

HSO/PLANCK

SPIRE Instrument Detector Arrays CDR

July 30-31, 2001 JPL Bldg 233 Room 201A This Package Complies With ITAR

This technical data is export controlled under U.S. law and is being transferred by JPL to PPARC pursuant to the NASA / PPARC Letter of Agreement which entered into force on December 2, 1999. This technical data is transferred to PPARC for use exclusively on the NASA/PPARC SPIRE on FIRST cooperative project, may not be used for any other purpose, and shall not be re-transferred or disclosed to any other party without the prior written approval of NASA

1.0 Introduction

Gerald Lilienthal

Charter

- Evaluate the readiness of the SPIRE Detector Subsystem to proceed into CQM fabrication, assembly and test
 - Previous concerns and deficiencies considered and resolved
 - Requirements flowdown from instrument
 - Requirements traceability and compliance matrix
 - Documentation of requirements and interfaces
 - Detailed design is adequate stable and well documented
 - Detailed design responds to requirements
 - Tradeoffs understood
 - Demonstration of technology
 - Configuration control
 - Implementation documentation is adequate (AIDS, Process Sheets, Travellers)
 - Manufacturing process design
 - GSE design and certification of test equipment
 - Integration and test plans
 - Reliability analysis and qualification plans
 - Delivery, handling and shipping plans
 - Product assurance plans are adequate
 - Risks understood and plans exist for managing them

Success Criteria

- Designs and processes meet requirements and are sufficiently defined and documented to proceed with development within the risk policy of the project
- Plans for resolving remaining problems are consistent with available resources and risk policy
- Test approach and test product status is thorough and acceptable with verifying compliance with the requirements
- Technology has been demonstrated by test and correlated to the analyses

Agenda July 30

Start	End	Dur.	Item	Presenter
8:00	8:10	10	1.0 Introduction and Objectives	Gerald Lilienthal
8:10	9:10	60	2.0 Overview	
			2.1 Scientific Goals	James Bock
			2.2 Instrument Design	James Bock
			2.3 Rec/Dels	James Bock
			2.4 Requirements	James Bock
			2.5 Interfaces	James Bock
9:10	9:20	10	2.6 SPIRE at NASA/Herschel Science Center	Ken Ganga
9:20	9:40	20	3.0 Management Overview	Gerald Lilienthal
9:40	10:00	20	4.0 Interfaces	Dustin Crumb
10:00	10:15	15	Break	
			5.0 BDA	
10:15	11:15	60	5.1 Mechanical Design & Analysis	Dustin Crumb
11:15	11:35	20	5.2 Feedhorn design and test	Jason Glenn
11:35	11:50	15	5.3 BDA thermal model and test results	Terry Cafferty
11:50	12:10	20	5.4 Detector Array Fabrication	Minhee Yun
12:10	1:10	60	Lunch	
1:10	1:30	20	5.5 Detector Development	Hien Nguyen
1:30	1:40	10	5.6 Load Resistor Fabrication	Anthony Turner
1:40	1:50	10	5.7 Kapton Cable Design and Status	Anthony Turner
1:50	2:10	20	5.8 BDA Manufacture and Assembly	Len Husted
			6.0 JFET Modules	
2:10	2:30	20	6.1 JFET Testing Status	James Bock
2:30	2:45	15	6.2 JFET Thermal Model	Terry Cafferty
2:45	3:00	15	6.3 JFET Membrane Fabrication	Anthony Turner
3:00	3:15	15	Break	
3:15	3:25	10	6.4 JFET and RF Module Mechanical Design	Dustin Crumb
3:25	3:40	15	6.5 JFET Module Assembly	Len Husted
3:40	4:05	25	7.0 Harness Definition and Test Procedures	Viktor Hristov
			Board Discussion	

Agenda July 31st

Start	End	Duration	ltem	Presenter
8:00	8:20	20	8.0 Warm Electronics	Frederic Pinsard
8:20	8:50	30	9.0 Test program	Kalyani Sukhatme
			9.1 Overview	
			9.2 Verification Matrix	
			9.3 HRCR	
			9.4 Integration and Test Plan	
			9.5 EM Testing and Facilities	
8:50	9:05	15	10.0 Test facilities	Hien Nguyen
9:05	9:45	30	11.0 Mission Assurance	Gordon Barbay
9:45	10:00	15	12.0 Implementation Plan	Jerry
10:00	10:15	15	Break	
10:15	10:30	15	13.0 RFA Summary	James Bock
10:30	10:50	20	14.0 Summary/Objectives	Gerald Liliethal
10:50	11:50	60	Board Report	George Rieke

2.0 Instrument Overview

Jamie Bock

Overview of SPIRE Bolometer Arrays

James J. Bock Jet Propulsion Laboratory

• SCIENTIFIC GOALS

- INSTRUMENT DESIGN
- REC/DELS
- REQUIREMENTS
- INTERFACES

- Caltech/Jet Propulsion Laboratory, Pasadena, USA
- Cardiff University, Cardiff, Wales, UK
- CEA Service d'Astrophysique, Saclay, France
- Institut d'Astrophysique Spatiale, Orsay, France
- Imperial College, London, UK
- Instituto de Astrofisica de Canarias, Tenerife, Spain
- Istituto di Fisica dello Spazio Interplanetario, Rome, Italy
- Laboratoire d'Astronomie Spatiale, Marseille, France
- Mullard Space Science Laboratory, Surrey, UK
- NASA Goddard Space Flight Center, Maryland, USA
- Observatoire de Paris, Meudon, Paris
- UK Astronomy Technology Centre, Edinburgh, UK
- Rutherford Appleton Laboratory, Oxfordshire, UK
- Stockholm Observatory, Sweden
- Università di Padova, Italy
- University of Saskatchewan, Canada

Gordon Barbay Peter Barrett **James Bock** Karsten Browning **Terry Cafferty Dustin Crumb Charles Davis** Steven Elliott Ed Erginsoy **Jason Glenn** Viktor Hristov Len Husted **Eric Jones** Michael Knopp Andrew Lange **Timothy Larson** Karan L'Heureux **Gerald Lillienthal Donna Markley Hien Nguyen Harvey Moseley** Judi Podosek **Brooks Rownd** Kalyani Sukhatme **Anthony Turner** Minhee Yun

Chas Beichman Andrew Blain Sarah Church Ken Ganga Phil Maloney

Reliability	JPL
Reliablity	JPL
SPIRE co-I	JPL
Structural Analyst	Swales
Thermal Engineer	TC Tech.
Mechanical Engineer	Swales
Configuration Control	JPL
Cryogenic Technician	JPL
Parts Program	JPL
Feedhorn Design, SPIRE AS	U. Colorado
Electrical Engineer	Caltech
Electronic and Mechanical Assembly	JPL
Micro-fabrication Engineer	JPL
Materials & Processes Engineer	JPL
Senior Scientist	Caltech
Mission Assurance	JPL
Safety	JPL
Project Element Manager	JPL
Quality Assurance	JPL
Bolometer Testing, SPIRE AS	JPL
U.S. PI, SPIRE co-I	GSFC
Micro-fabrication Engineer	JPL
Feedhorn Testing	U. Colorado
Test Engineer	JPL
Micro-fabrication Consultant	Siwave
Micro-fabrication Engineer	JPL

SCIENCE ASSOCIATES

Stellar Disks FIR Galaxy Surveys Cluster Surveys Data Processing Interstellar Medium JPL Caltech Stanford IPAC U. Colorado

- 3-band imaging photometer
 - 250, 350, 500 μm (simultaneous)
 - $\lambda/\Delta\lambda \sim 3$
 - 4 x 8 arcminute field of view
 - Diffraction limited beams (17, 24, 35")

Imaging FTS

- 200 400 μm (goal 200 670 μm)
- > 2 arcminute field of view
- $\Delta \sigma$ = 0.4 cm⁻¹ (goal 0.04 cm⁻¹) ($\lambda/\Delta\lambda \sim$ 20 - 100 (1000) at 250 µm)

Design features

- Sensitivity limited by thermal emission from the telescope (80 K; ϵ = 4%)
- Feedhorn-coupled 'spider web' bolometers at 0.3 K
- Minimal use of mechanisms
- Simple observing modes

- Cold stage temp.
 < 280 mK
- Hold time > 46 hrs
- Cycle time < 2 hrs
- Average load on ⁴He tank < 3 mW
- Heat lift > 10 μW
- Gas-gap heat switches (no moving parts)

Kevlar suspension Gas-gap heat switch

Spider-web architecture provides

- low absorber heat capacity
- minimal suspended mass
- low-cosmic ray cross-section
- low thermal conductivity
 high sensitivity

Sensitivities and heat capacities achieved:

NEP = $1.5 \times 10^{-17} \text{ W}/\sqrt{\text{Hz}}$ C = 1 pJ/K at 300 mK

NEP = $1.5 \times 10^{-18} \text{ W/} \sqrt{\text{Hz}}$ C = 0.2 pJ/K at 100mK

Bolometer array wafer

Quantity	Measured Value	Target	Units	
Dark < NEP _{bol} >	2.7 x 10 ⁻¹⁷	2.5 x 10 ⁻¹⁷	[W/√Hz]	
Dark <se></se>	$5.88 \times 10^8 (\pm 6 \%)$		[V/W]	
Yield	0.9	0.9		
<g<sub>0></g<sub>	54.8 ± 7.6	60	[pW/K]	
<c<sub>0></c<sub>	0.96 ± 0.24	1.0	[pJ/K]	
τ	11.7 ± 0.8	8 / 30	[ms]	
η_{bol}	0.46 - 0.64	0.8		
1/f knee	~30	100	[mHz]	******
NEP _{bol} /NEP _{blip}	1.10 (+0.05, -0.15)	1.15		
DQE	0.38 - 0.53	0.60		

Full sampling of the image requires scanning or "jiggling" of the telescope pointing

Beam FWHM = λ /D

16 pointings needed for fully-sampled image

sky don't overlap

FWHM beams on the

Photometer Observing Modes

- Point source photometry:
 - Beam steering mirror chops 125" between overlapping sets of detectors
 - Seven-point jiggle can be done if desired
- Field mapping:
 - Beam steering mirror chops up to 4' and performs 64-point "jiggle"
 - Available fov = 4' x 4'
- Scan mapping:
 - Beam steering mirror not operated
 - Telescope drift scanning at up to 60"/second
 - Scan angle wrt array axis set to give full spatial sampling

Point Source Photometry

- Telescope pointing fixed
- Chopping in Y-direction between A and B (126")
- Simultaneous observation in the three bands with two sets of co-aligned detectors
- Chop without jiggling is OK if the pointing is accurate enough (~ 1.5")

- Chopping 126"
- 7-point jiggle pattern
- Angular step θ ~ 4 6 arcseconds
 (> pointing or positional error)
- Total flux and position can be fitted
- Compared to single accurately pointed observation, S/N for same total integration time is only degraded by

~ 20%	at	250 μm
~ 13%	at	350 μm
~ 6%	at	500 µm

- Telescope pointing fixed
 or in raster mode
- Chopping up to 4 arcmin amplitude in Y direction
- 64-point "jiggle" pattern for full spatial sampling

Field Mapping

Scan Mapping

- Telescope in line scanning
 mode
- Scan rate < 60"/sec.
- Map of large area is built up from overlapping parallel scans
- Most efficient mode for large-area surveys

- Mirror scan rate = 1 mm s⁻¹
- Signal frequency range 6 20 Hz
- Maximum scan length = 3.5 cm (14 cm OPD)
- $\Delta \sigma$ = 0.04 2 cm⁻¹ by adjusting scan length
- Calibrator in second port nulls telescope background
- Point source spectroscopy/spectrophotometry
 - Telescope pointing fixed
 - Background characterized by adjacent pixels
- Imaging spectroscopy
 - Beam steering mirror adjusts pointing between scans to acquire fully-sampled spectral image

300-670 μm 19 detectors

Estimated Inst	JPL rument Sens	sitivity Cesa			
Photometry (all bands)					
Flux density (mJy, 5-σ; 1	hr)				
Point source	4.0 (req.)	2.0 (goal)			
Map (4'x 4')	16 (req.)	8.0 (goal)			
FTS: Spectroscopy 200	- 400 μm Δσ	s = 0.04 cm ⁻¹			
Line flux (W m ⁻² x 10 ⁻¹⁷ , 5	Line flux (W m ⁻² x 10 ⁻¹⁷ , 5-σ; 1 hr)				
Point source	6.0 (req.)	3.0 (goal)			
Мар	18 (req.)	9.0 (goal)			
FTS: Spectrophotometry 200 - 400 μ m $\Delta\sigma$ = 1 cm ⁻¹					
Flux density (mJy, 5-σ; 1 hr)					
Point source	200 (req.)	100 (goal)			
Мар	600 (req.)	300 (goal)			
FTS sensitivity declines by factor of ~ 2 between 400 and 670 μm					

SPIRE Large-Area Survey Sensitivity

λ	FWHM	5σ; 1hr	Confusion limit	Time to	Time to map 1
		limit (scan-	(1 source per 40	reach	sq. deg. to
		map mode)	beams)	confusion	confusion limit
				limit for one	
				field at 5- σ	
(µ m)	(arcsec.)	(mJy)	(mJy)	(min.)	(days)
250	18	7.3	19	9	1.3
350	25	7.4	20	8	1.2
500	36	7.4	15	14	2.1

Confusion limits are from the models of M. Rowan-Robinson (Ap. J., in press)

Assumptions

- Scan-map mode
- 90% observing efficiency
- 21 hrs observing/day
- 25% field overlap
- 75% detector yield

Galaxies – normal, starburst and AGN

Solar system: giant planets, comets and solid bodies

Statistics and physics of galaxy formation in the early universe

Star formation and interstellar matter

esa

Protostars and YSOs:

Spectral Coverage and Capabilities

- Unbiased surveys of nearby molecular clouds
- Complete census of protostellar condensations within ~ 1 kpc
- Temperature and density distributions
- Total luminosities
- Dust properties
- Star formation rate and efficiency
- Initial mass function

FIR Galaxy Surveys with SPIRE

- Unbiased survey of population of high-z dusty star-forming galaxies missed by current (and future) optical and near-IR surveys
- Large-scale structure in the highredshift universe
- Star-formation history in galaxies at z out to 5

Possible SPIRE Survey and Outcome

- 100 sq. deg.
- Confusion-limited
- 100 200 days

1,300 sources/sq. deg.660 sources/sq. deg.320 sources/sq. deg.

Assumptions

- Scan-map mode
- 90% observing efficiency
- 21 hrs observing/day
- 25% field overlap
- 75% detector yield

Structural Thermal Model:

verify the temperature distribution and instrument structure

Item	Del. By	Rec. By
P/LW EM BDA ¹	JPL	RAL
P/MW STM BDA ²	JPL	RAL
P/SW STM BDA ²	JPL	RAL
S/LW STM BDA ²	JPL	RAL
S/SW STM BDA ²	JPL	RAL
15 JFET STM modules	JPL	RAL
5 (TBC) RF modules for FPU	JPL	RAL
3 (TBC) RF modules for JFETs	JPL	RAL
15 BDA-JFET Harnesses	JPL	RAL
Back Harnesses for JFET rack	JPL	RAL

¹Kevlar suspended ²Structural, thermal, & electrical equivalents

Cryogenic Qualification Model:

- Integration: Optical Alignment Mechanical & Electrical I/F Commanding and data transfer FPU and JFET bake out
- **Functional:** Thermal characterization and dissipation
- Performance: Interaction of subsystems Electronics, cabling, 3He cooler, FTS, BSM Optical focus & straylight Microphonics Scientific Performance (sensitivity, spectral response etc.)
- **Environmental:** Operation of FPU over thermal range EMC susceptibility
- Operational: Observing modes Operational modes

Cryogenic Qualification Model:

model of the instrument intended for qualification of cryogenic performance

Item	Del. By	Rec. By
P/LW CQM BDA ⁶	JPL	RAL
P/MW CQM BDA ⁷	JPL	RAL
P/SW CQM BDA ⁷	JPL	RAL
S/LW CQM BDA ⁶	JPL	RAL
S/SW CQM BDA ⁷	JPL	RAL
S/SW CQM BDA ⁸	JPL	RAL
3 JFET CQM modules ⁹	JPL	RAL
P/LW far-infrared filter	CARDIFF	JPL
S/LW far-infrared filter	CARDIFF	JPL
S/SW far-infrared filter	CARDIFF	JPL

⁶Fully functional, re-used for FS. Reduced performance acceptable for CQM, not FS.
⁷Kevlar suspended unit without detectors. Returned to JPL for FS delivery.
⁸Fully functional but delivered without testing. Returned to JPL for PFM delivery.
⁹Fully functional, re-used for FS. Reduced performance acceptable for CQM, not FS.

Proto Flight Model:

model of the instrument intended for launch and astronomical observations at L2

ltem	Del. By	Rec. By
P/LW PFM BDA	JPL	RAL
P/MW PFM BDA	JPL	RAL
P/SW PFM BDA	JPL	RAL
S/LW PFM BDA	JPL	RAL
S/SW PFM BDA	JPL	RAL
8 JFET PFM modules	JPL	RAL
5 (TBC) RF modules for FPU	JPL	RAL
3 (TBC) RF modules for JFETs	JPL	RAL
15 BDA-JFET Harnesses	JPL	RAL
Back Harnesses for JFET rack	JPL	RAL
Temperature Control ¹¹	JPL	RAL
P/LW BDA far-infrared filter	CARDIFF	JPL
P/MW BDA far-infrared filter	CARDIFF	JPL
P/SW BDA far-infrared filter	CARDIFF	JPL
S/LW BDA far-infrared filter	CARDIFF	JPL
S/SW BDA far-infrared filter	CARDIFF	JPL

¹¹Control and monitor thermometers, heaters, fixtures, cable provided pending evaluation of CQM performance

FSM Receivables and Deliverables

Flight Spare Model:

duplicate model of the instrument in event of major failure of PFM instrument

Item	Del. By	Rec. By
P/MW FSM BDA	JPL	RAL
P/SW FSM BDA	JPL	RAL
S/SW FSM BDA	JPL	RAL
Temperature Control ¹¹	JPL	RAL
P/MW BDA far-infrared filter	CARDIFF	JPL
P/SW BDA far-infrared filter	CARDIFF	JPL
S/SW BDA far-infrared filter	CARDIFF	JPL

¹¹Control and monitor thermometers, heaters, fixtures, cable provided pending evaluation of CQM performance

The BDA-Sub-System Specification Document (BDA-SSSD) defines:

- Performance criteria are designed to maximize mapping speed
 - "Design values" based on ideal operation
 - "Minimum performance" based on the best current data with margin
 - No requirements on performance levels
- The instrument maintains a margin on resource design values. Resource discrepancies are to be resolved at instrument level
- Requirements on other subsystems to meet performance levels
 - operating temperature and stability
 - warm electronics performance
 - mechanical interface requirements
 - RF environment
 - EMI/EMC
- Environmental verification matrix

Detector Performance Criteria

Subsystem Performance Requirements

Specific requirements are placed on subsystems impacting detector performance

3He fridge	290 mK delivered to BDA interface 10 μ K/ \sqrt{Hz} temperature stability < 0.1 mK/hr temperature drift
Optics	Performance defined under specified loading
DRCU	7 nV/√Hz total readout noise EMC requirement TBD
Structure	 1.7 K delivered at BDA interface Interface plate provides ± 1 mm compensation > 1 kHz resonant frequency for cables Electrically isolated 4 K RF enclosure, 40 dB attenuation EMI requirement TBD

Requirement ID	Description	Reference	Subsystem
			Compliance
BDA-DRCU-01	The DRCU signal processing	JPL	TBD
	electronics shall have less than 7		
	nV/rtHz as seen post demodulation,		
	after digitzation. Noise is referred to		
	the input over the frequency range		
	0.05 to 25 Hz. This performance		
	must be accomplished with a bias		
	input signal to the DRCU of 10		
	mVrms AC, 5 mV DC, 1 V DC		
	common-mode offset, with an input		
	load of 7 kOhms.		
BDA-DRCU-02	The input noise impedance shall be	JPL	Requirement
	greater than 7 k Ω , post-		deleted
	demodulation, referred to the input		
	over the frequency range of 0.1 to 10		
	Hz.		
BDA-DRCU-03	Input capacitance to be less than 100	JPL	TBD
	pF, measured from the DRCU		
	DxMA connector pins without the		
	harness.		
BDA-DRCU-04	Input impedance to be larger than 1	JPL	TBD
	M Ω from 50 – 300 Hz.		
BDA-DRCU-05	The DRCU is to provide 5 BDA bias	JPL	TBD
	signals, adjustable from 0 to 200		
	mV _{rms} , and 1 bias signal for		
	temperature readout, adjustable from		
	0 to 500 mV _{rms} . The temperature		
	readout biases are to be divided from		
	a common oscillator. Each bias shall		
	be adjustable with 8-bit precision.		
	The frequency of each bias shall be		
	adjustable between 50 and 300 Hz,		
	with a precision of 5 Hz.		

