE RENDU DE REUNION / MINUTES OF MEETING LIEU / PLACE : SUITE / CONTINUED : ACTION level O - industry part of thermal Strap is being tested al CEA Grenoble (SBT) _ PDR of thermal shap _ nest week (21/7) tes results are presented on 28/7/03 in EEA Grendle (Air hquide) - all industry actualy is arming for a thermal shap of O. W/K - despite of the last level O meeting in April 03 - The reserve for a 3th Pod is implemented with a hole already drilled (and blind flanged) - ESA will take the lead of ->A13 10 Sept -03 The System aspeds of level Oshap (industry + instrument part of strap). Alcald will collect from motruminy, AI 4 (PACS & SPIRE) -1 Dett. 03 definitions and Condudomce of strap from J/F to evaporala. - heat flous for design case. -> AI 5 s sent 03 Astrum all previde best M052-1

REF. : H-P-ASP-MN- 3421 HERSCHEL/PLANCK ALCATEL SPACE PAGE : 🕏 DATE : **COMPTE RENDU DE REUNION / MINUTES OF MEETING** LIEU / PLACE : SUITE / CONTINUED : ACTION Estimation and measurement of industry shap. from this, assessment shall be don on the feasibility of existing Solution (esclemal Strap) or he need of a Pod. (HIFS Standing waves - an analysis of standing waves is being performed at ESA (expected with ILDA) a meding will be aganised total with all parties to present the results when available. Straylight lates results (not presented here as PACS & spike have left) will be sent to ushumen for Evaluation. - ressimustic assumption have been used and give out of spec results optimistre assumption gives also and of Spec. results RFD will be sent logether with uplate of Shaylight analycing M052-1 Tous droits réservés © Alcatel Space All rights reserved

REF. : H-P-ASP-MN- 3421 **HERSCHEL/PLANCK** ALCATEL SPACE DATE : PAGE : 9/ COMPTE RENDU DE REUNION / MINUTES OF MEETING LIEU / PLACE : SUITE / CONTINUED : ACTION there are 2 solution : W.G bracket is fisced on HIFJ panel(1), or on LSU(2) both options should be evaluated both on LSU (by HIFJ) or by Astrum (bridd AI8 Astru (Alenia (msed).

		ACTION ITEM LIST	REF. :	
ALCATE SPACE	L	MEETING TITLE:	DATE :	
017(02		HERSCHEL/PLANCK	PAGE :	
		ACTION		DATE
INITIATOR	N°	DESCRIPTION	ACTIONEE	DUE
Firm / person			Firm / person	
	1	instrument to state about feasibility of cooler recycling	PACS -SPIRE	29/8/03
		during grand testing (date from last AlT Meeting		
	2	PACS & SPIR to confirm their position about simplificat	<u>د</u>	
		of EQUI Harness (removal of non use cables)	Pag-SPIRE	25/+/03
	3 (ESA ull Campile manshy & instrument level o Star Condudance	ESA	WSept, 03
	4	Alcale ul pronde unt. Called and provide	Alcatel	Sept 03
		instrument data on internal level O shaps (conduction		
	5	Astrium all provide. Estimation and Measured	Astruin	1 Sep 03
		data an level of strap (mousting part)		
	6	Astruin will get the agreement of SPIP'C on	Astruin	31/7/03
		New internal avershield proposition (aption 3		
	2	Astrium all make a ROM astrimations of the	Ashum	31/7/03
		unplementation of option 3 (Cost . schedule)		
	8	Astrium will evaluate the 20ption of fiscales	Astrum	31/8/03
		of LOU wave guides (on SUM or ON LSU		

18

M052-1

▼ Herschel General

- Instruments schedule (see dedicated presentation & splinter)
- →Level 0 interfaces (PACS & SPIRE)
 - Long iterations and still no agreement on Level 0 interfaces
 - Main concern is PACS & SPIRE cooler evaporator strap.
 - Current requirement situation is Tank at 1.7K, Tank strap >0.1W/K (evaporator & pump) + option for 3rd strap with He bell.
 - Thermal interface included thermal contact (on industry side)
 - Strap conductance dominated by Thermal contacts
 - Design heat flow was 30mW (end of condensation), leading to 2K at interface, and 2.3-2.5K (? As no data) at evaporator (too high)
 - Measurement on cooler indicate that 15mW can be used (SPIRE IHDR) -> lead to 1.85K at thermal interface could be acceptable by industry (combination of agreed requirements)
 - Not agreed by instruments
 - PACS return to Thermal I/F direct on Cooler heat switch (agreed if PACS integrates)
 - SPIRE is improving the level 0 straps

