

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 1 of 37

 SPIRE-IFS-DOC-001622

SPIRE-DPU Virtual Machine

ISSUE: 2.5

 Name and function Date Signature

Prepared by: Riccardo Cerulli-Irelli 27/03/2003

Verified by:

Approved by:

virtualmachine_spire.doc
Printed on 19/07/2007

CNR.IFSI.2003.TR01

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 2 of 37

Distribution List :

K. King SPIRE
S.D. Sidher SPIRE
J.L. Auguères SPIRE
C. Cara SPIRE

R. Orfei IFSI
A. Di Giorgio IFSI
S. Molinari IFSI
S. Pezzuto IFSI
S. J. Liu IFSI

Document Status Sheet:

Issue Revision Date Reason for Change
 Draft 1 11/06/2002 Initial issue
 Draft 2 Added ICALL and TABLE instructions

New program figures with many new features.
 Draft 3 23/09/2002 Added ICPT, ICPF, TER13, TER15, TER17, EVNT, TXTBL instructions.

New input file to simulate READ data words.
 Draft 4 3/02/2003 Added IRCALL, IRCPT, IRCPF

1.0 27/03/2003 Changed packet definition in sect. 4.3
 10/09/2003 Update definition of TXTBL in sect 3.7

1.1 24/2/2004 Added NAME, VERSION and CVSID in sect 3.7
1.2 19/04/04 Typo corrections

More info on VM instructions (paragraph 3.7)
1.2 15/7/2004

18/7/2004
Added LTIM instruction (paragraph 3.7)
Added EVERR instruction (paragraph 3.7)
Modified TLC packet wit addition of w16[6]: structure ID

2.0 6/9/2004 Added a pre-processor (paragraph 3.7.1, 6.1)
2.1 15/9/2004 Added XREQ new instruction § 3.7

Added TRST new instruction § 3.7 § 4.2
Removed bug on multiple INC at the same level
Optimisation is now obsolete and discouraged § 4.1

2.1.1 12/11/2004 Added foot note for opcode 50 – 54
2.2 25/02/2005 Added SVEV new instruction § 3.7

Modified parameters in EVNT and EVERR § 3.7
2.3 9/03/2005 Added RSVEV new instruction § 3.7
2.4 22/04/2005 Added VMSTP new instruction § 3.7
2.5 28/11/2005 Added OVRD new instruction § 3.7

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 3 of 37

Reference documents

Document
Reference

Title

RD1 Contents of a SPIRE VM Table File. Ref: SPIRE-RAL-NOT-001907

Acronyms

CDMS Central Data Management System
CI Critical instruction
CNR Consiglio Nazionale delle Ricerche
CPU Control Processing Unit
DPU Digital Processing Unit
FCU Focal plane Control Unit
FIFO First In First Out storage element
FIRST Far InfraRed and Submillimeter Telescope
HK HouseKeeping
HRS High Resolution Spectrometer
HW HardWare
DPU Digital Processing Unit
I/F Interface
IFSI Istituto di Fisica dello Spazio Interplanetario
ISR Interrupt Service Routine
LCU Local Oscillator Control unit
LSB Least Significant Bit(s)
LSU Local oscillator Source Unit
MSB Most Significant Bit(s)
mutex Mutual Exclusive flag
NA Not Applicable
OBS On-Board Software
OS Operating System
PC Program Counter
PDU Power Distribution Unit
RT Real Time
S/C Spacecraft
SPIRE Spectral and Photometric Imaging REceiver
SS Subsystem
SW SoftWare
TBC To Be Confirmed
TBD To Be Defined
TBW To Be Written
TC Telecommand
TM Telemetry
VM Virtual Machine
WBS Wide Band Spectrometer

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 4 of 37

Table of contents

Reference documents ..3
1 Introduction ...5
2 Reason for a Virtual Machine ...5
3 The Virtual Machine ...6

3.1 Critical instructions (CI)..6
3.2 VM structure ...6
3.3 VM_Map Table ...7
3.4 VM Program..7
3.5 VM program exec TC ...9
3.6 VM Multitasking ...9
3.7 VM Instructions...10

3.7.1 The generic pre-processor ...12
3.8 Instructions Format ...13

4 VM Compiler/Simulator ...14
4.1 Compiler..14
4.2 VM Simulator..18
4.3 Packetiser ..19
4.4 Directory structure...21

5 Example ..22
6 Appendix ...29

6.1 The Generic PreProcessor ...29

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 5 of 37

1 Introduction

 This document describes the special command line interpreter of SPIRE-DPU, implemented in order to
control the SS (via the LS I/F) in all the situation where the variations in time distance between commands must be
less than few milliseconds. Such a command line interpreter can be seen as a kind of an elementary computer with a
simple pseudo assembler commanding language that from now on we call virtual machine (VM).
The document describes also the developing SW tools associated with the VM which consists in a compiler, a
simulator and a VM-program TC packet generator.

2 Reason for a Virtual Machine

 The driving requirement for the VM is the time sequence constraint between SS commands during an
observation. The time sequence jitter on the SS commands (LS I/F) goes from seconds down to 10us.
Consider the following example:

Cmd1 @ T

Cmd2 @ T + t1 +-5ms = T2

Cmd3 @ T2 + t2 +- 100ms = T3

Cmd4 @ T3 + t3 +- 5us = T4

It is clear that, in a multi-task OS as Virtuoso, the only way to achieve the 10us and probably a 10 ms constraint is via
an Interrupt Serviced Routine (with a high priority interrupt). It is also evident that once it has been decided to
implement the interrupt environment, every command in the sequence should be sent via interrupt, so that all the
commands will have the same (10 us) jitter in the time sequence.
The HW problem to generate the sequence of different period interrupts, is solved by using the DPU programmable 32
bit (1 MHz clock) down counter. This down counter starts decrementing its content from the last preset initial value,
and generates an interrupt on zero value. Then the counter restarts again the cycle, beginning from the last preset initial
value loaded before the zero count.
Now we have a mechanism which forces the execution of a routine (ISR_3) at pre-defined time intervals. Entering the
routine, the relevant SS command must be sent. In order to preserve the time jitter constraint, this command must be
already prepared (in a table).
After the command is sent (written in the low speed serial output I/F), we might want to change the down counter
initial count for the next interrupt, the only time constraint now is to exit from the ISR before the present terminal
count. This new “initial count” value will be stored in some table, let’s say we store this value in the same table with
the command sequence.
We can build a table as a sequence of two words: command and initial count, and perform always the same two
operations inside the ISR:

• Increment the table pointer and send the command stored at the current table location
• Increment the table pointer and preset the initial count stored at the current table location

This scheme is not the most efficient in the case when a series of commands can be equally spaced in time and use the
same initial count with no need to rewrite it. Moreover we have to disable/enable the LS_Task, depending on the
interval time between the SS observation commands (HK are collected via LS_Task), as an example we might decide
that every time the delay between two commands is grater than 10ms we want to enable LS_Task. So we have to build
a table that is interpreted inside the ISR: every time an interrupt occurs a number of actions (table instructions
beginning at the current pointer) is performed, the first one (time critical) being a command to SS and the following
being some type of DPU internal commands.
Now we have come to a long table containing all the SS and DPU observation commands already somehow
interpreted by an OBS routine (ISR_3). The first thing to note is that the commands are repeated in blocks as in a
computer loop, so why not to add an DPU internal loop command to the table? Well to do so we must also define
some local variable (register R[256]), then we could add other simple features like subroutine etc.
Ok we have come to a Virtual Machine implemented inside the ISR_3 routine.

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 6 of 37

3 The Virtual Machine

3.1 Critical instructions (CI)
 The VM is used to send timely synchronized commands to the SS via the LS I/F, each command is
transmitted when the HW down counter generates an interrupt. This SS commands are here defined as “critical”
instructions (CI), each CI may be followed by a number of non CI which are executed during the same interrupt cycle.
The DPU has just one LS I/F which must be used both by the VM and by the LS_Task for non time critical commands
like HK request et al. In order to avoid collision on the LS I/F , a VM CI which lock the I/F has been introduced. This
CI, which is effectively a mutual exclusive flag (mutex), must be executed at least 2 ms prior the use of the I/F by the
VM in order to allow the termination of an HK request to a possible running LS_Task.
The last “dummy” CI is a no operation (NOP) instruction, to be used whenever a time gap must be introduced in the
program. Typical use of NOP is before a READ instruction.

3.2 VM structure
The main components of the VM are:

• Program area
• VM-CPU clock
• Interpreter routine
• Local variable storage

Program area - This is a 32 bit words table (array of up to 32 Kword) containing the SS commands and local control
instructions which forms a VM program. The table effectively represent the program/data memory area of the
VM, with the table position (array index) acting as the program counter (PC). The table will contains a
number of VM programs with associated tables of constants and subroutines. Each program is identified by
the table position (array index) of the entry point.

VM-CPU clock - As mentioned the VM clock is generated by a down counter whose period is dynamically modifiable
by the VM. This variable period clock, triggers an interrupt signal (IRQ3) which force the DPU CPU to
execute the interpreter routine, thus executing a block of VM instructions.

Interpreter routine – The interpreter routine executes a block of VM instructions starting at the present PC up to
(excluding) the next “critical” instruction CI (SS command, mutex or NOP instruction). So, for every VM-
CPU clock, a block of instructions is executed, the first one (time critical) being a command to SS and the
following being some type of DPU internal commands. This scheme effectively minimize the SS commands
time jitter.

Local variable – In order to implement simple mathematical operations on SS commands, pass parameters to
subroutine and keep track of “for” loops counts, a number of internal “global” registers are implemented.
The 256 registers (R[0] … R[255])1 are statically defined inside the interpreter routine and are common to the
stored VM programs.

1 Register R[255] is also used as offset in the VM instructions ICPT and ICPF. R[254] may be used by the simulator
to mimic the low speed READ port.

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 7 of 37

3.3 VM_Map Table
The DPU will contains a number (128 TBC) of VM tables (program area), each table with a maximum dimension of
32 Kwords may contain one or more VM program and may reside everywhere in the DPU data memory area. The
physical address and the dimension of each VM table being stored in the 128 x 2 (TBC) VM_Map table.
The VM program “scope” is the actual VM table, but using the “move/store indirect” or “call subroutine indirect” may
also span (using the VM_Map) to the other tables.

