|--|

Issue : 0.-1 Date : 18/02/03

HERSCHEL/SPIRE

DETECTOR CONTROL UNIT LIA_S TEST PLAN

LIA_S BOARD Number:1

	Function	Name	Date	Visa
Prepared by		PINSARD	20/7/2001	
Verified by				
Approved by				

DOCUMENT STATUS and CHANGE RECORD

Date	Issue	Affected pages
9/3/2001	0	Creation

SAp-SPIRE-FP-0065-02 Issue:0.-1 18/02/03

TABLE OF CONTENTS

1 INTR	RODUCTION	4
	PURPOSE	
1.2	SCOPE	4
1.3	APPLICABLE DOCUMENTS	4
1.4	REFERENCE DOCUMENTS	4
2 GEN	ERAL DESCRIPTION	5
	OVERVIEW	
3 TEST	T EQUIPEMENTS	6
4 DCU	VQM1 ELECTRICAL TESTS	7
	LIA S test	
4.1.1	—	
4.1.2	Test with power supplies	9
5 TRA	CEABILITY MATRIX	

PICTURES

re 2-1: overview

1 INTRODUCTION

1.1 <u>PURPOSE</u>

The purpose of this document is to detail the tests that have been performed on the LIA_S boards. This document follows a specific order: first the success criteria are given, followed by the testing parameters and finally whether the test was successful or not.

1.2 <u>SCOPE</u>

1.3 APPLICABLE DOCUMENTS

1.4 **<u>REFERENCE DOCUMENTS</u>**

- DETECTOR SUBSYSTEM SPECIFICATION DOCUMENT	: FIST-SPI-PRJ-000103
- DRCU SUBSYSTEM SPECIFICATION DOCUMENT	: SAp-SPIRE-CCa-25-00

SAp-SPIRE-FP-0065-02 Issue:0.-1 18/02/03

2 GENERAL DESCRIPTION

2.1 OVERVIEW

Picture 2-1: overview

3 TEST EQUIPEMENTS

- DUAL OUTPUT DC POWER SUPPLY HP E3620A 0-25V 0-1A

- DIGITAL OSCILLOSCOPE

- MULTIMETER

-2 CHANNEL NETWORK SIGNAL ANALYZER

TEKTRONIX 2230

WAVETEK

SRS SR780

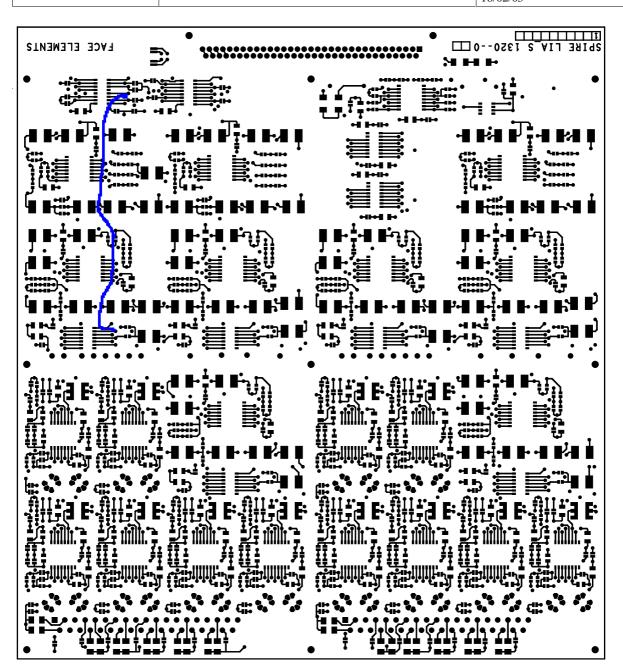
SAp-SPIRE-FP-0065-02 Issue:0.-1 18/02/03

4 DCU QM1 ELECTRICAL TESTS

4.1 LIA_S test

4.1.1 Visual test

Test	Test	Test	Check	Corrections	Test
number		check	Result		Status
		Date			OK/NOK
LIA_S1	Check that no components		R4,R7,R22 and R26	Add 51K resistors	OK
	missing and all the				UK
	component are in the good				
	way.				
LIA_S2	Check that there isn't any		None		OK
	visible short circuit				


NON CONFORMANCE:

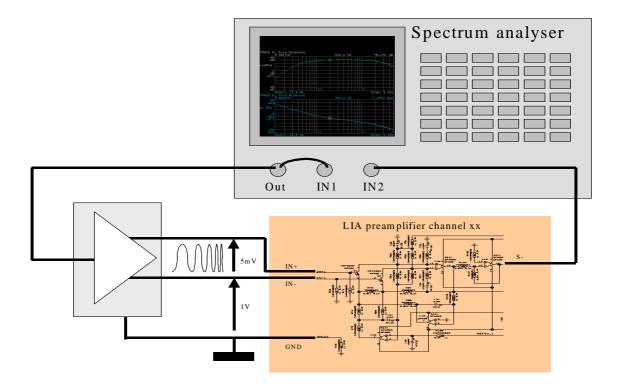
Error with the demodulation signal named DEMOD1, instead of DEMOD_1.