General (con't)

- →Testability of instruments on Ground
 - Large heat flow from cover make the feasibility of sorption cooler recycling questionable
- →Herschel Cryo-harness design approval by instrument
 - Important that instruments are in the agreement loop
 - Check of Harness data-pack (interfaces FPU & warm units pin allocation) proposed using extract of H-EPLM EICD --> IID-A
 - SPIRE internal over-shield not implemented (following rejection of related ECP by ESA). However SPIRE still claims that the instrument grounding & performances design will be jeopardised
 - Late implementation of over-shield (CR 39) will have schedule impacts
 - Comments on PACS vacuum feedthroughs pin allocation only partially taken into account (redundant=nominal)
- →Instruments FPU connectors (Glenair Cannon Cristech)

HIFI

 Still lot of CR's on Warm units interfaces (instrument definition not stable) requiring now modifications having cost & schedule impacts (footprint, harness routing, analyses to be re-performed)
✓ LSU, FCU, IF up-loader

- →LOU radiator design not frozen
- →WG interfaces (type) still modified recently

PACS

→ Definition of DECMEC not available. Alcatel ICD & CAD used instead)

V SPIRE

- Test of Sorption cooler indicates that the tilt angle needed to recycle the cooler is 30° instead of 20° expected.
- Impact is an incomplete recycling (lower cycle time) & full verification of instruments
- → Test adapter for Herschel FM TV Test is limited to 25°

Level 0

- A progress meeting was held on the 11.06.03.
- Level 0 PDR is planned for 21./22. July at Sener
- The raw materials thermal conduction have been measured and are in accordance or better than the assumed engineering data.
- A model of the Level 0 design (including tank and internal pod) is under thermal testing at CEA, France. Results will be available before the Level 0 PDR
- A flange design for the two additional open tank I/F's has been implemented on the HTT and thermal performance data of this possible Level 0 connection have been calculated.

Level 0

Foreseen thermal performance (W/K)

Instruments	Spec W/K (on ground)	Result Ground	Margin % Ground	Spec W/K (In orbit)	Result Orbit	Margin % Orbit	Result	Margin
Pacs Blue Detector	0.016	0.031	+90	0.016	0.043	+150		
Pacs Red Detector	0.043	0.049	+15	0.1	0.085	-15		
Pacs Cooler Pump	0.038	0.053	+40	0.1	0.097	-3		
Pacs Cooler Evaporator	0.060	0.053	-11	0.1	0.097	-3	0.240 W/K	+110 %
Spire SM Detector Enclosure	0.050	0.055	+10	0.1	0.102	+2		
Spire Cooler Pump HS	0.038	0.055	-44	0.1	0.102	+2		
Spire Cooler Evaporator	0.060	0.055	-9	0.1	0.102	+2	0.560 W/K	+400 %
HIFI L0 Detector Enclosure	0.035	0.030	-15	0.035	0.040	+10		
				×	CR 12	2	Troug additior	h wall al pods

Quarterly Progress Meeting 16 15th - 18th July 2003

EADS

Level 0

Level 0

PACS LO Mounting (Red detector)

Level 0

Test dummies (preparation)

SPIRE ECR-039

- 3 Options:
 - Option 1: 2-Wire solution (baseline)
 - Option 2: Manganin Overall Shield
 - Option 3: Double Cable Screening

ECR-039 Option1: 2 wire solution

- One isolated, twisted pair AWG38 SST per FPU connector
- 5 TP per SIH branch (10 contact per FTHR)
- solder process on FTHR
- soldered Ground lug on FPU connector side
- lifetime impact: not assessed
- manufacturable

ECR-039 Option 2: Manganin overall shield

- Proposal covered in HP-2-ASED-CP-054
- Cross section of 20mm2, equivalent to Lifetime impact of 13 days
- Cable branch overshield:
 - with 70% optical coverage: cross section on CVV: 12mm2, Cold Units: 30mm2
 - with 90% optical coverage: cross section on CVV: 19mm2, Cold Units: 43mm2
- Solder shield jumper process to be trained