VM_Map
Address VM tbl 0 Length VM tbl 0
 Address VM tbl 1 Length VM tbl 1

Address VM tbl n Length VM tbl n

Address VM tbl 127 Length VM tbl 127

3.4 VM Program
Each VM table has been divided in 3 sections:

• Code relocable area
• Code absolute (library subroutine) area
• Parameters area

Code relocable area - In this area are stored the different VM programs, each program associated to an observation

routine or time critical task. The programs here are completely relocable, to achieve this goal all “JUMP”
instructions, with the exeption of the “CALL SOUBROUTINE”, are relative.

Code absolute area - In this area are stored the “subroutine libraries” of the VM programs. As the “CALL

SUBROUTINE” is implemented as a jump to an absolute address, VM instructions here coded are supposed
to be relatively stables. Whenever the entry points of the library changes, the VM programs referring to the
library must be updated.
It has to be noted that in this context the term absolute refer to the VM table (offset from the beginning of the
table), so that each table can still be moved in the DPU memory with no modification to the VM code.

Parameters area - Each observation configuration/execution routine, store in a dedicated fixed portion of this area all

the observation parameters.

VM tbl 0

VM tbl 1

Store indirect n

VM tbl n

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 8 of 37

PC VM Program area
0
1
2

715

1033

PO

P1

A number of baseline VM programs, with functionality for the foreseen observation modes, will be stored on the DPU
VM tables. These programs, stored in the VM memory area, may be modified/reloaded via TC, thus easing the need
for OBS patching. The modification/addition is a simple table upload which can be performed via few TC packets to
be compared to the lengthy and possibly dangerous OBS patching procedure. The compiler/simulator program
described in the next chapter generates (also) the TC packet of the compiled VM program.

C
od

e
re

lo
ca

bl
e

ar
ea

Pa

ra
m

et
er

s a
re

a

VM program #0, entry point at
PC=0, using (some) constants stored
at PC=P0

VM program #1, entry point at
PC=715, using (some) constants
stored at PC=P1

C
od

e
ab

so
lu

te
 a

re
a

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 9 of 37

3.5 VM program exec TC
The VM program execution telecommand must indicate:

I_map – index of the VM_Map table pointing to the VM table with the program
I_prg – index in the program entry point area of the VM table with the address of the program
N – number of run time parameters of the VM program to be stored in the first R[256] VM registers
R[0] – first parameter
……
R[n-1] – last parameter

3.6 VM Multitasking
In order to implement a VM multitask, SPIRE will use two types of VM: a “Real Time” VM and a “non-Real Time”
VM.
The Real Time VM is the one just described which use the hardware down counter as “CPU clock”, the highest
priority interrupt line (IRQ3) and direct access to the low speed interface via the lock mechanism (mutex). This VM
may execute just one program at the time and is used in time critical tasks.
The second non-Real Time VM is the same as the Real Time one but use the Virtuoso OS sleep instruction to
implement the “CPU clock”, and utilise the same LS_Task used by HK and normal commanding via a higher priority
queue thus avoiding the lock mechanism. This second VM can execute different programs in a multitasking-like way
utilising the multitask feature of Virtuoso OS.
The VM code for the non RT VMs is the same used by the RT one. In order to maintain full compatibility, the sleep
time will refer to the time interval between the next critical instruction and the followings.

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 10 of 37

3.7 VM Instructions
The set of “VM assembler” instructions follows:

Instr.
code
(hex)

VM asm
Mnemonic

Description

Code
type

Critical instructions

(7) CMD Send_Command(addr, code,val)2 Send command code/val to SS addr.
Command=0x80000000 | (add & 0x7) <<28 | (code & 0xFFF)<<16 | val &
0xFFFF

0 RCMD Send_Command_Reg(addr, code, reg)2 Send command code/R[reg] to SS
addr. Command=0x80000000 | (add & 0xF) <<28 | (code & 0xFFF)<<16 |
R[reg] & 0xFFFF

3

4 RSND Send_Reg _Command (reg) Send command R[reg] to SS 1
1 MTX MTX 1/0 => Mutex(On/Off) Lock/Unlock low speed I/F port 1
2 NOP NOP() No operation 1

Non critical instructions

8 TIM Set_Timer(val)3 Set counter value [us] for next IRQ3. Max value for val is
16,777,215 [us]

1

B LTIM Set_Timer(val)3 Set counter value [ms] for next IRQ3. Max value for val is
4,294,967 [ms]

1

9 RTIM Set_Timer(R[reg])3 Set counter value [us] for next IRQ3 1
A READ Read_HK_Reg(reg) Store received HK in R[reg]

For simulation purpose, data is read from an optional file or R[254] register
(see chapter 3.9)

1

C OVRD OVRD 1/0 => Override (On/Off)4 the command inhibition system, up to the
next OVRD instruction.

1

10 RINC Increment_Register(reg) R[reg] = R[reg] + 1 1
11 RDEC Decrement_Register(reg) R[reg] = R[reg] - 1 1
12 RSET Set_Register(reg, val32)5 R[reg] = val32 1
13 RADD Add_To_Reg(reg, val32)5 R[reg] = R[reg] + val32 1
14 RSUB Sub_To_Reg(reg, val32)5 R[reg] = R[reg] – val32 1
15 RMUL Multiply_To_Reg(reg, val32)5 R[reg] = R[reg] * val32 1
16 RDIV Divide_To_Reg(reg, val32)5 R[reg] = R[reg] / val32 1
18 RAND And(reg, val32)5 R[reg] = R[reg] & val32 1
19 ROR OR(reg, val32)5 R[reg] = R[reg] | val32 1
1A RSHR Reg_Shift_Right(reg,val) R[reg] >>= val 2
1B RSHL Reg_Shift_Left(reg,val) R[reg] <<= val 2
1F XREQ Indexed_Reg_Equate(reg1,reg2) R[R[reg1]]=R[R[reg2]] 2
20 RREQ Reg_Equate(reg1,reg2) R[reg1] = R[reg2] 2
21 RRAD Add_Register_To_Register(r1,r2,r3) R[r1]=R[r2]+R[r3] 4
22 RRSB Sub_Register_To_Register(r1,r2,r3) R[r1]=R[r2]-R[r3] 4
23 RRMP Multiply_Register_To_Register(r1,r2,r3) R[r1]=R[r2]*R[r3] 4
24 RRDV Divide_Register_To_Register(r1,r2,r3) R[r1]=R[r2]/R[r3] 4
30 JMPR Jmp_Relative(vmAddr) PC = PC + vmAddr 1
31 RJPR Jmp_Relative_Reg(reg) PC = PC + R[reg] 1

2 Here the C language syntax is used (<<n => left shift n positions, & => AND, | => OR, 0xhh => Hex constant).
3 This time is the interrupt period valid after the next instruction. The minimum interrupt period is the maximum value
between the time used by the I/F to transmit a command (100 us) and the actual duration of the ISR3. For the time
being let’s fix it to 1 ms. This period is the minimum period between two SS commands
4 The simulator mark with “*” the “overridden” commands
5 These instructions are coded as two consecutive 32 bit words, the second containing the plain value of “val32”. Do
not put this opcode after a “skip” (RSZ, RSGT, RSLT) instruction.

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 11 of 37

Instr.
code
(hex)

VM asm
Mnemonic

Description

Code
type

32 JPNZ JumpNZ(reg, vmAddr) If (R[reg] !=0) PC = PC + vmAddr 2
33 RSZ Skip_Reg_Zero(reg) If (R[reg] ==0) PC = PC + 2 1
34 RSGT Skip_Reg_GT(reg1,reg2) If (R[reg1] > R[reg2]) PC = PC + 2 2
35 RSLT Skip_Reg_LT(reg1,reg2) If (R[reg1] < R[reg2]) PC = PC + 2 2
40 CALL Call_Subr(vmAddr). Up to 16 nested subroutine.

PC = vmAddr and remember the present PC
1

41 RET Return() Return from subroutine 1
48 WRT Write(reg) Write R[reg] to DPU frame/HK 1
49 RMOV Move_To_Reg(reg,[vmAddr]) R[reg]=val32[vmAddr]

Copy the value stored at address vmAddr to R[reg]
2

4A RRMV Move_To_Reg(reg,[reg1]) R[reg]=val32[R[reg1]]
Copy the value stored at address R[reg1] to R[reg]

2

4B RSTO Store_From_Reg(reg,[vmAddr]) val32[vmAddr]= R[reg]
Copy the value stored in R[reg] at address vmAddr

2

4C RRST Store_From_Reg(reg,[reg1]) val32[R[reg1]] = R[reg]
Copy the value stored in R[reg] at address R[reg1]

2

50 TER13 Send_TC_ExecPkt_13()6 Send telecommand execution packet 1,3 1
51 TER15 Send_TC_ExecPkt_15(stepNo)6 Send telecommand execution packet 1,5

with stepNo
1

52 TER17 Send_TC_ExecPkt_17()6 Send telecommand execution packet 1,7 1
53 EVNT Send_Event(Nreg, reg) 6 Send event with

R[reg] = Event ID
R[reg+1] = parameter #1
....
R[reg+Nreg-1] = parameter #(Nreg-1)

2

55 EVERR Send_Exception_Event(Nreg, reg) 6 Send Exception event with
R[reg] = Event ID
R[reg+1] = parameter #1
....
R[reg+Nreg-1] = parameter #(Nreg-1)

2

54 TXTBL Transmit_Table(VM_Map_Idx) 6 Signal to the OBS to transmit the data
stored at address VM_Map[VM_Map_Idx] in a TM frame [Auxiliary
science Data Report (21,1) APID5 SID=0x020B]. The first word is the TM
frame length (including itself) set to zero by OBS when the operation is
completed.

1

56 SVEV Set_Virtuoso_Event(EventNo) Set the Virtuoso OS event No EventNo 1
57 RSVEV Set_Virtuoso_Event_From_Reg(reg) Set Virtuoso OS event No R[reg] 1
58 VMSTP Stop_VM(Val) 5 Terminate VM number Val (Val=0 is the real time VM) 1

Indirect instructions via VM_Map table

60 ICALL Call_Subr(VM_Map_Idx, Offset) 7 . Up to 16 nested subroutine.
Call subroutine at address specified in VM_Map[VM_MapIdx] plus Offset

2

61 ICPT Copy_To_ExtMem(VM_Map_Idx, [reg], n)
Copy n (<256) words from local address R[reg] to external address
specified in VM_Map[VM_Map_Idx] plus offset defined by R[255]

4

62 ICPF Copy_From_ExtMem(VM_Map_Idx, [reg], n)
Copy n (<256) words from external address specified in
VM_Map[VM_Map_Idx] plus offset defined by R[255] to local address
R[reg]

4

63 IRCALL Call_Subr([reg], Offset)7 . Up to 16 nested subroutine.
Call subroutine at address specified in VM_Map[R[reg]] plus Offset

2

6 In the real-time VM, these instructions must be interleaved with at least one critical instruction (i.e. no more than

one opcode in the range 50 – 54 can be used before a critical instruction).
7 The “Offset” value must be resolved in the current compilation unit (VM table).