BDA-DRCU-06	The DRCU will provide 15	JPL	TBD
	commandable JFET source voltages		
	with 256 levels. The range of Vss is		
	from 0 V to -5 V.		
BDA-DRCU-07	Vdd is to be adjustable from 1.5 to 4	JPL	TBD
	V.		
BDA-DRCU-08	Vdd and Vss lines individually must	JPL	TBD
	source 1 mA to 5 mA. Noise on Vss		
	$< 1 \mu\text{V}/\sqrt{\text{Hz}}$, and noise on Vdd < 0.3		
	$\mu V/\sqrt{Hz}$ within modulated band (50		
	-300 Hz), measured at the DRCU		
	DxMA connector.		
BDA-DRCU-09	Each of the 15 Vdd and Vss supplies	JPL	TBD
	must be commandable ON/OFF for		
	spectrometer and photometer		
	independently, without overshoot.		
	Each Vdd and Vss pair are turned on		
	and off together.		
BDA-DRCU-10	The DRCU will provide 2 double-	JPL	TBD
	wired JFET heater lines with		
	adjustable amplitude and duration.		
	The supplies must be able to provide		
	5 V and 25 mA (photometer), 3 V		
	and 10 mA (spectrometer). Each		
	heater line is commandable ON/OFF,		
	with a minimum duration of 10 s.		
BDA-DRCU-11	The common-mode rejection is –60	JPL	TBD
	dB (50 – 300 Hz).		
BDA-DRCU-12	The DRCU shall provide a dynamic	JPL	TBD
	range at the ADC sufficient to		
	maintain the noise performance of		
	the detectors under maximal signal		
	conditions. This is estimated to be		
DD 4 DD GU 11	16 ADC telemetry bits (TBC).		
BDA-DRCU-13	The signal bandwidth of the	JPL	TBD
	photometer channels shall be 0.03		
	Hz to 5 Hz. The 5 Hz cutoff should		
	have a precision of 1 %.		

Detailed DRCU Requirements (2)

BDA-DRCU-14	The signal bandwidth of the spectrometer channels shall be 0.03 Hz to 25 Hz. The 25 Hz cutoff should have a precision of 1 %.	JPL	TBD	BDA-DRCU-22
BDA-DRCU-15	The sampling of the photometer channels shall be synchronised with the bias, at a rate selectable between $v_{bias}/2$ to $v_{bias}/256$.	JPL	TBD	BDA-DRCU-22
BDA-DRCU-16	The sampling of the spectrometer channels shall be synchronised with the bias, at a rate selectable between $v_{bias}/2$ to $v_{bias}/256$.	JPL	TBD	
BDA-DRCU-17	The DRCU shall provide 2 adjustable power supplies for temperature control using a heater located at the 300 mK stage. This supply must provide at least 300 mV and 50 uA	JPL	TBD	BDA-DRCU-24
BDA-DRCU-18	Noise performance BDA-DRCU-01 shall be maintained under bias range $50 - 300$ Hz.	JPL	TBD	
BDA-DRCU-19	DRCU noise performance (BDA- DRCU-01) to be maintained under a warm electronics thermal drift of 1 K / hour (TBC).	JPL	TBD	
BDA-DRCU-20	Thermal requirements on bias stability are implicit in BDA-DRCU-01.	JPL	TBD	BDA-DRCU-2
BDA-DRCU-21	Thermal requirement on JFET power is dV/V < 500 ppm / K for Vdd and Vss.	JPL	TBD	

BDA-DRCU-22	The DRCU shall not saturate at an input voltage as large as 11 (TBC) mV_{rms} at input (photometer), 17 (TBC) mV_{rms} at input (spectrometer). DRCU channels shall remain functional if one input signal goes to Vbias.	JPL	TBD
BDA-DRCU-23	Specification on isolation of power supplies, ripple, noise, EMC TBD. Specifications to flow from keeping the electrical interference and dissipation at the bolometer below fundamental noise as in Table 3-3-3.	JPL	TBD
BDA-DRCU-24	Bias, JFET power, and readout electronics for the spectrometer and photometer arrays are to run from separate dedicated power supplies, with independent, isolated grounds.	JPL	TBD
BDA-DRCU-25	The electrical cross-talk between channels in the DRCU shall be less than 0.05 % (TBC). The electrical cross-talk shall be verified by varying the input signal on one channel and measuring the response in other channels. The input signal level to each channel must be representative.	JPL	TBD
BDA-DRCU-26	Each signal input to the LIA module must be connected to ground by a diode. This provides both protection and allows the JFETs to turn on without the JFET heater.	JPL	TBD

Resource Requirements

	Achieved	Design	Requirement	Margin
BDA mass		560 g	600 g	20 %
JFET mass		235 g	305 g	20 %
RF filter mass		130 g	TBD g	20 %
BDA conduction	< 2.5 μW	2 μW	2 µW	20 %
JFET dissipation	< 11 mW	5.5 mW	5.5 mW	50 %
RF dissipation		0	0	-
Harness Thermal	-	-	-	-
Conduction				
BDA repeatability	50(x,y)/150		125/625 μm	-
	(z) μm			

Interface	Hardware Aspect	Agreed Documentation
Mechanical	BDA interface requirements	BDA-SSSD
	BDA	ICD
	JFET modules	ICD
	RF module	ICD
Optical	BDA	ICD
Thermal	BDA conduction	BDA-SSSD
	JFET dissipation	BDA-SSSD
	thermal stability requirement	BDA-SSSD
Environmental	Vibration levels and temperature	Test Plan
	Bake-out temperature	Test Plan
	EMI/EMC	Test Plan
Harnesses	Cryoharness wiring	HDD
	Mechanical requirement	BDA-SSSD
	JFET-BDA harness routing	ICD
Electrical	Warm electronics requirement	BDA-SSSD

Warm Electronics Interface

- There is no <u>formal</u> interface to JPL hardware
 - warm electronics interface to the instrument
- CEA is responsible for performance and delivery

However, the interface requires our interaction in the following ways:

- JPL sets requirements for the warm electronics in the BDA-SSSD
- JPL and CEA jointly agree to the Harness Definition Document and Grounding Network
- JPL and CEA have a memorandum of understanding that
 - EM models are developed and tested jointly at JPL
 - JPL approves the design of the CQM, PFM, and FS models
 - JPL witnesses performance of the CQM, PFM, and FS models
 - Performance is verified with an interface test dewar from JPL

2.5 SPIRE Work at the NASA/Herschel Science Center Ken Ganga

NHSC Charter

- In its role as the NASA Herschel Science Center (NHSC), at IPAC will:
 - Provide the US community with science and observational support throughout all phases of the Herschel mission.
 - Serve as one of the advocates for the needs of the US-based observers.
 - Work to ensure the necessary resources and tools are available to take advantage of the scientific capabilities of the observatory.

Top Level NHSC Requirements

- Educate and engage the US astronomical community regarding the scientific opportunities of the Herschel mission
- Support the U.S. based Science Users with
 - Proposal Preparation
 - Observation Planning
 - Data Analysis
- Using: Expertise, Documentation, Software

HSO/Planck SPIRE Detector Arrays

Who will IPAC Serve?

- Observers
 - Open Time observers
 - U.S.-Based Guaranteed Time Observers
 - U.S.-Based Key Project Team members
 - International Observers (when possible)
- Any tools or insight we develop will be available to all Herschel users.

HSO/Planck SPIRE Detector Arrays

Near-Term Efforts

- Near-Term Work focussed on detector testing at JPL
 - Will write software to help with detector characterization at JPL
 - Best way to start understanding the instrument
 - A real help to the US SPIRE team (we hope!)
 - Geographically sensible

- Maintain contact with consortium ("Liaison")
 - Bock has nominated Ganga as SPIRE associate
 - Involved in QLA definition
 - Via visits
 - Via e-mail, etc.
 - ISO and Planck connections are of real use here

Midterm Phase

- No real IPAC involvement in "Avionics Model"
 - We'll be busy anyway with detector characterization software
 - Different emphasis in SPIRE as compared to other instruments
- "Extended" European interaction beginning with "Cryogenic Qualification Model" testing.
 - Detector testing software may help form basis of instrument tests at RAL
 - Involvement in instrument-level tests desirable

Mid-Term Involvement

- Extended Involvement in the ICC begins
 - Software Development for Observation Planning
 - Understand science tools that will be available
 - Help define observation strategies that work for US observers
 - Focal Plane visualization
 - Background estimation
 - Interfaces with IRSA, NED, etc.

- Data Analysis Software
 - The legacy of the detector testing
 - Instrument test help
 - Data extraction
 - Visualization
 - glitch detection
 - Filtering
 - map-making
 - noise estimation
 - source detection
 - etc.

Long-Term Efforts

User Support

- ISO support model used as a loose base
 - "Service Oriented"
 - It's improved by more intimate instrument involvement here and in Europe
 - Developing Remote Support
 - Makes it easier on us as well
 - With modifications to fit in with the HCSS concept

- IRAS / ISO / SIRTF / 2MASS / IRAS / Planck / IRSA / NED tools used where possible
 - All this data is at IPAC, and can be used synergistically
 - BOOMERanG experience will help as well
- Monitor Programs to see what's getting scheduled and what's working
 - Keep users continuously informed
- Detector/Instrument testing work helps form the flight "Quicklook"

Current Status

- Getting involved
 - General understanding with US
 SPIRE team on near-term work
 - Near-term work is best for both IPAC and US SPIRE team
 - Near-term work will aid SPIRE team and US
 - General understanding with SPIRE team on IPAC role in near-term
 - We work with them, but no "deliveries"

- Very good relations with SPIRE team
 - In US
 - world-wide
- SPIRE is one of the leanest Herschel teams
 - Our involvement can make a real difference.
- Personal interest is high
- IPAC SPIRE Liaison is oversubscribed

3.0 Programmatic Overview

Gerald Lilienthal

Work Breakdown Structure (WBS)

Agreed-To Documentation Tree

File: SPIRE 6-12-01

HSO/Planck Project SPIRE Detector System

		1999	2000	20	01	2002	2003	2004	٦
ID	Task Name	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1Q2Q3Q4	Q1Q2Q3Q4	Q1 Q2 Q3 Q4 Q	1
1	Prototype Design and Testing Phase		-						
2	Design								
3	Fabrication and Assembly		L						
4	Testing and Data Reduction		.						
5	Downselect Review		17						
6	Detail Design & EM Development Phase			e	1 day?				
7	EM Design			- 1					
8	PDR								
9	EM Fabrication		4	 _					
10	EM Assembly				-				_
11	EM Testing & Data Reduction				5				
12	CDR			7 days	1 day				
13	CQM Phase				L				
14	CQM/PFM/Spare Fabrication								
15	CQM Assembly				-				
16	CQM Environmental Testing & Data Reduction					1			
17	CQM Performance Testing & Data Reduction					1			
18	CQM HRCR & Shipment					87 days	42 days		
19	CQM Required Date (Business Agreement)						∐		
20	CQM Integration Support						3 days		
21	PFM and Spare Phase					87 days 📃 🛡			
22	PFM and Spare Assembly					87 days	<u>1</u>		
23	PFM and Spare Environmental Testing and D.R.					87 days			
24	PFM and Spare Performance Testing & D.R.					87 days			
25	PFM and Spare HRCR and Shipment					8	7 days		
26	PFM Required Date (Business Agreement)						12		
27	PFM Integration Support							5 days	
28									
29									
30									
31									
		Page 1 of 23							

Note: Budget information will be presented in detail at the project CDR in September

4.0 Interfaces

Dustin Crumb

SPIRE Subsystems

Dustin Crumb

> Alignment Features

Thermal Strap

Attachment Point

Flange to bolt to 2K enclosure

HSO/Planck SPIRE Detector Arrays

JFET Box Enclosure (RAL)

- 10209721- BDA
- 10209722-JFET Module
- 10209723-RF Filter
- 10209725-Wiring Schematic
- 10209726-Temperature Control
- 10209727-Cold Cabling

- In Check
- In Check
- In Check
- In Check
- Conceptual stage
- Awaiting input

HSO/Planck SPIRE Detector Arrays

Critical Design Review • 30,31 July 2001

HSO/Planck SPIRE Detector Arrays

Critical Design Review • 30,31 July 2001

74

76

		12	11	10	9	8		7 🗡	6	5	4		3	2	2 1	
	ſ		T DUTPUT 1 SIGNALS 1-12		DUTPUT 2. STONALS 1-12		JEET INPUT	T 1	I06IE	ET SERVICE 1			FFT INPUT 2			
		PIN #		PIN #	PIN PURPOSE	PIN #	#	PIN PURPOSE	PIN #	PIN PURPOS	E	PIN #	PIN PURPO	SE		
Ιн		1	SIGNAL 13A	1 SI	GNAL 13A	1	VOLTAG	E +	1	Vss		1	VOLTAGE +			н
··		2	SIGNAL 14A	2 51	GNAL 14A	2	VOLTAG	E -	2	V+		2	VOLTAGE -			
		3	SIGNAL 15A	3 51	GNAL 15A	3	SIGNAL	24A	3	H+		3	SIGNAL 24A			
		4	SIGNAL 16A	4 SI	GNAL 16A	4	SIGNAL	24B	4	V-		4	SIGNAL 24B			
		5	SIGNAL 17A	5 SI	GNAL 17A	5	SIGNAL	21A	5	V-		5	SIGNAL 21A			
		6	SIGNAL 18A	6 SI	GNAL 18A	6	SIGNAL	21B	6	H+		6	SIGNAL 21B			
		7	SIGNAL 19A	7 SI	GNAL 19A	7	SIGNAL	18A	7	V+		7	SIGNAL 18A			
G		8	SIGNAL 20A	8 SI	GNAL 20A	8	SIGNAL	18B	8	Vss		8	SIGNAL 18B			G
		9	SIGNAL 21A	9 51	GNAL 21A	9	SIGNAL	15A	9	BIAS GND		9	SIGNAL 15A			
		10	SIGNAL 22A	10 SI	GNAL 22A	10	SIGNAL	15B	10	Vold		10	SIGNAL 15B			
		11	SIGNAL 23A	11 SI	GNAL 23A	11	SIGNAL	12A	11	H-		11	SIGNAL 12A			
	1 1	12	SIGNAL 24A	12 SI	GNAL 24A	12	SIGNAL	12B	12			12	SIGNAL 12B			
		13	FPU GND	13 FF	20 GND	13	SIGNAL	6A	13	H-		13	SIGNAL 6A			
		14	SIGNAL 13B	14 SI	GNAL 13B	14	SIGNAL	6B	14	Vdd		14	SIGNAL 6B			
F		15	SIGNAL 14B	15 SI	GNAL 14B	15	SIGNAL	3A	15	BIAS GND		15	SIGNAL 3A			F
'		16	SIGNAL 15B	16 SI	GNAL 15B	16	SIGNAL	3B				16	SIGNAL 3B			'
		17	SIGNAL 16B	17 SI	GNAL 16B	17	SIGNAL	2A	J07 JF	ET SERVICE 2		17	SIGNAL 2A			
		18	SIGNAL 17B	18 SI	GNAL 17B	18	SIGNAL	2B	PIN #	PIN PURPOS	SE	18	SIGNAL 2B			
		19	SIGNAL 18B	19 SI	GNAL 18B	19	BIAS GN	٩D		Vss		19	BIAS GND			
		20	SIGNAL 19B	20 SI	GNAL 19B	20	SIGNAL	23A	2	V+		20	SIGNAL 23A			
		21	SIGNAL 20B	21 SI	GNAL 20B	21	SIGNAL	22A	3	H+		21	SIGNAL 22A			
		22	SIGNAL 21B	25 2I	GNAL 21B	22	SIGNAL	20A	4	V-		22	SIGNAL 20A			_
E		23	SIGNAL 22B	23 SI	GNAL 22B	23	SIGNAL	19A	5	V-		23	SIGNAL 19A			E
		24	SIGNAL 23B	24 SI	GNAL 23B	24	SIGNAL	17A	6	H+		24	SIGNAL 17A			
		25	SIGNAL 24B	25 SI	GNAL 24B	25	SIGNAL	16A	7	V+		25	SIGNAL 16A			
⊢		1				26	SIGNAL	14A	8	Vss		26	SIGNAL 14A			
		J02 JF	ET DUTPUT 1, SIGNALS 13-14	J04 JFET	DUTPUT 2, SIGNALS 13-14	27	SIGNAL	13A	9	BIAS GND		27	SIGNAL 13A			
		PINI #	PIN PURPOSE	PIN #	PIN PURPOSE	28	SIGNAL	11A	10	Vdd		28	SIGNAL 11A			
		1	SIGNAL 1A	1 SI	GNAL 1A	29	SIGNAL	10A	11	H-		29	SIGNAL 10A			
D		5	SIGNAL 2A	5 2I	GNAL 2A	30	SIGNAL	9A	12			30	SIGNAL 9A			D
		3	SIGNAL 3A	3 SI	GNAL 3A	31	SIGNAL	8A	13	H-		31	SIGNAL 8A			
		4	SIGNAL 4A	4 SI	GNAL 4A	32	SIGNAL	7A	14	Vdd		32	SIGNAL 7A			
		5	SIGNAL 5A	5 SI	GNAL 5A	33	SIGNAL	5A	15	BIAS GND		33	SIGNAL 5A			
		6	SIGNAL 6A	6 SI	GNAL 6A	34	SIGNAL	4A	-			34	SIGNAL 4A			2
		7	SIGNAL 7A	7 SI	GNAL 7A	35	SIGNAL	1A	-			35	SIGNAL 1A			22
		8	SIGNAL 8A	8 SI	GNAL 8A		SIGNAL	23B	-			36	SIGNAL 23B			6
c		9	SIGNAL 9A	9 SI	GNAL 9A	37	SIGNAL	22B	1			37	SIGNAL 22B			50
		10	SIGNAL 10A	10 SI	GNAL 10A		SIGNAL	20B	1			38	SIGNAL 20B			10
		11	SIGNAL 11A	11 SI	GNAL 11A	39	SIGNAL	19B	1			39	SIGNAL 19B			H
L		12	SIGNAL 12A	12 SI	GNAL 12A	40	SIGNAL	17B	1			40	SIGNAL 17B			A1
]	13	FPU GND	13 FF	PU GND	41	SIGNAL	16B	1			41	SIGNAL 16B			
		14	SIGNAL 1B	14 SI	GNAL 1B	42	SIGNAL	14B	1			42	SIGNAL 14B			
-		15	SIGNAL 2B	15 SI	GNAL 2B	43	SIGNAL	13B	1			43	SIGNAL 13B			
B		16	SIGNAL 3B	16 SI	GNAL 3B	44	SIGNAL	11B	1			44	SIGNAL 11B			B
		17	SIGNAL 4B	17 SI	GNAL 4B	45	SIGNAL	10B				45	SIGNAL 10B			
		18	SIGNAL 5B	18 SI	GNAL 5B	46	SIGNAL	9B	1			46	SIGNAL 9B			
		19	SIGNAL 6B	19 SI	GNAL 6B	47	SIGNAL	8B	1			47	SIGNAL 8B			Ц
	1	20	SIGNAL 7B	20 21	GNAL 7B	48	SIGNAL	7B	1			48	SIGNAL 7B			
		21	SIGNAL 8B	21 51	GNAL 8B	49	SIGNAL	5B	1			49	SIGNAL 5B			
		55	SIGNAL 9B	55 ZI	GNAL 9B	50	SIGNAL	4 B	1			50	SIGNAL 4B			B
A		23	SIGNAL 10B	23 21	GNAL 10B	51	SIGNAL	1B				51	SIGNAL 1B			ERAT
[]		24	SIGNAL 11B	24 SI	UNAL 11B		-		_]	SIZE CAGE	Nº 1000700	REV
	[25	SIGNAL 12B	25 SI	UNAL 12B								ļ	A1 238	35 10209/22	toCAI
	L	12	11	10	a	8				5	1		3	SCALE NONE	UNCLASSIFIED ISHER I	REV 2/00
		14		10	, ,	J										

77

12 11	10 9	0 /	0 5	4 3	2 1
н					Н
	JØ1 RF OUTPUT 1	JU2 RF OUTPUT 2	JIS RF INPUT 1	JIS RF INPUT 2	
	PIN # PIN PURPOSE				
	1 OUTPUT 1	1 OUTPUT 38	1 INPUT 1	1 INPUT 38	
	2 OUTPUT 2	2 OUTPUT 39	2 INPUT 2	2 INPUT 39	
	3 OUTPUT 3	3 OUTPUT 40	3 INPUT 3	3 INPUT 40	
G	4 OUTPUT 4	4 OUTPUT 41	4 INPUT 4	4 INPUT 41	G
8	5 OUTPUT 5	5 OUTPUT 42	5 INPUT 5	5 INPUT 42	le l
	6 OUTPUT 6	6 OUTPUT 43	6 INPUT 6	6 INPUT 43	
	7 OUTPUT 7	7 OUTPUT 44	7 INPUT 7	7 INPUT 44	
-	8 OUTPUT 8	8 OUTPUT 45	8 INPUT 8	8 INPUT 45	
	9 OUTPUT 9	9 OUTPUT 46	9 INPUT 9	9 INPUT 46	
	10 OUTPUT 10	10 OUTPUT 47	10 INPUT 10	10 INPUT 47	
-	11 OUTPUT 11	11 OUTPUT 48	11 INPUT 11	11 INPUT 48	_
	12 OUTPUT 12	12 OUTPUT 49	12 INPUT 12	12 INPUT 49	F
	13 OUTPUT 13	13 OUTPUT SI	13 INPUT 13	13 INPUT 50	
	14 OUTPUT 14	14 OUTPUT 51	14 INPUT 14	14 INPUT 51	
	15 OUTPUT 15	15 OUTPUT 52	15 INPUT 15	15 INPUT 52	
	16 OUTPUT 16	16 OUTPUT 53	16 INPUT 16	16 INPUT 53	
	17 OUTPUT 17	17 OUTPUT 54	17 INPUT 17	17 INPUT 54	
	18 OUTPUT 18	18 OUTPUT 55	18 INPUT 18	18 INPUT 55	
E	19 OUTPUT 19	19 OUTPUT 56	19 INPUT 19	19 INPUT 56	E
	20 OUTPUT 20	20 OUTPUT 57	20 INPUT 20	20 INPUT 57	
	21 OUTPUT 21	21 OUTPUT 58	21 INPUT 21	21 INPUT 58	
	22 OUTPUT 22	22 OUTPUT 59	22 INPUT 22	22 INPUT 59	
	23 OUTPUT 23	23 OUTPUT 60	23 INPUT 23	23 INPUT 60	•
	24 OUTPUT 24	24 OUTPUT 61	24 INPUT 24	24 INPUT 61	
	25 OUTPUT 25	25 OUTPUT 62	25 INPUT 25	25 INPUT 62	
	26 OUTPUT 26	26 OUTPUT 63	26 INPUT 26	26 INPUT 63	n
	27 OUTPUT 27	27 OUTPUT 64	27 INPUT 27	27 INPUT 64	
	28 OUTPUT 28	28 OUTPUT 65	28 INPUT 28	28 INPUT 65	
	29 OUTPUT 29	29 OUTPUT 66	29 INPUT 29	29 INPUT 66	
	30 OUTPUT 30	30 OUTPUT 67	30 INPUT 30	30 INPUT 67	
	31 OUTPUT 31	31 OUTPUT 68	31 INPUT 31	31 INPUT 68	u N
	32 OUTPUT 32	32 OUTPUT 69	32 INPUT 32	32 INPUT 69	
	33 OUTPUT 33	33 OUTPUT 70	33 INPUT 33	33 INPUT 70	60
	34 OUTPUT 34	34 OUTPUT 71	34 INPUT 34	34 INPUT 71	05
	35 OUTPUT 35	35 OUTPUT 72	35 INPUT 35	35 INPUT 72	- -
	36 OUTPUT 36	36 OUTPUT 73	36 INPUT 36	36 INPUT 73	11
	37 OUTPUT 37	37 OUTPUT 74	37 INPUT 37	37 INPUT 74	<
в					B
					Ľ
					-
					9
A					ER A
				37	
				A1 2	3835 10CU7/C3 X4 3
12 11	10 0		<u> </u>		UNULASSIFIED SHEETE OF2
12	10 9	0	F J		I

Wiring Schematic

Bolometer Detector Assembly (BDA)

HSO/Planck SPIRE Detector Arrays

5.1 Mechanical Design

Dustin Crumb

Requirements

Specification	Description	Requirement	Compliant
ID		Reference	
BDA-TEC-01	The BDA shall accommodate a defined	IRD-DETS-R08	Yes
	mechanical interface to the 2 K	IRD-DETP-R14	
	structure.	IRD-STRP-R01	
BDA-TEC-02	The BDA shall provide an attachment	IRD-STRP-R01	Yes
	point and/or a thermal interconnect to a		
	300 mK thermal strap.		
BDA-TEC-03	The BDA mass will have a design value	IRD-SUBS-03	Yes
	of 600 g (TBC) average over 5 detector		
	arrays, including output connectors.		
BDA-TEC-04	The first resonant frequency of the BDA	IRD-DETP-R15	Yes
	will be > 200 Hz (TBC), with a goal of	IRD-DETS-R16	
	> 250 Hz.		
BDA-TEC-05	The mechanical envelope of the BDA	IRD-DETP-R12	Yes
	will be described by the ICD.	IRD-DETS-R13	
BDA-TEC-06	The total power dissipated onto the 300	IRD-DETP-R13	Minimum Value
	mK cooler will be $< 15 \mu$ W (minimum		not compliant.
	performance); $< 8 \mu W$ (design value).		
	Assumes the focal plane mount is held		Design Value is
	at 1.7 K.		compliant.

