

LAM

Plateau Double Parallélogramme

TITRE : Dossier de CALCUL

DOCUMENT N° DOC/LAM/F02/045

EDITION 1 du 19/02/02

and the second	NOM	VISA
Rédaction	D. WISSLER	
Approbation technique	Y. LEQUESNE	
Chef de Projet	D. GARBARINO	
Approbation AQ	K. MEIZEL	

 Document
 DOC/LAM/F02/045

 Edition 1
 du 19/02/02

DIFFUSION

	Destinataires		Nombre d'exemplaires
	Nom	Société	
EXTERNE	P. DARGENT	LAM	1
INTERNE	D. GARBARINO	B.E. System	1
ARCHIVAGE			1 exemplaire

EVOLUTION du DOCUMENT

Ed.	Date	Evolutions
1	19/02/02	Edition initiale

NOMBRE DE PAGES DU DOCUMENT: 26

Document Edition 1 Page

SOMMAIRE

1.	PRES	SENTATION	1
•	DOG		1
2.	DOC	UMEN IS DE REFERENCE	I
3.	BASI	ES DE CALCUL	1
	31	SPECIFICATIONS	1
	3.2	CHARGEMENTS	
	3.2.1	Quasi-statique	2
	3.2.2	z Sinus	2
	3.2.3	Aléatoire	2
	3.3.	DEFINITION DES COEFFICIENTS DE SECURITE.	2
4.	DESC	CRIPTION DU MODELE MATHEMATIQUE	
	4.1.	MATERIAUX	
	4.2.	SYSTEME D'AXES	
	4.3.	MAILLAGE	3
	4.3.1	Cadres externes	4
	4.3.2	Cadres internes	5
	4.3.3	Structure supérieure	6
	4.3.4	Poulies	6
	4.3.5	Système de conjugaison	7
	4.3.6	Plateau fixe, verrou, capteur optique et bobine du moteur	8
	4.3.7	Plateau mobile et miroir	9
	4.3.8	. Liaison plateau fixe – plateau mobile	9
	4.3.9	Partie mobile du moteur	10
	4.3.1	0. Pivots CELTIC	11
	4.4.	MASSES, CENTRAGES ET INERTIES	12
	4.5.	CONDITIONS AUX LIMITES	14
5.	ETU	DE QUASISTATIQUE	15
	5.1.	CHARGEMENT	15
	5.2.	DEFORMEES	15
	5.3.	EFFORTS DANS LES PIVOTS	16
	5.4.	CONCLUSION DE L'ETUDE QUASI-STATIQUE	18
6.	ETU	DE MODALE	19
	6.1.	DESCRIPTION DES PREMIERS MODES PROPRES	19
	6.1.1	Premier mode propre	
	6.1.2	Second mode propre	19
	6.1.3	Troisième mode propre	20
	6.2.	BILAN DES RESULTATS	21
	6.3.	CONCLUSION DE L'ETUDE MODALE	22
7.	ETU	DE DYNAMIQUE SINUS	23
8.	ETU	DE DYNAMIOUE ALEA TOIRE	
5.	0.1		
	ð.1. 8 2	A MODIFICIENT DE LA CIDUCTURE	
	ð.2. 9 2	AMOKTISSEMENT DE LA STRUCTURE	
	0.3. 0 2 1	RESULTATS DU CALCUL ALEATOIRE	
	0.3.1	EJJOUS NING AURS LES PLVOIS	24 مد
	0.3.2	Densues spectrules de jorce	20
9.	CON	CLUSION GENERALE	

DocumentDOC/LAM/F02/045Edition 1du 19/02/02Page1

1. PRESENTATION

L'objet de cette note est l'analyse du plateau double parallélogramme nouveau design, du programme FIRST, afin de déterminer les pivots CELTIC qui devront y être montés.