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 12 of 37

Instr.
code
(hex)

VM asm
Mnemonic

Description

Code
type

64 IRCPT Copy_To_ExtMem([reg1], [reg2], n)
Copy n (<256) words from local address R[reg2] to external address
specified in VM_Map[R[reg1]] plus offset defined by R[255]

4

65 IRCPF Copy_From_ExtMem([reg1], [reg2], n)
Copy n (<256) words from external address specified in VM_Map[R[reg1]]
plus offset defined by R[255] to local address R[reg2]

4

80 END End End current VM program 1

Pseudo instructions
 INC Include source file (up to 3 nested INC)
 EQU Store at the current address the constant parameter
 DEF Set constants
 ORG Address of code
 TABLE Table(n) 8. The parameter n<128, must be numeric .

This instruction forces the compilation unit to be stored in VM_Tbl=n

 NAME Name(string)8. The string parameter (no blank char allowed), is the CLName
stored in the VM Table file (RD1).

 VERSION Version(string) 8. The string parameter (no blank char allowed), is the
CLVersion stored in the VM Table file (RD1)

 CVSID CvsId(string) 8. The string parameter (no blank char allowed), is the
CLCVSId stored in the VM Table file (RD1).

 _Label Label referred by loop/jmp

Debug instructions
 COM COM text string Comment printed during the simulation
 ROUT ROUT 0, 4, 72 Print contents of R[0], R[4], R[72] during simulation
 TRST Reset to 0 the local elapsed time on the simulator file

It has to be noted that in order to make the VM program as relocable as possible inside its VM table, all jump
instructions, with the exclusion of the Call Sub and indirect instructions, are relative to the PC.

The table notation is:
Val 16 or 24 bit numeric constant possibly defined in a DEF statement.
Val32 32 bit numeric constant.
Reg VM internal registers index. Numeric constant between 0 and 255 possibly defined in a DEF statement.
VmAddr Signed 16 bit numeric constant indicating the relative address displacement in a Jump instruction. It
may be coded as a _label mnemonic, in this case the relative address displacement is computed by the compiler.

3.7.1 The generic pre-processor
An open source “C/C++ like” pre-processor (GPP by Denis Auroux), can be optionally used. The pre-processor is
executed before the compiler (substitutions with #define are executed before the substitution with DEF).
 Using GPP, the INC and DEF instructions can be substituted by the “standard” #include and #define. There are two
difference in DEF versus #define:

• DEF (as the VM compiler) is case independent, #define is not. This means that it doesn’t resolve symbolic
names with different character case from the #define

• The symbolic names resolved by by DEF are still kept in the compiler and simulator output in order to
facilitate the debugging. The symbolic names resolved by #define are substituted in the compiler and in the
simulator files.

8 Must be in the main source file

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 13 of 37

3.8 Instructions Format
The present instruction coding is as follows:

1. First (MSB) bit=1 then it is a plain command to the SS, as the first bit (start bit) is always set.
Here we assume that the data content of the command can be splitted in two fields (code and value). The
MSBit of addr field indicate cmd/hk request.

code value1
MSB

addr

31 28 16 0

2. First (MSB) bit=0 then it is a coded 32 bit instruction with:

MSB
31

LSB
024

Inst. Code Value0
Type 1

MSB
31

LSB
024

Inst. Code Value20 Value1
16

Type 2

MSB
31

LSB
024

Inst. Code Value20 Value1
20

Value3
8

 Type 3

MSB
31

LSB
024

Inst. Code Value20 Value1
16

Value3
8

Type 4

A VM assembler compiler/simulator program is provided in order to simplify the on ground coding of the observation
programs.

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 14 of 37

4 VM Compiler/Simulator

4.1 Compiler
The compiler resolve all the mnemonic labels and constant in a VM program and produce the absolute VM code. The
compiler optimiser try also to take care of the MTX instructions which enable/disable the low speed I/F usage by the
LS_Task.

The VM program syntax is:

• Code is case insensitive.
• Hexadecimal constants are prefixed with 0x
• Comments begin with “;” and can appear also after an instruction.
• Labels begin with “_”.

The compiler/simulator program consists of a MDI simple editor, a dialog box used to set the program parameters and
two list windows with the compiler and simulator output.
The program should run on every Win98, WinNT, Win2000, WinXp computer.
The figure below shows the compiler/simulator program

Editor
windows.

Compiler output
window

Setup
dialog
panel

Wincomp.exe
Compiler/Simulator
program

Simulator
output
window

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 15 of 37

The following figure shows/describes few details of the setup panel and toolbar.

The input program
directory and file
name may be also
forced to the file in
the active editor
window, with the
pink toolbar
button.

The setup in this panel
may be saved/restored
in the source file
directory.
Starting the program,
the setup stored in the
last visited directory is
loaded.
Ending the program,
the actual setup is
stored in the current
source file directory.

Compile the program
named in the setup
panel and store the
“binary” output on the
specified table (Table
ID). The output list is
appended in the
compiler output
window

Simulate the program stored in the
specified table beginning at offset
“Entry point (PC)”. The optional
“n” run time parameters are loaded
in the VM internal registers
R[0]… R[n-1] . The output list,
defined by the “Simulator level”,
is appended in the simulator output
window.

Clear the compiler and
simulator output windows.
Compile, simulate and
generate the TC packets.

Generate the
telecommands (TC)
packets in the
specified directory

Clear the
compiler output
window

Clear the
simulator output
window

Hide/Shows
the other
windows

Parameters
copied to
VM registers
beginning
from R[0]

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 16 of 37

The input files of the program are:

Filename.vm, … Filenamex.vm: source program files.

DataFile.rd: opional file with input data to the READ instruction. If the file exists, each READ instruction found
during the simulation, read a new number from that file. If the file is not present or contains less numbers than then
READ instruction, the contents of register R[254] is used instead.
This is an examle of formats allowed in the read data file.

;------------- READ data file--------------
; Comments begin with # or ;
; Number in decimal or "c-hex" format: (0xff)
; More then a number per each line,
; number separator are: space commas
;---
0xa 15 ; My comment

77, 0xcafecafe,,12
;
 0xff ;comment

The output files of the program are:

In the same directory as the input source files (specified in the dialog box)
Filename.lst: This file list the compiled program. The file name is the same as the input program filename with
extension “.lst” .
Filename.sim: This file list the simulator output. The file name is the same as the input program filename with
extension “.sim” .

In the output directory specified in the dialog box:
outfilnam0.txt, outfilnam .txt ….. outfilnamn.txt: files with the TC packets of the compiled VM program in Hex
format
outfilnam0.bin, outfilnam1.bin ….. outfilnamn.bin: files with the TC packets of the compiled VM program in
binary format

The compiler optimisation level 1 check for any “unprotected” (MTX=0) CMD/RCMD instruction, and protect the
command with a double TIM-MTX couple using the following criteria:

If exist a CMD/RCMD instruction while MTX=0 and TIM=oldtim
 Then modify to:
 TIM 2000 (1 ms is chosen as the minimum TIM value)
 MTX 1
 CMD/RCMD xxx (original instruction)
 TIM oldtim
 MTX 0

IMPORTANT NOTE
 The “Optimisation” fails if the runtime flow of the program is modified (by a jump or a call to a routine), so
the “Optimisation” option must be considered obsolete and its use discouraged.
In any case the simulator flag any “unprotected” command.

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 17 of 37

The TIM-MTX instructions inserted by the optimiser are prefixed by A1_ (TIM-MTX).

Example:

No optimisation Optimisation level 1
MTX 0 MTX 0
TIM 30000 TIM 30000
…
 A1_MTX 1
 A1_TIM 2000
 CMD aaa
 A1_MTX 0
CMD aaa A1_TIM 30000
CMD ccc A1_MTX 1
TIM 100000 A1_TIM 2000
… CMD ccc
… A1_MTX 0
… A1_TIM 30000
 TIM 100000

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 18 of 37

4.2 VM Simulator

The simulator section of the compiler program, is a modified version of the OBS VM section. The simulator control
any “unprotected” CMD/RCMD instruction and output (on the out list file) a timeline of the SS commands.
Two VM program instructions are interpreted only by the simulator:

Comment instructions:

 COM comment string
inserted in the input program, are listed by the simulator as:
 COM comment string [addr,n]

Display internal register

 ROUT n1 n2 … nx
 Display on the simulator out list the value of register R[n1], R[n2},… R[nx]. The following instruction
 rout 0, 1 2,31
 encountered at address 126 for the 6th time, generate on the simulator list:
 R0=5 [0x5], R1=10 [0xa], R2=0 [0x0], R31=6 [0x6], [126, 6]

with addr = address of the next instruction
 n = auto incrementing number counting # of occurrence.

The simulator output file format is controlled by the run time switch s0-2 (radio button objects on the dialog window):
s0 -> (default value) only command to SS (in hex) are listed with relative time and PC for each CMD RCMD MTX
NOP instructions.

 Time RelTime PC Command
 2000 2000 10
 4000 4000 11 d7000000
 6000 6000 12 db000000
 8000 8000 15 e4000009
 10000 10000 16 e8000009
 12000 12000 18
 112000 112000 20
 T Reset [21, 1]
 114000 0 69 fc000003

s1 -> as for s0 but the input text and comment for the above command is also shown. If a WRT instruction is
encountered, the content of the addressed register is also shown.

 Time RelTime PC Command
 2000 2000 10 mtx LOCK ; lock LS I/F
 4000 4000 11 d7000000 CMD HR_H SEL_HRB0 ; select
 6000 6000 12 db000000 CMD HR_V SEL_HRB0 ; select
 8000 8000 15 e4000009 CMD WB_H RST_WB ; reset WBS_H
 10000 10000 16 e8000009 CMD WB_V RST_WB ; reset WBS_V
 12000 12000 18 mtx unlock
 112000 112000 20 mtx LOCK
 T Reset [21, 1]
 114000 0 69 fc000003 CMD BR BSTR_WB ; start WBS H&V

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 19 of 37

s2 -> as for s1 but the input text and comment for all instructions is also shown.