Correction:

Make a connection between U9 pin 3 and U103 pin 6

SAp-SPIRE-FP-0065-02 Issue:0.-1 18/02/03

4.1.2 Test with power supplies


4.1.2.1 Test

Test number	Test	Test check Date	Check Result	Corrections	Test Status OK/NOK
LIA_S 3	Switch on the lab power Check there is any short circuit.		none		ОК
LIA_S 4	Measure the current on +9V		100mA		ОК
LIA_S 5	Measure the current on -9V		100mA		OK
LIA_S 6	Measure the current on +5V		17mA		ОК

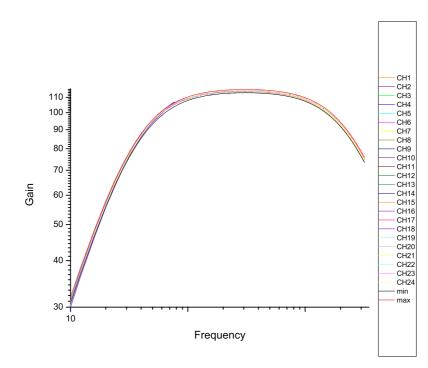
4.1.2.1.1 Preamplifier transfer function

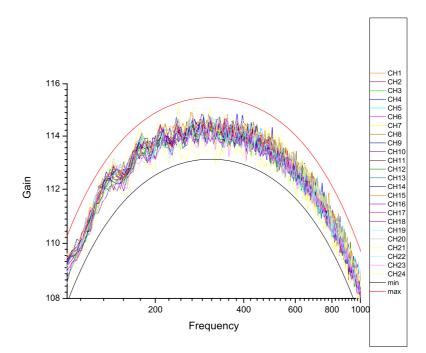
This test is considered successful if on each channel there is:

A maximum gain between:	113,2 and 115,5
A low cut of frequency between:	35,145 and 35,855Hz
A high cut of frequency between:	2673 and 2727 Hz

Measurement parameters: BAND-PASS Filter Transfer Function 4 – 3200 Hz sine sweep, 10 mV amplitude at the input of the BPF window: uniform, average: VecAvg*2

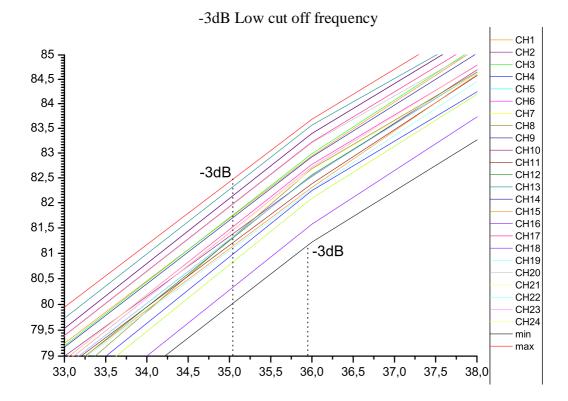
Test number	Test	Test Date	Result	Corrections	Test Status OK/NOK
LIA_S 7	Measure the transfer function of the channel 1 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 2 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 3 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 4 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 5 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 6 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 7 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 8 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 9 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 10 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 11 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 12 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 13 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 14 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 15 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 16 preamplifier		See pictures below		OK

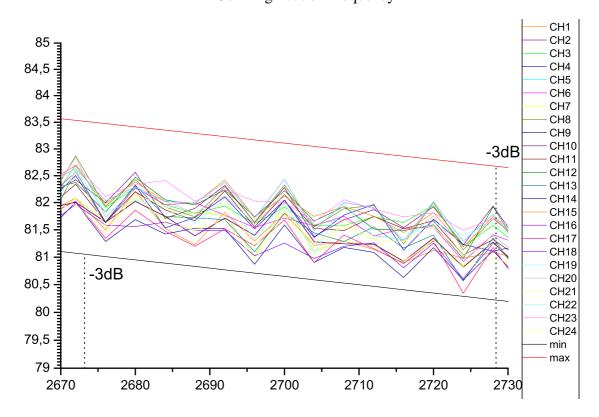

Test number	Test	Test Date	Result	Corrections	Test Status OK/NOK
LIA_S 7	Measure the transfer function of the channel 17 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 18 preamplifier		See pictures below		OK
LIA_S 7	Measure the transfer function of the channel 19 preamplifier		See pictures below		OK
LIA_S 7	Measure the transfer function of the channel 20 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 21 preamplifier		See pictures below		ОК
LIA_S 7	Measure the transfer function of the channel 22 preamplifier		See pictures below		OK
LIA_S 7	Measure the transfer function of the channel 23 preamplifier		See pictures below		OK
LIA_S 7	Measure the transfer function of the channel 24 preamplifier		See pictures below		OK



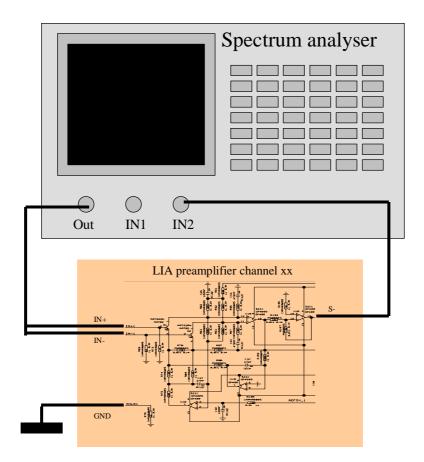
BAND-PASS Filter Transfer Function – Modulus

The following graph shows all the BPF gains (V/V) according to the frequency as well as the theoretical templates:


The following graph shows a close-up of the maximum gain zone:



The following two graphs show close-ups of the cut-off frequencies:

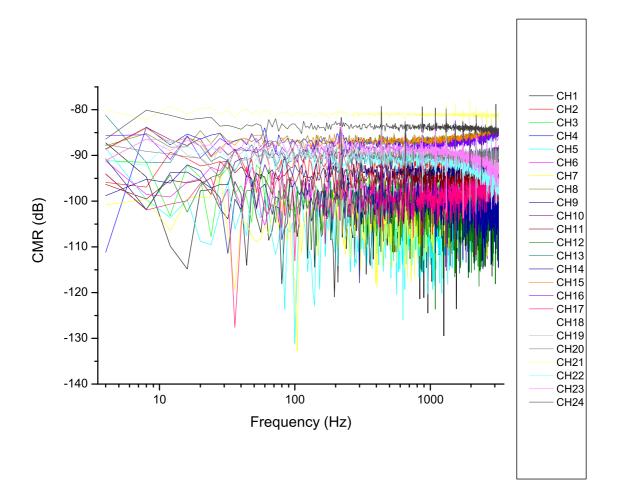

-3dB High cut off frequency

4.1.2.1.2 Common-mode rejection

This test is considered successful if on each channel the CMR is less than -60dB from 50 to 300 Hz.

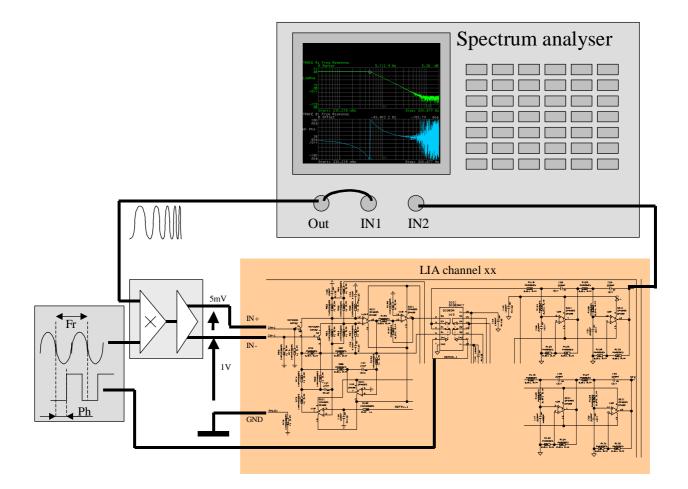
Measurement parameters:

4-3200 Hz sine sweep 100 mV between the inputs of the BPF and the gnd. CH1 connected to source CH2 on output of the BPF Measurement : $\langle F2 \rangle / \langle F1 \rangle$ in dB, then minus BPF gain in dB. Window = UNIFORM



Test	Test	Test	Check	Corrections	Test
number		check	Result		Status
		Date			OK/NOK
LIA_S 8	Measure the CMR of the		See picture below		
Lii 1_5 0	channel 1 preamplifier		See pietare serow		OK
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 2 preamplifier				
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 3 preamplifier		a		
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 4 preamplifier Measure the CMR of the		Saa niatuwa halauu		
LIA_S 8	channel 5 preamplifier		See picture below		OK
LIA_S 8	Measure the CMR of the		See picture below		OK
LIA_50	channel 6 preamplifier		See picture below		OK
LIA_S 8	Measure the CMR of the	<u> </u>	See picture below		OK
LII 1_5 0	channel 7 preamplifier		bee pretare cers w		on
LIA_S 8	Measure the CMR of the		See picture below		OK
_	channel 8 preamplifier		1		
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 9 preamplifier		-		
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 10 preamplifier				
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 11 preamplifier				
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 12 preamplifier				
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 13 preamplifier		0 1 1		
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 14 preamplifier Measure the CMR of the		Saa niatuna halary		OV
LIA_S 8	channel 15 preamplifier		See picture below		OK
LIA_S 8	Measure the CMR of the	<u> </u>	See picture below		OK
LIA_50	channel 16 preamplifier		See picture below		OK
LIA_S 8	Measure the CMR of the		See picture below		OK
LII 1_5 0	channel 17 preamplifier		See pietare selow		on
LIA_S 8	Measure the CMR of the		See picture below		OK
~	channel 18 preamplifier		~~~ F		
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 19 preamplifier		1		
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 20 preamplifier				
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 21 preamplifier				
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 22 preamplifier		a		
LIA_S 8	Measure the CMR of the		See picture below		OK
	channel 23 preamplifier	-	Coo minterna halana		07
LIA_S 8	Measure the CMR of the		See picture below		OK
<u> </u>	channel 24 preamplifier	<u> </u>			

The following graph shows the wave of each channel's CMR:



The CMR dispersion between channels depends on the dispersion of the 15k resistors, which bias the MAT02.