Cette étude comprend :

- Une analyse quasi-statique
- Une analyse modale
- Une analyse dynamique sinus
- Une analyse dynamique aléatoire

2. DOCUMENTS DE REFERENCE

- [R1] « Proposition technique et financière » DEV/LAM/F01/527 ed 2 du 20/12/01
- [R2] « LAM Mécanisme FTS Etude de faisabilité Dossier de calcul » n° DOC/LAM/F01/089 ed 1 du 09/05/01
- [R3] «LAM UMR 6110 Liste des matériaux » document du LAM n° SPI.PFM.00.LM.01.A du 03/10/01
- [R4] «LAM FIRST SPIRE Données pour l'étude des pivots du mécanisme » document du LAM n° LAM.PJT.SPI.NOT.200115 indice 2 du 13/12/01

3. BASES DE CALCUL

3.1. SPECIFICATIONS

Modes propres :

Le mécanisme est supposé avoir une fréquence propre supérieure à 170 Hz quand il est bloqué rigidement en configuration de lancement.

Environnement :

La température de lancement est de 4 K.

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	2

3.2. CHARGEMENTS

Les niveaux de qualification définis dans le dossier de spécifications [R4] sont les suivants :

3.2.1. Quasi-statique

Axe	Cas QS 1	Cas QS 2	Cas QS 3
Х	25 g	-	-
Y	-	14 g	_
Z	-	-	14 g

3.2.2. Sinus

Axe	Fréquence	Niveau
X	5 – 40 Hz 40 – 100 Hz	Le plus favorable de 22 mm (pic-pic) ou 30 g 20 g
Y	5 –100 Hz	Le plus favorable de 22 mm (pic-pic) ou 20 g
Z	5 – 50 Hz 50 – 100 Hz	Le plus favorable de 22 mm (pic-pic) ou 20 g 25 g

3.2.3. Aléatoire

Axe	Montée	Plateau	Descente	g - rms
X	+6 dB/oct 20 – 100 Hz	0.2 g ² /Hz 100 – 300 Hz	-6 dB/oct 300 – 2000 Hz	~ 10.2
Y	+6 dB/oct 20 – 100 Hz	0.3 g ² /Hz 100 – 200 Hz	-6 dB/oct 200 – 2000 Hz	~ 9.9
Z	+6 dB/oct 20 – 100 Hz	0.2 g ² /Hz 100 – 200 Hz 0.1 g ² /Hz 200 – 400 Hz	-6 dB/oct 400 – 2000 Hz	~ 11.3

3.3. DEFINITION DES COEFFICIENTS DE SECURITE

Le coefficient de sécurité à appliquer est de 1.5 pour le dimensionnement, par rapport aux niveaux de qualification définis au § 3.2.

En outre, en aléatoire le dimensionnement est à faire pour 4 sigma (à cumuler au coefficient 1.5).

Document Edition 1 Page

4. DESCRIPTION DU MODELE MATHEMATIQUE

4.1. MATERIAUX

Le matériau utilisé pour réaliser la structure du mécanisme est de l'aluminium 6061. Les caractéristiques mécaniques à 4K sont les suivantes (réf. [R3]) :

- E = 76000 MPa
- v = 0.3

4.2. SYSTEME D'AXES

Le système d'axes utilisé pour l'analyse est celui défini dans le fichier CAO fourni par le LAM :

- X : Direction de translation du chariot
- Y : Direction transverse
- Z : Direction verticale

4.3. MAILLAGE

Le mécanisme a été modélisé à l'aide de PATRAN 2001 r2, principalement avec des éléments volumiques tétraédriques (TET4) et d'éléments rigides (RBE2).

Figure 1 : Maillage complet du mécanisme

4.3.1. Cadres externes

Les cadres externes (avant et arrière) sont réalisés en aluminium 6061. Ils ont été modélisés avec des éléments volumiques de type TET4.

Figure 2 : Cadres externes (vues DAO et EF)

4.3.2. Cadres internes

Les cadres internes (avant et arrière) sont réalisés en aluminium 6061. Ils ont été modélisés avec des éléments volumiques de type TET4.

Figure 3 : Cadres internes (vues DAO et EF)

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	6

4.3.3. Structure supérieure

Les structures supérieures (droite et gauche), qui permettent de fermer les parallélogrammes, sont réalisées en aluminium 6061. Elles ont été modélisées avec des éléments volumiques de type TET4.

Figure 4 : Structure supérieure (vues DAO et EF)

4.3.4. Poulies

Les poulies internes et externes (droites et gauches) sont réalisées en aluminium 6061. Elles ont été modélisées avec des éléments volumiques de type TET4.