 Time RelTime PC Command
 0 0 8 CALL _SetVar ; compute prg parameters
 0 0 71 rmov hrs_int HIF_T_ACC_HRS
……………………..
……………………..
 0 0 118 rrsb wbs_int wbs_int 10
 0 0 119 RET
 0 0 9 tim FAST ; 2 ms between HRS commands
 2000 2000 10 mtx LOCK ; lock LS I/F
 4000 4000 11 d7000000 CMD HR_H SEL_HRB0 ; select
 6000 6000 12 db000000 CMD HR_V SEL_HRB0 ; select
 6000 6000 13 jpnz i_wbs _c1
 8000 8000 15 e4000009 CMD WB_H RST_WB ; reset WBS_H
 10000 10000 16 e8000009 CMD WB_V RST_WB ; reset WBS_V
 10000 10000 17 tim 100000 ; Wait 100000 ms after WBS
 12000 12000 18 mtx unlock
 12000 12000 19 tim FAST ; Prepare again for
 112000 112000 20 mtx LOCK
 T Reset [21, 5]
 112000 0 21 RSZ i_wbs ; No WBS

4.3 Packetiser
At the end of the compiler and simulation phase, two group of TC packet files (one file per packet) are generated.
The packet file format is: big endian 16 bit words hexadecimal (*.txt) and binary (*.bin), each group of files has the
order number included in the name.
Example:

vmTC_0.txt
vmTC_1.txt
vmTC_2.txt
vmTC_0.bin
vmTC_1.bin
vmTC_2.bin
vmTbl.hex

The packet structure is as follows:
 ---------- PACKET HEADER (48 bits) ---------
 w16_0= Packet ID
 Version Number (3)
 Type (1)
 Data field header (1)
 PID (7)
 PCAT (4)
 w16_1= Packet Sequence control
 Sequence flag (2)
 Sequence count (14)
 w16_2= Packet Length = (Number of octets in Packet Data Field) - 1
 ---------- Packet data field ---------
 w16_3= Packet Data field header
 PUS (3)
 Checksum type (1)
 ACK (4)
 Pkt Type (8) = 8
 w16_4= Packet Data field header
 Pkt SubType (8) = 4
 Pad (8)

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 20 of 37

 w16_5= Application data

 w16_n= Application data
 w16_n+1=CRC (16) of full packet

 ============= SPIRE APP DATA ===============
 w16_5= Function ID (8 MSB)
 Activity ID (8 LSB)
 w16_6= Table ID
 w16_7= Offset from beg of table (8 MSB)
 w16_8= N. of 32 bit words data items
 w16_9= Data

 w16_n = CRC

In the same directory the file vmTbl.txt is generated. This hex file contains the VM program code to be included (as
initial program) on the OBS at compile time.

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 21 of 37

4.4 Directory structure
The compiler executable needs always the files:

wincomp.exe // executable
spiresyntax.h // implemented instructions

in the same directory. In the dialog box must be specified the directory, absolute or relative to the compiler program,
of the source files and TC packet files. The include files are always in the same directory as the source files, the
generated output list and simulator file will be generated in the same directory with the same name of the source file
and extension .lst and .sim..

Here follows the directory structure utilized for the compilation of the program in figure in paragraph 4.1 (input files
are underlined).

 Directory of C:\VM_Comp

02/04/2002 12:32 <DIR> ..
02/04/2002 12:32 <DIR> .
26/04/2002 12:00 <DIR> TC_SPkt
26/04/2002 11:44 <DIR> VM_SProg
23/04/2002 14:28 4,143 spiresyntax.h
26/04/2002 11:43 598,016 wincomp.exe
 2 File(s)

 Directory of C:\VM_Comp\VM_SProg

26/04/2002 11:44 <DIR> ..
26/04/2002 11:44 <DIR> .
25/04/2002 13:56 2,714 spire.vm
25/04/2002 13:56 1,580 spire.inc
26/04/2002 12:00 30,202 spire.lst
24/04/2002 13:04 1,418 spire.sim
 4 File(s)

 Directory of C:\VM_Comp\TC_SPkt (if it doesn’t exists, this directory is automatically generated)

02/05/2002 13:02 <DIR> .
02/05/2002 13:02 <DIR> ..
02/05/2002 13:02 721 vmTbl.hex
02/05/2002 13:02 109 vmTC_0.txt
02/05/2002 13:02 589 vmTC_1.txt
02/05/2002 13:02 97 vmTC_2.txt
02/05/2002 13:02 36 vmTC_0.bin
02/05/2002 13:02 196 vmTC_1.bin
02/05/2002 13:02 32 vmTC_2.bin
 7 File(s) 1,780 bytes

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 22 of 37

5 Example
As an example of the a VM program, here is the implementation of the “Total Power” measurement in HIFI.
The measuring routine is based on the following algorithm:

 Control command LS command VM code comment

1. Set Mutex

2. hrsloop=0

3. WBS count =10 this is HIF_N_PERIODS

4. Label WBS loop

5. Reset WBS-H
Reset WBS-V

E400-0009
E800-0009

6. Timer = ??? HIF_T_DEL_WBS ?

7. Start WBS H&V FC00 003

8. HRS count =8 this is HIF_R_HRS

9. Label HRS loop

10. hrsbuf = (hrsbuf + 1) mod 2

11. Select HRS-H buffer

hrsbuf=0: D700 0000
hrsbuf=1: D710 0000

12. Select HRS-V buffer

hrsbuf=0: DB00 0000
hrsbuf=1: DB10 0000

13. Start HRS H&V FF80 0000

14. timer = 100 ms this is HIF_T_ACC_HRS

15. Reset Mutex Time for HK-collection

16. timer = 0.2 ms

17. Set Mutex

18. Stop HRS H&V FF90 0000

19. Start Transfer HRS-H D740 0000

20. Start Transfer HRS-V DB40 0000

21. Reset readout buffer H

hrsbuf=0: D730 0000
hrsbuf=1: D720 0000

22. Reset readout buffer V

hrsbuf=0: DB30 0000
hrsbuf=1: DB20 0000

23. Decrement HRS count

24. conditional Jump to HRS loop

25. Stop WBS H&V FC00 0005

26. Start Transfer WBS-H E400 0006

27. Start Transfer WBS-V E800 0006

28. Decrement WBS count

29. conditional Jump to WBS loop

30. Reset Mutex

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 23 of 37

Here follows the VM program source of the HIFI total power measurement:

;------------------------------------
; Case insensitive
; Comments begin with a ;
; Labels begin with an _
;------------------------------------
;
; HIFI - Total Power
; Ver 1.1
;------------------------------------
 INC hifi.inc ; include file with constant's definition for HIFI

 DEF lock 1 ; for mutex. Lock the LS I/F
 DEF unlock 0 ; for mutex. release the LS I/F
 DEF slow 100000 ; 100 ms timer
 DEF fast 2000 ; 2 ms timer

 ORG EntryPointTbl ; begin of programs entry points table
 EQU 8 ; TotPow begin at 8
 EQU 512 ; next program
 EQU 1024 ; next program

 ORG 8 ; address of main program
 TIM fast ; timer period at 2 ms
 MTX lock ; lock LS I/F
 RMOV 0 wbCnt ; R[0]=10. WBS loop counter
 RSET 2 _c2 ; in R[2] last address of table
 RREQ 3 2 ; in R[3] last address of table

 CMD wb_h,rst_wb ; reset WBS_H
 CMD wb_v,rst_wb ; reset WBS_V
_wbLoop CMD br,bstr_wb ; start WBS H&V
 RMOV 1 hrCnt ; R[1]=8. HRS loop counter

_hrLoop RINC 3 ; increment R[3]
 RSGT 3 2 ; Skip next instr if R[3] > R[2]
 JMPR _intbl ; Skip next opcode (2 instruction code)
 RSET 3 _c1 ; R[3]= address of begin of table
_intbl RRMV 4 3 ; move value stored at address=R[3] in R[4]
 RCMD hr_h, 4 ; select HRS_H buffer
 RCMD hr_v, 4 ; select HRS_V buffer
 CMD br, bstr_hr ; start HRS
 TIM slow ; wait 100 ms
 MTX unlock ; release SL I/F
 TIM fast ; timer period at 2 ms
 MTX lock ; lock SL I/F
 CMD br, bstp_hr ; stop HRS
 CMD hr_h, stt_hr ; start transfer HRS_H
 CMD hr_v, stt_hr ; start transfer HRS_V
 RINC,3 ; increment R[3]
 RRMV 4 3 ; move value stored at address=R[3] in R[4]
 RCMD hr_h, 4 ; reset HRS_H buffer
 RCMD hr_v, 4 ; reset HRS_V buffer
 RDEC 1 ; decrement HRS loop counter
 JPNZ 1, _hrLoop ; if R[1]>0 go to _hrLoop

 CMD br, bstp_wb ; stop WBS
 CMD wb_h, stt_wb ; start transfer WBS_H
 CMD wb_v, stt_wb ; start transfer WBS_V
 RDEC 0 ; decrement WBS loop counter
 JPNZ 0, _wbLoop ; if R[0]>0 go to _wbLoop
 MTX unlock ; release SL I/F
 END

_c1 EQU sel_hrb0
 EQU rst_hrb0
 EQU sel_hrb1
_c2 EQU rst_hrb1

; ------------------ Parameters area ---------------------
; Here I store the program parameters. May be changed by TC.
; This section can be omitted, the parameters are stored
; by the OBS on reception of "configure/start measure" TC

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 24 of 37

 ORG wbCnt
 EQU 10
 ORG hrCnt
 EQU 8

and the hifi.inc definitions file

;---
; Include file with constants definitions
; up to 3 deep nested include files
;---
;
; HIFI definitions
;---

;---------- VM Program area definition ----------
 DEF EntryPointTbl 0 ; begin of VM progams entry points table
 DEF ParArea0 4096 ; begin of TotPower parameter area
 DEF wbCnt 4096 ; location of WBS loop for Tot Pow
 DEF hrCnt 4097 ; location of HRS loop for Tot Pow