Array Design Mechanical Structure Heritage: Kevlar Supports

³He Refrigerator for the Infrared Telescope in Space

- suspended mass =350 g
- lowest resonant frequency = 280 Hz
- single-strand/pully/kapston design
- tensioned maintained by thermal contraction
- $< 1\mu W$ kevlar heat leak to 300mK
- successfully flown on IRTS

Array Design Mechanical Structure

Detector Design/Detector Assembly

Short Wave Photometer

Long Wave Spectrometer

Array Design: Fabrication of Mechanical Prototype Prototype finished January 2000

1st Natural Frequency is 208.6 Hz Experimental <u>Vibration test level:</u> 5 - 30 Hz: 2.1 mm displacement amplitude 30 - 400 Hz: 7.5 G acceleration amplitude 400 - 2000 Hz: 15 G acceleration amplitude

SPIRE FPU under vibration test

Engineering Models

Three units Built

- Thermal Characterization Model
- Vibration Model
- Spare Unit

Vibration Model

- •Metrology
- •Warm Shake
- •Metrology
- •Thermal Cycled to LN₂
- •Metrology
- •Warm Shake with force Transducers
- •Metrology
- •Cold Shake
- •Metrology

Need table of metrology results after each test

Mass Summary (grams)

	Previous Mass	Current Mass	Change
P/LW Detector	639	672	4.8%
P/MW Detector	574	615	6.6%
P/SW Detector	520	564	7.8%
S/LW Detector	494	482	2.6%
S/SW Detector	445	466	4.6%
	Current Average	560	4.2%
	Allocated	600	
	Margin	6.7%	

Mass may still come down depending on how feedhorns are manufactured.

HSO/Planck SPIRE Detector Arrays

HSO/Planck SPIRE Detector Arrays

		Materials		
Material - Temper	Alum 7075 - T7351	Invar 36	Kevlar 29	Vespel
Reference	MIL-HDBK-5H Table 3.7.4.0(b3)	Carpenter Technology Corp.	MatWeb	Dupont, Vespel Design Hdbk
Form	Plate	Cold Drawn Bar	3000 Denier	SP1 - M
Basis	A			
Ftu, ksi				
L	68	90	400	12.5
LT	69	~~~	400	12.0
Fty, ksi				
L	57	70		
	57			
Fcy,ksi	50			
	56			
LI Fau kai	59	9 E A		
Esu, KSI Ebru, Koj	30	6, 04		
r_{D} or r_{0} or	103	# an		
(e/D = 1.5) (e/D = 2.0)	132	# 30		
(e/D = 2.0) Fhrv ksi	152			
(e/D = 1.5)	81	#70		
(e/D = 2.0)	97			
E. 10 ³ ksi	10.3	2.05	9.0	0.45
G 10 ³ ksi	39			
μ	0.33	0.3		0.41
ρ. lb/in ³	0.101	0.291	0.051	0.052
α*, in/in/ºF	9.14E-06	1.25E-06	-1.11E-06	1.69E-05

* NASA Tech Brief, "Thermal Expansion Properties of Aerospace Materials", Brief 69-10055, March 1969

[&] Taken as 60% of Ftu

* Fbru and Fbry are taken as Ftu and Fty respectively. This is conservative since bearing values are typically 1.5 times higher.

- Analysis Requirements Used to Verify Structural Integrity
 - Qualification Random Vibration Levels (IID A)

Location	Axis	Freq Range	Density	RMS Value
Herschel Optical Bench	ALL	20 - 80 Hz 80 - 300 Hz 300 - 2000 Hz	+3 db/Oct .077 G ² /Hz -6 db/Hz	6.67 G

- Factors of Safety (ERD D-19155)
 - FS_{yld} = 1.25
 - FS_{ult} = 1.4
 - Unconventional Material FS_{ult} = 2.0 (e.g. Kevlar cable)
- Limit Loads (ERD D-19155)
 - 20 G Any Direction

- Load Cases (applied in three directions deemed most critical for stress)
 - Each load case consists of:
 - 82 G Quasi Static Equivalent Load
 - 1.5% damping (JPL Std.)
 - 3σ Value
 - Value above Limit Load requirement; wanted to assess capability
 - 50 lb. Kevlar cable preload
 - Thermal transition from 70°F to -460°F

- Constraints
 - Fixed at BDA-to-FPU Fastener Locations (4 Locations)
 - Appropriate DOFs constrained for guiding pins (2 pins)

Margin of Safety Summary for Structural Elements at Qualification Levels

Part	Load Case	Stress	F.S. (Yield)	F.S. (Ult.)	F _{ytd}	Fult	Failure Mode	MS (Yield)	MS (Ult.)
Flexure Ring	82G(.707, 0., .707),P,T	27,871 psi	1.25	1.4	57,000 psi	68,000 psi	Von Mises	0.64	0.74
Top Ring	82G(.707, 0., .707),P,T	25,082 psi	1.25	1.4	70,000 psi	90,000 psi	Von Mises	1.23	1.56
Invar Rings	82G(707, 0., .707),P,T	21,878 psi	1.25	1.4	70,000 psi	90,000 psi	Von Mises	1.56	1.94
Light Can	82G(.707, 0., .707),P,T	3,990 psi	1.25	1.4	36,000 psi	42,000 psi	Von Mises	6.22	6.52
Spacers	82G(707, 0., .707),P,T	10,155 psi	1.25	1.4	70,000 psi	90,000 psi	Von Mises	4.51	5.33
Cover Plate (P/LVV & S/LVV)	82G(707, 0., .707),P,T	11,986 psi	1.25	1.4	70,000 psi	90,000 psi	Von Mises	3.67	4.36
Bottom Ring	82G (0., -1., 0.),P,T	38,396 psi	1.25	1.4	70,000 psi	90,000 psi	Von Mises	0.46	0.67
Kevlar Cable	82G(707, 0., .707),P,T	199,199 psi	N/A	2.0	N/A	400,000 psi	Tension	N/A	0.00

N/A = Not Applicable

Margin of Safety Summary for Fasteners at Qualification Levels

Location Load Case		FSult	Failure Mode	M.S. (ult)
Circuit Board to Light Can	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	2.24
Light Can to Flexure Ring	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	1.83
Flexures to Invar Ring	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	1.55
Bottom Ring to Cover Plate	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	1.92
Spacer to Top Ring & Bottom Ring	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	1.41
Spacer to Top Ring (Horiz)	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	2.41
BDA to Detector	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	1.54
Spacer to Bottom Ring Pins	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	3.77
Flexure to Invar Ring Pins	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	3.68
Pulley Fastener (Bot Ring - 2.0 mm dia)	82G (0, -1., 0.), P, T	1.4	Bolt Tension-Shear Interaction	1.64

- Computer Model Validation Comparison to Test Data
 - Modal Frequencies
 - Tests were conducted with S/LW variant of detector

Mode #	Computer Model (S/LW)	Warm Test	Cold Test
	(Hz)	(Hz)	(Hz)
1	265	253	TBD
2	328	386	TBD
3	399	486	TBD

Mode 1: 265 Hz

- Where Are We Now?
 - Input Spectrum at BDA interface as proposed by MSSL
 - Quasi Static Equivalent (3σ Value) = 278 G

Location	Axis	Freq Range	Density	RMS Value
Herschel Optical Bench	ALL	20 - 100 Hz 100 - 600 Hz 600 - 2000 Hz	+6 db/Oct .8 G ² /Hz -6 db/Hz	27.9 G

VS.

- Survivable Spectrum for Current Design (Machined Parts Only)
 - Quasi Static Equivalent (3σ Value) = 102 G

Location	Axis	Freq Range	Density	RMS Value
Herschel Optical Bench	ALL	20 - 100 Hz 100 - 600 Hz 600 - 2000 Hz	+6 db/Oct .17 G ² /Hz -6 db/Hz	12.74 G

HSO/Planck SPIRE Detector Arrays

Kevlar Testing

- Pulley diameter is not strongly tied to breaking strength for yarn.
- Clamping kevlar reduces ultimate strength by approximately 10%.
- Original EM capstan design provided under 30% of rated strength for yarn
- New larger capstan design now baseline for CQM provides better then 95% of rated strength for braided

Kevlar Preload

Dynamic		Recommended	Max Dynamic	Needed
G^2/Hz	+/-	Preload	Load	Strength
0.077	16	26	42	84
0.170	25	35	60	120
0.800	50	60	110	220
~0.12*	20	30	50	100

- 100lbs is Max load demonstrated so far
- Value estimated from curve fit of a power series
- Assumes 1.5% damping

Graph from L. Duband, L. Hui and A. Lange. Thermal Isolation of large loads at low temperature using Kevlar rope *Cryogenics* (1993) 33 643-647

Graph from Characteristics and Uses of Kevlar 29 Aramid, company memo, Dupont, Wilmington, Deleware, USA.

TIME, HOURS

102

10

103

104

Kevlar Issues

Yarn - Highest Strength, difficult to work with, hard to do it same way every time

Braided - Easiest to work with, fraction of strength of Yarn

Twisted - Need more information on

List of Materials in BDA

- AL 6061-T6
- AL 7075
- A 286 CRES
- INVAR 36
- 303 CRES
- Kapton
- Vespel
- Kevlar 29
- 2216 Epoxy
- HDPE

- •Silicon Nitride
- •Gold
- •Miller Stevens 903 Epoxy
- •CDA 172
- •Copper 99.999%
- Constantin
- Indium
- •NTD Germanium
- •Buried Oxide Silicon Wafers
- Nickel
- •Titanium
- Ablestik 84-3 Epoxy

Process List

- General Cleaning
- Gold Plate
- Bonding
- Bonding
- Torque
- Solder Joint
- Passivation
- Connector Installation

JPL FS505146 MIL-G-45204, Type 3, Class 3 D-8208, Section 3.18 BS515871 ES504255 D-8208, Section 3.14. JPL FS505146 D-8208, Section 3.12.

Materials and Processes Review

- M&P review to ensure functional, reliability, and safety requirements.
- Materials evaluated for:
 - Stress Corrosion Cracking Resistance
 - Outgassing
- Data obtained from:
 - MSFC-HDBK-527/JSC-09604
 - MSFC-SPEC-522

Materials and Processes Review

(Continued)

- Materials Identification and Usage List (MIUL) completed.
 - All materials and processes used identified
 - Each material and process assigned a rating of 1 through 4
 - 1 or 2 rating acceptable for flight
 - 3 or 4 require Material Usage Agreement (MUA)
- All materials and processes have been rated 1 or 2 and are acceptable for flight

Materials Identification and Usage List (MIUL)

Materials Identification and Usage List - Metallic Materials

em o.	Material Description/ Condition	Application	Material Specifications	Stress Corrosion Cracking Pating	JPL Rating ¹	Comments
1	Invar 36	Structural Elements	ASTM B753-T36 or AMS-I-23011 Class 7	Rating		
2	Al 7075 T73	Structural Elements	SAE-AMS-QQ-A-225/9			
3	Al 6061 T651	Structural Elements	SAE-AMS-QQ-A- 250/11			
4	A286	Fasteners				
5	303 CRES	Fasteners	AMS 5738			
6	Copper, 99.999% pure	Thermal Strap				
7	CDA 172	Clamps	B194			

Materials Identification and Usage List (MIUL)

Materials Identification and Usage List - Non-Metallic Materials

em	Material Description/	Application	Material	Thermal	JPL	Comments
0.	Brand Name		Specifications	Vacuum	Rating	
	Supplier			Stability (%)		
	Vespel, Dupont SP1	Structural Support		TML =		
1				VCM=		
				WVR=		
	Kevlar 29 3000 Denier Yarn,	Tension Member		TML =		
2	Dupont			VCM=		
				WVR=		
	Miller Stevens 903	Adhesive		TML =		
3				VCM=		
				WVR=		

Materials Identification and Usage List - Processes

ITEM NO.	PROCESS	SPECIFICATION	MATERIALS PROCESSED	APPLICATION	JPL EVALUATION		
					APPROVE/ DISAPPROVE ¹	COMMENTS	
	Gold Plating	MIL-G-45204, Class 3, Type 3	Invar 36	Corrosion Protection, Thermal Conduction			
	Gold Plating	MIL-G-45204, Class 3, Type 3	Copper	Thermal Conduction			
	Passivation	FS 505146	303 CRES	Passivation			
	Bonding	D-8208, Section 3.18, FP513414	Solithane 113/C113-300 Filled Polyurethane	Spot Bonding of Component Parts			
	Bonding	BS515871	Scotch Weld 2216 B/A with Filler	Spot Bonding of Component Parts			
	Workmanship	FS504040		Workmanship Standards for Mechanical Parts and Material			
	Torque	ES504255		Torque Requirements, Threaded Fasteners, Spacecraft Structural and Electronic Equipment			
	Solder Joint	D-8208, Section 3.14, Fp513414		Solder Joint			
	Installation	D-8208, Section 3.12, FP513414		Connector Installation – Rectangular Miniature			

Drawing Status

This slide to be provided at CDR

Conclusions on BDA Detailed Design

- The design will survive the current ERD loads.
- We have made all the practical design changes to the BDA to increase our load capacity.
- Ready to fabricate mechanical hardware if the present kevlar design does not change
- In order to bring our survivable launch loads higher than
 0.12 g²/Hz, we need to do more investigation on Kevlar.

5.2 Feedhorn Design & Test

Working Group

Jason Glenn, CU Brooks Rownd, CU Martin Caldwell, RAL Anthony Murphy, Maynooth Hien Nguyen, JPL Goutam Chattopadhyay, JPL Bruce Swinyard, RAL

Overview

- •Requirements
- •Design Strategy & Tradeoffs
- •Simulations
- •Testing Strategy
- •Risk Analysis

Design & Testing Testing Optical Simulations Horn Field Calculations Testing Cavity Simulations Instrument Scientist

<u>Status</u>

- •Designs complete
- •Modeling nearly complete
- •P/SW & S/LW prototypes manufactured
- •Preliminary P/SW tests

Presented by Jason Glenn

Feedhorn Requirements and Interfaces

• $\eta_{\text{optical,,design}}$ (Phot, Spec) = 0.85, $\eta_{\text{optical, minimum}}$ (Phot) = 0.45

• $\Omega_{\rm Phot}$ = single-mode

• Ω_{Spec} = multi-mode

•Bandpass \rightarrow waveguide aperture

•*Redundancy in case of bad pixels constrains apertures*

•Photometer bandwidths driven by science, $\lambda/\Delta\lambda = 3$

•P/SW	$\lambda_{\rm C} = 250 \ \mu {\rm m},$
•P/MW	$\lambda_{\rm C} = 350 \ \mu {\rm m}$
•P/LW	$\lambda_{\rm C} = 500 \ \mu{\rm m}$

•Spectrometer bandwidths driven by science, photon backgrounds

•S/SW	$200 \ \mu m < \lambda < \lambda_{crossover} \ TBD$
•S/LW	$\lambda_{\text{crossover}}$ TBD < λ < 609 μ m

•*Feedhorn lengths constrained by mechanical envelopes*

•Optimization for point source sensitivity \rightarrow single mode

General design strategy: design horns and cavities at chosen wavelength, calculate performance at other wavelengths within the band, modify design.

Feedhorn Array Formats

Viewed from "above" the horns looking at their apertures

Feedhorn Design Tradeoffs

•Lengths: $\eta_{aperture}$ & manufacturing difficulty increase with L, constrained by BDA envelopes $\underline{P/MW}$

L = 7.5 mm
$$T_E(dB) = -6$$
 $\eta_{aperture} = 40\%$ (46% refocus)
L = 31.75 mm $T_E(dB) = -9$ $\eta_{aperture} = 76\%$
L = ∞ $T_E(dB) = -9$ $\eta_{aperture} = 80\%$

•Apertures: $2f\lambda$ apertures for max $\eta_{aperture}$

•Profiles: Long, aperture-limited horns do not require profiling

 \rightarrow Straight-walled, conical

•Corrugations: cost $\uparrow x^2$, steeply tapered edges not required with cold stops

HSO/Planck SPIRE Detector Arrays

Spectrometer Crossover Wavelength

Spectrometer Bandwidths

FTS Horn Aperture Efficiencies

Background photon power equal for $\lambda_{crossover} = 300 \ \mu m$

$$\Rightarrow \lambda_{\text{crossover}} = 300 \text{ to } 310 \,\mu\text{m}$$

Feedhorn Parameters

Array	λc	Band	Length	Aperture	Wave.	Wave.	Defocus
	(µm)	(µm)	(mm)	(mm)	Dia. (µm)	Len. (µm)	(mm)
P/SW	250	209-291	23.68	2.40	171	500	1.6
P/MW	350	292-408	32.75	3.40	239	700	2.5
P/LW	500	418-583	46.36	4.90	342	1000	4.0
S/SW	265	200-310	23.68	2.15	208	550	0.0
S/LW	450	300-670	46.36	3,80	393	900	0.0

Prototype Feedhorn Manufacturing @ RAL

Photos courtesy RAL

Feedhorn Simulations & Preliminary Results

•E-fields calculated for each horn configuration

Fields summed and propagated through optics to form beams on the sky and calculation efficiencies
Mode coupling to absorbers simulated with HFSS

Preliminary results: P/SW, 3 channels, $\eta_{optical} = 0.6$

HSO/Planck SPIRE Detector Arrays

Feedhorn Risk Analysis

•<u>Primary risk</u>: feedhorn tolerances cannot be met. S/SW and P/SW at greatest risk.

 \rightarrow *Reduced* $A\Omega$ *and/or* $\Delta\lambda$

 \rightarrow *Beams are not likely to be affected because we have cold stops.*

•<u>Secondary risk</u>: supplier cannot meet schedule or cost.

→ Mitigated by a 3-stage manufacturing approach:
 -Prototypes (P/SW-tightest tolerances)

-CQM (2 substages: P/LW, S/LW)

-Flight units and spares

•Bad feedhorns within an array cannot be replaced (optical pretesting prior to assembly under review)

Future Work & Schedule

•Modeling

-Complete set of efficiencies and beam profiles on the sky as $f(\lambda)$

-P/SW efficiency at $\lambda=265~\mu m$

-Tolerances on frontshorts

- -Coupling of S/LW higher order modes
- •CQM P/LW horns delivered to JPL 10/2001
- •CQM S/LW horns delivered to JPL 12/2001
- •Ongoing beam & optical efficiency testing of witness horns @ CU
- •Flight & flight-spare horns delivered to JPL 11/2002

5.3 BDA Thermal Model and Test Results

Terry Cafferty

BDA thermal design goals

Heat load into 3He fridge 8 uW for all 5 BDAs min performance 15 uW

bolometer-3He fridge gradient 10 mK based on 290 mK fridge and 300 mK bolometers

Bolometer assembly thermal time constant

100 s min based on assumed fridge stability of 0.1 mK/hr and detector stability of 10 uK/Hz^{0.5} from 0.1 - 10 Hz (should eliminate need for active thermal control of detector we have 2 uW budgeted if needed)

BDA thermal features

0.3 K to 1.7 K suspension system Pretensioned 3000 denier kevlar, 0.3 mm² cross-sectional area. 16 legs each 25 mm long

thermal strap to 0.3 K 3He fridge

Pure copper machined in one piece, annealed, bent once at installation. Bottom flange 4 screws to feedhorn block, which is bolted directly to invar bolometer mount plate. Top flange mates with SPIRE 0.3 K thermal bus

1.7 K to 0.3 K cables

Etched 5 um thick constantan foil conductors sandwiched between Kapton covers. Line and space widths 100 um. Kapton 125um thick. Acylic glue 50 um thick. Each BDA uniquely cabled to minimize heat leak. Thermal length between clamps 35 mm.