Figure 5 : Poulies internes et externes (vues DAO et EF)

La liaison entre les poulies externes (resp. internes) et le cadre externe (resp. interne) se fait en deux points (cf. Figure 6) :

- Cadre et poulie sont montés serrés sur la même moitié de pivot
- Cadre et poulie sont liés par une vis de fixation

Figure 6 : Liaisons entre poulies internes et externes et cadres

4.3.5. Système de conjugaison

Le système de conjugaison a été modélisé à l'aide d' « équations de liaisons ». Le long de la ligne de contact entre les 2 poulies, on impose aux nœuds de la poulie externe un déplacement identique à celui des nœuds de la poulie interne, dans les directions locales x et y :

$$u_{x ext} = u_{x int}$$
$$u_{y ext} = u_{y int}$$

Le repère local, tangent à la surface de contact, est défini sur la Figure 7.

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	8

Figure 7 : Système de conjugaison (vues DAO et EF)

4.3.6. Plateau fixe, verrou, capteur optique et bobine du moteur

Le plateau fixe est réalisé en aluminium 6061. Il a été modélisé avec des éléments volumiques de type TET4.

Divers éléments (ne participant pas à la résistance du mécanisme) ont été modélisés à l'aide d'une masse concentrée (CONM2) placée en son centre de gravité. Un élément rigide (RBE2) lie directement cette masse aux nœuds du plateau fixe. Les éléments concernés sont :

- Système de verrouillage
- Capteur optique
- Bobine du moteur
- LVDT

Figure 8 : Plateau fixe (vues de dessus DAO et EF)

Figure 9 : Plateau fixe (vues de dessous DAO et EF)

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	9

4.3.7. Plateau mobile et miroir

Le plateau mobile est réalisé en aluminium 6061. Il a été modélisé avec des éléments volumiques de type TET4.

Le miroir a été modélisé à l'aide d'une masse concentrée et inertie (CONM2) placée en son centre de gravité. Un élément rigide (RBE2) lie directement cette masse aux nœuds du plateau fixe.

Figure 10 : Plateau mobile et miroir (vues DAO et EF)

4.3.8. Liaison plateau fixe – plateau mobile

Le plateau fixe et le plateau mobile sont liés verticalement (direction Z) à l'aide d'une butée (cf. vue DAO de la Figure 11).

Figure 11 : Liaison plateau fixe – plateau mobile (vues DAO et EF)

Cette butée est modélisée à l'aide d'un élément rigide RBE2 et d'un ressort scalaire (CELAS2) de direction Z et de raideur $Kz = 10^{10}$ N/m.

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	10

4.3.9. Partie mobile du moteur

La partie mobile du moteur a été modélisée à l'aide d'une masse ponctuelle et inertie (CONM2) placée en son centre de gravité et un élément rigide RBE2.

La liaison entre le moteur (partie mobile) et le plateau fixe se fait grâce à 4 cales qui bloquent le moteur dans la direction Y (cf. vue DAO sur la Figure 12). Cette liaison est modélisée par 4 ressorts scalaires (CELAS2) de direction Y et de raideur Ky = 10^{10} N/m.

Par ailleurs, le moteur est lié au verrou grâce à un pion qui le bloque dans les directions X et Z (cf. vue DAO sur la Figure 12). Cette liaison est modélisée par 2 ressorts scalaires (CELAS2) de direction Y et Z et de raideurs $Ky = Kz = 10^{10}$ N/m.

Figure 12 : Liaison moteur - plateau fixe - verrou (vues DAO et EF)

La partie mobile du moteur est liée rigidement au plateau mobile par un système de bridage représenté sur la vue DAO de la Figure 13. Dans le modèle EF, l'élément rigide qui représente le moteur est directement lié à 4 nœuds du plateau mobile.

Figure 13 : Liaison moteur - plateau mobile (vues DAO et EF)

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	11

4.3.10. Pivots CELTIC

La liaison entre les plateaux, les cadres et la structure supérieure sont réalisées à l'aide de 16 pivots CELTIC dont la masse vaut 14.5 g.