;-------------------- Subsystems address -------------
 DEF LSU, 0
 DEF FCU, 3
 DEF HR_H 5
 DEF HR_V, 6
 DEF WB_H, 9
 DEF WB_V, 0xA
 DEF LCU, 0xC
 DEF BR, 0xF ; Broadcast address

 ; WBS definition (Val26)
 DEF BSTR_WB 3 ; Broadcast Start WBS H&V
 DEF BSTP_WB 5 ; Broadcast Start WBS H&V
 DEF RST_WB 9 ; reset WBS
 DEF STT_WB 6 ; Start transfer WBS

 ; HRS definition (Val26)
 DEF BSTR_HR 0x3800000 ; Broadcast start HRS H&V
 DEF BSTP_HR 0x3900000 ; Broadcast stop HRS H&V
 DEF STT_HR 0x3400000 ; Start transfer HRS
 DEF SEL_HRB1 0x3100000 ; HRS select buffer 1
 DEF SEL_HRB0 0x3000000 ; HRS select buffer 0
 DEF SEL_HRB1 0x3100000 ; HRS select buffer 1
 DEF RST_HRB0 0x3300000 ; reset readout buffer 0
 DEF RST_HRB1 0x3200000 ; reset readout buffer 1

 ; Chopper definition (FCU)
 DEF CHOP_0 0x3105555 ; FCU Chopper pos 0
 DEF CHOP_1 0x310AAAA ; FCU Chopper pos 1
 DEF CHOP_2 0x310AAAA ; FCU Chopper pos 2
 DEF CHOP_3 0x3105555 ; FCU Chopper pos 3

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 25 of 37

Here is the compiler output list file (comments manually tabulated for this document):

VM program file: VM_HProg\hifitotpow.vm
Compilation time: Thu May 02 13:02:29 2002
Optimisation level= 1
Simulation level = 1
Start address (PC)= 8

Addr opCode Instruction
---- -------- ---------------------
 0 INC hifi.inc ; include file with constant's definition for HIFI
 0 DEF EntryPointTbl 0 ; begin of VM progams entry points table
 0 DEF ParArea0 4096 ; begin of TotPower parameter area
 0 DEF wbCnt 4096 ; location of WBS loop for Tot Pow
 0 DEF hrCnt 4097 ; location of HRS loop for Tot Pow
 0 DEF LSU 0
 0 DEF FCU 3
 0 DEF HR_H 5
 0 DEF HR_V 6
 0 DEF WB_H 9
 0 DEF WB_V 0xA
 0 DEF LCU 0xC
 0 DEF BR 0xF ; Broadcast address
 0 DEF BSTR_WB 3 ; Broadcast Start WBS H&V
 0 DEF BSTP_WB 5 ; Broadcast Start WBS H&V
 0 DEF RST_WB 9 ; reset WBS
 0 DEF STT_WB 6 ; Start transfer WBS
 0 DEF BSTR_HR 0x3800000 ; Broadcast start HRS H&V
 0 DEF BSTP_HR 0x3900000 ; Broadcast stop HRS H&V
 0 DEF STT_HR 0x3400000 ; Start transfer HRS
 0 DEF SEL_HRB1 0x3100000 ; HRS select buffer 1
 0 DEF SEL_HRB0 0x3000000 ; HRS select buffer 0
 0 DEF SEL_HRB1 0x3100000 ; HRS select buffer 1
 0 DEF RST_HRB0 0x3300000 ; reset readout buffer 0
 0 DEF RST_HRB1 0x3200000 ; reset readout buffer 1
 0 DEF CHOP_0 0x3105555 ; FCU Chopper pos 0
 0 DEF CHOP_1 0x310AAAA ; FCU Chopper pos 1
 0 DEF CHOP_2 0x310AAAA ; FCU Chopper pos 2
 0 DEF CHOP_3 0x3105555 ; FCU Chopper pos 3
 0 DEF lock 1 ; for mutex. Lock the LS I/F
 0 DEF unlock 0 ; for mutex. release the LS I/F
 0 DEF slow 100000 ; 100 ms timer
 0 DEF fast 2000 ; 2 ms timer
 0 ORG EntryPointTbl ; begin of programs entry points table
 0 8 EQU 8 ; TotPow begin at 8
 1 200 EQU 512 ; next program
 2 400 EQU 1024 ; next program
 8 ORG 8 ; address of main program
 8 80007d0 TIM fast ; timer period at 2 ms
 9 1000001 MTX lock ; lock LS I/F
 10 49001000 RMOV 0 wbCnt ; R[0]=10. WBS loop counter
 11 12000002 RSET 2 _c2 ; in R[2] last address of table
 12 32 _c2 ; in R[2] last address of table
 13 20030002 RREQ 3 2 ; in R[3] last address of table
 14 e4000009 CMD wb_h rst_wb ; reset WBS_H
 15 e8000009 CMD wb_v rst_wb ; reset WBS_V
 16 _wbLoop ; start WBS H&V
 16 fc000003 CMD br bstr_wb ; start WBS H&V
 17 49011001 RMOV 1 hrCnt ; R[1]=8. HRS loop counter
 18 _hrLoop ; increment R[3]
 18 10000003 RINC 3 ; increment R[3]
 19 34030002 RSGT 3 2 ; Skip next instr if R[3] > R[2]
 20 30000003 JMPR _intbl ; Skip next opcode (2 instruction code)
 21 12000003 RSET 3 _c1 ; R[3]= address of begin of table
 22 2f _c1 ; R[3]= address of begin of table
 23 _intbl ; move value stored at address=R[3] in R[4]
 23 4a040003 RRMV 4 3 ; move value stored at address=R[3] in R[4]
 24 500004 RCMD hr_h 4 ; select HRS_H buffer
 25 600004 RCMD hr_v 4 ; select HRS_V buffer
 26 ff800000 CMD br bstr_hr ; start HRS
 27 80186a0 TIM slow ; wait 100 ms
 28 1000000 MTX unlock ; release SL I/F
 29 80007d0 TIM fast ; timer period at 2 ms
 30 1000001 MTX lock ; lock SL I/F

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 26 of 37

 31 ff900000 CMD br bstp_hr ; stop HRS
 32 d7400000 CMD hr_h stt_hr ; start transfer HRS_H
 33 db400000 CMD hr_v stt_hr ; start transfer HRS_V
 34 10000003 RINC 3 ; increment R[3]
 35 4a040003 RRMV 4 3 ; move value stored at address=R[3] in R[4]
 36 500004 RCMD hr_h 4 ; reset HRS_H buffer
 37 600004 RCMD hr_v 4 ; reset HRS_V buffer
 38 11000001 RDEC 1 ; decrement HRS loop counter
 39 3201ffeb JPNZ 1 _hrLoop ; if R[1]>0 go to _hrLoop
 40 fc000005 CMD br bstp_wb ; stop WBS
 41 e4000006 CMD wb_h stt_wb ; start transfer WBS_H
 42 e8000006 CMD wb_v stt_wb ; start transfer WBS_V
 43 11000000 RDEC 0 ; decrement WBS loop counter
 44 3200ffe4 JPNZ 0 _wbLoop ; if R[0]>0 go to _wbLoop
 45 1000000 MTX unlock ; release SL I/F
 46 50000000 END
 47 _c1
 47 3000000 EQU sel_hrb0
 48 3300000 EQU rst_hrb0
 49 3100000 EQU sel_hrb1
 50 _c2
 50 3200000 EQU rst_hrb1
4096 ORG wbCnt
4096 a EQU 10
4097 ORG hrCnt
4097 8 EQU 8

Here is the simulator output list file (comments manually tabulated for this document):
Begin simulation from t1= 0 up to t2= 1000000

 Time PC Command
 2000 9 MTX lock ; lock LS I/F
 4000 14 e4000009 CMD wb_h rst_wb ; reset WBS_H
 6000 15 e8000009 CMD wb_v rst_wb ; reset WBS_V
 8000 16 fc000003 CMD br bstr_wb ; start WBS H&V
 10000 24 d7000000 RCMD hr_h 4 ; select HRS_H buffer
 12000 25 db000000 RCMD hr_v 4 ; select HRS_V buffer
 14000 26 ff800000 CMD br bstr_hr ; start HRS
 16000 28 MTX unlock ; release SL I/F
 116000 30 MTX lock ; lock SL I/F
 118000 31 ff900000 CMD br bstp_hr ; stop HRS
 120000 32 d7400000 CMD hr_h stt_hr ; start transfer HRS_H
 122000 33 db400000 CMD hr_v stt_hr ; start transfer HRS_V
 124000 36 d7300000 RCMD hr_h 4 ; reset HRS_H buffer
 126000 37 db300000 RCMD hr_v 4 ; reset HRS_V buffer
 128000 24 d7100000 RCMD hr_h 4 ; select HRS_H buffer
 130000 25 db100000 RCMD hr_v 4 ; select HRS_V buffer
 132000 26 ff800000 CMD br bstr_hr ; start HRS
 134000 28 MTX unlock ; release SL I/F
 234000 30 MTX lock ; lock SL I/F
 236000 31 ff900000 CMD br bstp_hr ; stop HRS
 238000 32 d7400000 CMD hr_h stt_hr ; start transfer HRS_H
 240000 33 db400000 CMD hr_v stt_hr ; start transfer HRS_V
 242000 36 d7200000 RCMD hr_h 4 ; reset HRS_H buffer
 244000 37 db200000 RCMD hr_v 4 ; reset HRS_V buffer
 246000 24 d7000000 RCMD hr_h 4 ; select HRS_H buffer
 248000 25 db000000 RCMD hr_v 4 ; select HRS_V buffer
 250000 26 ff800000 CMD br bstr_hr ; start HRS
 252000 28 MTX unlock ; release SL I/F
 352000 30 MTX lock ; lock SL I/F
 354000 31 ff900000 CMD br bstp_hr ; stop HRS
 356000 32 d7400000 CMD hr_h stt_hr ; start transfer HRS_H
 358000 33 db400000 CMD hr_v stt_hr ; start transfer HRS_V
 360000 36 d7300000 RCMD hr_h 4 ; reset HRS_H buffer
 362000 37 db300000 RCMD hr_v 4 ; reset HRS_V buffer
 364000 24 d7100000 RCMD hr_h 4 ; select HRS_H buffer
 366000 25 db100000 RCMD hr_v 4 ; select HRS_V buffer
 368000 26 ff800000 CMD br bstr_hr ; start HRS
 370000 28 MTX unlock ; release SL I/F
 470000 30 MTX lock ; lock SL I/F
 472000 31 ff900000 CMD br bstp_hr ; stop HRS
 474000 32 d7400000 CMD hr_h stt_hr ; start transfer HRS_H
 476000 33 db400000 CMD hr_v stt_hr ; start transfer HRS_V
 478000 36 d7200000 RCMD hr_h 4 ; reset HRS_H buffer