'soft' Kevlar failure features

cage of Vespel and A286 parts limit conducted heat load to a maximum of ~10 uW per BDA if Kevlar breaks

BDA predicted thermal performance

- total heat load (1.7 K He bath)
 - 8.3 uW (1.66 uW/BDA average)
 - 3.4 uW kevlar
 - 2.2 uW kapton portion of cables
 - 2.7 uW constantan portion of cables
- predicted temperature drop
 - ~16 mK bol plate to strap attach point (average)
 - dominated by interface thermal resistance
- predicted time constant
 - ~160 s average

BDA thermal characterization test

HSO/Planck SPIRE Detector Arrays

HSO/Planck SPIRE Detector Arrays

BDA thermal conclusions

- measured 0.3 K heat load meets goal when observed systematic parasitic heat load is subtracted
- measured bulk 0.3K assembly thermal time constant of ~ 100 s meets design goal
- measured temperature drop from fridge to bolometers 14 mK, goal 10 mK
- maximum additional heat load due to 'soft' caging system for failed Kevlar is ~10 uW/BDA
- BDA is good to go from thermal point of view

Bath Temperature 1.35 K

TEMPERATURE PROFILE ON BDA DUE TO HEAT ON FRIDGE

Temperature Reading Uncertainty ~ 4 mK

Temperature Gradient in BDA

Transient Measurement: Heat On Fridge

Input 150 mV or ~30 uW into Fridge

Transient Measurement: Heat Off Fridge

Time, sec

Some Changes

- Tape up the hole in the shields (~4-40 tapped thru holes)
- 2. Add charcoal getter
- 3. Tightening up the four screws on the thermal strap
- 4. Tightening up the screws between the bottom cover plate and the structure

BDA for Thermal Characterization

New Measurements after Tightening Screws

What was being done?

I applied some electrical power to rhe heater at the bolometer site, and recorded all the temperatures.

Varying Bath Temperature

What was being done:

Varying the bath temperature (by changing the speed of the pump) and recording all the temperatures (the temperature of the bottom of the thermal strap is missing because the wires were touching)

At 1.7 K the difference between T_bol and T_fridge is \sim 14 mK.

Transient Measurement

What did I do?

Turned on the power of the heater on the fridge let it come to the equilibrium, then turned it off. The data in the left figure were recorded during the cooling off phase (temperature is on bolometer site)

Triangle is data Line is eye-balled fit of with 100 sec time constant

- Estimate loading from T_{bol} and T_{fridge} (T_{strap} not functioning)
- Extrapolate to $(T_{bol}^2 T_{fridge}^2) = 0$

- Fit estimate power to $P0 + k(T_{bath}^{2.4} - 0.3^{2.4})$
- BDA measured load at 1.7 K is 2.0 μW
- Reasonable agreement with the theoretical load of 1.4 μ W
- Recommend measurements on kapton cable

Summary

- Testing program confirmed thermal model accuracy
- Some uncertainty in total heat load
 - Should measure conductance of kapton cables at a future date
- Assembly procedures and tightening of fixtures was demonstrated to be important

5.4 **SPIRE Array Fabrication**

Judith Podosek, Minhee Yun, and Anthony Turner Jet Propulsion Laboratory, Pasadena, CA 91109

HSO/Planck SPIRE Detector Arrays

Introduction

- Advantages & Requirements
- Fabrication Processes
- Risks
- Present Status
- Future Work

Advantages

Spider-web architecture provides

- low absorber heat capacity
- minimal suspended mass
- low-cosmic ray cross-section
- low thermal conductivity = high sensitivity

Design Values

	Wavelength (µm)	NEP x 10 ⁻¹⁷ (W Hz ^{-1/2})	Tau (ms)	Dark pixels	# of detectors	Dimension (arcmin)	Thermi- stors	Requirement Reference	5 MΩ Resistors
Photometer	250	8.9	9	2	139	4x8	2	IRD-PHOT- R02	1
	350	6.7	11	2	88	4x8	2	IRD- PHOT-R02	1
	500	4.9	14	2	43	4x8	2	IRD- PHOT- R02	1
Spectrometer	250 TBC	12.0	3.4	2	37	2.1	2	IRD- SPEC-R04	1
	400 TBC	11.9	4.9	2	19	2.1	2	IRD-SPEC- R04	1

Design Values, cont.

Table 3-1-1(SSSD) Summary of Detector Design Values Table 3-1-2(SSSD)Summary ofCommonDetectorDesignValues

Quanti ty	Units	P/L W	P/M W	P/SW	S/LW	S/SW
Q	pW	3	4	5	12.5	9.8
NEP _{to}	e-17 W/√H	6.0	7.9	10.0	14.0	13.4
G ₀	p₩Ź/K	50	64	80	140	210
V _{bol}	mV _{rms}	3.7	4.2	4.7	7.6	6.3
S _{dc}	e8 V/W	4.3	3.7	3.3	2.1	2.1

Quantity	Value	Unit
Ro	180	W
Ď	41.8	Κ
T _{bol}	0.39	Κ
R _{bol}	5.8	MW
Z/R	0.4	

Composite of P/LW Array Mask set

- Stack of 7 masks used in the fabrication of the bolometers.
- These are the final design of the masks that will be used in the fabrication of the P/LW CQM
- They are not yet under configuration control

P/LW Array for SPIRE CQM

HSO/Planck SPIRE Detector Arrays

MDL (MicroDevices Laboratory) Fabrication Process Description

- MDL is a DNP organization that has adopted facility and process improvements to accommodate a flight program
 - Facilities Monitoring
 - ✓ Particle Detector PMS

Wafer Particle Detector

✓ Electrostatic Discharge (ESD) Control

Ionizing blowers

Simco, Aerostat, Ionizer, Semtronic

NRD Ionizer cartridges for N2 guns and Nuclespot Static Eliminators

✓ Thermocouple Temperature Readouts

- Designated locked flight cabinets
- All materials used in this program will have certifications and are used exclusively for the flight project
- Travelers, AIDS, Procedures, Traceability to manufacture to the lots, etc have been implemented
- All personnel working on project have taken the flight hardware classes
- Facilities certified, ESD
- Cleanliness certifications in place

Fabrication of Detector Arrays

Deposit low stress Si₃N₄ onto SOI wafers

Pattern backside with photoresist and dry etch backside Si_3N_4

Au

Metalize top Si₃ N₄ with absorber, leads and contacts by liftoff

NTD

Metalize In bumps by liftoff and bump bond NTD Ge thermistor to sample

Pattern absorber onto metalization and nitride with photoresist
Dry etch absorber pattern into metalization and nitride

Dry etch Si through backside of SOI wafer with deep trench Si etcher to buried oxide layer. Strip buried oxide layer with wet etch.

Fabrication of Detector Arrays (cont.)

Wet etch top Si from backside and release web

Cross-sectional view of the Arrays

Fabrication of Array Backshort

Ti/Au deposition, Cross-sectional view of the Backshort

Form backshort post to required depth with STS Deep RIE of cleaned Silicon wafer

Top view of a Backshort

Array Assembly

Assemble of Detector and Backshort

- Bolocam ; 151 Detectors
 - Web Failure : 18
 - Chip Failure : 10
 - Lithographic Error : 2
 - ➤ Yield = 80.2 % (121/151)

We have successfully delivered the 151 detector array Bolocam with a better than 80% yield. The lessons we learned during the fabrication of this array enables us to expect even better yield on the HSO detector arrays.

Devices	Risks	Mitigation
	Lithographic error	Most critical lithography steps now use non-contact aligners (stepper, e-beam)
Detector Arrays	In bump	Establish the highest temperature to which the detector can be subject to and remain viable
	Tight schedule	Have added processing engineers and inserted slack
Backshort	Uniformity across	Ultra clean process & Deep RIE development

Array Status

	Device	Deliver to	Current Status
	P/SW (7 elements, 250µm)	Univ. of Colorado, Feedhorn test	Completed/Delivered
EM	S/LW (7 elements, 400µm)	Univ. of Colorado, Feedhorn test	Final test before delivery
	S/LW (21 elements, 400µm)	JPL, Cryo./Noise test	Ready for release
COM	P/LW (43 elements, 500µm)	IPL. Cryo /Noise test	Oct., 2001
CQM	S/SW (37 elements, 250µm)	51 L, Cry0.710150 test	Feb. 2002
	S/LW (21 elements, 400µm)		
FM	S/LW (21 elements, 400µm)		2002
	P/LW (43 elements, 500µm)	JPL, Cryo./Noise test	
	P/MW (88 elements, 350µm)		
	P/SW (140 elements,250µm)		2003
Spare	SSW (37 elements, 250µm)		2002
	PMW (88 elements, 350µm)	JPL, Cryo./Noise test	
	PSW (140 elements, 250µm)		2003

Document Status

Document Title	Document #	Statue
AIDS for Wafer level fabrication of CQM P/LW Array	221731	Signed off
Procedure for Wafer level fabrication of CQM P/LW Array	JPL D# EP518503 Version A	Signed off
Traveler for Wafer level fabrication of CQM P/LW Array	N/A	Signed off
Map of Wafer level CQM P/LW Array	N/A	Signed off
Array Data sheet for Wafer level fabrication of CQM P/LW	N/A	Signed off
AIDS for Device level fabrication of CQM P/LW Array	221732	Signed off
Procedure for Device level fabrication of CQM P/LW Array	JPL D# EP518504 Version A	Signed off
Traveler for Device level fabrication of CQM P/LW Array	N/A	Signed off
Map of CQM P/LW Array Device	N/A	Signed off
Data sheet for Device level fabrication of CQM P/LW Array	N/A	Signed off

Summary and Future Work

- Process techniques have been developed, resulting in an increase the viability of the applicable device fabrication. (ex. ; NTD chip bonding, stepper lithography)
- Final devices will have 90% or better yield with array performance to specification.
- We are on schedule with the EM delivery.
- We have completed Bolocam fabrication and delivered to Caltech.
- Future work as stated in Array Status.

5.5 SPIRE DETECTOR DEVELOPMENT Hien Nguyen

SPIDER WEB BOLOMETER ARRAY

The array of micromesh bolometers designed for photometry at $\lambda = 350 \,\mu$ m. Each device has a 725 μ m diameter absorber with a grid spacing of 72.5 μ m and a filling factor of 0.077. The absorber is suspended by five 5 μ m wide, 240 μ m long support legs. The thermistors are placed to one side of the absorber and read out with two leads deposited on a single, 18 μ m wide support member. The pixel spacing is 1.75 mm in order to allow the array to be tested with 1f λ or 2f λ f/5 feeds, although only the 2f λ feeds were eventually tested in a 19-element format.

Bolometer Description

- Demonstration array to meet requirements of 350 micron wavelength photometer
 - Used in technology downselection
- Detector demonstrates performance near specification
 - Array was placed through flight-like performance test program

Resistance vs. Temperature

Hopping conduction in NTD Ge: $R = R_0 e^{\sqrt{\Delta/T}}$

Measurement of thermal conductance from dark load curves

HSO/Planck SPIRE Detector Arrays

esa

- Comparison of thermal conductivity derived from dark load curves over a range of temperatures
- Good agreement indicates electrical non-linearities small

~15 % scatter in the thermal conductivity over the array

Response described by a single-pole filter

Good agreement between electrical model and optical data

Reasonable agreement with expected profile Some dips in passband – may be from feedhorn

Beam Map

Some deviations from model – may be from Lyot stop

Background-limited performance ratio

Photon loading calculated from optical load curve

Dark Noise Measurements

Low Frequency Noise Stability

Measurement of Optical Efficiency

TECHNIQUE

• Take IV Curves for each optical loading

• Compute Resistance as a function of electrical power (bias Voltage)

• Optical power inferred from difference in electrical power $\Delta Q = \Delta P_{electrical}$

Measurement of System Cross-talk

1. Optical Cross-talk

- · Focus light into one pixel and measure the response
- 10 Hz chop, DC bias at QMW

ave = 5.5 % for adjacent pixels

- < 0.4 % Other pixels
- •Adjacent pixel coupling was 2.7 % at JPL with different external optics
- •Cross-talk may arise from bacus optics, feedhorns, or electrical coupling, *but appears due to defocus of external optics*

•N-N cross-talk < 1 % based on symmetry of focal plane maps

2. Electrical Cross-talk

- Measure the response with AC-bias at 200 Hz
 and demodulate
- <u>no increase</u> above optical cross talk.
- Crosstalk in 5 MW load resistor < 0.05%

A Optical Cross-talk Map

Measured Array Specifications

Quantity	Measured Value	Spec (Target)	Units
Dark <nep<sub>bol></nep<sub>	2.7×10^{-17}	(2.5×10^{-17})	[W/√Hz]
Dark <s<sub>e></s<sub>	$5.88 \times 10^8 (\pm 6 \%)$		[V/W]
Yield	0.9	0.9	
<g<sub>0></g<sub>	54.8 ± 7.6	120 (60)	[pW/K]
<c<sub>0></c<sub>	0.96 ± 0.24	(1.0)	[pJ/K]
τ	11.7 ± 0.8	8 / 30	[ms]
η_{bol}	0.46 - 0.64	0.8	
1/f knee	~30	100	[mHz]
NEP _{bol} /NEP _{blip}	1.10 (+0.05, -0.15)	1.15	
DQE	0.38 - 0.53	0.60	

•Good optical efficiency

but below expected value with $\eta_{bol} = 0.8$, DQE = 0.66

•G₀ and C₀ equal to target quantities

•High uniformity in NEP and responsivity

high yield

background limited for Q > 1.5 pW

• Detectors show theoretical noise and responsivity

close agreement with Mather bolometer model no excess noise or non-linearity

•Stable noise performance for drift-scanned observations

Design Changes from Downselect Array

- Low optical efficiency is primary issue to be resolved
 - High efficiency demonstrated in millimeter-wave instruments
 - High beta (1.85) indicates significant contribution from silicon nitride
 - No significant change after modifying feedhorns waveguides
 - Cavity dimensions confrimed by measurement
 - Bolocam array wafer with same process also showed low efficiency compared with earlier array
- Loss may be due to thermal inefficiency
 - Decrease nitride thickness from 1.8 μ m to 0.8 μ m
 - Increase support beams from 250 μm to 500 μm
 - Increase absorber metal thickness from 10 to 12.5 nm

5.6 Load Resistor Fabrication Anthony Turner, Eric Jones

Overview

- •1 redundant channel per 25 channels
- •Allows jumpers via wirebonds
- •Channels needed per LR is72 for the PSW array (>92% yield)
- *•2 high and low bias lines for redundancy •10Meg load resistors (NiCr based thin film) •Ease of fabrication*
 - •Two metalizations, one passivation layer, one etch to define perimeter of device

10 Meg NiCr Load Resistors Overview

Load Resistor Requirements

Device Type	Channels	#Load R needed	Channel Yield Left 26 channels	Channel Yield Center 26 channels	Channel Yield Right 26 channels
PLW	48	2 per array 4 total		>95%	
PMW	93	2 per array 4 total	>85%	>85%	>85%
PSW	144	2 per array 4 total	>95%	>95%	>95%
SLW	24	1 per array 2 total		>80%	
SSW	42	2 per array 4 total		>90%	
Total		18 devices plus spares			

•Note: 14 load resistor fabricated per wafer. Channel yield and channel location will determine which array they can be coupled to.

- Deposit NiCr/Au over entire wafer
 - NiCr will be used for the high impedeance load resistors (~10-20 M)
- E-Beam pattern load resistor meanders and Au interconnects
- Utilize Ion Mill to etchback NiCr/Au to form meanders and interconnects
- Au wet etched over NiCr meanders to obtain low conductance thru NiCr (100 Ω /)

Load Resistor Fabrication (Cont)

- Deposit PECVD oxide over entire wafer surface for passivation
- Pattern contact pad openings
- Wet etch PECVD oxide from these openings
- Deposit Cr/Au at these contact pads for wirebonding

Load Resistor Fabrication (cont)

- Pattern parameter of device for STS DRIE Si etch
- Strip off SiN in patterned area and STS etch Si
- Clean and deliver to testing

Load Resistor Current Status

- EM Load Resistor have been completed and are awaiting cyrogenic tests
- Yield to this date has not been determined.
- Preliminary measurements indicate:
 - resistor yield of 85-95%
 - channel yield of 70-90%
 - Majority of failures due to a defect in the Si wafer (scratches in wafer)
- Preliminary tests conducted:
 - Conductivity measurements
 - N₂ Dip thermal shock test
 - No failures in passivation layer
 - Conductivity measurements after thermal shock
 - No failures in resistors
 - No failures in leads

Load Resistor Open Issues

- Open Issues
 - Process sheets are 90% complete
 - Noise data has yet to be conducted
 - Small line widths make photolithography process very challenging but within achievable constraints
- Mitigations
 - Multiple wafer runs should provide all devices needed for flight detectors

5.7 Kapton Cables for SPIRE Bolometer Arrays By Anthony Turner

July 20, 2001

JPL Overview

- Kapton Cable Overview and Status •
 - Cable Fabrication •
 - Challenges and Mitigations

Kapton Cable Overview

- Kapton Flex Cables will provide a low thermal conductance from the 2K Temperature Stage to the detectors and load resistors that are sitting at 300mK.
- 1 to 6 flex cables need per array

Kapton Cable Overview

- EM1 Kapton/Constantan Flex Cable Design
 - Proof of concept cable
 - Cable design:
 - 0.025mm Kapton cover layer
 - 0.005mm Constantan wires
 - 50 μm to 75μm wide, 95mm long
 - 75μm wide, 1000 μm long wirebond pads (300mK stage)
 - 75 μm wide, 500 μm long wirebond pads (2K stage)
 - Interleaved ground wires
 - 2 voltage bias for redundancy
 - 0.100mm Kapton bottom layer
 - Cable yield:
 - 90% line yield
 - Lead resistance is 100-200 Ω

EM1 Kapton Flex Cable

Kapton Cable Status

• Initial EM1 Cable yield:

- Line yield 90% (50um lines)
- Line resistance is 100-200 ohms for lead lines
- Handling issues
- Wirebond tests
 - Wirebonds successful but difficult on EM1 cables
 - G10 backing board added into design for structural support during wirebonding
- Thermal Test
 - Initial thermal tests

Environmental Tests

- Test at LN2 temperature did not have any failures
- Further tests and pictures will be presented

2K

Kapton Cable Overview

EM2 Kapton Cable Design

More manufacturable cable

- Constantan wires now 100 µm wide
- **Interleaved ground lines removed**
- Eliminated wirebonds at 2K stage and replace with plated thru holes for solder bonds to Nanonics connectors
- G10 support board added to 300mK stage _ connect to support wirebond pads. G10 support board added to 2K stage to support solder bond areas

The Flex cables consist of:

- Kapton cover layer (0.025mm)
- **Constantan foil conductors (0.005mm)**
- Kapton center layer (0.075mm)
- **Constantan foil conductors (0.005mm)**
- Kapton cover layer (0.025mm)
- G10 support board (one on each side)
- **Copper plated thru holes**

Critical Design Review • 30,31 July 2001

Kapton Cable Fabrication

- Cables are being fabricated by Circuit Solutions Inc. Monrovia, CA
- Cables will be tested at JPL/Caltech for thermal constraints and thermal conductivity properties
- Circuit Solutions Inc. Process steps
- Standard flex circuit processes
 - Laminate constantan foil to Kapton for both sides of cable
 - Pattern and etch constantan foil into conductors
 - 0.100mm lines with 0.100mm spaces
 - Approximately 100mm in length
 - Terminations are a copper plated thru holes for solder bonds to Nanonics connectors at the 2K stage and Ni/Au plated up areas for wirebonding at the 300mK stage
 - Laminate Kapton cover layer onto etched conductors
 - Drill and back etch plate thru holes
 - Copper Flash and plate thru holes
 - Plate up wirebond pads (Ni/Au)

Open Issues

- Open Issues
 - Constantan foil etch is difficult to control. Should be fine with new cable design 100um lines.
 - Thermal conductance of cable should be measured directly.
 - Probe testing on cable directly is difficult.
 - Have to make one more EM cable run before CQM cables.
- Mitigations
 - New design with plated through holes will be easier to test.
 - New design can also be provided by other manufactures

5.8 BDA Manufacture and Assembly

Leonard Husted

BDA Manufacture and Assembly

- Contents
 - Manufacturing Approach
 - Manufacturing Facilities
 - Personnel Skills/Certification
 - Exploded Views
 - Assembly Documentation Required
 - Manufacturing Processes
 - Tooling
 - Manufacturing Process Flow
 - Summary

Manufacturing Approach

- Fabrication
 - Competitive procurement of mechanical hardware from 2 sources: ASI or Swales
 - Electronic hardware produced in JPL's MDL
- Assembly
 - Detector assembly will be produced in Electronic Packaging (Bldg. 103)
 - Suspension assembly will be produced in Mechanisms Assembly Laboratory (Bldg. 170)

- Building 103 Flight Assembly
 - Controlled Access
 - Temperature Controlled 72+/- 3 deg
 - Humidity Controlled 30-70%
 - Conductive Floor Tiles
 - ESD Certified
 - Hybrid Lab 10,000 Class
 - O2 Sensors