Les pivots ont été modélisés à l'aide de ressorts scalaires (CELAS2) situés au centre de gravité, dont les raideurs sont les suivantes (valeurs estimées compatibles avec les spécifications [R4]) :

- $Kx = 2.5 \cdot 10^7$ N/m (raideur radiale horizontale)
- $Ky = 1.0 \cdot 10^6$ N/m (raideur axiale)
- $Kz = 2.5 \cdot 10^7$ N/m (raideur radiale verticale)
- KRx = 100 Nm/rad (raideur en flexion dans un plan vertical)
- KRy = 0.052 Nm/rad (raideur en torsion)
- KRz = 600 Nm/rad (raideur en flexion dans un plan horizontal)

Par ailleurs, leur masse de 14.5 g est modélisée à l'aide d'éléments CONM2.

Les ressorts scalaires et masses ponctuelles sont reliées aux différentes structures à l'aide d'éléments rigides de type RBE2.

Un exemple de modélisation d'un pivot (entre structure supérieure et cadre interne) est donné sur la Figure 14.

Figure 14 : Exemple de modélisation d'un pivot (entre structure supérieure et cadre interne)

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	12

4.4. MASSES, CENTRAGES ET INERTIES

Les masses et positions des CdG (valeurs CAO) des divers sous-ensembles sont donnés dans le Tableau 1 ci-dessous.

Pour chaque sous-ensemble, les masses des éléments non modélisés (visserie, cales ...) ont été uniformément réparties sur le dit sous-ensemble.

						Ce	entre de Grav	ité
Fonction	Numéro	Nom	Nombre	Matière	Masse (g)	Xg (mm)	Yg (mm)	Zg (mm)
D-ti	1 44			0004	454.00	70.054	<u> </u>	0.400
Bati	11	Plateau fixe	1	6061	154.00	73.851	68.832	-2.499
				Divers Bati :	32.40			
				Total Bati :	186.40	73.851	68.832	-2.499
	1							
	211	Cadre interne avant	1	6061	63.00	102.349	69.000	71.439
		Cadre interne arrière	1		63.00	48.349	69.000	71.439
	212	Cadre Externe avant	1	6061	87.00	112.264	69.000	56.863
		Cadre Externe arrière	1		87.00	31.788	69.000	57.322
	221	Structure supérieure gauche	1	6061	23.00	73.500	131.955	106.839
Guidage		Structure supérieure droite	1		23.00	73.500	6.045	106.839
	231	Pivots flexibles	16	CuBe2 + XN26TW	232.00	73.500	69.000	55.830
	241	Poulie interne droite	1	6061	22.00	90.552	-1.047	97.771
	242	Poulie interne gauche	1	6061	22.00	90.552	139.047	97.771
	243	Poulie externe gauche	1	6061	22.00	63.478	126.435	109.003
	244	Poulie externe droite	1	6061	22.00	63.478	11.565	109.003
				Total :	666.00	73.929	69.000	68.920
				Divers Guidage :	68.92			
				Total Guidage :	734.92	73.929	69.000	68.920
Chariot	31	Plateau mobile	1	6061	62.00	76.546	64.136	11.789
				Total Chariot :	62.00	76.546	64.136	11.789
Miroirs	41	Coins de cubes Tete Beche	1	6061	152.00	77.500	69.000	30.062
		•		Total Miroirs :	152.00	77.500	69.000	30.062
	511	Corps Central	1	Permendur V/2	108.00	73 500	69 000	-7 300
	512	Corps "en bout"	2	Permendur V2	27.00	117 632	69,000	-7.317
	012		-		27.00	20.368	60,000	-7 317
	513	Corps "couvercle"	2	Permendur V/2	80.00	73 500	69,000	3.620
Moteur	515		2		80.00	73.500	69,000	-18 220
(sans	51/	Aimant	2	SmCo	52.00	73.500	60.000	0.450
(Sans)	514	Aimant	2	31100	52.00	73.500	60.000	15.050
bobine)	501	Brido	4	Invor 26	4.70	96 760	79,760	9 5 4 6
	521	Bride	4	liival 30	4.70	<u>00.709</u> 96.760	<u>70.702</u>	0.040
					4.70	00.709	50.230	0.040
					4.70	00.231	39.238	8.340
		I	1	Tatal	4.70	70.000	10.102	0.040
					444.80	73.669	69.000	-6.632
				Divers moteur:	9.80	70.000	<u> </u>	6 6 2 2
				Total moteur.	434.00	73.009	09.000	-0.032
Dehine	E 4 4	Dahina	4		26.00	52 500	<u> </u>	7 200
Bobine	541	Bobine	1		26.00	53.500	69.000	-7.300
				I otal Bobine :	26.00	53.500	69.000	-7.300
		— — ·		,	05.00	00.070	444 500	40.005
	61	Tete	1		25.00	69.250	111.500	-12.337
apteur optiq	u <u>62</u>	Regle	1	Zerodur	9.40	89.500	111.500	3.700
	63	Bride	1	321	7.00	83.500	100.160	3.952
				Total :	41.40	76.257	109.583	-5.942
				Divers Capteur :	3.30			
				Total Capteur :	44.70	76.257	109.583	-5.942
	ī	_	1				-	
	71	Bobine	2		6.00	88.500	23.000	-5.000
2.01					6.00	78.500	34.000	-5.000
				Total :	12.00	83.500	28.500	-5.000
				Divers LVDT :	14.80			<u> </u>
				Total LVDT :	26.80	83.500	28.500	-5.000
Variation	81	Solenoide	1		27.00	129.476	64.997	-2.000
verrou		Crochet	1	6061	2.00	123.623	75.851	-6.935
				Total :	29.00	129.072	65.746	-2.340
				Divers Verrou :	0.00			
				Total Verrou :	29.00	129.072	65.746	-2.340
				Bilan dobal :	1716 / 2	75 005	60 176	30 187