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 27 of 37

 480000 37 db200000 RCMD hr_v 4 ; reset HRS_V buffer
 482000 24 d7000000 RCMD hr_h 4 ; select HRS_H buffer
 484000 25 db000000 RCMD hr_v 4 ; select HRS_V buffer
 486000 26 ff800000 CMD br bstr_hr ; start HRS
 488000 28 MTX unlock ; release SL I/F
 588000 30 MTX lock ; lock SL I/F
 590000 31 ff900000 CMD br bstp_hr ; stop HRS
 592000 32 d7400000 CMD hr_h stt_hr ; start transfer HRS_H
 594000 33 db400000 CMD hr_v stt_hr ; start transfer HRS_V
 596000 36 d7300000 RCMD hr_h 4 ; reset HRS_H buffer
 598000 37 db300000 RCMD hr_v 4 ; reset HRS_V buffer
 600000 24 d7100000 RCMD hr_h 4 ; select HRS_H buffer
 602000 25 db100000 RCMD hr_v 4 ; select HRS_V buffer
 604000 26 ff800000 CMD br bstr_hr ; start HRS
 606000 28 MTX unlock ; release SL I/F
 706000 30 MTX lock ; lock SL I/F
 708000 31 ff900000 CMD br bstp_hr ; stop HRS
 710000 32 d7400000 CMD hr_h stt_hr ; start transfer HRS_H
 712000 33 db400000 CMD hr_v stt_hr ; start transfer HRS_V
 714000 36 d7200000 RCMD hr_h 4 ; reset HRS_H buffer
 716000 37 db200000 RCMD hr_v 4 ; reset HRS_V buffer
 718000 24 d7000000 RCMD hr_h 4 ; select HRS_H buffer
 720000 25 db000000 RCMD hr_v 4 ; select HRS_V buffer
 722000 26 ff800000 CMD br bstr_hr ; start HRS
 724000 28 MTX unlock ; release SL I/F
 824000 30 MTX lock ; lock SL I/F
 826000 31 ff900000 CMD br bstp_hr ; stop HRS
 828000 32 d7400000 CMD hr_h stt_hr ; start transfer HRS_H
 830000 33 db400000 CMD hr_v stt_hr ; start transfer HRS_V
 832000 36 d7300000 RCMD hr_h 4 ; reset HRS_H buffer
 834000 37 db300000 RCMD hr_v 4 ; reset HRS_V buffer
 836000 24 d7100000 RCMD hr_h 4 ; select HRS_H buffer
 838000 25 db100000 RCMD hr_v 4 ; select HRS_V buffer
 840000 26 ff800000 CMD br bstr_hr ; start HRS
 842000 28 MTX unlock ; release SL I/F
 942000 30 MTX lock ; lock SL I/F
 944000 31 ff900000 CMD br bstp_hr ; stop HRS
 946000 32 d7400000 CMD hr_h stt_hr ; start transfer HRS_H
 948000 33 db400000 CMD hr_v stt_hr ; start transfer HRS_V
 950000 36 d7200000 RCMD hr_h 4 ; reset HRS_H buffer
 952000 37 db200000 RCMD hr_v 4 ; reset HRS_V buffer
 954000 40 fc000005 CMD br bstp_wb ; stop WBS
 956000 41 e4000006 CMD wb_h stt_wb ; start transfer WBS_H
 958000 42 e8000006 CMD wb_v stt_wb ; start transfer WBS_V
 960000 16 fc000003 CMD br bstr_wb ; start WBS H&V
 962000 24 d7000000 RCMD hr_h 4 ; select HRS_H buffer
 964000 25 db000000 RCMD hr_v 4 ; select HRS_V buffer
 966000 26 ff800000 CMD br bstr_hr ; start HRS
 968000 28 MTX unlock ; release SL I/F
 1068000 30 MTX lock ; lock SL I/F

Simulation: total No of errors: 0
Exeeded max time. Normal end of execution

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 28 of 37

Here follows the three TC packets to upload the program.

vmTC_0.txt vmTC_1.txt vmTC_2.txt
1c00
c000
001d
0008
0400
0510
0000
0000
0000
0303
0000
0000
0008
0000
0200
0000
0400
e1fb

1c00
c000
00bd
0008
0400
0510
0000
0000
0000
032b
0008
0800
07d0
0100
0001
4900
1000
1200
0002
0000
0032
2003
0002
e400
0009
e800
0009
fc00
0003
4901
1001
1000
0003

3403
0002
3000
0003
1200
0003
0000
002f
4a04
0003
0050
0004
0060
0004
ff80
0000
0801
86a0
0100
0000
0800
07d0
0100
0001
ff90
0000
d740
0000
db40
0000
1000
0003
4a04

0003
0050
0004
0060
0004
1100
0001
3201
ffeb
fc00
0005
e400
0006
e800
0006
1100
0000
3200
ffe4
0100
0000
5000
0000
0300
0000
0330
0000
0310
0000
0320
0000
d06b

1c00
c000
0019
0008
0400
0510
0000
0000
0000
0302
1000
0000
000a
0000
0008
d2bd

The following table shows the VM program code to be stored on the ICU OBS.

vmTbl.txt

------- block
start address 0
0x00000008,
0x00000200,
0x00000400,
------- block
start address 8
0x080007d0,
0x01000001,
0x49001000,
0x12000002,
0x00000032,
0x20030002,
0xe4000009,
0xe8000009,
0xfc000003,
0x49011001,
0x10000003,

0x34030002,
0x30000003,
0x12000003,
0x0000002f,
0x4a040003,
0x00500004,
0x00600004,
0xff800000,
0x080186a0,
0x01000000,
0x080007d0,
0x01000001,
0xff900000,
0xd7400000,
0xdb400000,
0x10000003,
0x4a040003,
0x00500004,

0x00600004,
0x11000001,
0x3201ffeb,
0xfc000005,
0xe4000006,
0xe8000006,
0x11000000,
0x3200ffe4,
0x01000000,
0x50000000,
0x03000000,
0x03300000,
0x03100000,
0x03200000,
------- block
start address 4096
0x0000000a,
0x00000008,

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 29 of 37

6 Appendix

6.1 The Generic PreProcessor
In the following are few sections of the GPP Generic Preprocessor (by Denis Auroux) manual.
The only modifications to the Auroux program are:

• Transported from C to C++ (hopefully without bugs)
• Comments are not stripped out
• Wildcard matching (globbing) is not implemented

The GPP is internally called with parameters: -o outFile -z -n +c ; \n inFile

• GPP 2.22 — Generic Preprocessor

N.B. — The latest version of GPP and this manual are available from the GPP home page.

• DESCRIPTION

GPP is a general-purpose preprocessor with customizable syntax, suitable for a wide range of preprocessing tasks. Its
independence from any programming language makes it much more versatile than cpp, while its syntax is lighter and
more flexible than that of m4.
GPP is targeted at all common preprocessing tasks where cpp is not suitable and where no very sophisticated features
are needed. In order to be able to process equally efficiently text files or source code in a variety of languages, the
syntax used by GPP is fully customizable. The handling of comments and strings is especially advanced.
Initially, GPP only understands a minimal set of built-in macros, called meta-macros. These meta-macros allow the
definition of user macros as well as some basic operations forming the core of the preprocessing system, including
conditional tests, arithmetic evaluation, wildcard matching (globbing), and syntax specification. All user macro
definitions are global—i.e., they remain valid until explicitly removed; meta-macros cannot be redefined. With each
user macro definition GPP keeps track of the corresponding syntax specification so that a macro can be safely invoked
regardless of any subsequent change in operating mode.
In addition to macros, GPP understands comments and strings, whose syntax and behavior can be widely customized
to fit any particular purpose. Internally comments and strings are the same construction, so everything that applies to
comments applies to strings as well.

• EVALUATION RULES
Input is read sequentially and interpreted according to the rules of the current mode. All input text is first matched
against the specified comment/string start sequences of the current mode (except those which are disabled by the 'i'
modifier), unless the body being evaluated is the contents of a comment/string whose modifier enables macro
evaluation. The most recently defined comment/string specifications are checked for first. Important note: comments
may not appear between the name of a macro and its arguments (doing so results in undefined behavior).
Anything that is not a comment/string is then matched against a possible meta-macro call, and if that fails too, against
a possible user-macro call. All remaining text undergoes substitution of argument reference sequences by the relevant
argument text (empty unless the body being evaluated is the definition of a user macro) and removal of the quote
character if there is one.
Note that meta-macro arguments are passed to the meta-macro prior to any evaluation (although the meta-macro may
choose to evaluate them, see meta-macro descriptions below). In the case of the #mode meta-macro, GPP temporarily
adds a comment/string specification to enable recognition of C strings ("…") and prevent any evaluation inside them,
so no interference of the characters being put in the C string arguments to #mode with the current syntax is to be
feared.
On the other hand, the arguments to a user macro are systematically evaluated, and then passed as context parameters
to the macro definition body, which gets evaluated with that environment. The only exception is when the macro
definition is empty, in which case its arguments are not evaluated. Note that GPP temporarily switches back to the
mode in which the macro was defined in order to evaluate it, so it is perfectly safe to change the operating mode
between the time a macro is defined and the time when it is called. Conversely, if a user macro wishes to work with

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 30 of 37

the current mode instead of the one that was used to define it it needs to start with a #mode restore call and end with a
#mode save call.
A user macro may be defined with named arguments (see #define description below). In that case, when the macro
definition is being evaluated, each named parameter causes a temporary virtual user-macro definition to be created;
such a macro may be called only without arguments and simply returns the text of the corresponding argument.
Note that, since macros are evaluated when they are called rather than when they are defined, any attempt to call a
recursive macro causes undefined behavior except in the very specific case when the macro uses #undef to erase itself
after finitely many loop iterations.
Finally, a special case occurs when a user macro whose definition does not involve any arguments (neither named
arguments nor the argument reference sequence) is called in a mode where the short user-macro end sequence is empty
(e.g., cpp or TeX mode). In that case it is assumed to be an alias macro: its arguments are first evaluated in the current
mode as usual, but instead of being passed to the macro definition as parameters (which would cause them to be
discarded) they are actually appended to the macro definition, using the syntax rules of the mode in which the macro
was defined, and the resulting text is evaluated again. It is therefore important to note that, in the case of a macro alias,
the arguments actually get evaluated twice in two potentially different modes.