4.1.2.1.3 LIA transfer function

SAp-SPIRE-FP-0065-02 Issue:0.-1 18/02/03

1) The gain if a square modulation is used for the test:

$$Vin=Vrms\sum_{n=0}^{\infty}\frac{4}{(1+2n)\pi}\sin[(1+2n)\omega t]$$

After passing through the BPF there is the following signal:

$$V_{BPF} = Vrms \sum_{n=0}^{\infty} \frac{4}{(1+2n)\pi} \sin[(1+2n)\omega t] \bullet G_{BPF}[(1+2n)\omega]$$

After demodulation the DC value of the signal is:

$$V_{DEMODDC} = Vrms \frac{8}{(\pi)^2} \sum_{n=0}^{\infty} \frac{4}{(1+2n)} \bullet G_{BPF} [(1+2n)\omega]$$

So after the LPF, The gain max expression is :

$$G_{SQ} \max = \left(\frac{8}{(\pi)^2} \sum_{n=0}^{\infty} \frac{4}{(1+2n)} \bullet G_{BPF} \left[(1+2n)\omega \right] \right) \bullet 3.03$$

So This test is considered successful if on each channel: -With a modulation frequency of 216Hz: $328 \le G_{sQ} \max \le 343$

2) The gain if a sine modulation is used for the test:

 $Vin=Vrms\sqrt{2} \cdot \sin[\omega t]$ After passing through the BPF there is the following signal: $V_{BPF}=Vrms\sqrt{2} \cdot \sin[\omega t] \cdot G_{BPF}[\omega]$

After demodulation the DC value of the signal is

$$V_{DEMODDC} = Vrms\sqrt{2}\frac{2}{\pi} \bullet G_{BPF}[\omega]$$

So after the LPF, The gain max expression is :

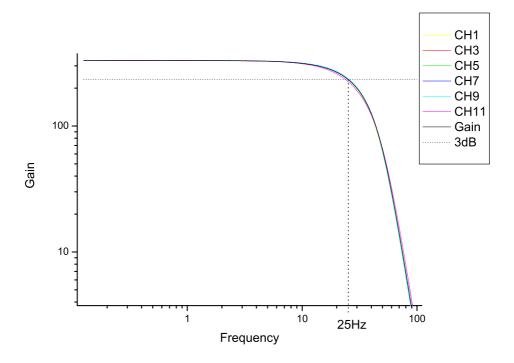
$$G_{SINE} \max = \left(\sqrt{2} \frac{2}{\pi} \bullet G_{BPF}[\omega]\right) \cdot 3.03$$

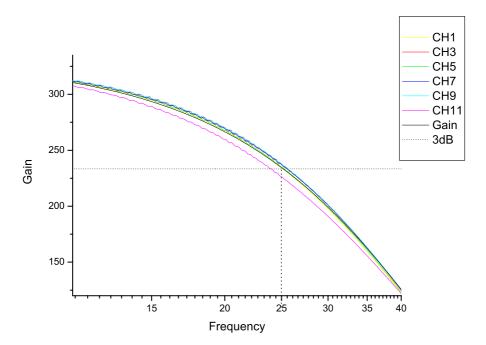
So This test is considered successful if on each channel: -With a modulation frequency of 216Hz: $308 \le G_{SQ} \max \le 315$

3) The cut off frequency should have a precision of $\pm 1\%$ at 25Hz.

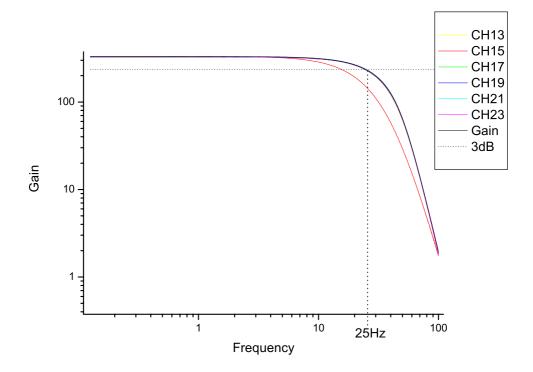
Measurement parameters:

0.25-100 Hz sine chirp amplitude 1V. Fbias = 216 Hz, rectangular modulation of a sine sweep sine sweep ~10 mV at the input of the BPF. window: uniform ; average: VecAvg*2