• Building 103 Flight Assembly

• Building 103 Flight Assembly

Wire Bonding- Bolometer/Load Resistor/Flex Harness

Component Attach-Bolometer/Load Resistor/ Flex Harness

HSO/Planck SPIRE Detector Arrays

• Building 103 Flight Assembly

Electronic Assembly- Flex Harness Assembly

Personnel Skills/Certification

• Skills

Certified				SPIRE Skills
Personnel	COURSE NAME	COURSE CODE	NASA STD	Needed
26	Hand Soldering to NASA STD 8739.3	AA0003	8739.3	Х
22	Crimp, Cable & Harness	BB0003	87394	
5	Wire Wrap	DD0003 / HH0006		
4	Fundimentals of SMT Fab	KK1003	8739.2	
17	Flight Polymerics / Conformal Coating Oper / Insp	NN2003 / NN2006	8739.1	Х
27	Connector CSFT/ Mate & Demate & Torquing	NN3003		Х
25	Flight System Connector Cleaning	NN4003		Х
13	Flight Systems Mechanical Hardware	NN6003		Х
25	Inspect, Measure and Testing Equip	IMTE	8739.3	Х
3	Semi-Rigid CoaxCable	OO2003	8739.3	
20	Integrated Cicuit & Lead Forming & Trimming	OO9003	8739.3	
2	Fiber Optic Termination	PP0003	8739.5	
28	Critical H/W Handling	RR2006		Х
23	ESD Avoidance	ER3003	8739.7	Х
4	Wire Bonding	Trained by Equip Mfgr		Х

Detector Assembly

• Detector Exploded View

• Documentation Required

		Status		
Document Title	Number	In work	Complete	Released
BDA Assembly Drawing	10209800	X	80%	8/17/01
Detector Assembly Drawing	10209810	X	80%	8/17/01
Detector Wire Bonding Diagram	TBD			8/24/01
Load Res/Flex Cable Wire Bond Diagram	TBD			8/24/01
AIDS-Detector Assemby	TBD	X	75%	8/24/01
AIDS-BDA	TBD			8/24/01

BDA Manufacturing

• Manufacturing Processes

Process	Std	Procedure	Requirement
Cleaning	YES	FP 513414 Sect 2.3.1	Drawing
Adhesive Bonding	YES	FP 513414 Sect 9.0	Drawing
Wire Bonding	YES	FP 513414 Sect 10.18	Mil-Std-883 M2011.7
Die Attach	YES	FP 513414 Sect 10.14	Mil-Std-883 M2019.5
Soldering	YES	FP 513414 Sect 6.1.2	D 8208
Solder Tinning	YES	FP 513414 Sect 6.2.2	D 8208
Torque	YES	ES 517040	Drawing
Vacuum Bake	YES	FP 513414 Sect 6.1.2	
Mechanical Assembly	YES	AIDS	Drawing
Inspection	YES	AIDS	Drawing
Resistance Test	YES	AIDS	Drawing
Conformal Coat	YES	FP 513414 Sect 9.5	Drawing
Identification	YES	FP 513414 Sect 9.0	Drawing

Detector Assembly Manufacturing

- Tooling Required
 - Detector Assembly
 - Load Resistor Adhesive Bonding Fixture
 - Wire Bonding Fixture
 - Flex Print Harness Assembly Fixture
 - Holding Fixture

BDA Assembly

• BDA Assembly Flow

BDA Manufacturing

HSO/Planck SPIRE Detector Arrays

Critical Design Review • 30,31 July 2001

BDA Manufacturing

• Summary

Methods/Process Development Needed Cold Wire Bonding Bolometer Wire Bonding to Flex Harness Adhesive type and how applied Tooling **Open Issues Epoxy** selection Drawings incomplete AIDS incomplete **Connector Savers**

6.0 JFET Modules

6.1 JFET Testing Status Jamie Bock

James J. Bock Jet Propulsion Laboratory

- Silicon JFETs flown on COBE, IRAS, IRTS
- U401 is a reliable dual package
- Differential readout
- Low noise and power

		1		,	
Power (mW)	/pair	/membrane	/module	/phot	/spect
Design value	0.115	2.75	5.5	33	8.25
1.5 * DV	0.170	4.13	8.25	49.5	12.38
Min. P. value	0.230	5.5	11	66	16.5

 Table 1. JFET Power Dissipation (JFET-TEC-04)

U401 Noise Performance (1)

20

15

10

5

at 100 Hz

V_n [nV Hz^{-1/2} ;

U401 Noise Performance (2)

Noise Performance vs. T

Model:

 $R_s = 120 \text{ k}\Omega$

160

 $P = 125 \mu W/pair$

Rs = 39 k Ω , P = 155 μ W/pair Rs = 55 k Ω , P = 95 μ W/pair

 $\Delta T = 85 \text{ K} (\text{conservative})$

180

200

esa

- Conductivity measured on 12 x 12 mm test structure with ∆x = 1 mm gap
- Estimated for EM membrane assuming square geometry
- Terry will present detailed thermal analysis for the EM membrane

Dissipated Power to 4 K per JFET membrane

- No excess noise associated with lithographed resistors
- Leads metalization too thick
- Some difficulties in etching and yield on source resistors
- Open gates are ESD sensitive

- 1.8 μm membrane thickness
- Difficult geometry to model thermally
- Estimated conduction of leads is
 3.2 mW based on impedance at
 77 K and Wiedemann-Franz relation

5.5 mW/membrane = "*minimum performance*"

• 90 s start-up time to 120 K (fast!)

Performance within specification at P > 300 \muW/pair, or 3.6 mW/membrane **Performance at 7.5 mW/membrane**

- E-beam written resistors + passivation layer give high yield, no failures on thermal cycling to 77 K
- Thinner leads metalization reduces lead conduction by 9.5 (resistance at 77 K + W-F)
- Start-up heater to avoid dissipation on 300 mK stage.
- DRCU also has diodes to ground for conventional start up mode.
- 1.0 μm membranes are too difficult to fabricate.

- Vibration and thermal cycle testing of mechanically representative membrane and housing with boards, connectors and RF filters
- Noise testing on unetched EM unit at operating temperature

 Reduction in mapping speed with amplifier noise is small

< 20 % reduction if JFET noise increases to 15 nV/ \sqrt{Hz} .

Transient effects from switching JFETs on and off to the instrument performance are uncertain

6.2 JFET Thermal Model Terry Cafferty

HSO/Planck SPIRE Detector Arrays

JFET membrane detailed thermal models

Terry Cafferty

2-D SINDA/G model 228 membrane nodes 728 conductors leads broken into 1 mm lengths temperature dependent conductances

JFET prototype membrane measured vs predicted thermal performance

HSO/Planck SPIRE Detector Arrays

Thermal Model Predictions

- Similar to prototype membrane model, symmetrical heat input
- Leads conductance ~ 0.105 x prototype (measured cold)
- Design value module dissipation 5.5 mW

JFET dissipation uW/pair	Module dissipation mW	JFET temp range K	
100	4.8	92 - 102	
1 1 0	5.3	98 - 108	
1 2 5	6.0	107 - 118	
150	7.2	121 - 134	

JFET Power Dissipation (JFET-TEC-04)

Power (mW)	/pair	/module	/phot	/spect
Design value	0.115	5.5	33	8.25
1.5 * DV	0.170	8.25	49.5	12.38
Min. P. value	0.230	11	66	16.5

JFET membrane thermal summary

- Prototype membrane thermal measurements correlate well with detailed 2D thermal model
- EM/flight membrane identical to prototype, except lead conductance smaller by a factor of ~10; thermal model probably accurate
- We know JFETs perform well for T > 120 K, maybe colder
- EM membrane thermal model predicts $T_{ifet} > 120 \text{ K}$ @ 150 uW/pair
- 150 uW/pair implies module dissipation of 7.2 mW (5.5 mW goal)
- EM membrane JFET thermal tests will be performed to find T_{min} and corresponding minimum dissipation

6.3 JFET Membrane Fabrication

Anthony Turner Eric Jones Shrinivasan Sethuramen

Overview

JFET Module Overview

- JFET module forms the detector readout circuitry for all bolometer arrays
- Each JFET module provides:
 - 24 channel differential amplifier readout circuits
 - Differential design reduces susceptibility to microphonics and RF
- Each JFET modules design features changes from EM:
 - 25 channels (24 plus one redundant channel)
 - NiCr thin film source resistors (100kΩ) placed underneath U401 to help heat U401 to operating temperature
 - Au interconnect lines thinned down to 15µm wide and metalization thinned down to 50 nm.
 - 24 dual U401 JFETs wirebonded to center of 1.8µm SiN membrane structure
 - Central membrane heater added onto membrane

A schematic of a single channel of a JFET readout is shown. The source resistors are placed on the membrane to minimize sensitivity to the wiring harness to the cold electronics, although significant power dissipation comes from the source resistors.

JFET Module Overview

JFET Module Packaging Overview

• JFET Assembly Exploded View

JFET Module Fabrication

JFET Fabrication (continued)

Passivate entire surface with SiO2Etchback SiO2 to cover resistors only

Pattern and Etch Backside nitride for Si window etch
Pattern and deposit Ti/Au for wirebonds to U401 chips

Dice devices off waferEpoxy bond U401 bare dies to deviceAl Wirebond U401 dies to device

•Etch Si from underneath SiN membrane

JFET Module Status

• Fabrication notes:

- Low yield on 1um SiN membranes (<10%)
- High yield on 1.8um SiN membranes (~50%)
- 2 partially populated membranes completed
- 1 fully populated membrane completed
- Process modifications completed
- Testing overview
 - Unetched modules
 - Noise performance completed
 - Representative etched membrane
 - Vibration tested (sine sweep 7.5g amplitude 30-400Hz,15g amplitude 400-2500Hz)
 - Membrane rupture strength is ~ 150 g
 - 2 PM modules populated with 12 U401 JFETs
 - Noise and thermal testing completed
 - 1 PM module fully populated
 - Under assembly for environmental testing

Initial EM JFET module (unpopulated) thru final etch

Open Issues and Mitigations

- Low yield during membrane release etch
 - Increased membrane thickness to 1.8um
 - Utilized lower stress epoxy for bonding U401 dies to membrane
 - Low stress etch fixture implemented in release etch
- Lithography errors
 - Implemented E-beam direct write for resistors and leads
- Yields
 - High yields but yet to be quantified

Dustin Crumb

48 Channel JFET Module

JFET Module Support Structure (RAL Responsibility)

JFET Structural Analysis

Part = = = = = >	U4, Face 1, Face 2	Light Wall & RF Seal		
Material/Temper	Alum 6061-T651 or T62	Alum 6061-T6 or T62		
MIL-HDBK-5H Ref	Table 3.6.2.0(b ₂)	Table 3.6.2.0(b ₁)		
Billet Thick Column	.250 - 2.000	.010249		
Form	Plate	Sheet		
Basis	А	А		
Ftu, ksi				
L	42	42		
LT	42	42		
Fty, ksi				
	36	36		
LI	35	35		
FCY, KSI	25	25		
	30 26	35		
L I Equi kei	30 27	30 27		
Fbru ksi	21	21		
(e/D = 1.5)	67	67		
(e/D = 2.0)	88	88		
Fbry, ksi				
(e/D = 1.5)	50	50		
(e/D = 2.0)	58	58		
E, 10 ³ ksi	9.9			
G, 10 ³ ksi	3.8			
μ	0.33			
ρ, lb/in ³	0.098			

- Analysis Requirements Used to Verify Structural Integrity
 - Qualification Random Vibration (IID A)

	Location	Axis	Freq Range	Density	RMS Value
- F	Herschel Optical Bench	ALL	20 - 80 Hz 80 - 300 Hz 300 - 2000 Hz	+3 db/Oct .077 G ² /Hz -6 db/Hz	6.67 G

• FS_{yld} = 1.25

- Unconventional Material FS_{ult} = 2.0
- Limit Loads (ERD D-19155)
 - 20G Any Direction

- Load Cases (applied in three directions deemed most critical for stress)
 - Each load case consists of:
 - 32 G Quasi Static Equivalent Load
 - 1.5% Damping used in RV analysis (JPL Std.)
 - 3s Value
 - Value above Limit Load requirement; wanted to assess capability
 - Thermal transistion from 70°F to -442°F

- Constraints
 - Fixed at JFET-to-JFET Rack fastener loacations

Margin of Safety Summary Tables (In Progress, will be ready by CDR)

HSO/Planck SPIRE Detector Arrays

- Computer Model Validation Comparison to Test Data
 - Modal Frequencies
 - Tests still need to be performed

Table of Computer Model's First Three Modes (In progress, will be ready by CDR)

- Where Are We Now?
 - Incorporate latest design changes and finalize analysis
 - Once testing is complete, verify FEM model results against test data

6.5 JFET Module Assembly/Manufacturing

Leonard Husted

- Contents
 - Exploded Views
 - Assembly Documentation Required
 - Manufacturing Processes
 - Tooling
 - Manufacturing Process Flow
 - Summary

JFET Assembly Exploded View •

• Documentation Required

		Status		
Document Title	Number	In work	Complete	Released
JFET Module Assembly Drawing	10209750	X	75%	8/17/01
JFET Isolation Assembly Drawing	10209757	X	75%	8/17/01
JFET PCB Assembly Drawing	10209760	X	75%	8/17/01
JFET Wire Bonding Diagram	TBD			8/24/01
AIDS-JFET Module Assy	TBD	x	60%	8/24/01
AIDS- JFET PCB Assy	TBD			8/24/01

• Manufacturing Processes

Process	Std	Procedure	Requirement
Cleaning	YES	FP 513414	Drawing
Adhesive Bonding	YES	FP 513414 Sect 9.0	Drawing
Wire Bonding	YES	FP 513414 Sect 10.18	Mil-Std-883 M2011.7
Die Attach	YES	FP 513414 Sect 10.14	Mil-Std-883 M2019.5
Soldering	YES	FP 513414 Sect 6.1.2	D 8208
Solder Tinning	YES	FP 513414 Sect 6.2.2	D 8208
Torque	YES	ES 517040	Drawing
Vacuum Bake	YES	FP 513414 Sect 6.1.2	
Mechanical Assembly	YES	AIDS	Drawing
Inspection	YES	AIDS	Drawing
Electrical Test (JFET PCB Assy)	NO	Test Procedure TBD	TBD
Conformal Coat	YES	FP 513414 Sect 9.5	Drawing
Identification	YES	FP 513414 Sect 9.0	Drawing

• Tooling Required

- JFET Assembly
 - RF Wall Reflow Solder Fixture
 - Printed Circuit Board Reflow Solder Fixture
 - JFET Wire Bonding Fixture
 - Holding Fixture

Manufacturing, Inspection, and Test Process Flow-SPIRE JFET Assembly

BDA Manufacturing

• Summary

Methods/Process Development Needed Filter installation in RF Wall Wire Bonding JFET Module Wire Bonding JFET Module to PWB Test Fixture at JFET Module Level Assembly Tooling

Open Issues

Drawings incomplete AIDS incomplete

7.0 Harness Definition And Test Procedures

Viktor Hristov

Electrical Interface

- Harness Definition Document defines the electrical interface for the various Hershel-Spire modules
- This document is written by RAL and agreed to by CEA and JPL
- The document defines the:
 - electrical connections,
 - shielding and bundling of cables,
 - grounding network,
 - cable impedance,
 - microphonics,
 - capacitance,
 - thermal properties.

SPIRE Block Diagram

Doc. No.:SCI-PT-IIDB/SPIRE-02124 Issue-Rev. No.: 2/1 6/062001 Date: 5-5 Chapter-Page:

Spire Block Diagram Figure 5.2.1

Harness Diagram

COLD RF FILTERS: BIAS AND COLD JFET POWER DISTRIBUTION

Function	A-wire	B-wire
JFET V-	1	8
JFET V +	10	14
JFET Vgnd	9	15
Bias +	2	7
Bias -	4	5
Heater +	3	6
Heater -	11	13

CRYOHARNESS TESTS

- Tests of installed cryoharness.
- Tests after installing the JFETs.
- Tests after installing the internal harness.

EQUIPMENT Needed for the Tests

- Model of flight DCU.
- DC preamplifier with external bias and JFET power supply for 24 channels (JPL Supplied).
- Spectrum analyzer.
- JFET simulator (STM, JPL Supplied).
- JFET x-talk simulator (JPL Supplied).
- •.High-impedance bolometer array simulator (STM, JPL Supplied).
- Low-impedance bolometer simulator (JPL supplied).
- Bolometer x-talk simulator (JPL Supplied).

TESTS OF INSTALLED CRYOHARNESS

- Check the electrical continuity and shorts to ground and shield for all signal wires.
- Measure the resistance and the capacitance of each signal wire.
- Measure the microphonics spectrum, using a JFET simulator and Spectrum Analyzer with a loudspeaker attached to the chirp source.
- Measure the demodulated noise using the JFET simulator.
- Measure the electrical x-talk using the JFET x-talk simulator.

TESTS AFTER INSTALLING THE JFETS

- Check for shorts to ground and shield for each signal wire with JFET gates shorted to ground. No JFET power applied.
- Confirm the DC offsets and the offset mismatch for each JFET pair with JFET gates shorted to ground and JFET power applied.
- Measure the demodulated noise using low-impedance bolometer array simulator at room temperature.

TESTS AFTER INSTALLING THE INTERNAL HARNESS

• Measure the electrical x-talk using the bolometer x-talk simulator at room temperature.

• Measure the demodulated noise using the low-impedance bolometer array simulator at room temperature.

• Measure the transfer function of the system, using the high-impedance bolometer array simulator at room temperature.

• Measure the microphonics spectrum using the high-impedance bolometer array simulator, DC bias, loud speaker plugged to the Spectrum analyzer's chirp source at 2K.

• Measure the transfer function of the system, using the high-impedance bolometer array simulator at 2K.

• Measure the demodulated noise using the high-impedance bolometer array simulator at 300 mK.

• Measure the heatload due to the internal harness, derived from the 3He fridge temperature.

HSO/PLANCK

SPIRE Instrument Detector Arrays CDR July 30-31, 2001 JPL Bldg 233 Room 201A Volume 2

Agenda July 31st

Start	End	Duration	ltem	Presenter
8:00	8:20	20	8.0 Warm Electronics	Frederic Pinsard
8:20	8:50	30	9.0 Test program	Kalyani Sukhatme
			9.1 Overview	
			9.2 Verification Matrix	
			9.3 HRCR	
			9.4 Integration and Test Plan	
			9.5 EM Testing and Facilities	
8:50	9:05	15	10.0 Test facilities	Hien Nguyen
9:05	9:45	30	11.0 Mission Assurance	Gordon Barbay
9:45	10:00	15	12.0 Implementation Plan	Jerry
10:00	10:15	15	Break	
10:15	10:30	15	13.0 RFA Summary	James Bock
10:30	10:50	20	14.0 Summary/Objectives	Gerald Liliethal
10:50	11:50	60	Board Report	George Rieke

8.0 Warm Electronics DCU Design

F.PINSARD

Service d'astrophysique CEA/DAPNIA

pinsard@cea.fr

Overview (1)

- The DCU is a one box unit:
 - The Detector Control Unit comprises analog and digital electronics exclusively devoted to bolometers operation
 - In this box, 16 boards will be connect on a back plane printed circuit board
 - 9 LIA_P boards process the photometer analog signals
 - 3 LIA_S boards process the spectrometer analog signals
 - 2 BIAS boards (1 prime & 1 redundant) distribute the bolometers bias and JFETs supply
 - 2 DAQ+IF boards (1 prime & 1 redundant) digitize signals, receive /decode commands

Overview (2) _{DCU}

Cones

FPU

Signal flow diagram

DCU Specification (1)

- Analog Processing channels
 - Functions: receive, amplify, demodulate & filter bolometer signals
 - 336 total number : 288 for photometer + 66 for spectrometer
 - Specifications:
 - Gains:
 - Photometer: 375
 - Spectrometer: 265
 - Input signal bandwidth:
 - Photometer: 0.1 to 5Hz
 - Spectrometer: 0.1 to 25Hz
 - Input noise < 7nVrms/rt(Hz)

DCU Specification (2)

- Bias generators
 - Functions: generate sine biases for bolometer and DC biases for JFETs and heaters
 - Adjustable sine biases:
 - Photometer : 1sine generator/ 4 channels with independent amplitudes
 - Spectrometer : 1sine generator/ 2 channels with independent amplitudes
 - Adjustable DC biases:
 - Photometer : 12 generators for JFET + 1 for heater
 - Spectrometer : 3 generators for JFET + 1 for heater

DCU Specification (3)

• Bias generators ...

- Specification:

- Adjustable sine biases:
 - Voltage range: 0 to 200 mVrms for bolometers and

0 to 500 mVrms for thermometers

- Accuracy: 1mV (256 levels)
- Frequency range: 50 to 300Hz
- Adjustable DC biases:
 - Voltage range: 0 to -5V for JFETs (VSS)

0 to -8V for heater

– Output currents : 5mA max for JFETs

25mA max for heater

DCU Specification (4)

Data acquisition & DPU interface

- Specification:

- Digitizing resolution:19 bits (16-bit ADC + 4-bit offset)
- Frame rate : 1/2 to 1/256 of sine bias frequency
- Frame acquisition time < 3ms
- Data formats and Command are defined in DRCU ICD
- Electrical interface :RS422

DCU EM/QM1 Development Tree (1)

Cones

HSO/Planck SPIRE Detector Arrays

DCU EM Development Tree (2)

DCU EM Development tree (3)

HSO/Planck SPIRE Detector Arrays

Cnes

DCU QM1 Development tree (4)

Design status (1)

- Detector Control Unit
 - QM1 development is divided into:
 - Phase 1: July 2000 to December 2000
 - Breadboard design & testing including 2 analog channels, 1 bias channel and 1data acquisition channel.
 - Goal : elementary functions & internal interfaces
 optimization
 - Phase 2: January 2001 to July
 - QM1 design including 4 complete analog boards (1 for photometer and 3 for spectrometer), 1 bias board and 1 data acquisition board.
 - Electrical schematics are done
 - Layout are done except for spectrometer analog board

cnes

Design status (2)

- Detector Control Unit...
 - Phase 3
 - Realization and test at JPL
 - Phase 4
 - Integration and test at SACLAY

Phase 1 Conclusion

Breadboard

- For analog processing channels:
 - The chosen solution answers to the photometer noise and bandwidth requirements. For the spectrometer, the Low Pass Filter will have to be adjusted.
- For bias generator :
 - The breadboard design is compliant with the bias requirements on the frequency and amplitude ranges and precision.
- For acquisition :
 - The breadboard design must be improved to solve the ADC noise problem.