ECR-039 Option 3: Double Cable Screening

- SIH C1 to C9 double cable shields calculated for sensitive lines (signal & bias)
- all other cables in C1 to C9 unshielded
- CIH C10 to C13: unshielded
- Cross Section: approx. 9mm SST AWG44
- Shield jumper length to be increased (>65mm)
- Manufacturing process to be clarified with CASA

HERSCHEL Straylight

Quarterly Progress Meeting 16 15.-18. July 2003

HP-2-ASED-HO-0050

ASAP models: Changes in large model since OSWG October 2002

sunshade model:

• enlarged sunshade introduced

telescope model:

- new mirror scattering function
- new hexapod barrel inclinations (support by V.Kirschner)

cryostat model:

- some minor dimensional changes due to consistent recalculations warm⇔cold ambient pressure⇔vacuum
- some dimensional changes due to thermal optimizations, e.g. shorter instrument shield tube

ASAP models: Changes in large model since OSWG October 2002 (cont'd)

 some emissivity changes due to thermal optimizations, short cone of cryocover closure now is black (probably black anodized, emissivity at scientific wavelengths ≈0.5), instrument shield is reflective

ASAP models: Changes in large model since OSWG October 2002 (cont'd)

SPIRE model:

- new reflectivities and scattering functions for FP unit (i.e. entrance box, now being more absorbing than before)
- new scattering function for thermal filter 1 (very recently, only a fraction of results obtained so far are based on the new scattering function), the new scattering function resembles that of a rough mirror.

PACS model:

 N. Geis suggested the inclusion of new commands for all PACS Mirrors in the model, also the calibration mirrors are included now (ASAP commands set by ASED based on data tables from N. Geis).

Two auxiliary models created (not included in the large model)

- model for objects below the gap between sunshade and M1
- model for thermal shields from LOU windows to the cryostat opening.

Separate model for objects below the gap between sunshade and M1

result: the gap has a radiation with an apparent emissivity of 0.10 at T=204 K, i.e. grey instead of black

reasons:

- open directions to cold space
- some temperatures below 204 K

 \Rightarrow results for straylight from the gap (of october 2002) are reduced considerably (by 0.1/0.9),

both scatter and diffraction results are reduced to below 1%

Separate model for thermal shields from LOU windows to the cryostat opening

Simulation of ray transport by a roughness random parameter of size 0.02 radian (for tubes and top spheres only, not for bottom spheres and for LOU baffles). This parameter slightly changes the ray direction from pure specular reflection

Details around the LOU windows for the preceeding model. The different spheres from top to bottom are CVV, thermal shields 3, 2, 1, instrument shield and instruments (in a curved approximation)

Results for the radiation transport through the shields: negligible

Requirements

a) Requirement on sources inside the FOV: compliant according to ASEF analysis.

b) Requirement on straylight from external sources (outside FOV):

Emitting Object	PACS	SPIRE	COMPLIANCE ²⁾
Moon at 13 degrees	8.7E-04	5.0E-04	yes/no
Earth at 23 degrees	4.1E-03	1.8E-03	yes/no

²⁾ Requirement: <1% of thermal self emission of both reflectors

Non-compliance – Moon within allowed solid angle at some specific directions: factor 17 above requirement due to reflections on hexapod structure (worst case – Moon bright zone, 80µ)

c) Requirement on self emission: <10% of thermal self emission of both reflectors, see next slides.

Diffraction calculations

---Diffraction at a rim within a pupil plane

expected distribution on detector planes: fairly homogeneous most important case:

- source is the gap near the sunshade.
- diffraction at the rim of the secondary mirror.

---Diffraction at a rim within an image plane

expected distribution on detector planes: steep increase from center to rim most important case:

- sources are the warm objects during ground testing (CVV, gap etc.)
- diffraction at the rim of rectangular opening/filter in the telescope focal surface.

Diffraction at the rim of the secondary mirror.

Beams used for the calculation are shown.

Source is the gap near the sunshade

Calculation of irradiance in the telescope focal surface with ASAP's coherent module

Results for diffraction at the rim of the secondary mirror, source is the gap near the sunshade (orbit case).

The diffraction is somewhat higher for the long wavelength end of SPIRE.