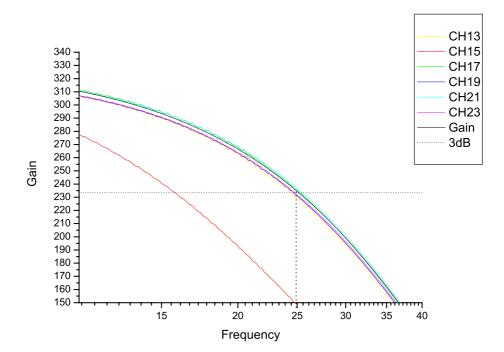



Test number	Test	Test Date	Result	Corrections	Test Status OK/NOK
LIA_S 9	Measure the transfer		Fc=24,95		OK
	function of the channel 1		Gain = 331,7		
LIA_S 9	Measure the transfer		Fc=25,7		OK
	function of the channel 2		Gain = 333		
LIA_S 9	Measure the transfer		Fc=25,1		OK
	function of the channel 3		Gain = 331,9		
LIA_S 9	Measure the transfer		Fc=25,1		OK
	function of the channel 4		Gain =333,4		
LIA_S 9	Measure the transfer		Fc=25,4		OK
	function of the channel 5		Gain = 330,8		
LIA_S 9	Measure the transfer		Fc=25,5		OK
	function of the channel 6		Gain =332,5		
LIA_S 9	Measure the transfer		Fc=25,45		OK
	function of the channel 7		Gain = 331,4		
LIA_S 9	Measure the transfer		Fc=25,7		OK
	function of the channel 8		Gain =332,6		
LIA_S 9	Measure the transfer		Fc=25,45		OK
	function of the channel 9		Gain = 332,446787		
LIA_S 9	Measure the transfer		Fc=25,9		OK
	function of the channel 10		Gain =332,7		
LIA_S 9	Measure the transfer		The problem will be		NOK
	function of the channel 11		corrected before the QM1		
			integration		
LIA_S 9	Measure the transfer		Fc=25,1		OK
	function of the channel 12		Gain =332		
LIA_S 9	Measure the transfer		Fc=24,65		OK
	function of the channel 13		Gain=328		
LIA_S 9	Measure the transfer		Fc=24,9		OK
	function of the channel 14		Gain=332		
LIA_S 9	Measure the transfer		The problem will be		NOK
	function of the channel 15		corrected before the QM1		non
			integration		
LIA_S 9	Measure the transfer		Fc=24,65		OK
	function of the channel 16		Gain=332,5		
LIA_S 9			Fc=25		OK
	function of the channel 17		Gain=333,4		0.11
LIA_S 9	Measure the transfer		Fc=25,6		OK
	function of the channel 18		Gain=332		
LIA_S 9	Measure the transfer		Fc=24,9		OK
	function of the channel 19		Gain=328		077
LIA_S 9	Measure the transfer		Fc=25,4		OK
	function of the channel 20		Gain=333		
LIA_S 9	Measure the transfer		Fc=25,4		OK
	function of the channel 21		Gain=331,5		NOV
LIA_S 9	Measure the transfer		The problem will be		NOK
	function of the channel 22		corrected before the QM1		
	Maagement that the state of the		integration		
LIA_S 9	Measure the transfer		Fc=25		OK
	function of the channel 23		Gain=328		
LIA_S 9	Measure the transfer		Fc=25,3		OK
	function of the channel 24		Gain=334		

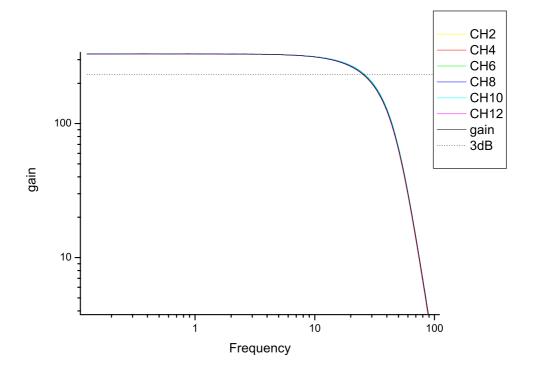
The following graph shows all the BPF gains (V/V) according to the frequency



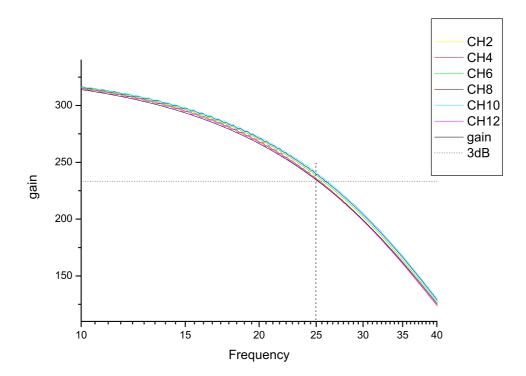
The following two graphs show close-ups of the cut-off frequencies at -3dB:



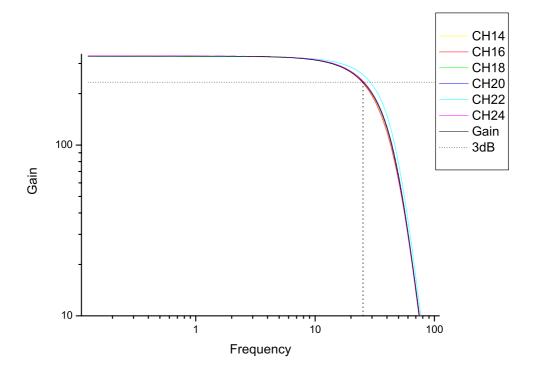
The following graph shows all the BPF gains (V/V) according to the frequency

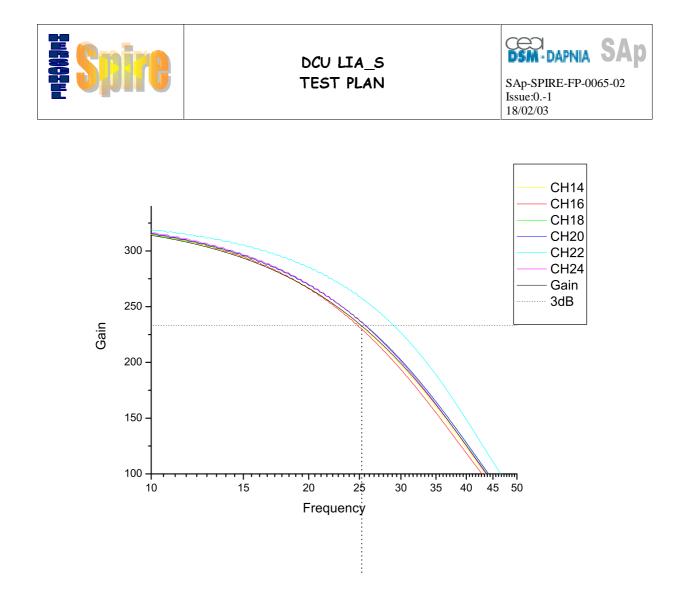


The following two graphs show close-ups of the cut-off frequencies at -3dB:

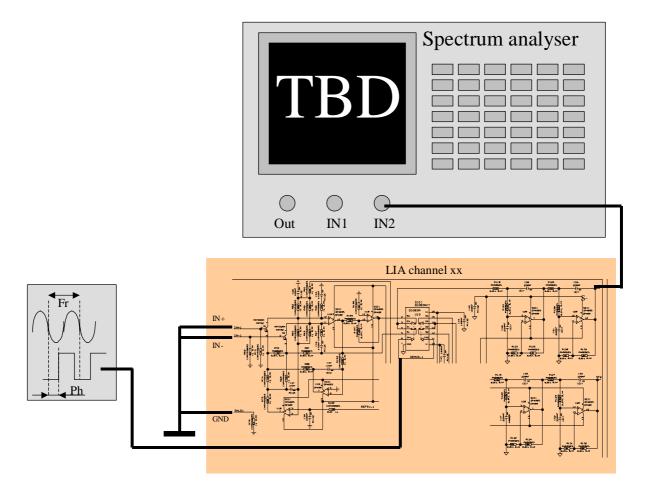


The following graph shows all the BPF gains (V/V) according to the frequency




The following two graphs show close-ups of the cut-off frequencies at -3dB:

The following graph shows all the BPF gains (V/V) according to the frequency

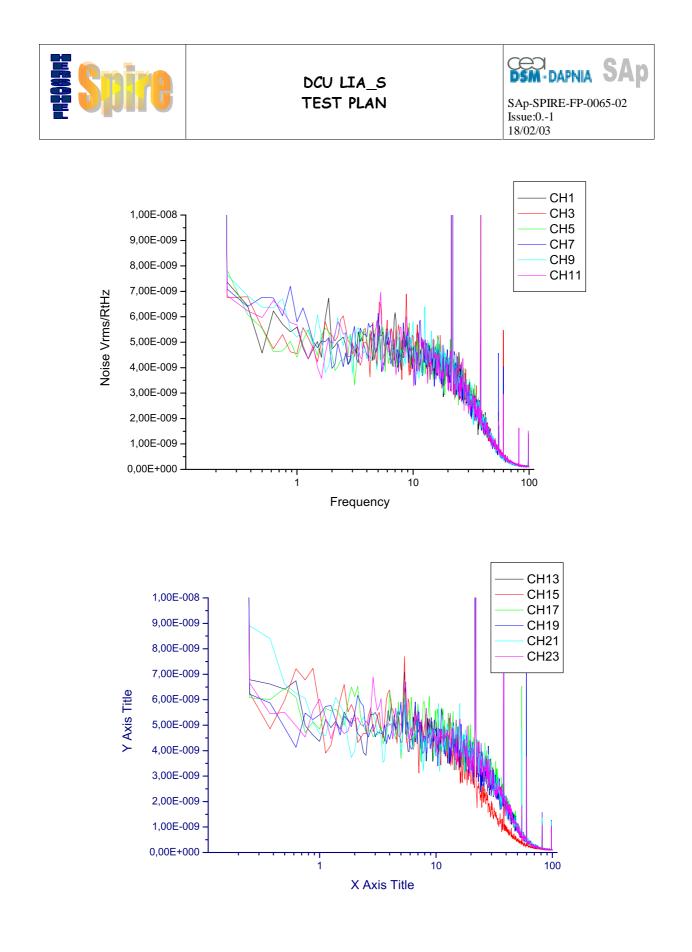


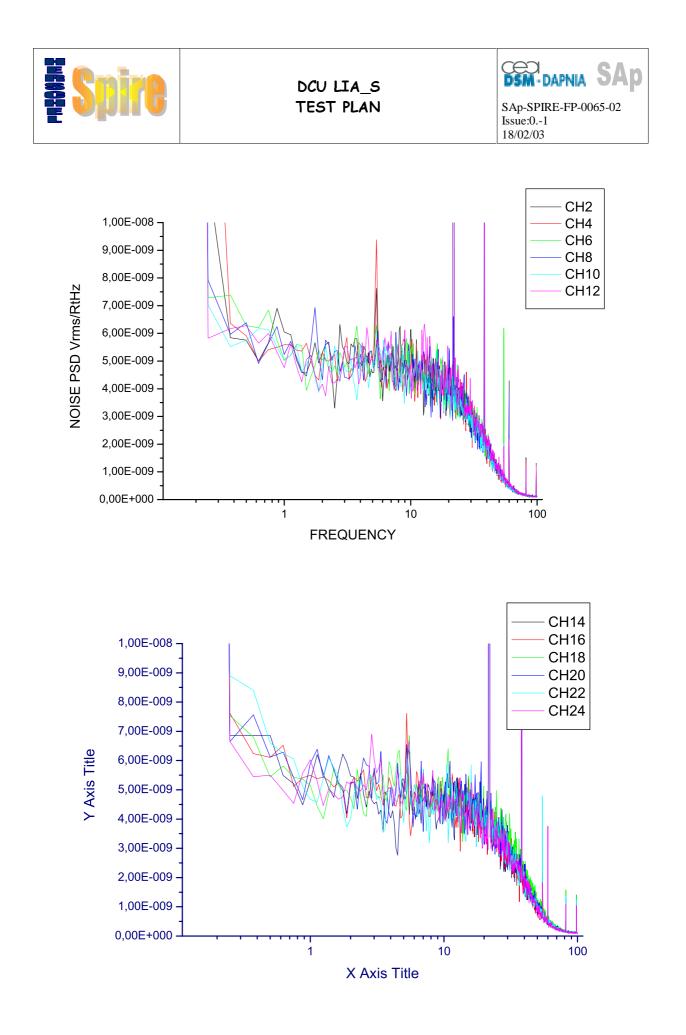
SAp-SPIRE-FP-0065-02 Issue:0.-1 18/02/03