9.0 JPL HSO SPIRE Test Program

Presented by

Kalyani Sukhatme

Agenda for Section

- Overview
- Verification Matrix
- HRCR
- Integration and Test Plan

Overview

- Deliverables
 - Bolometer Detector Array Assembly (BDA)
 - JFET Modules
 - RF filter modules
 - BDA to JFET Harness
- Test Program
 - Environmental Testing
 - Performance Characterization/Testing
- Testing Phase
 - EM Testing
 - CQM Testing
 - PFM/Spare Testing

BDA Units

HSO/Planck SPIRE Detector Arrays

		HSO/Planck F	Project					F	ile: SPIRE 6-	12-01
	SPIRE Detector System									
			-							
		1999	2000	20	01	2002	2003	3	2004	
ID	Task Name	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	I Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q	4Q1Q2Q	3 Q4 Q1	1 Q2 Q3 Q	4 Q 1
1	Prototype Design and Testing Phase									
2	Design									
3	Fabrication and Assembly		-							
4	Testing and Data Reduction									
5	Downselect Review		17							
6	Detail Design & EM Development Phase			•	1 day?	2				
7	EM Design			1						
8	PDR									
9	EM Fabrication		4							
10	EM Assembly				7					
11	EM Testing & Data Reduction				η					
12	CDR			7 days	1 day					
13	CQM Phase									
14	CQM/PFM/Spare Fabrication									
15	CQM Assembly									
16	CQM Environmental Testing & Data Reduction					2				
17	CQM Performance Testing & Data Reduction						1			
18	CQM HRCR & Shipment					87 days	42 days			
19	CQM Required Date (Business Agreement)						lı			
20	CQM Integration Support						3 da	ys		
21	PFM and Spare Phase					87 days		_		
22	PFM and Spare Assembly					87 days	h.			
23	PFM and Spare Environmental Testing and D.R.					87 days				
24	PFM and Spare Performance Testing & D.R.					87 days		L.		
25	PFM and Spare HRCR and Shipment						87 days	E –		
26	PFM Required Date (Business Agreement)							12		
27	PFM Integration Support							50	days	
28										
29										
30										
31										
		Page 1 of 23					1	1		

Applicable Documents

- SPIRE Bolometer Detector Array Assembly Process and Test Qualification Plan
- SPIRE Bolometer Detector Array Performance Test Plan
- SPIRE JFET Module Process and Test Qualification Plan
- SPIRE JFET Module Performance Test Plan

• All four of the above will get incorporated into a Test Plan Package and will become an Agreed Document as per Business Agreement

Document Title	Number	Status			
		In Work	Complete	Released	
BDA Process and Test Qual Plan	D-19152		100%	X	
BDA Performance Test Plan	D-20549	Х	75%		
JFET Module Process and Test Qual Plan	D-19153	Х	75%		
SPIRE Vibration Test Plan	D-20550	Х	75%		
Thermal Cycling Procedure	TP518518	Х	25%		
BDA Performance Testing Procedure		-	-		
JFET And RF Filter Characterization Procedure		-	-		

Install Bolometers in the BDA structure

Thermal Cycling Cold (LN₂)Vibration Testing

> Baseline Test: Measure Characteristic Offset Voltages as a baseline test before and after each environmental test

Performance Characterization:

Noise Measurements

RF Filter Modules

Environmental Test Matrix for BDA and JFET Modules

Test:	CQM	PFM	FS
Vibration:	Q	Α	Α
Thermal cycle:	D/Q	Α	Α
Vacuum cycle	D/Q	Α	Α
Lifetime:	D/X	-	-
Soak/cycle:	D	-	-
Radiation tolerance:	D	-	-
Thermal range (Bakeout):	D/X	-	-
Thermal stability (Instrument Level).	Q	Α	Α
Microphonics (Instrument Level):	Q	Α	Α
Ionising radiation:	D	-	-
EMI (Instrument Level):	Q	Α	Α
EMC (Satellite Level):	Q	Α	Α

Q : test carried out at qualification level for qualification times;

- A : test carried out at acceptance level;
- D : qualification test carried out by design including unit-level testing and engineering analysis.
- X : Will rely upon HFI test data on similar devices

BDA: Requirements Verification Matrix

Specification	Description	Verified By Test Or Measurement On			On	
ID		Prototype	EM	CQM	PFM	FS
BDA-FUN-04	The positional repeatability of the focal plane structure shall be < 125 um (TBC) orthogonal to the optical axis, and < 625 um (TBC) along the optical axis. The rotational repeatability around the optical axis shall be < 0.5 degrees (TBC).	X	Х	Х	Х	Х
BDA-TEC-03	The BDA mass will have a design value of 600 g (TBC) average over 5 detector arrays, including output connectors.	Х	Х	Х	Х	Х
BDA-TEC-04	The first resonant frequency of the BDA will be > 200 Hz (TBC), with a goal of > 250 Hz.	Х	Х	Х	Х	Х

BDA: Performance Characterization Matrix

Specification	Description	Verified By Test On				
ID		Prototype	EM	CQM	PFM	FS
BDA-PER-01	BDA detector yield.	X	Х	X	X	Х
BDA-PER-02	The ratio of photon NEP due to radiation absorbed at the detector and total NEP, given as (NEPphoton/NEPtotal)^2 NEP includes all sources of noise at 1 Hz, measured at 300 mK, assuming a total readout noise of 10 nV/rtHz and an operating impedance of 5 MOhm.	Х		Y	Y	Y

Y: Noise tests are carried out under dark conditions. The detector noise model and optical efficiency will be used to predict detector noise under optical loading. The model can be confirmed under the optical testing with optical loads approximate to the loads encountered in flight.

BDA: Performance Characterization Matrix (Contd.)

Specification	Description	Verified By Test On				
ID	_	Prototype	EM	CQM	PFM	FS
BDA-PER-03	The optical efficiency of the FPU horn and bolometer assembly for the photometer arrays over the optical passband.	Х	-	Х	Х	Х
BDA-PER-04	The optical efficiency of the short wavelength spectrometer horn arrays and bolometer assembly over the optical passband.	-	-	-	Х	Х
BDA-PER-05	The optical efficiency of the long wavelength spectrometer horn arrays and bolometer assembly over 300-400 µm.	-	-	Х	Х	Х
BDA-PER-06	The photometer detector time constant, assuming a maximum modulation frequency of 2 Hz.	Х	-	Z	Z	Z
BDA-PER-07	The spectrometer detector time constant, assuming a maximum modulation frequency of 20 Hz.	-	-	Z	Z	Z

Z: The detector speed of response will be measured under optical loads approximate to the loads encountered in flight.

BDA: Performance Characterization Matrix (contd.)

Specification	Description	Verified By Test On				
ID		Prototype	EM	CQM	PFM	FS
BDA-PER-08	The uniformity of the calibrated responsivity.	-	-	YY	YY	YY
BDA-PER-09	Detector cross-talk.	ZZ	-	ZZ	ZZ	ZZ
BDA-PER-10	The 1/f knee frequency (total noise is sqrt(2) larger than white level).	Y	-	Y	Y	Y

YY: Responsivity calibrated by electrical load curves. Stability of responsivity derived from noise measurements.

ZZ: Optical cross-talk will be tested to the limits of our apparatus, on selected pixels, and from electrical cross-talk on resistor channels. Full cross-talk matrix acquired at instrument level.

Y: Noise tests are carried out under dark conditions. The detector noise model and optical efficiency will be used to predict detector noise under optical loading. The model can be confirmed under the optical testing with optical loads approximate to the loads encountered in flight.

JFET: Verification Matrix

Specification	Description	Verified By Test Or Measurement On			On	
ID		Prototype	EM	CQM	PFM	FS
JFET-FUN-02	The RF filters will operate without power dissipation	-	-	-	-	-
JFET-FUN-03	The JFET modules must be capable of functioning, without meeting noise specifications, over a temperature range from 4 K to 300 K	-	Х	Х	Х	Х
JFET-FUN-04	The JFET module and RF filters will operate from a base temperature between 4 – 20 K.	-	Х	Х	Х	Х

JFET: Verification Matrix (Contd.)

Specification	Description	Verified By Test Or Measurement On			On	
ID	_	Prototype	EM	CQM	PFM	FS
JFET-TEC-01	The JFET modules will have a mass less than 305 g.	-	Х	Х	Х	Х
JFET-TEC-03	The RF filters are to provide –40 dB attenuation from 500 MHz to 3 GHz (TBC, minimum), -60 dB attenuation from 500 MHz to 10 GHz (TBC, goal).	-	Х	AA	AA	AA
JFET-TEC-05	The on-state power dissipation of a JFET module is to be < 11 mW (minimum performance); < 5.5 mW (TBC) (design value). This results in a photometer power dissipation < 66 (33) mW, a spectrometer power dissipation < 22 (11) mW, and an average dissipation < 44 (22) mW assuming 50 % operation of the photometer and 50 % operation of the spectrometer. NB: A 50% margin will be held on the design values to reflect the uncertainty in achieving the low thermal dissipation.	X	X	X	X	X

AA: On selected channels

Specification	Description	Verified By Test On				
ID		Prototype	EM	CQM	PFM	FS
JFET-PER-01	Median noise of JFET module over 100 – 300 Hz.	X	Х	Х	Х	Х

- List of Documents Available for Delivery with the Hardware
 - Design Documentation (Includes released drawings)
 - Environmental Test Plans and Results
 - Performance Characteristics/ Measurements
 - Handling Specifications
 - Manufacturing or Build Documentation
 - AIDS and IR
 - Verification of ESD requirements and Contamination control
 - Problem Failure Reports (List of all the PFRs and copies of any open PFRs)
 - Materials Review Board Documentation (If Necessary to resolve any discrepancies between the Cog-E and QA)
 - Final Inspection Report

Integration And Test Plan

- Documentation
 - Details of the JPL deliverable hardware integration in Europe
 - Details of the test plan in Europe
- Support for Integration and Testing in Europe
 - Cryoharness Testing Support at RAL
 - Representatives from RAL and Cardiff will visit during JPL Testing Phase
 - Integration support for all JPL deliverables

9.5 EM Vibration Status and Facilities Kalyani Sukhatme

EM BDA Environmental Testing

- EM Unit #1
- Kevlar Preload = 30 lb
- List of Tests
 - Warm Vibration
 - Thermal Cycling
 - Warm Vibration with Force Transducers
 - Cold Vibration
- Metrology before and after each test

EM Vibration Levels

Axis	Frequency (Hz)	Level
Long/Lat	20-100 Hz	+6 dB/Oct
Long/Lat	100-300 Hz	0.05 g²/Hz
Long/Lat	300-1000 Hz	-6 db/Oct
Long/Lat	Grms	5.27

EM BDA Testing

• BDA Warm Vibration with Force Transducers

EM BDA Testing

• Cold Vibration Fixture

Cold Vibration

Metrology

Displacement along the z-axis (Optical Axis)

(mm)

Test	pnt17	pnt18	pnt19	pnt20
	0	0	0	0
After Warm Vibration	0.052	0.057	-0.061	-0.064
Install Thermometer	0.057	0.06	-0.064	-0.065
After Thermal Cycling	0.061	0.064	-0.053	-0.051
After Installing Accelerometer	0.053	0.058	-0.052	-0.057
After Warm Vibration with force transducers	0.095	0.108	-0.095	-0.106
After Cold Vibration	0.049	-0.02	-0.017	-0.01

Positional Repeatability Requirement Along z-axis = 0.625 mm

10.0 TEST FACILITIES

Hien Nguyen

HSO/Planck SPIRE Detector Arrays

Flight Laboratory

- Flight certifiable Lab established in 183-215
 - Contamination Control certification (D-19156) in process
 - ESD certification is in process
 - Safety certification is in process
 - Personnel training is completed
- Test equipment
 - Two laminar flow benches
 - Thermal Characterization/Electronic Interface Dewar
 - JFET Testing Dewar
 - Thermal Cycle Dewar
 - Cold Vibe Fixture
 - BoDAC's, Bolometric Detector Assembly Cryostat
 - Data Acquisition System
 - General Electronics
 - Beam Mapper
 - Spectrometer
- Laboratory is planned to be certified by Nov 01

HSO/Planck SPIRE Detector Arrays

Thermal Characterization/Electronic Interface Dewar

Also known as Green Dewar

Purpose

The Green Dewar is to be used for thermal characterization of the BDA. Later it will be used for electronic testing by CEA Team

<u>Status</u>

Functional Only for EM Testing Handling Procedure needed for CEA users

Peripherals

Wirings and cables: Completed ³He Fridge: Installed and working

JFET Testing Dewar

Also known as The Blue Dewar

Purpose

To Characterize JFET Performance

Description

Small IR LAB Helium Cryostat

<u>Status</u>

Functional Procedure and Certification needed

Peripherals

Preamp: Completed Internal Wiring: Completed Warm Cable: 80% Completed Insert Picture Here

Thermal Cycle Dewar

Cool Down to 77 K in approximately two hoursAutomated

Closed Cycle Cryostat (Cryogen Free)
Optical window for the Optical Alignment Test
Vacuum Electrical Feed-throughs

For thermal housekeeping
For measuring detector arrays

Vendor: Cryomech Inc.
Delivery: November 2001
Procedure and Certification needed

Pulse Tube Cooler:

The PT405 PulseTube Cryorefrigerator produces cryogenic temperatures below 2.8 K without the use of displacers. Because there are no displacers, there are no displacer seals, no moving cold parts, and almost no vibration.

Cold Vibe Facility

Purpose

Interface Fixture For The BDA (Both Warm and Cold (LN2))

Description

Compatible with BDA and JFET

<u>Status</u>

Functional Approved by Safety Procedure and Certification needed

Peripherals

Tensionometer and metrology

The BoDAC's

Purpose

To Characterize Bolometer Performance

Description

Internal Optics and Filters Cryogenics JFET/RF 3He/4He Closed cycle fridge Warm Electronics Lockin Amplifier DAS

<u>Status</u>

Cryogenically Functional 3He/4He fridge operational Optics and filters provided by Cardiff University, UK JFET/RF and warm electronics in fabrication

Procedure and Certification needed HSO/Planck SPIRE Detector Arrays 333

Beam Mapper

Purpose

To map the beam profile of the horns

<u>Status</u>

Design Phase

Picture avail. By CDR

Spectrometer

Purpose

To measure the spectral response of BoDAC

Description

Bruker IFS 120 HR Far IR Spectrometer Operate from 10 to 4800 cm⁻¹ Continuous scanning

<u>Status</u>

On Loan to Glenn's Group in University of Colorado Setup completed and ready for feedhorn testing

Picture available by CDR

Documentation Schedule

ltem	Document	% Complete	Completion Due Date
LN2 Vibration Test	Procedure	75%	Aug-01
	Certification	In Process	Sep-01
Thermal Cycling	Procedure	25%	Sep-01
inernar Cycing	Certification	-	Dec-01
IEET Performance Testing	Procedure	-	Oct-01
JET Periorinance resurg	Certification	-	Nov-01
Bolometer Derformance Testing	Procedure	25%	Oct-01
Dolometer renormance resting	Certification	In Process	Jan-02
Environmental Test Readiness Review	N/A	N/A	Nov-01
Performance Test Readiness Review	N/A	N/A	Jan-02

Hardware Schedule

Item	% Complete	Date Needed
BoDAC #1	100	Jul-01
3He/4He Fridge	75	Sep-01
Optics	80	Sep-01
Detector Mount	25	Oct-01
Cryocabling	50	Oct-01
JFETs	40	Oct-01
RF Filters	40	Oct-01
IR Filters	0	Sep-01
Warm electronics	60	Dec-01
Lockin amplifiers	90	Aug-01
Data Acquisition System	20	Dec-01
Software	0	Jan-01
Spectrometer	90	Nov-01
Beam Mapper	40	Sep-01
BDA and JFET simulators	10	Nov-01

Open Issues

• Schedule seems to have less slack than we would like for our test program

11.0 Mission Assurance Management

Gordon Barbay

Outline

- SPIRE Product Assurance Organizations
- JPL Mission Assurance Drivers
- Risk Management & Policy
- Mission Assurance Team
- Models & Implementation
- Mission Assurance Design Principles
- Mission Assurance Requirements & Documentation
- Mission Assurance Execution:
 - Systems Safety
 - Quality Assurance
 - Parts, Materials, Processes
 - Reliability Engineering

Environmental Engineering
Contamination Control
Problem/Failure Reporting
Configuration Management & Waivers

SPIRE PA Organization

HSO/Planck SPIRE Detector Arrays

JPL Mission Assurance Drivers

- New, enabling technologies
 - New parts, materials, and processes
- Establishing "custom" reliability tests
 - Non-standard materials, processes
 - Cryogenic test & operating temperatures
- Multiple organizational interfaces
- Variations from European partners in established nomenclature (models, documentation)
- Transitions of technology development to flight hardware development

• The JPL Herschel/PLANCK project will:

- 1. Plan and implement a disciplined approach to risk management throughout the project life cycle
- 2. Support management decision-making by providing integrated risk assessments
- 3. Communicate risk status to all project and appropriate NASA, JPL, and European Partners' management personnel
- The project risk policy is designed to first minimize risk (See Risk Policy).
- Mission Assurance program targets areas of risk for technologies and processes
 - Table identifies the SPIRE areas of risk and implications for mission assurance program at JPL.

Herschel/Planck Project Risk Policy

Programmatic Objectives and Constraints

As a junior partner in a collaboration with Europe on the Herschel and Planck missions, JPL's objectives are to provide the European Space Agency (ESA) and the relevant instrument Principal Investigators (Pls) with specific contributions that benefit the overall science value of both missions and allow U.S. scientific participation in the resultant research efforts. The JPL effort is constrained by a funding profile determined by NASA headquarters. Within the risk policy and budget profile, JPL's goal is to maximize the performance contribution to both missions.

The Herschel and Planck missions are major scientific endeavors for ESA. Although both Herschel and Planck will be validating new technologies, they are not considered to be technology validation missions where significant risk-taking would be acceptable. Both missions must succeed in meeting their required science objectives.

Herschel/Planck Risk Policy

Minimizing risk to the overall mission is the highest priority. It is the goal of the Herschel/Planck project to eliminate the possibility that any single-point failure causes mission failure. This means that all items that are mission critical will have built-in redundancy, where this is possible (ex., Planck cryocooler). Where this is not possible (ex., Herschel telescope) special risk avoidance measures will be taken to minimize mission risk. Plans and status of this risk avoidance will be an important part of project reviews. Minimizing risk to mission performance is a second priority which will be addressed within schedule and budget limitations.

Risk Avoidance/ Risk Acceptance/ Risk Taking

When possible within the project constraints and the performance goals of the project, the emphasis shall be on risk avoidance rather than risk acceptance. When faced with a trade-off between risk acceptance and performance, risk acceptance can be considered as an acceptable alternative only when the risk being considered avoids placing the entire mission at significant risk as stated in the risk policy. Therefore some risks may be accepted with mitigation and justification. Such decisions will be made in collaboration with the appropriate European PI.

The JPL Herschel/Planck Project emphasizes risk avoidance by minimizing risk through:

- analysis and redesign
- alternative developments
- parallel developments
- appropriate margins

Where the JPL Herschel/Planck Project decides to accept risks, risk will be minimized by:

- · developing contingency plans and margin management criteria
- exercising those plans
- allowing descope/reduction in mission return to trade against cost, schedule, and other resources

Some performance reduction options were exercised in Phase B, and any new options need to be identified and agreed upon (and will be listed on prioritization of performance list). Herschel/Planck may move risk from cost risk to performance risk, remaining within the performance requirements and agreements with ESA and the instrument PIs.