Tableau 1 : Masses et positions des CdG des sous-ensembles

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	13

Par ailleurs, vu que le moteur et le miroir sont d'assez grande dimension (par rapport à celle du mécanisme), on introduit leurs inerties de rotation :

Moteur :

- $Jxx = 6.29744e-5 \text{ kg} \cdot \text{m}^2$
- $Jyy = 3.67500e-4 \text{ kg} \cdot \text{m}^2$
- $Jzz = 3.67214e-4 \text{ kg} \cdot \text{m}^2$

Miroir :

- $Jxx = 1.05941e-4 \text{ kg} \cdot \text{m}^2$
- $Jyy = 1.33710e-4 \text{ kg} \cdot \text{m}^2$
- $Jzz = 2.07900e-4 \text{ kg} \cdot \text{m}^2$

Les masses, centrages et inerties obtenus avec le modèle EF global sont les suivants :

```
Masses et inerties par rapport au noeud 0

mx = 1.716421

my = 1.716421

mz = 1.716421

jx = 1.677574E-02

jy = 1.647842E-02

jz = 2.314113E-02

Centre de gravite du modele :

xg = 7.511620E-02

yg = 6.920709E-02

zg = 3.018358E-02
```

On constate que les valeurs obtenues sont très proches de celles demandées.

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	14

4.5. CONDITIONS AUX LIMITES

Le mécanisme est maintenu à sa base à l'aide de 4 vis de fixation. Ces fixations ont été modélisées par 4 blocages SPC 123456 représentés sur la Figure 15.

Figure 15 : Fixations

 Document
 DOC/LAM/F02/045

 Edition 1
 du 19/02/02

 Page
 15

5. ETUDE QUASI-STATIQUE

5.1. CHARGEMENT

Les charges quasi-statiques sont définies dans le Tableau 2 ci-dessous :

Axe	Cas QS 1	Cas QS 2	Cas QS 3
Х	25 g	-	-
Y	-	14 g	-
Z	-	-	14 g

Tubleau 2 1 Charges quabi stanques (nois coeffi fie)	Tableau 2	2:	Charges	quasi-statiques	(hors coeff.	1.5)
--	-----------	----	---------	-----------------	--------------	------

5.2. **DEFORMEES**

Les déformées de la structure pour les 3 cas de charges quasi-statiques sont représentées sur les figures suivantes :

Figure 16 : Déformée pour le cas QS 1

Figure 17 : Déformée pour le cas QS 2

Figure 18 : Déformée pour le cas QS 3

5.3. EFFORTS DANS LES PIVOTS

Le Tableau 3 donne les torseurs d'efforts obtenus dans les pivots pour les trois cas de charges quasistatiques. Ces torseurs sont exprimés dans le repère général, et le coefficient de qualification de 1.5 est inclus dans les résultats. La colonne « F rad (N) » donne la résultante radiale (somme quadratique de Fx et Fz), et la colonne « Angle (°) » donne l'angle que fait l'effort radial avec la verticale.