4.1.2.1.4 LIA input noise

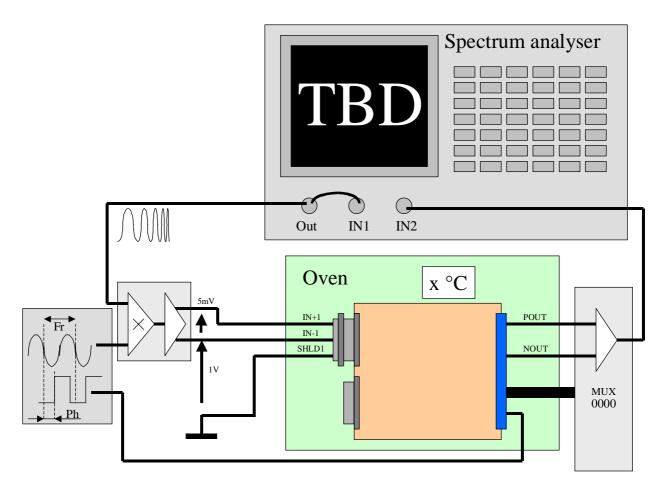
Frequency range 15mHz to 10Hz

This Test will be **OK** if the input noise is lower than 7nVrms/rt(Hz) over a frequency range of 0.05 to 25Hz on each channel


Measurement parameters:

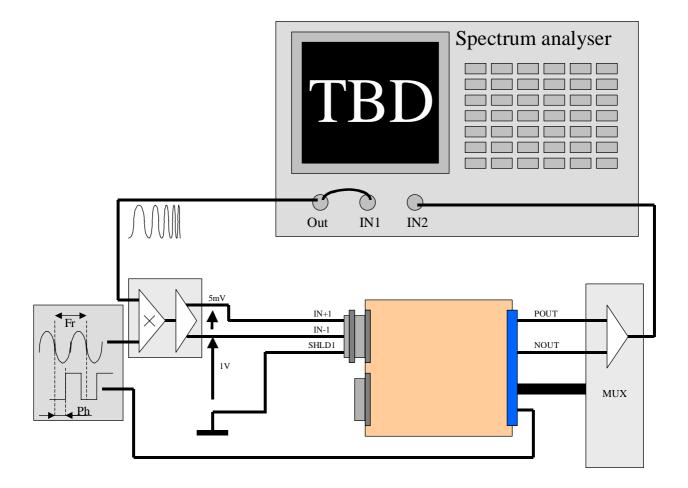

Fbias = 216 Hz Channel biased to Vout = 1.864 V, noises. BW = 0-100 Hz, Window = Hanning, Channel AC Coupled via 10 uF/1 MOhm, Channel input range ~ -34dB, 20 RMS AVG * 8 sec.

Test	Test	Test	Result	Corrections	Test
number		Date			Status
					OK/NOK
LIA_S	Measure the noise of the		See picture below		
10	channel 1		See picture below		OK
LIA_S	Measure the noise of the		See picture below		OK
10	channel 2		-		
LIA_S	Measure the noise of the		See picture below		OK
10	channel 3		0 1 1		
LIA_S 10	Measure the noise of the channel 4		See picture below		OK
LIA_S	Measure the noise of the		See picture below		OK
10	channel 5		See picture below		OK
LIA_S	Measure the noise of the		See picture below		ОК
10	channel 6		1		
LIA_S	Measure the noise of the		See picture below		OK
10	channel 7				
LIA_S	Measure the noise of the		See picture below		OK
10	channel 8		0 1 1		OV
LIA_S 10	Measure the noise of the channel 9		See picture below		OK
LIA_S	Measure the noise of the		See picture below		OK
10	channel 10		See picture below		OK
LIA_S	Measure the noise of the		See picture below		OK
10	channel 11		1		
LIA_S	Measure the noise of the		See picture below		OK
10	channel 12				
LIA_S	Measure the noise of the		See picture below		OK
10 LIA_S	channel 13 Measure the noise of the		See picture below		OK
10	channel 14		See picture below		UK
LIA_S	Measure the noise of the		See picture below		OK
10	channel 15				011
LIA_S	Measure the noise of the		See picture below		OK
10	channel 16				
LIA_S	Measure the noise of the		See picture below		OK
10	channel 17		Construction to the large		OV
LIA_S 10	Measure the noise of the channel 18		See picture below		OK
LIA S	Measure the noise of the		See picture below		OK
10	channel 19		See picture below		
LIA_S	Measure the noise of the		See picture below		ОК
10	channel 20		-		
LIA_S	Measure the noise of the		See picture below		OK
10	channel 21				
LIA_S	Measure the noise of the		See picture below		OK
10 LIA_S	channel 22 Measure the noise of the		See picture below		OK
10	channel 23		see picture below		UK
LIA_S	Measure the noise of the	<u> </u>	See picture below		OK
10	channel 24		See Pretare below		
			See picture selow		