• META-MACROS

These macros are always predefined. Their actual calling sequence depends on the current mode; here we use cpp-like
notation.

• #define x y
This defines the user macro x as y. y can be any valid GPP input, and may for example refer to other macros.
x must be an identifier (i.e., a sequence of alphanumeric characters and '_'), unless named arguments are
specified. If x is already defined, the previous definition is overwritten. If no second argument is given, x will
be defined as a macro that outputs nothing. Neither x nor y are evaluated; the macro definition is only
evaluated when it is called, not when it is declared.

It is also possible to name the arguments in a macro definition: in that case, the argument x should be a user-macro call
whose arguments are all identifiers. These identifiers become available as user-macros inside the macro definition;
these virtual macros must be called without arguments, and evaluate to the corresponding macro parameter.

• #defeval x y
This acts in a similar way to #define, but the second argument y is evaluated immediately. Since user macro
definitions are also evaluated each time they are called, this means that the macro y will undergo two
successive evaluations. The usefulness of #defeval is considerable as it is the only way to evaluate something
more than once, which may be needed to force evaluation of the arguments of a meta-macro that normally
doesn't perform any evaluation. However since all argument references evaluated at define-time are
understood as the arguments of the body in which the macro is being defined and not as the arguments of the
macro itself, usually one has to use the quote character to prevent immediate evaluation of argument
references.

• #undef x
This removes any existing definition of the user macro x.

• #ifdef x
This begins a conditional block. Everything that follows is evaluated only if the identifier x is defined, and
until either a #else or a #endif statement is reached. Note, however, that the commented text is still scanned
thoroughly, so its syntax must be valid. It is in particular legal to have the #else or #endif statement ending
the conditional block appear only as the result of a user-macro expansion and not explicitly in the input.

• #ifndef x
This begins a conditional block. Everything that follows is evaluated only if the identifier x is not defined.

• #ifeq x y
This begins a conditional block. Everything that follows is evaluated only if the results of the evaluations of x
and y are identical as character strings. Any leading or trailing whitespace is ignored for the comparison. Note
that in cpp-mode any unquoted whitespace character is understood as the end of the first argument, so it is
necessary to be careful.

• #ifneq x y
This begins a conditional block. Everything that follows is evaluated only if the results of the evaluations of x
and y are not identical (even up to leading or trailing whitespace).

• #else
This toggles the logical value of the current conditional block. What follows is evaluated if and only if the
preceding input was commented out.

• #endif
This ends a conditional block started by a #if… meta-macro.

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 31 of 37

• #include file
This causes GPP to open the specified file and evaluate its contents, inserting the resulting text in the current
output. All defined user macros are still available in the included file, and reciprocally all macros defined in
the included file will be available in everything that follows. The include file is looked for first in the current
directory, and then, if not found, in one of the directories specified by the -I command-line option (or
/usr/include if no directory was specified). Note that, for compatibility reasons, it is possible to put the file
name between "" or <>.

The order in which the various directories are searched for include files is affected by the -nostdinc, -nocurinc and -
curdirinclast command-line options.
Upon including a file, GPP immediately saves a copy of the current operating mode onto the mode stack, and restores
the operating mode at the end of the included file. The included file may override this behavior by starting with a
#mode restore call and ending with a #mode push call. Additionally, when the -m command line option is specified,
GPP will automatically switch to the cpp compatibility mode upon including a file whose name ends with either '.c' or
'.h'.

• #exec command
This causes GPP to execute the specified command line and include its standard output in the current output.
Note that, for security reasons, this meta-macro is disabled unless the -x command line flag was specified. If
use of #exec is not allowed, a warning message is printed and the output is left blank. Note that the specified
command line is evaluated before being executed, thus allowing the use of macros in the command-line.
However, the output of the command is included verbatim and not evaluated. If you need the output to be
evaluated, you must use #defeval (see above) to cause a double evaluation.

• #eval expr
The #eval meta-macro attempts to evaluate expr first by expanding macros (normal GPP evaluation) and then
by performing arithmetic evaluation and/or wildcard matching. The syntax and operator precedence for
arithmetic expressions are the same as in C; the only missing operators are <<, >>, ?:, and the assignment
operators.

POSIX-style wildcard matching ('globbing') is available only on POSIX implementations and can be invoked with the
=~ operator. In brief, a '?' matches any single character, a '*' matches any string (including the empty string), and '[…]'
matches any one of the characters enclosed in brackets. A '[…]' class is complemented when the first character in the
brackets is '!'. The characters in a '[…]' class can also be specified as a range using the '-' character—e.g., '[F-N]' is
equivalent to '[FGHIJKLMN]'.
If unable to assign a numerical value to the result, the returned text is simply the result of macro expansion without
any arithmetic evaluation. The only exceptions to this rule are the comparison operators ==, !=, <, >, <=, and >=
which, if one of the sides does not evaluate to a number, perform string comparison instead (ignoring trailing and
leading spaces). Additionally, the length(…) arithmetic operator returns the length in characters of its evaluated
argument.
Inside arithmetic expressions, the defined(…) special user macro is also available: it takes only one argument, which is
not evaluated, and returns 1 if it is the name of a user macro and 0 otherwise.

• #if expr
This meta-macro invokes the arithmetic/globbing evaluator in the same manner as #eval and compares the
result of evaluation with the string "0" in order to begin a conditional block. In particular note that the logical
value of expr is always true when it cannot be evaluated to a number.

• #elif expr
This meta-macro can be used to avoid nested #if conditions. #if … #elif … #endif is equivalent to #if … #else
#if … #endif #endif.

• #mode keyword …
This meta-macro controls GPP's operating mode. See below for a list of #mode commands.

• #line
This meta-macro evaluates to the line number of the current input file.

• #file
This meta-macro evaluates to the filename of the current input file as it appears on the command line or in the
argument to #include. If GPP is reading its input from stdin, then #file evaluates to 'stdin'.

• #error msg
This meta-macro causes an error message with the current filename and line number, and with the text msg, to
be printed to the standard error device. Subsequent processing is then aborted.

• #warning msg
This meta-macro causes a warning message with the current filename and line number, and with the text msg,
to be printed to the standard error device. Subsequent processing is then resumed.

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 32 of 37

The key to GPP's flexibility is the #mode meta-macro. Its first argument is always one of a list of available keywords
(see below); its second argument is always a sequence of words separated by whitespace. Apart from possibly the first
of them, each of these words is always a delimiter or syntax specifier, and should be provided as a C string delimited
by double quotes (" "). The various special matching sequences listed in the section on syntax specification are
available. Any #mode command is parsed in a mode where "…" is understood to be a C-style string, so it is safe to put
any character inside these strings. Also note that the first argument of #mode (the keyword) is never evaluated, while
the second argument is evaluated (except of course for the contents of C strings), so that the syntax specification may
be obtained as the result of a macro evaluation.
The available #mode commands are:

• #mode save / #mode push
Push the current mode specification onto the mode stack.

• #mode restore / #mode pop
Pop mode specification from the mode stack.

• #mode standard name
Select one of the standard modes. The only argument must be one of: default (default mode); cpp, C (cpp
mode); tex, TeX (tex mode); html, HTML (html mode); xhtml, XHTML (xhtml mode); prolog, Prolog
(prolog mode). The mode name must be given directly, not as a C string.

• #mode user "s1" … "s9"
Specify user macro syntax. The 9 arguments, all of them C strings, are the mode specification for user macros
(see the -U command-line option and the section on syntax specification). The meta-macro specification is
not affected.

• #mode meta {user | "s1" … "s7"}
Specify meta-macro syntax. Either the only argument is user (not as a string), and the user-macro mode
specifications are copied into the meta-macro mode specifications, or there must be seven string arguments,
whose significance is the same as for the -M command-line option (see section on syntax specification).

• #mode quote ["c"]
With no argument or "" as argument, removes the quote character specification and disables the quoting
functionality. With one string argument, the first character of the string is taken to be the new quote character.
The quote character can be neither alphanumeric nor '_', nor can it be one of the special matching sequences.

• #mode comment [xxx] "start" "end" ["c" ["c"]]
Add a comment specification. Optionally a first argument consisting of three characters not enclosed in " "
can be used to specify a comment/string modifier (see the section on syntax specification). The default
modifier is ccc. The first two string arguments are used as comment start and end sequences respectively. The
third string argument is optional and can be used to specify a string-quote character. (If it is "", the
functionality is disabled.) The fourth string argument is optional and can be used to specify a string
delimitation warning character. (If it is "", the functionality is disabled.)

• #mode string [xxx] "start" "end" ["c" ["c"]]
Add a string specification. Identical to #mode comment except that the default modifier is sss.

• #mode nocomment / #mode nostring ["start"]
With no argument, remove all comment/string specifications. With one string argument, delete the
comment/string specification whose start sequence is the argument.

• #mode preservelf { on | off | 1 | 0 }
Equivalent to the -n command-line switch. If the argument is on or 1, any newline or whitespace character
terminating a macro call or a comment/string is left in the input stream for further processing. If the argument
is off or 0 this feature is disabled.

• #mode charset { id | op | par } "string"
Specify the character sets to be used for matching the \o, \O and \i special sequences. The first argument must
be one of id (the set matched by \i), op (the set matched by \o) or par (the set matched by \O in addition to the
one matched by \o). "string" is a C string which lists all characters to put in the set. It may contain only the
special matching sequences \a, \A, \b, \B, and \# (the other sequences and the negated sequences are not
allowed). When a '-' is found inbetween two non-special characters this adds all characters inbetween (e.g.
"A-Z" corresponds to all uppercase characters). To have '-' in the matched set, either put it in first or last
position or place it next to a \x sequence.