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	17

On constate que le cas quasi-statique 1 (25 g / X) est de loin le plus dimensionnant. On obtient un effort radial maximal de 153.6 N.

Cas QS 1 : 25g / X (coeff. 1.5 inclus)								
n°CELAS	Fx (N)	Fy (N)	Fz (N)	Mx (Nmm)	My (Nmm)	Mz (Nmm)	F rad (N)	Angle (°)
1	12.9	0.9	94.8	15.9	0.1	70.3	95.7	7.7
11	14.4	2.2	115.5	8.6	0.1	129.1	116.3	7.1
21	11.2	25.9	96.0	182.4	0.1	14.8	96.6	6.7
31	8.6	29.0	114.2	246.9	0.1	44.8	114.6	4.3
41	54.3	11.7	50.4	19.6	0.1	199.0	74.1	47.1
51	51.7	7.5	2.8	23.6	0.1	218.1	51.8	86.9
61	10.4	11.6	5.3	89.8	0.1	117.0	11.7	62.8
71	9.6	15.2	3.3	140.6	0.1	127.3	10.1	71.2
81	48.6	3.4	145.7	19.7	0.1	62.8	153.6	18.4
91	47.6	1.2	120.7	29.1	0.1	59.9	129.8	21.5
101	8.5	7.3	9.2	20.3	0.1	241.9	12.6	42.7
111	8.9	10.9	0.6	35.8	0.1	212.8	8.9	85.9
121	21.0	26.1	112.6	295.0	0.0	27.5	114.6	10.6
131	24.6	21.6	90.7	235.7	0.0	51.2	94.0	15.2
141	60.3	12.4	4.9	199.3	0.1	223.2	60.5	85.4
151	67.3	7.4	10.6	158.4	0.1	222.6	68.1	81.0
Maxi. :	67.3	29.0	145.7	295.0	0.1	241.9	153.6	

Cas QS 2 : 14g / Y (coeff. 1.5 inclus)								
n°CELAS	Fx (N)	Fy (N)	Fz (N)	Mx (Nmm)	My (Nmm)	Mz (Nmm)	F rad (N)	Angle (°)
1	3.4	17.9	18.9	87.6	0.0	109.3	19.2	10.2
11	3.1	17.8	26.2	85.1	0.0	127.2	26.3	6.8
21	1.1	3.9	4.3	61.4	0.0	48.8	4.4	14.0
31	0.8	5.5	11.5	76.6	0.0	52.5	11.5	3.8
41	0.6	19.4	1.0	36.2	0.0	42.1	1.1	33.3
51	0.5	18.9	10.3	35.1	0.0	51.7	10.3	2.8
61	3.7	3.9	16.7	85.5	0.0	22.8	17.1	12.4
71	3.5	3.0	13.7	92.0	0.0	16.0	14.1	14.5
81	2.7	18.2	44.3	83.9	0.0	41.9	44.3	3.5
91	2.5	18.2	43.3	87.2	0.0	64.6	43.4	3.2
101	2.2	13.7	2.5	28.2	0.0	28.0	3.4	41.9
111	2.1	14.2	0.5	29.5	0.0	33.7	2.2	76.2
121	3.4	3.4	13.9	72.2	0.0	6.2	14.3	13.9
131	3.1	2.0	5.3	59.0	0.0	19.3	6.1	29.8
141	6.2	6.7	16.1	75.7	0.0	21.4	17.3	21.1
151	5.7	6.0	17.8	69.2	0.0	24.7	18.6	17.7
Maxi. :	6.2	19.4	44.3	92.0	0.0	127.2	44.3	