SPIRE Risk Management

Project Element	Technology/Process	Target Area	MA Actions
SPIRE	Bolometer Array	• Definition &	Qualification Plan D-19152
	technology	implementation of	"SPIRE Bolometer Qualification
		qualification, assembly,	Plan"
		test	
SPIRE	BDA thermal	Qualification	• Verification of thermal
	isolation/mechanical		requirements & performance on
	design		Qual Model
SPIRE	JFET Module	Qualification	Qualification Plan D-19153
	(Differential Amplifier		"SPIRE JFET Module
	Circuitry)		Qualification Plan"

JPL Mission Assurance Team

Mission Assurance Manager Quality Assurance System Safety Reliability

Environments:

Dynamics

EMC Thermal Space Radiation Environments

Electronic Parts Engineering Materials & Processes Configuration Management Contamination Control Tim Larson Donna Markley Karan L'Heureux Gordon Barbay

Gordon Barbay with Peter Barrett Peter Barrett, Terry Scharton, Dennis Kern Al Whittlesey, Tom Larter Jim Fu, Henry Abakians Martin Ratliff

Ed Erginsoy Mike Knopp Charles Davis Glenn Aveni

	EBB	QM	PFM/FM	FS
HIFI		Х	Х	Х
SPIRE		Х	Х	Х
Sorption Cryocooler	Х		Х	
HFI		Х	Х	Х

SPIRE has 5 qualification models, two of which will be flight spares

Key (see D-19155, section 2):

- EBB = "Elegant" Breadboard (Fidelity between traditional Breadboard and Engineering Model)
- **QM** = **Qualification Model**
- PFM = Protoflight Model (Flight hardware for which there is no previous qualification heritage)
- FM = Flight Model
- FS = Flight Spare

Mission Assurance Requirements Flow

Response to D-17868 "Design, V&V, and Ops Principles for Flight Systems" February 2001

- Filtered for Mission Assurance-related principles
- Each item dispositioned. See attachments.
- No exceptions at this time (for Mission Assurance)

HSO/Planck SPIKE Detector Arrays

Red = JPL Documents

MA Documentation

Mission Assurance Requirements for the Herschel/Planck Mission	D-16642	RELEASED 1/01
Herschel/Planck Mission Assurance Plan (includes Parts/Materials/	D-16874	RELEASED 4/01
Processes, Quality Assurance, Reliability)		
FIRST/Planck Safety Plan	D-16875	RELEASED 12/00
FIRST/Planck Risk Management Plan	D-16857	RELEASED 11/00
Herschel/Planck Configuration Management Plan (includes Waivers)	D-16873	RELEASED 1/01
FIRST/Planck Problem/Failure Reporting Plan	D-19151	RELEASED 10/00
Herschel/Planck Contamination Control Plan	D-19156	RELEASED 4/01
Herschel/Planck Quality Assurance Plan	D-19173	TBR August 2001
Herschel/Planck Environmental Requirements Document	D-19155	RELEASED 2/01
SPIRE Product Assurance Requirements Map	D-19164	TBR September 2001
SPIRE Bolometer Detector Assembly Qualification Plan	D-19152	RELEASED 7/01
SPIRE JFET Module Qualification Plan	D-19153	TBR August 2001

- Requirements & Implementation: Herschel/Planck Safety Plan (D-16875)
 - Meets requirements of:
 - JPL D-560 "JPL Standard for Systems Safety" applicable to hardware developed, integrated, or tested at JPL
 - RS-CSG-Ed.5 (0) Vol. 1 "CSG Safety Regulations (Payload Design)"
 - RS-CSG Ed. 5 (0) Vol. 2 "CSG Safety Regulations (Payload Preparation)"
 - Responsive to:
 - "Ariane 5 Users Manual" Issue 3, Rev 0
 - MSFC-HDBK-527
 - JSC 09604 "Materials Selection List for Space Hardware Systems"
 - NASA Technical Standards, where applicable
 - NFPA Regulations
 - National Electrical Code
 - Federal OSHA Regulations
 - Environmental Protection Agency Regulations

System Safety (2 of 2)

- Safety Challenges:
 - Cryogenics
 - Pressurized Tanks
 - No pyrotechnic devices, no ionizing radiation devices, no batteries, no propellants, no hazardous materials, no power during launch
- Safety Compliance Documentation: Hazard Analysis
- Preliminary Safety Survey of 183-215 Lab Complete
 - No issues, waiting for final equipment delivery & installation
- Certification of Qualification tests (Cold Vibration Test)

- Requirements & Implementation:
 - Mission Assurance Requirements for Herschel/Planck (D-16642)
 - Quality Assurance Plan (D-19173)
- Scope:
 - Facilities Certification
 - Procurement Control
 - Manufacturing and Assembly control
 - Integration and Test control
 - Handling, Storage, Packaging, Marking, Labeling, Transportation Control
 - Acceptance and Delivery

Quality Assurance (2 of 2)

- MDL: Flight build preparations for detector arrays are near completion
 - Processes are documented (evaluated by J. Bock)
 - Procedures completed, in approval cycle and in PDMS
 - Process traveler completed and approved
 - Fabrication AIDS are approved
 - Facilities are certified
 - Personnel are certified and trained
- Fabrication and Test (Building 103):
 - QA is ready to support integration of detector array into BDA in Bldg. 103
 - Generation fabrication procedures and AIDS
 - Qualification units fabrication

Parts, Materials, Processes (1 of 5)

- Requirements & Implementation:
 - Mission Assurance Requirements for Herschel/Planck (D-16642)
 - Mission Assurance Plan for Herschel/Planck (D-16874)
- Requirements/Scope:
 - Approvals of required Parts, Materials, Processes
 - Review of M&P accomplished through Material Identification & Usage Lists (MIUL)
 - Review of electronic parts accomplished through approved parts lists
 - Prohibited materials, Alerts
 - Electronic parts MIL-STD-975M Grade 1 or 2 parts or equivalent
 - Derating per JPL Derating Guidelines (D-8545) for electronics
 - Radiation TID 20 Krad (includes RDM = 2), SEU LET = 37 MeV/cm², SEL LET = 75 MeV/cm²
 - Lot Acceptance Test & Screen
 - Requirements flow down to suppliers

- Requirements/Scope (continued):
 - Qualification Plans:
 - Qual Plans for new part types/high risk non-standard parts include manufacturer surveys, design & construction analysis, in-process inspection & test samples, lot qualification, destructive physical analysis, testing (performance, environmental, life), screening
 - Qual Plans for materials/processes not previously qualified for application include thermal vacuum, thermal cycling, radiation, stress corrosion, fracture mechanics

Parts, Materials, Processes (3 of 5)

- Safety & Mission Assurance working with PEMs concurrently for approval of parts, materials, processes
- Activities:
 - Preliminary MIUL for BDAs
 - Not all materials and processes identified
 - Final PMP lists expected by ______
 - Parts/Materials Selection
 - Qualification support
 - Procurement/procurement support
 - Stores, Radiation Test Facilities, Electronic Parts Evaluation Laboratory, Failure Analysis Laboratory

Parts, Materials, Processes (4 of 5) PMP Status

- M&P
 - Preliminary MIUL for BDA Complete
 - Working to identify remaining materials and processes

• EEE Parts - Two parts identified

• U401 JFET – JPL approved part, being procured

• Murata EMI chip filter – JPL unapproved part, going through element evaluation to class K

• <u>Specific Support</u> - The Cognizant Engineer ensures the appropriate participation, including drawing approval, of engineering specialists:

Discipline	Contact
Cabling Engineering	Mark Hetzel (ASI), Mick Tickner
Contamination	Glenn Aveni
Electronic Packaging Engineering	Roy Packard, Charlie Kaczinski
Fabrication Engineering	Randy Fayner
Fasteners	Don Lewis
Materials & Processes	Mike Knopp
Mechanical Components	Mike Knopp
Structures & Dynamic Analysis	Mike O'Connell, Michelle Coleman, Peter Barrett
Temperature Control	Jim Fu, Henry Abakians
Radiation Control	Al Hoffman, Martin Ratliff
Electronic Parts	Ed Erginsoy, Parts Specialists
Connectors	Pat Dillon
PDMS (Drawing Control)	Charles Davis, Mike Stefanini
Shipping Containers	Mick Tickner

Reliability Analyses Matrix

	FIRS	T/Plan	ck JPI	J Hard v	vare - F	Reliabil	ity Ana	lys is
ПЕМ	Parts Stress Analysis (PSA)	Worst Case Analysis (WCA)	Power Supply Transient Analysis	Sneak Circuit Analysis (SCA)	Failure Modes, Effects and Criticality Analysis (FMECA)	Fault Tree Analysis (FTA)	Ground Support Equipment (GSE) FMECA	
Herschel								
HIFI	Α	Α	Ν	Ν	Α	Α	Α	
SPIRE	A	A	N	N	A	N	A	
N = Analysis Not Required								
A = Analys is Required								
WCA, PSA FMECA completed July 2001 GSE FMECA TBD by September 2001								

362

HSO/Planck SPIRE Detector Arrays

- Requirements & Implementation:
 - Mission Assurance Requirements for Herschel/Planck (D-16642)
- Detailed Requirements:
 - Assure flight hardware operation within specification over expected environments and conditions (including design margins)
 - During design process, perform:
 - Fault Tree Analysis and Failure Modes, Effects & Criticality Analysis
 - Parts Stress Analysis and Worst Case Analysis
 - Identification of single point failures and critical items
 - Infusion of Lessons Learned (preventive action) http://llis.nasa.gov

- Flight Electronics Operating Hours
 - Design Principles:
 - Unit Level prior to spacecraft integration minimum of 200 hours
 - System Level prior to launch minimum:
 - 1000 hours single string
 - 500 hours each side of redundant (with goal of 1000 hours)
 - Operating time measured by "youngest" replacement part
 - Requirement needs to be specified in Herschel/Planck MA requirements document (No ESA requirement at this time)

- Reliability Analyses Results:
 - Parts Stress & Worst Case Analysis
 - Insufficient data to assure EOM success
 - Plans to close issue
 - Acquire historical data
 - Explore feasibility of testing
 - Other avenues
 - FMECA Analysis
 - No discrepancies found
 - Possible shorts between cable harness wires issue
 - Add to FMECA analysis, if needed (August 2001)

Environmental Engineering (2 of 9) Environmental Analyses Drivers

- Dynamics
 - Ariane 5 Launch Vehicle
- Thermal
 - Multiple Thermal Environments
- •EMC/EMI
- •Natural Space Environment
 - Using Standard Environments for L2 Orbit

Environmental Engineering (3 of 9) Environmental Test and Analysis Matrix - Part

1

			S ta tic	Load	Ear	Earth Handling		Dynamics			
	HARDWARE ITEM	Test Program Type	Static Loads	Quas i-s tatic ac c ele ratio n	Package Drop & Trans Vibration	Humidity	Explosive Atmosphere	Acous tic	Vibration - sine	Vibration - Random	Pyro. S hoc k/Simulate d Drop S hoc k
	SPIRE (Jerry Lilienthal)										
	Qual Cold Electronics JFET Module	Q	Α	Α	Z	Z	Z	Ν	Х	X	SD
	Proto Fit Cold Electronics JFET Module	PF	Α	Α	Z	Z	Z	Ν	X	X	Ν
	Fit Spare Cold Electronics JFET Module	FA	Α	Α	Z	Z	Z	Ν	X	X	N
	Qual Photometer Assembly	Q	Α	Α	Z	Z	Z	Ν	X	X	SD
	Fit Spare Photometer Assembly	PF	Α	Α	Z	Z	Z	Ν	X	X	Ν
	Proto Fit Photometer Assembly	FA	Α	Α	Z	Z	Z	Ν	X	X	Ν
	Qual Spectrometer Assembly	Q	Α	Α	Z	Z	Z	Ν	X	X	S D
	Proto Fit Spectrometer Assembly	PF	Α	Α	Z	Z	Z	Ν	X	X	Ν
	Fit Spare Spectrometer Assembly	FA	Α	Α	Z	Z	Z	Ν	X	X	Ν
SD =	Simulated Drop Shock										
C =	Cold Vibration Test (4 deg K)										
Z=	No Testor Analysis Required if Approved Procedures are Follow	ed and									
	Acceptable Environmental Conditions are Maintained										
N =	Neither Test or Analysis Required										
H =	Test or Analysis Req at the Higher Level of Assembly or One Anal	lysis Perfo	rmed for	The Gro	oup						
X =	Test Required										
A =	Analysis Required										

Environmental Engineering (4 of 9) Environmental Test and Analysis Matrix - Part

2

				The	rmal					Nat	ural Sp	ace		
HARDWARE ITEM	Test Program Type	Contaminatio n	Temp. ground handling	The rmal Shock	Launch Press Profile	Temp./ Atmos phere	The rm al Vac.	lonizing Dose	Dis place ment Da mage	Low Dose Rate	EUV	Single Event Effects	Solid Particles	Orbital Debris Generation
SPIRE (Jerry Lilienthal)			Α	А	А			A	A	Α	Α	Α	Α	Α
Qual Cold Electronics JFET Module	Q	Z	Н	Н	Н	Ν	Х	Н	Н	Н	Н	Н	Н	Н
Proto Flt Cold Electronics JFET Module	PF	Z	Н	Н	Н	Ν	Х	Н	Н	Н	Н	Н	Н	Н
Fit Spare Cold Electronics JFET Module	FA	Z	Н	Н	Н	Ν	Х	Н	Н	Н	Н	Н	Н	Н
Qual Photometer Assembly	Q	Z	Н	Н	Н	Ν	Х	Н	Н	Н	Н	Н	Н	Н
Fit Spare Photometer Assembly	PF	Z	Н	Н	Н	Ν	Х	Н	Н	Н	Н	Н	Н	Н
Proto Flt Photometer Assembly	FA	Z	Н	Н	Н	Ν	X	Н	Н	Н	Н	Н	Н	Н
Qual Spectrometer Assembly	Q	Ζ	Н	Н	Н	Ν	Χ	Н	Н	Н	Н	Н	Н	Н
Proto Flt Spectrometer Assembly	PF	Z	Н	Н	Н	Ν	X	Н	Н	Н	Н	Н	Н	Н
Flt Spare Spectrometer Assembly	FA	Z	Н	Н	Н	Ν	X	Н	Н	Н	Н	Н	Н	Н

Environmental Engineering (5 of 9) Environmental Test and Analysis Matrix - Part

			EMC			
EMC Conducted susc. Note 3	EMC Radiared susc.	EMC Cond Emis sions	EMC Radiated Emis s io n	ESD Susceptibility	Magnetic	EMC kolation
Н	Н	Н	Н	Н	Н	X
Н	Н	Н	Н	Н	Н	Х
Н	Н	Н	Н	Н	Н	Х
Н	Н	Н	Н	Н	Н	X
Н	Н	Н	Н	Н	Н	X
Н	Н	Н	Н	Н	Н	Χ
Н	Н	Н	Н	Н	Н	X
Н	Н	Н	Н	Н	Н	X
Н	Н	Н	Н	Н	Н	X
	H H H H H H N H H H H H	HH	HHH	HH	HHH	HHH

Environmental Engineering (6 of 9)

- Requirements & Implementation:
 - Herschel/Planck Environmental Requirements
 Document (D-19155)
 - JPL Requirement/Analysis Used Where No "flowdown" Requirement Specified
 - Resolution of variant requirements addressed as they are identified to JPL by the Instrument
 - Approach: Meet ERD requirements and assess hardware capability

Environmental Engineering (7 of 9) Environmental Testing

- Environmental Test Authorization & Summary (ETAS) Forms Document Tests on Flight Hardware
 - Documents Configuration, Specs, Approved Deviations, As-Tested Levels, & Results
 - Approved and Tracked by Environmental Requirements Engineer (ERE)
 - Used to Provide Documentation for Reviews
- Test Failures Reported and Tracked via P/FRs
- Any Re-testing Based on Need
 - Type and Levels Determined by CogE and ERE

Environmental Engineering (8 of 9) ERD/ESA Specification Differences

- ESA requirements derived from IIDA or IIDB
- No ESA Radiation Requirement (Environment Only)
 - ERD has JPL Derived Requirements
- Low Level Sine Sweep: ESA .5g vs JPL .25g
 - ESA Level Could Cause Excessive Response
- ESA High Level Sine Sweep Levels
 - Cause Excessive Shaker Displacement (5-20 Hz)
 - Potentially Damaging to Hardware (20-100 Hz)
- ESA Random Vibration Levels Below JPL Standard Workmanship Levels
- Working with European partners to resolve differences

Environmental Engineering (9 of 9) Vibration Test

- Vibration Test
 - Warm & Cold Test Performed on BDA EM
 - Warm test on JFET module in work
- Test Results
 - BDA Test Successful

Contamination Control

- Requirements & Implementation:
 - Herschel/Planck Contamination Control Plan (D-19156)
- Detailed Requirements:
 - Assembly, Handling, Test Facilities
 - Class 100,000 (ISO 14644-1 Class 8) cleanroom
 - Class 10 Microdevices Fabrication
- Certification of 183-215 Lab Awaiting Clean Bench Delivery
 - Delivery expected August 2001

Problem/Failure Reporting (1 of 2)

- Requirements & Implementation:
 - Mission Assurance Requirements for Herschel/Planck (D-16642)
 - FIRST/Planck Problem/Failure Reporting (D-19151)
- Non-conforming materials in-process dispositioned on Inspection Report, Non-conforming Materials Report, Destructive Physical Analysis Report
- Problems/unexpected behavior/anomalies reported in P/FR System
- If determined to have impact on European interface, can create NCR
- P/FR system is set up and ready to go

Problem/Failure Reporting (2 of 2)

Begin problem reporting at:

Hardware/ Software	Ground Support Equipment (GSE)	EBB/QM	Flight
Hardware	At GSE Acceptance Test before interface with qualification or flight hardware.	System Electronics: First application of power for performance test prior to assembly level qualification.	System Electronics: First application of power for performance test prior to assembly level flight H/W protoflight testing.
		Mechanical Devices: Starting with assembly level qualification.	Mechanical Devices: Starting with assembly level protoflight testing.
Software	At GSE Acceptance Test before interface with qualification or flight hardware.	Prior to integration.	Prior to integration.

Configuration Management (1 of 3)

- Requirements & Implementation:
 - Mission Assurance Requirements for Herschel/Planck (D-16642)
 - Herschel/Planck Configuration Management Plan (D-16873)
- Baselines, changes, controlled change decisionmaking process
- Scope includes, but not limited to: • Engineering data
 - •Engineering data
 - •Proposal data
 - •Requirement data
 - •Specification data
 - •Design data
 - •Fabrication or assembly data
 - •Test or inspection data
 - •Repair or rework data

- Configuration lists
- •Parts lists and Bills of Material
- •Documentation and drawing lists
- •Problem, failure or anomaly reports
- •Plans
- •Work Package Agreements
- •Interface Agreements/Commitments
- Project/Programmatic Documentation

Configuration Management (2 of 3)

- Configuration Control Begins:
 - Documents/Drawings/Plans: First release
 - "Pre-release" control for drawings
 - QM and Flight Hardware: complete traceability
 - Lot traceability on procured items
 - Serial number traceability on built items
- Configuration Control Services
 - Project Data Management System: Drawings, Waivers, Engineering Change Requests, Project Documents, Master Control Document List, Project Archive
 - Project Library: Work Areas, Reviews, Presentations
 - PFOC: Problem/Failure Reporting System
 - QA: QA Records
 - DMIE: JPL Institutional Documents

Configuration Management (3 of 3)

- Waivers
 - ESA "Request for Waiver" for ESA-approved Requirements
 - JPL Waiver Form for JPL-approved requirements that do not impact post-delivery I&T, launch, operations

Mission Assurance

Backup Charts: Attachments

 Mission Assurance Design Principles Conformance Matrix

Mission Assurance Design Principles (1 of

8)

1.10	4	During development a list of potential credible single point failures shall	Will Comply. Will be documented during design analysis
		be developed, maintained and reported at PMSR, PDR, CDR,	on "Critical Items and Single Point Failures" form.
		ATLO START and Launch.	
1.10	5	The list of accepted potential single point failures shall be communicated	Will Comply. Inputs will be to Instrument Teams for HIFI,
		to the flight operations team. Particular attention shall be given to those	HFI, SPIRE, to Spacecraft Systems/Ops Team for
		items where the risk mitigation plan requires flight operational actions.	Telescope, and to both ? for Sorption Cryocooler.
1.12	1	The project shall plan early in the formulation phase for adequate safety	Comply.
		and mission assurance activity, and shall identify the responsibilities of	
		the participating organizations in tailored Safety and Mission Assurance	
		plans. These plans shall define	
1.13	1a	- Mission Assurance and Independent Assessment	See D-16874 "FIRST/Planck Mission Assurance Plan"
1.13	1b	- System Safety	See D-16875 "FIRST/Planck Safety Plan"
1.13	1c	- Reviews	See Project Implementation Plan (PIP) section on
			Reviews.
1.13	1d	- Reliability Engineering	See D-16874 "FIRST/Planck Mission Assurance Plan"
1.13	1e	- Quality Assurance	See D-16874 "FIRST/Planck Mission Assurance Plan"
1.13	1f	- Electronic Parts Engineering	See D-16874 "FIRST/Planck Mission Assurance Plan"
1.13	1g	- Risk Management	See D-16857 "FIRST/Planck Risk Management Plan"
1.13	2	Assurance engineering shall be integrated and concurrent with the	Comply. Started late due to technology development
		design activity throughout the project life cycle.	(appropriately) not including assurance engineering
			processes. Progressing at an acceptable rate. Still
			"catching up" on HFI and SPIRE.