	SPIRE	PACS
	at Z=-90 mm	at Z=+80 mm
earlier results october 2002 (ϵ =0.9)	5%	4%
corrected with emissivity reduction $0.9 \rightarrow 0.1$ from auxiliary model	0.55%	0.44%

Data for PACS and SPIRE are in % with 100%= telescope irradiation (70 K, total ε =0.03)

Results for diffraction at a rim within an image plane, ground testing

emitting object	CVV (293K, ε=0.05)		gap (293K, ε=0.5)		black cone (70K, ϵ =0.5)				
diffraction at a single rim of thermal filter 1 of SPIRE									
irradiance onto detector	230 µm	670 µm	230 µm	670 µm	230 µm	670 µm			
maximum	0.0926	0.7949	0.0211	0.1812	0.1934	2.1276			
average	0.0033	0.0379	0.0008	0.0086	0.0069	0.1015			
minimum	0.0000	0.0003	0.0000	0.0001	0.0000	0.0008			
diffraction at	a single ri	m of PACS	input (pla	ne of rear	view mirrors)				
irradiance onto detector	80 µm	230 µm	80 µm	230 µm	80 µm	230 µm			
maximum	smaller	0.0070	smaller	0.0875	smaller	0.0208			
average	than for 230 µm	0.0003	than for 230 µm	0.0042	than for 230 µm	0.0010			
minimum		0.0000		0.0000		0.0000			

Data for PACS and SPIRE are in % with 100%= telescope irradiation (70 K, total ε =0.03)

Summary for diffraction at a rim within an image plane

The irradiances listed in the preceeding table actually occur at 4 sides of the detector (not only the one shown in the graph). The corresponding average values still are negligibly small.

This is also true, if another diffracting edge is taken into account (e.g. the input edge of SPIRE, the input edge of PACS). Although the diffraction effect varies from edge to edge, there is enough margin for that statement. Not all edges contribute appreciably to diffraction, since not all are irradiated by strong sources.

So, in general, the diffraction at edges close to the experiment openings are considered to have no appreciable effect.

Exception: For SPIRE the increase of irradiance towards the detector rim is not negligible at the longest wavelengths, there an appreciable rim of 3...10% has to be expected.

Summary for diffraction at a rim within an image plane (cont'd)

The irradiances for the orbit case are reduced (compared to those shown for the ground testing), since the sources are colder.

All statements above rely on the condition that the detectors do not have a view onto those edges which are irradiated appreciably (near experiment openings). Misalignments (also within experiments) must not destroy this avoidance.

Self emission onto PACS/SPIRE detectors, small scattercone, pessimistic case

emitting object	temperat.	emiss.	PACS	SPIRE
sunshade	204 K	0.05	1.863	0.801
gap between sunshade and M1, scattered	204 K	0.10	0.189	0.091
gap betw. sunsh. and M1, diffracted on M2 rim	204 K	0.10	0.444	0.556
hexapod (ASEF analysis)	70 K	0.02	4.34	4.34
M1+M2 via hexapod (ASEF analysis)	70 K	0.015	7.54	7.54
scattercone (ASEF analysis)	70 K	0.015	0.62	0.62
M1 baffle flat + cone / cylinder	75 K	0.05	4.821	1.570
M1 baffle gap (12 mm) between cone / cylinder	75 K	0.90	1.511	0.324
cryocover mirrors	75 K	0.05	0.663	0.025
other reflecting parts of cryocover	75 K	0.05	0.067	0.020
short black cone of cryocover	75 K	0.80	1.714	0.242
reflecting objects near cryocover	75 K	0.05	0.454	0.068
black slits around and below cryocover and M1- baffle	75 K	0.90	2.436	0.362

Data for PACS and SPIRE are in % with 100%= telescope irradiation (70 K, total ε =0.03)

Self emission onto PACS/SPIRE detectors, small scattercone, pessimistic case

(continued)

emitting object	temperat.	emiss.	PACS	SPIRE
CVV plate top	75 K	0.05	1.212	0.076
gap between CVV and thermal shield 2 baffle	60 K	0.90	0.290	0.080
thermal shield 2 baffle	43 K	0.80	1.775	2.247
instrument shield baffle	12 K	0.05	0.002	0.002
gap betw. instr. shield baffle and instruments	12 K	0.90	0.075	0.033
LOU windows via HiFi	150 K	0.90	0.05	0.04
LOU windows via gaps between CVV and thermal shield 2 baffle instrument shield and instruments	150 K	0.90	0.226	0.020
SUM			30.3	19.1

Data for PACS and SPIRE are in % with 100%= telescope irradiation (70 K, total ϵ =0.03). Requirement is 10%