• EXAMPLES

Here is a basic self-explanatory example in standard or cpp mode:
 #define FOO This is
 #define BAR a message.
 #define concat #1 #2

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 33 of 37

 concat(FOO,BAR)
 #ifeq (concat(foo,bar)) (foo bar)
 This is output.
 #else
 This is not output.
 #endif
Using argument naming, the concat macro could alternatively be defined as
 #define concat(x,y) x y
In TeX mode and using argument naming, the same example becomes:
 \define{FOO}{This is}
 \define{BAR}{a message.}
 \define{\concat{x}{y}}{\x \y}
 \concat{\FOO}{\BAR}
 \ifeq{\concat{foo}{bar}}{foo bar}
 This is output.
 \else
 This is not output.
 \endif
In HTML mode and without argument naming, one gets similarly:
 <#define FOO|This is>
 <#define BAR|a message.>
 <#define concat|#1 #2>
 <#concat <#FOO>|<#BAR>>
 <#ifeq <#concat foo|bar>|foo bar>
 This is output.
 <#else>
 This is not output.
 <#endif>
The following example (in standard mode) illustrates the use of the quote character:
 #define FOO This is \
 a multiline definition.
 #define BLAH(x) My argument is x
 BLAH(urf)
 \BLAH(urf)
Note that the multiline definition is also valid in cpp and Prolog modes despite the absence of quote character, because
'\' followed by a newline is then interpreted as a comment and discarded.
In cpp mode, C strings and comments are understood as such, as illustrated by the following example:
 #define BLAH foo
 BLAH "BLAH" /* BLAH */
 'It\'s a /*string*/ !'
The main difference between Prolog mode and cpp mode is the handling of strings and comments: in Prolog, a '…'
string may not begin immediately after a digit, and a /*…*/ comment may not begin immediately after an operator
character. Furthermore, comments are not removed from the output unless they occur in a #command.
The differences between cpp mode and default mode are deeper: in default mode #commands may start anywhere,
while in cpp mode they must be at the beginning of a line; the default mode has no knowledge of comments and
strings, but has a quote character ('\'), while cpp mode has extensive comment/string specifications but no quote
character. Moreover, the arguments to meta-macros need to be correctly parenthesized in default mode, while no such
checking is performed in cpp mode.
This makes it easier to nest meta-macro calls in default mode than in cpp mode. For example, consider the following
HTML mode input, which tests for the availability of the #exec command:
 <#ifeq <#exec echo blah>|blah
 > #exec allowed <#else> #exec not allowed <#endif>
There is no cpp mode equivalent, while in default mode it can be easily translated as
 #ifeq (#exec echo blah
) (blah
)
 \#exec allowed
 #else
 \#exec not allowed

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 34 of 37

 #endif
In order to nest meta-macro calls in cpp mode it is necessary to modify the mode description, either by changing the
meta-macro call syntax, or more elegantly by defining a silent string and using the fact that the context at the
beginning of an evaluated string is a newline character:
 #mode string QQQ "$" "$"
 #ifeq $#exec echo blah
 $ $blah
 $
 \#exec allowed
 #else
 \#exec not allowed
 #endif
Note, however, that comments/strings cannot be nested ("…" inside $…$ would go undetected), so one needs to be
careful about what to include inside such a silent evaluated string. In this example, the loose meta-macro nesting
introduced in version 2.1 makes it possible to use the following simpler version:
 #ifeq blah #exec echo -n blah
 \#exec allowed
 #else
 \#exec not allowed
 #endif
Remember that macros without arguments are actually understood to be aliases when they are called with arguments,
as illustrated by the following example (default or cpp mode):
 #define DUP(x) x x
 #define FOO and I said: DUP
 FOO(blah)
The usefulness of the #defeval meta-macro is shown by the following example in HTML mode:
 <#define APPLY|<#defeval TEMP|<\##1 \#1>><#TEMP #2>>
 <#define <#foo x>|<#x> and <#x>>
 <#APPLY foo|BLAH>
The reason why #defeval is needed is that, since everything is evaluated in a single pass, the input that will result in the
desired macro call needs to be generated by a first evaluation of the arguments passed to APPLY before being
evaluated a second time.
To translate this example in default mode, one needs to resort to parenthesizing in order to nest the #defeval call inside
the definition of APPLY, but need to do so without outputting the parentheses. The easiest solution is
 #define BALANCE(x) x
 #define APPLY(f,v) BALANCE(#defeval TEMP f
 TEMP(v))
 #define foo(x) x and x
 APPLY(\foo,BLAH)
As explained above the simplest version in cpp mode relies on defining a silent evaluated string to play the role of the
BALANCE macro.
The following example (default or cpp mode) demonstrates arithmetic evaluation:
 #define x 4
 The answer is:
 #eval x*x + 2*(16-x) + 1998%x

 #if defined(x)&&!(3*x+5>17)
 This should be output.
 #endif
To finish, here are some examples involving mode switching. The following example is self-explanatory (starting in
default mode):
 #mode push
 #define f(x) x x
 #mode standard tex
 \f{blah}
 \mode{string}{"$" "$"}
 \mode{comment}{"/*" "*/"}
 \f{urf} /* blah */
 \define{FOO}{bar/* and some more */}

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 35 of 37

 \mode{pop}
 f(FOO)
A good example where a user-defined mode becomes useful is the GPP source of this document (available with GPP's
source code distribution).
Another interesting application is selectively forcing evaluation of macros in C strings when in cpp mode. For
example, consider the following input:
 #define blah(x) "and he said: x"
 blah(foo)
Obviously one would want the parameter x to be expanded inside the string. There are several ways around this
problem:
 #mode push
 #mode nostring "\""
 #define blah(x) "and he said: x"
 #mode pop

 #mode quote "`"
 #define blah(x) `"and he said: x`"

 #mode string QQQ "$$" "$$"
 #define blah(x) $$"and he said: x"$$
The first method is very natural, but has the inconvenience of being lengthy and neutralizing string semantics, so that
having an unevaluated instance of 'x' in the string, or an occurrence of '/*', would be impossible without resorting to
further contortions.
The second method is slightly more efficient because the local presence of a quote character makes it easier to control
what is evaluated and what isn't, but has the drawback that it is sometimes impossible to find a reasonable quote
character without having to either significantly alter the source file or enclose it inside a #mode push/pop construct.
For example, any occurrence of '/*' in the string would have to be quoted.
The last method demonstrates the efficiency of evaluated strings in the context of selective evaluation: since
comments/strings cannot be nested, any occurrence of '"' or '/*' inside the '$$' gets output as plain text, as expected
inside a string, and only macro evaluation is enabled. Also note that there is much more freedom in the choice of a
string delimiter than in the choice of a quote character.
Starting with version 2.1, meta-macro calls can be nested more efficiently in default, cpp and Prolog modes. This
makes it easy to make a user version of a meta-macro, or to increment a counter:
 #define myeval #eval #1

 #define x 1
 #defeval x #eval x+1

• ADVANCED EXAMPLES

Here are some examples of advanced constructions using GPP. They tend to be pretty awkward and should be
considered as evidence of GPP's limitations.
The first example is a recursive macro. The main problem is that (since GPP evaluates everything) a recursive macro
must be very careful about the way in which recursion is terminated in order to avoid undefined behavior (most of the
time GPP will simply crash). In particular, relying on a #if/#else/#endif construct to end recursion is not possible and
results in an infinite loop, because GPP scans user macro calls even in the unevaluated branch of the conditional block.
A safe way to proceed is for example as follows (we give the example in TeX mode):
 \define{countdown}{
 \if{#1}
 #1...
 \define{loop}{\countdown}
 \else
 Done.
 \define{loop}{}
 \endif
 \loop{\eval{#1-1}}
 }
 \countdown{10}
Another example, in cpp mode:
 #mode string QQQ "$" "$"

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 36 of 37

 #define triangle(x,y) y \
 $#if length(y)<x$ $#define iter triangle$ $#else$ \
 $#define iter$ $#endif
 $ iter(x,*y)
 triangle(20)
The following is an (unfortunately very weak) attempt at implementing functional abstraction in GPP (in standard
mode). Understanding this example and why it can't be made much simpler is an exercise left to the curious reader.
 #mode string "`" "`" "\\"
 #define ASIS(x) x
 #define SILENT(x) ASIS()
 #define EVAL(x,f,v) SILENT(
 #mode string QQQ "`" "`" "\\"
 #defeval TEMP0 x
 #defeval TEMP1 (
 \#define \TEMP2(TEMP0) f
)
 TEMP1
)TEMP2(v)
 #define LAMBDA(x,f,v) SILENT(
 #ifneq (v) ()
 #define TEMP3(a,b,c) EVAL(a,b,c)
 #else
 #define TEMP3(a,b,c) \LAMBDA(a,b)
 #endif
)TEMP3(x,f,v)
 #define EVALAMBDA(x,y) SILENT(
 #defeval TEMP4 x
 #defeval TEMP5 y
)
 #define APPLY(f,v) SILENT(
 #defeval TEMP6 ASIS(\EVA)f
 TEMP6
)EVAL(TEMP4,TEMP5,v)
This yields the following results:
 LAMBDA(z,z+z)
 => LAMBDA(z,z+z)

 LAMBDA(z,z+z,2)
 => 2+2

 #define f LAMBDA(y,y*y)
 f
 => LAMBDA(y,y*y)

 APPLY(f,blah)
 => blah*blah

 APPLY(LAMBDA(t,t t),(t t))
 => (t t) (t t)

 LAMBDA(x,APPLY(f,(x+x)),urf)
 => (urf+urf)*(urf+urf)

 APPLY(APPLY(LAMBDA(x,LAMBDA(y,x*y)),foo),bar)
 => foo*bar

 #define test LAMBDA(y,`#ifeq y urf
 y is urf#else
 y is not urf#endif

IFSI

INAF

Herschel Space Observatory
SPIRE-DPU Virtual Machine

Ref:
Issue: 2.5
Date: 15/11/2005
Page: 37 of 37

 `)
 APPLY(test,urf)
 => urf is urf

 APPLY(test,foo)
 => foo is not urf

• AUTHOR

GPP was written by Denis Auroux <auroux@math.mit.edu>. Since version 2.12 it has been maintained by Tristan
Miller <psychonaut@nothingisreal.com>.

• COPYRIGHT

Copyright © 1996–2001 Denis Auroux.
Copyright © 2003, 2004 Tristan Miller.
Permission is granted to anyone to make or distribute verbatim copies of this document as received, in any medium,
provided that the copyright notice and this permission notice are preserved, thus giving the recipient permission to
redistribute in turn.
Permission is granted to distribute modified versions of this document, or of portions of it, under the above conditions,
provided also that they carry prominent notices stating who last changed them.