4.1.2.1.5 LIA TEMPERATURE STABILITIE

Frequency range 15mHz to 10Hz

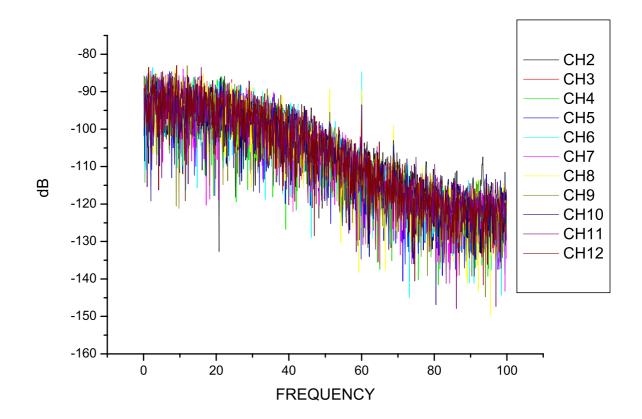


Test number	Test	Test Date	Result	Corrections	Test Status OK/NOK
LIA_S 11	Measure the transfer function of the channel 1 at 0°C		This test are going to be done when the QM1 is integrated		
LIA_S 12	Measure the transfer function of the channel 1 at 20°C		This test are going to be done when the QM1 is integrated		
LIA_S 13	Measure the transfer function of the channel 1 at 40°C		This test are going to be done when the QM1 is integrated		

4.1.2.1.6 LIA channel cross-talk

This test is considered successful if the electrical cross-talk between channel 1 and others channels is less than 0.05% or also -66 dB

Measurement parameters:


0.25-100 Hz sine chirp amplitude 1V. Fbias = 216 Hz, rectangular modulation of a sine sweep sine sweep ~10 mV at the input of the BPF. window: uniform ; average: VecAvg*2

Test number	Test	Test Date	Result	Corrections	Test Status OK/NOK
LIA_S 14	Measure the cross-talk between channel 1 and channel 2		See picture below		ОК
LIA_S 14	Measure the cross-talk between channel 1 and channel 3		See picture below		OK
LIA_S 14	Measure the cross-talk between channel 1 and channel 4		See picture below		OK
LIA_S 14	Measure the cross-talk between channel 1 and channel 5		See picture below		OK
LIA_S 14	Measure the cross-talk between channel 1 and channel 6		See picture below		OK
LIA_S 14	Measure the cross-talk between channel 1 and channel 7		See picture below		OK
LIA_S 14	Measure the cross-talk between channel 1 and channel 8		See picture below		ОК
LIA_S 14	Measure the cross-talk between channel 1 and channel 9		See picture below		OK
LIA_S 14	Measure the cross-talk between channel 1 and channel 10		See picture below		ОК
LIA_S 14	Measure the cross-talk between channel 1 and channel 11		See picture below		ОК
LIA_S 14	Measure the cross-talk between channel 1 and channel 12		See picture below		ОК

SAp-SPIRE-FP-0065-02 Issue:0.-1 18/02/03

TRACEABILITY MATRIX

Requirement ID	Description	test
BDA-DRCU-01	The DRCU signal processing electronics shall have less than 7 nV/rtHz as seen post demodulation, after digitzation. Noise is	LIA_S10
	referred to the input over the frequency	
	range 0.05 to 25 Hz. This performance must	
	be accomplished with a bias input signal to the DRCU of 10 mVrms AC, 5 mV DC, 1 V	
	DC common-mode offset, with an input load of 7 kOhms.	
BDA-DRCU-03	Input capacitance to be less than 100 pF, measured from the DRCU DxMA connector pins without the harness.	TBD
BDA-DRCU-04	Input impedance to be larger than 1 M Ω from 50 – 300 Hz.	TBD
BDA-DRCU-11	The common-mode rejection is -60 dB (50 – 300 Hz).	LIA_S8
BDA-DRCU-14	The signal bandwidth of the spectrometer channels shall be 0.03 Hz to 25 Hz. The 25 Hz cutoff should have a precision of 1 %.	LIA_S9
BDA-DRCU-19	DRCU noise performance (BDA-DRCU-01)	LIA_S11,
	to be maintained under a warm electronics	LIA_S12 &
	thermal drift of 1 K / hour (TBC).	LIA_S13
BDA-DRCU-22	The DRCU shall not saturate at an input voltage as large as 11 (TBC) mV_{rms} at input	LIA_S7 & LIA_S9
	(photometer), 17 (TBC) mV_{rms} at input	LIA_39
	(spectrometer). DRCU channels shall	
	remain functional if one input signal goes to	
	Vbias.	
BDA-DRCU-25	The electrical cross-talk between channels in	LIA_S14
	the DRCU shall be less than 0.05 % (TBC).	
	The electrical cross-talk shall be verified by	
	varying the input signal on one channel and	
	measuring the response in other channels. The input signal level to each channel must	
	be representative.	
BDA-DRCU-26	Each signal input to the LIA module must be	LIA_S1
	connected to ground by a diode. This	_~ -
	provides both protection and allows the	
	JFETs to turn on without the JFET heater.	