Self emission onto PACS/SPIRE detectors, small scattercone, optimistic case

emitting object	temperat.	emiss.	PACS	SPIRE
sunshade	155 K	0.015	0.361	0.174
gap between sunshade and M1, scattered	204 K	0.08	0.151	0.073
gap betw. Sunsh. and M1, diffracted on M2 rim	204 K	0.08	0.356	0.444
hexapod (ASEF analysis)	70 K	0.015	3.25	3.25
M1+M2 via hexapod (ASEF analysis)	70 K	0.015	7.54	7.54
scattercone (ASEF analysis)	70 K	0.015	0.62	0.62
M1 baffle flat + cone / cylinder	64 K	0.015	1.138	0.391
M1 baffle gap (5 mm) between cone / cylinder	64 K	0.90	0.495	0.112
cryocover mirrors	64 K	0.015	0.209	0.008
other reflecting parts of cryocover	64 K	0.015	0.016	0.005
short black cone of cryocover	64 K	0.50	0.843	0.126
reflecting objects near cryocover	64 K	0.015	0.107	0.017
black slits around and below cryocover and M1- baffle	64 K	0.90	1.917	0.301

Data for PACS and SPIRE are in % with 100%= telescope irradiation (70 K, total ε =0.03)

Self emission onto PACS/SPIRE detectors, small scattercone, optimistic case

(continued)

emitting object	temperat.	emiss.	PACS	SPIRE
CVV plate top	64 K	0.015	0.286	0.019
gap between CVV and thermal shield 2 baffle	55 K	0.90	0.251	0.072
thermal shield 2 baffle	40 K	0.50	0.965	1.280
instrument shield baffle	12 K	0.015	0.001	0.001
gap between instr. shield baffle and instruments	12 K	0.90	0.075	0.033
LOU windows via HiFi	136 K	0.90	0.05	0.04
LOU windows via gaps between CVV and thermal shield 2 baffle instrument shield and instruments	136 K	0.90	0.191	0.017
SUM			18.8	14.5

Data for PACS and SPIRE are in % with 100%= telescope irradiation (70 K, total ϵ =0.03). Requirement is 10%

Self emission onto PACS/SPIRE detectors with closed cryocover, without diffraction

emitting object	temperat.	emiss.	PACS	SPIRE
CVV	295 K	0.05	0.007	0.759
gap between CVV and thermal shield 2 baffle	295 K	0.50	0.042	0.484
short black cone of cryocover	75 K	0.50	0.134	5.748
thermal shield 2 baffle	50 K	0.80	0.137	0.695
gap betw. instrument shield and instruments	12 K	0.90	0.014	0.084
LOU/CVV via space below instrument shield	295 K	0.90	0.173	0.048
SUM			0.51	7.8

Data for PACS and SPIRE are in % with 100%= telescope irradiation (70 K, total ε =0.03)

Remarks: The short black cone of cryocover recently changed from reflecting to black anodized due to thermal reasons.

Trade-off for emissivity of short cone of cryocover

Predicted Interface Temperatures for Ground Test

•		SPIRE L1	PACS L1	HIFI L1	SPIRE L3
temperature with black s cone of cryocover	hort	6.7 K	6.6 K	4.8 K	8.1 K
temperature increase with reflecting short cone of		+1.5 K	+0.9 K	+0.3 K	+0.4 K
CIYUCUVEI					
(10 doog not change and	radiahl	\mathbf{v}			

(L0 does not change appreciably)

	orbit		ground test	
	SPIRE	PACS	SPIRE	PACS
straylight with black short cone of cryocover	19.1%	30.3%	7.8%	0.51%
straylight decrease with reflecting short cone of cryocover	-0.2%	-1.5%	-5.1%	-0.12%

Waivers to be raised on:

- Requirement on straylight from external sources (outside FOV)
- Requirement on self emission.

Straylight requirement values are relative to telescope emission.

Proposal (agreed on OSWG meeting in June) :

Adherence to 'reference telescope' used earlier in the analyses, i.e. temperature 70 K, emissivity 0.015 for a single reflector (total 0.03). Advantage:

Easy comparison with earlier analyses Waiver has a fixed basis

Avoidance of apparent straylight 'changes' parallel to actual telescope changes.

The analysis will present multiplication factors for varying temperatures and emissivities of the telescope, i.e. supply the reader with data allowing for different telescope properties.

Request from HIFI for a conical baffle shape within the center of M1 (instead of a plane ring)

- --- not included in the calculations since raised very late
- --- discussion with straylight specialists (ESTEC, Alcatel) on next actions only just started.