Mission Assurance Design Principles (2 of

(8)

No.	ltem	Requirement	Disposition
1.13	1	The project shall plan early in the formulation phase for adequate safety	Comply.
		and mission assurance activity, and shall identify the responsibilities of	
		the participating organizations in tailored Safety and Mission Assurance	
		plans. These plans shall define	
1.13	1a	- Mission Assurance and Independent Assessment	See D-16874 "FIRST/Planck Mission Assurance Plan"
1.13	1b	- System Safety	See D-16875 "FIRST/Planck Safety Plan"
1.13	1c	- Reviews	See Project Implementation Plan (PIP) section on
			Reviews.
1.13	1d	- Reliability Engineering	See D-16874 "FIRST/Planck Mission Assurance Plan"
1.13	1e	- Quality Assurance	See D-16874 "FIRST/Planck Mission Assurance Plan"
1.13	1f	- Electronic Parts Engineering	See D-16874 "FIRST/Planck Mission Assurance Plan"
1.13	1g	- Risk Management	See D-16857 "FIRST/Planck Risk Management Plan"
1.13	2	Assurance engineering shall be integrated and concurrent with the	Comply. Started late due to technology development
		design activity throughout the project life cycle.	(appropriately) not including assurance engineering
			processes. Progressing at an acceptable rate. Still
			"catching up" on HFI and SPIRE.
1.13	3	Project quality assurance provisions shall be flowed down to all project	Will Comply. Telescope and HIFI LO contracts, and parts/
		acquisitions.	materials/processes procurements will include QA
			provisions.
1.13	3R	Rationale: Proposals should reflect S&MA approach to customer, and	(Rationale)
		assurance engineering can be involved in the earliest design decisions.	
		Avoids redesign resulting from after-the-fact MA review, and resolves	
		product quality issues as they arise. Commu	
1.16	1	The design shall be reviewed early in the formulation process, and at	Will Comply. There are 805 Lessons Learned. Need to
		appropriate points in the life-cycle, by the engineering team against the	consolidate into what is applicable (some are). Make or
		JPL/ NASA Lessons Learned data base, NASA/JPL Alerts, etc. Each	Get LL to provide a selectable, dispositionable list. Alerts
		item of potential applicability to the project	will be reviewed during parts/materials/processes
	(5		approvals.
1.16	1R	Rationale: Important "lessons" can be drawn from past events which	(Rationale)
		have applicability beyond the original event, which can preclude	
		recurrence of faults/failures, and enable early and cost-effective	
		changes. Some examples of past troublesome areas are:	

esa

No.	ltem	Requirement	Disposition
1.18	1	The project shall perform, with appropriate independent assessment	Will Comply As Applicable, at Project-Element Level and
		support, a total mission risk assessment at inception of project, and as	at Project Level. Peer Reviews and PDR are independent
		defined for reviews.	inputs to this assessment. Define GPMC's role in this.
1.18	1R	Rationale : To ensure JPL and customers are informed of risk to	(Rationale)
		program/project success, and to provide independent assessment back	
		to project to enable possible mitigation approaches outside the project's	
		sphere of influence.	
1.18	2	These assessments shall specifically identify and address risks to	Will Comply. Determine how documented.
		project and program objectives.	
1.18	3	Risk assessments shall specifically include margin assessment as one	Will Comply As Applicable.
1.10	0	of the risk metrics.	
1.19	3	Particular attention should be given to Red Flag PFRs/unverified failures	will Comply.
1 10	20	and ISAS. (new)	(Detionale)
1.19	38	Rationale. Identifies incompatibilities between previous usage and	(Rationale)
1 10	1	A tailored closed lose problem foilure repeting (REP) system shall be	Will Comply Need to accrdinate with COL
1.19	1	implemented. Strategy specific approach and timing for instituting	will comply. Need to coordinate with COI.
		PEPs shall be documented. The IPL electronic problem log/PEP	
		System shall be used	
1 10	1R	Rationale: Uniformity of describing and reporting problems and	(Rationale)
1.10		consistent reference canability enables cross-project understanding of	(rationale)
		risks and implications of the issues	
1 19	2	A process that utilizes a concurrent cognizant project team (Project	Will Comply
	_	Manager for Red Flag PERs) shall be established to close problems in a	
		timely and confident manner. Red Flag PERs or unverified failures shall	
		be compiled and forwarded to the flight op	
1.19	2R	Rationale: To make the flight team aware of those pre-launch problems	(Rationale)
		that may be a significant threat to flight operations activities. (new)	
1.27	3	To enable use of engineering or prototype models as flight spares,	Will Comply.
		appropriate actions shall be taken to ensure hardware safety, reliability,	
		and functionality.	

No.	ltem	Requirement	Disposition
1.31	1	Orbital debris safety considerations shall be addressed during the	Will Comply.
		project formulation phase and during the implementation phase.	
1.31	2	Orbital debris from launch vehicles, spacecraft, instruments or	Comply.
		components thereof (e.g., launch vehicle 2nd or 3rd stage, instrument	
		covers) shall be limited, as much as practical, by employing prudent	
		design and flight operations techniques, as appropri	
1.31	3	The design and flight operations shall employ debris-limiting options	Not Applicable. Ask Peter Barrett how to document this.
		(e.g., propellant depletion burns, cover release inhibits) considering	
		normal and off-normal operations, and certain anomalous events (e.g.,	
4.04	-	explosions, breakups, or collision with othe	Net Angliaghta IDI bagdurana bag ya ankitat dahwa
1.31	4	Identification of orbital debris sources, potential nazards and a debris-	Not Applicable. JPL nardware has no orbital debris
		implementation shall be reviewed at the DDB and finalized at the CDB	sources.
1.31	4R	Retionale: Limit the proliferation of debris that may be a safety threat to	(Rationale)
		personnel or space vehicles (current and future) generated by orbital	
		debris. (new)	
			-
2.8B	5	The design shall keep piece-part silicon junction temperatures less than	Will Comply via worst-case analyses.
		110°C (assuming a mounting surface temperature of 70°C) for the	
		planned circuit design and packaging scheme. Higher junction	
		temperatures may be considered where risk is shown to be	
2.8B	7	Optics, detectors and other unique hardware shall be designed for	Will Comply. See D- 19155 "FIRST/Planck Environmental
		allowable flight temperature limits extended by -15°C and +20°C and	Requirements Document"
		margins may be tailored to specific application based on required	
		operating temperature ranges of sensitive elements.	
2.8C	8	Electronic hardware design shall be capable of surviving power on-off	Will Comply As Applicable. Ask Brad's team do we
		temperature cycling and/or solar exposure cycling of three times the	address this in ERD (how).
		number of worst-case expected mission cycles with worst-case flight	
2.00	0	temperature excursions. Phor to having a missi	Will Comply
2.00	9	the specific application	win compry.
2.80	10	Flight hardware thermal cycling shall be minimized to preclude the risk	Will Comply
2.00	10	of damage	the comply.
2.8C	10R	Rationale: Thermal cycling has been implicated as a major contributor	(Rationale)
		to faults/problems	······································

HSO/Planck SPIRE Detector Arrays

Mission Assurance Design Principles (5 of 8)

No.	ltem	Requirement	Disposition
2.21	2	The Design shall be assessed for robustness through a program of	Will Comply. Need to determine if this should be in MA
		analyses tailored from the Reliability Analysis Handbook Guidelines	Plan (Reliability Section) or in Qual Plans (to be written).
		(JPL D-5703) or Contractor/Partners equivalent, including Part Parameter	
		Data from available databases, and Derating Guide	
2.21	2	- Worst-case circuit analysis or Voltage-Temperature- Frequency margin	-
		testing - to demonstrate performance margin.	
2.21	2	- Failure mode effects functional analysis (FMEA) at the	-
		system/subsystem functional block diagram and interface levels -	
		identifies potential critical single failure points.	
2.21	2	- System interface circuit, functional, and fault analyses (mechanical,	-
		thermal, etc.) - demonstrate that faults in one subsystem/system will	
		not propagate or functionally degrade other subsystems.	
2.21	2	- Failure Modes Effects/ Criticality Analyses (FMECAs) are generally	-
		applied to electronics and electronic functional interfaces, and Fault Tree	
		Analyses (FTAs) to devices and mechanisms).	
2.21	2	- Parts stress analyses - verify margins.	-

Mission Assurance Design Principles (6 of 8)

No.	ltem	Requirement	Disposition
2.22A	0	General	-
2.22A	1	Appropriate derating of parts shall be incorporated in electronics design.	Will Comply. Qualification Plans? need to identify derating approach for custom devices.
2.22A	2	The availability and cost/risk effectiveness of grade-one parts shall be	Will Comply.
		considered before COTS parts become the design baseline.	
2.22A	3	An early design parts list review shall be performed against documented	Will Comply. "Catching up" with HFI and SPIRE.
		requirements to:	
2.22A	3a	- identify long-lead time parts.	-
2.22A	3b	- assess radiation dose, latch up and Single Event Effects (SEE)	-
		capability/compatibility.	
2.22A	3c	- minimize the number of different part types.	-
2.22A	3d	- provide parts vendor assessment information.	-
2.22A	3e	- assure all known parts issues are identified and closed early.	-
2.22A	3f	- benefit from Parts Engineering/independent assessments and	-
		knowledge from other missions.	
2.22A	3g	 provide data to project risk data base. 	-
2.22A	3h	- cost-effective match between design and parts capabilities.	-
2.22A	4	The root cause of electronic parts failures shall be determined.	Will Comply.
2.22A	4R	Rationale: Avoids repeating same or related failure, and develops	(Rationale)
		effective and efficient corrective action that addresses underlying	
		cause.	

Mission Assurance Design Principles (7 of 8)

No.	ltem	Requirement	Disposition
2.25	1	System Safety analyses, inspections and tests, and required reports,	Will Comply.
		shall be performed according to the guidelines and requirements of JPL	
		Standard for System Safety (D-560). These include:	
2.25	1a	- A preliminary hazard analysis- in support of preparation of System	-
		Safety Plan	
2.25	1b	- A Safety Compliance Data Package	-
2.25	1c	- Safety tests and/or inspections, and Facility and operational Safety	-
		Surveys	
2.26	1	Environmental design assessments and verification tests shall be	Will Comply As Applicable. See D-19155 "FIRST/Planck
		performed to verify the design against the specified environment. These	Environmental Requirements Document"
		shall be performed at the unit, and system level, considering the	
		requirements and guidelines of JPL D-14040, "Proces	
2.26	1a	Analyses - Single Event Effects (SEE), micrometeoroid, pressure	-
		profile, magnetic fields, etc.	
2.26	1b	Unit-level Qual random vibration, pyro, thermal, EMC, and Acceptance	-
		random vibration and thermal	
2.26	1c	System-level/ Protoflight random vibration and/or acoustic, pyro shock,	-
		thermal vacuum, EMC	
2.27	1	A minimum power-on operating time shall be established for all	See below.
		electronics as follows:	
0.07	2	Linit Lovel prior to choose the integration minimum of 200 hours	Will Comply Current requirement states 100 hours are
2.27	2	Unit Level prior to spacecrait integration minimum of 200 hours	delivery plue 500 hours are levened. Need to reward
			delivery, plus 500 hours pre-launch. Need to re-word
			requirement for clarity, and application to deliveries
0.07	2	Quatern Lough might to lough minimum of 200 hours (Q14000 hours)	(assembly versus subsystem).
2.27	3	System Level prior to launch minimum of 300 nours (Goal 1000 hours)	IBD. Does ESA have op hrs reqt?

Mission Assurance Design Principles (8 of 8)

No.	ltem	Requirement	Disposition
2.28	1	JPL source QA provisions shall be provided for critical	Will Comply.
		processes/products and strategically applied to high risk suppliers.	
2.28	2	Analyses, inspections, and/or tests shall be performed to ensure that	Will Comply.
		the as-built product is consistent with the as-designed Baseline	
		Configuration.	
2.28	3	Quality assurance provisions, as defined in the Project QA Plan, shall	Will Comply. Applicable to the extent of JPL ATLO
		be implemented throughout the ATLO process. Such provisions may	responsibilities.
		include:	
2.28	3a	- Work proactively in the safety and contamination control activity to	Note: assure shipping/handling documents include these.
		ensure hardware integrity.	
2.28	3b	 Provide configuration support for test and flight software. 	-
2.28	3c	 Assure that project documentation requirements are met. 	-
2.28	3d	- Conduct a physical verification of all hardware - to ensure that it meets	-
		the workmanship, CM and other project requirements.	
2.28	3e	- Witness Critical operations.	-
2.28	3f	 Maintain spacecraft/instrument configuration log. 	-
2.28	3g	 Remain an integral part of the SRCR/HRCR process. 	Note: need to assure HRCRs are in Reviews Plan (PIP).
LES			-
3.3	1	First-time, in-flight events/activities, particularly mission critical or	Will Comply.
		irreversible events shall receive special development attention (e.g.,	
		analyzing what ifs, reviewing Red Flag PFRs, unverified failures/ISAs,	
		identifying need for additional testing	

Gerald Lilienthal

BDA Structure

- Parallel implementation for CQM hardware
 - If CQM design acceptable (0.12 g^2/Hz TBD) then:
 - Fabricate STM
 - EM modification to accommodate higher loads
 - Test new EM while CQM hardware is on order
 - If a higher level is required (>0.12 g^2/Hz TBD) then:
 - Fabricate STM
 - EM modification to accommodate higher loads
 - Test with higher denier kevlar
 - Negotiate new system resources
 - Fabricate CQM hardware
 - Negotiate schedule and budget revisions

BDA Components

- Bolometers Go ahead with fabrication
- Kapton Cable
 - Complete and test EM2 cable, then fabricate CQM
- Load Resistors and Backshorts Go ahead with fabrication
- Horns Go ahead with delivery of photometer horns; await data and then start fab of spectrometer horns
- Packaging process
 - EM BDA to be packaged and tested with EM hardware
 - Process review to take place prior to CQM build

JFET Assemblies

- Complete and test EM JFET membranes for performance
- Begin fabrication of STM and CQM hardware
- Qualify assembly processes on EM modules and EM membranes

RF Filters

• Await tests on the EM JFET modules prior to fabrication

Cables

- Harness definition document is nearly complete
- Routing design of cables has not started at MSSL
- Fabricate and qualify cables at manufacturer prior to drop shipment to RAL Delivery could be negotiated if there are budget or schedule problems

Testing Program

- Design of test facilities is completed
- Definition of test program completed
 - Qual Plan signed off
 - Test Plan nearly complete
 - Test procedures to be written
- Test Readiness Review scheduled prior to CQM testing

13.0 RFA Summary

Jamie Bock

Responses to 2000 Peer Review

Programmatic and technical comments from last year's review were presented and responded to at the Confirmation Readiness Review (7/2000) as follows

We collected 36 technical RFAs from the review panel

25 Accepted11 were taken on an Advisory basis0 Rejected

We continue to value your input

1. Documentation of requirements, interfaces, deliverables. *Action: Completion of business agreement.*

2. Bound scope of technology development. Action: Current performance levels are adopted as specifications; design values incorporate margin.

3. Better define testing interfaces with European partners. Action: a. JPL delivers directly to RAL, 3 months later. QMW personnel participate in detector testing at JPL.

b. JPL verifies performance of CEA warm electronics.

4. Better define interface of JFET modules. *Action: JFET enclosure fabricated in Europe, resulting in simple ICD.*

5. Tailor schedule and deliverables to match budget profile. *Action: CQM deliverables limited to 2 array assemblies.*

6. Workforce limitations. *Action: Increasing workforce, first at MDL.*

HSO/Planck SPIRE Detector Arrays

SPIRE REVIEW BOARD RFAs (1)

#	Description	Disp.	Response
1	Develop understanding of Kevlar stress as a function of temperature and creep as a function of time. (HM)	Accept	Unit was designed based on published contraction and creep data.
2	Negotiate reduction in deliverables from 15 units to 10. (GS)	Accept	Baseline is 2 CQM BDA units, 5 PFM units and 3 new FSM units, refurbished from CQM units.
3	Increase 500 g mass allocation for Bolometer Assemblies to ~600g with mass margin. (GS)	Accept	Done.
4	Assess number of total JFET modules available vs. cost, mitigated against risk of possible failures during integration. (GS)	Accept	Baseline is FSM JFET units are the CQM JFET units.
5	Get hard numbers for limits on required max heat loads at all stages; try to increase power budget for the arrays from 10 microwatts to 20 microwatts. (MD)	Advisory	Impact of additional heat load raises operating temp. Dissipation spec defined as 15 uW pending systems study.

SPIRE REVIEW BOARD RFAs (2)

#	Description	Disp.	Response
6	Is there a well understood definition of time constant? What about the 2-T model applied to spiders? Which definition holds? (MD)	Accept.	Time constant is defined as drop in optical response by 0.7.
7	Is there a spec on the Beam Asymetry and the Width Scatter across the plane? Get these into the agreements. (MD)	Advisory.	Specification on feedhorn beams (BDA-FUN-10, 11 single-mode/multi mode). This is a specification on optics.
8	Get a better definition of final requirements for FPA motion and internal resonances. (MD)	Accept.	Done. Requirement reflected in BDA-TEC-04, BDA-FUN-04
9	Define responsibilities for light leaks into the focal plane. (PR)	Accept.	MSSL is responsible for baffling of 2-K and 4-K boxes.
10	Develop a spec on the RF attenuation of the 2K heat strap penetration.	Accept	Spec to be less than BDA-STR-03.

SPIRE REVIEW BOARD RFAs (3)

#	Description	Disp.	Response
11	Improve the feedhorn efficiency testing by making a cryogenic black body the same diameter as the Lyot Stop. (PR)	Advisory.	We measure total efficiency and beam patterns.
12	Consider use of weak spring in place of PTFE and multiple turns on pulleys in place of glue. (PR)	Advisory.	Determine need based on test of EM unit, but can be accommodated.
13	Investigate the issues of heat dissipation in Kevlar during shake, temperature stability of Kevlar and the issue of fatigue. Utilize quantitative measurements of resonance damping. (PR)	Advisory.	Address kevlar fatigue via vibration tests on prototype unit. Unit has already survived preliminary vibration test.
14	Investigate the issue of focal plane shift during shake; first with full tension, then with reduced tension strands. (PR)	Accept.	Will implement.
15	Design for minimum number of interfaces to reduce effects of uncertainty in boundary resistance. Consider use of distributed one dimensional heat flow single pole filter of a suitable magnetic alloy as used on Benoit refrigerator. (PR)	Accept.	Will reduce number of interfaces. Investigating passive filtering. Will measure temperature gradients in array assembly.

SPIRE REVIEW BOARD RFAs (4)

#	Description	Disp.	Response
16	Establish a more structured approach and document the deliverables (in addition to the hardware) between organizations. (SK)	Accept.	Defined in business agreement.
17	Document the contamination requirements and investigate the suitability of thermal grease for their application. (SK)	Accept.	Any application of grease must be consistent with contamination specifications.
18	Investigate an applicable specification (similar to MIL-461) for EMC/EMI requirements and discuss with SPIRE Instrument Scientist (SK) Make part of BA. (GR)	Accept.	Specifications are listed in sub- systems specification document. Levels are still TBD.
19	Establish and document the qualification plan to address all aspects of performance, test, radiation, manufacturing, process, etc. (SK)	Accept.	All test and assembly procedures will be written and documented prior to CQM testing.
20	Investigate the effects of radiation on the JFETs and document the results to meet environmental requirements. Utilize resident expertise at JPL for radiation effects.	Accept.	We concur.

SPIRE REVIEW BOARD RFAs (5)

#	Description	Disp.	Response
21	Develop a complete qualification plan to verify mission life and radiation performance. (SK)	Accept.	We concur.
22	Consider doing away with corrugations due to their limited efficiency improvement. Determine if multi-mode smooth bands are adequate using HFSS and a larger entrance hole. (GR)	Accept.	We concur.
23	Use electronic parts acceptable for flight to ESA/CEA. Prepare a list of critical parts and negotiate selections. (GR)	Accept.	Readout prototype developed at CIT will use ESA qualifiable parts.
24	Define the whole train and quantify how the alignment of optics contributes to offsets. (GR)	Advisory.	Optical tolerance budget defined in optics SSSD (document #) and optical alignment plan (document #).
25	Conduct a literature search of thermal conductivity of greases and joints. Look at Kittel paper. (MD)	Advisory.	Design needs to minimize effects of interfaces.

#	Description	Disp.	Response
26	Use Cobalt 60 source to simulate cosmic ray hits and to calibrate time constant of detectors instead of taking photometer to an accelerator. (MD)	Advisory.	We take this under advisement.
27	Investigate the use of stacked washers for the corrugated feeds. Look at Dragone's work at Bell Labs and Paul Goldsmith's book. (MD)	Advisory.	We take this under advisement.
28	Simulate, with HFSS, the use of a choke at the bolometer/horn interface to stop leakage out the sides of the cavity. (MD)	Advisory.	We take this under advisement.
29	Determine if the 25 micron alignment requirement can be reduced, given the pixel size. (RR)	Accept.	Specification reduced to 125 um.
30	Run a launch vibration test with before and after alignment measurements. (RR)	Accept.	We concur. In process.

#	Description	Disp.	Response
31	Carefully analyze the tension cord design for slipping past the rollers, its damping, heating and alignment performance. (RR)	Accept.	We agree and are conducting vibration tests on prototype.
32	Try to converge quickly on the development of all key requirements needed for important decisions. (RR)	Accept.	Developed in business agreement and sub-system specification.
33	Test Kevlar straps early and often at LN and room temperature. Test to destruction to determine margins. Develop cheap metrology for tests. (PR)	Accept.	We agree and are conducting vibration tests on prototype.
34	Corrugated horns, although enthusiastically endorsed in the UK, are high risk, higher cost, and more difficult to inspect than smooth horns. They are unlikely to approach theoretical performance as closely as smooth horns. Consider their use only where there is a substantial >10% theoretical advantage. (PR)	Accept.	We concur.
35	Establish a spec on the fridge. Determine what your (Delta T)/T temperature attenuation requirement will be. Is the thermal shunt better?	Accept.	Specification on fridge in BDA-HCO 01, 02, and 03. Investigating passive solutions.

SPIRE REVIEW BOARD RFAs (8)

#	Description	Disp.	Response
36	Fabricate test blocks of horns with both corrugated and smooth feeds to save time. (MD)	Advisory.	Prototyping of horns will be completed before CQM delivery.
37			
38			
39			
40			

14.0 Summary/Objectives

Gerald Lilienthal

Charter

- Evaluate the readiness of the SPIRE Detector Subsystem to proceed into CQM ٠ fabrication, assembly and test
 - Previous concerns and deficiencies considered and resolved
 - Requirements flowdown from instrument
 - Requirements traceability and compliance matrix
 - Documentation of requirements and interfaces
 - Detailed design is adequate stable and well documented
 - Detailed design responds to requirements
 - Tradeoffs understood
 - Demonstration of technology
 - Configuration control ٠
 - Implementation documentation is adequate (AIDS, Process Sheets, Travellers)
 - Manufacturing process design
 - GSE design and certification of test equipment
 - Integration and test plans
 - Reliability analysis and qualification plans
 - Delivery, handling and shipping plans
 - Product assurance plans are adequate
 - Risks understood and plans exist for managing them

Success Criteria

- Designs and processes meet requirements and are sufficiently defined and documented to proceed with development within the risk policy of the project
- Plans for resolving remaining problems are consistent with available resources and risk policy
- Test approach and test product status is thorough and acceptable with verifying compliance with the requirements
- Technology has been demonstrated by test and correlated to the analyses

Recommendations

- All interfaces should be frozen by September, 2001 (ICD's should be signed off)
- Vibration levels for the BDAs should be set to the BDA capability or the instrument must accept the risk
- Comment on the benefit of coordination between IPAC and the SPIRE instrument team
- Comment on potential descopes to our program if they are necessary