Cas QS 3 : 14g / Z (coeff. 1.5 inclus)								
n°CELAS	Fx (N)	Fy (N)	Fz (N)	Mx (Nmm)	My (Nmm)	Mz (Nmm)	F rad (N)	Angle (°)
1	0.3	0.0	34.5	4.9	0.0	27.0	34.5	0.5
11	1.3	1.1	45.4	1.5	0.0	54.6	45.4	1.7
21	0.0	8.5	21.7	78.6	0.0	7.7	21.7	0.0
31	1.7	9.6	31.9	110.7	0.0	29.1	31.9	3.0
41	0.3	1.8	4.1	1.4	0.0	1.8	4.1	4.4
51	1.5	1.1	29.7	2.6	0.0	0.7	29.8	3.0
61	0.3	8.9	20.0	61.6	0.0	20.1	20.0	0.9
71	0.7	9.0	15.2	79.1	0.0	27.9	15.2	2.5
81	0.0	0.3	44.1	5.1	0.0	39.0	44.1	0.0
91	1.4	1.7	54.2	1.8	0.0	41.2	54.2	1.5
101	0.5	1.1	9.5	9.0	0.0	3.4	9.5	3.0
111	0.5	1.0	4.8	3.9	0.0	8.4	4.8	5.7
121	3.2	11.0	28.8	93.8	0.0	29.7	29.0	6.4
131	0.2	8.7	15.4	66.2	0.0	14.9	15.5	0.9
141	5.5	10.4	23.9	94.3	0.0	11.9	24.6	13.0
151	0.6	9.1	25.6	81.7	0.0	6.4	25.6	1.3
Maxi. :	5.5	11.0	54.2	110.7	0.0	54.6	54.2	
Max absolu	67.3	29.0	145.7	295.0	0 1	241 9	153.6	

Tableau 3 : Torseurs d'efforts dans les pivots

La localisation des différents pivots est donnée sur la Figure 19 ci-dessous :

Figure 19 : Localisation des différents pivots

5.4. CONCLUSION DE L'ETUDE QUASI-STATIQUE

Les efforts radiaux sont inférieurs à la valeur admissible de 250 N (ordre de grandeur compatible avec les spécifications [R4]).

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	19

6. ETUDE MODALE

Un calcul des modes et fréquences propres de la structure a été réalisé, pour des fréquences allant jusqu'à 2000 Hz. Ce calcul est réalisé en configuration de lancement (mécanisme bloqué). Une des spécifications est d'avoir des fréquences propres supérieures à 170 Hz.

6.1. DESCRIPTION DES PREMIERS MODES PROPRES

6.1.1. Premier mode propre

La première fréquence propre de 193.9 Hz correspond à un mode de flexion globale autour de Y représenté sur la Figure 20 ci dessous :

Figure 20 : Premier mode propre

La spécification de 170 Hz est donc bien respectée.

6.1.2. Second mode propre

La seconde fréquence propre de 270.4 Hz correspond à un mode de flexion globale autour de X représenté sur la Figure 21 ci dessous :

Figure 21 : Second mode propre

6.1.3. Troisième mode propre

La troisième fréquence propre de 344.1 Hz correspond à un mode de torsion globale autour de Z représenté sur la Figure 22 ci dessous :

Figure 22 : Troisième mode propre

 Document
 DOC/LAM/F02/045

 Edition 1
 du 19/02/02

 Page
 21

6.2. BILAN DES RESULTATS

	Masses modales						
Mode	Freq (Hz)	Mx (kg)	My (kg)	Mz (kg)	Ix (kgm2)	ly (kgm2)	Iz (kgm2)
1	193.90	0.664	0.003	0.025	0.000	0.004	0.004
2	270.43	0.007	0.600	0.003	0.006	0.000	0.004
3	344.08	0.001	0.036	0.006	0.000	0.000	0.001
4	416.85	0.268	0.003	0.743	0.003	0.005	0.002
5	455.28	0.304	0.007	0.261	0.001	0.002	0.001
6	522.49	0.061	0.000	0.011	0.000	0.001	0.000
7	600.55	0.000	0.003	0.002	0.000	0.000	0.000
8	711.15	0.000	0.010	0.000	0.000	0.000	0.000
9	809.30	0.007	0.000	0.099	0.000	0.002	0.000
10	854.88	0.001	0.002	0.016	0.000	0.000	0.000
11	881.20	0.000	0.057	0.002	0.000	0.000	0.000
12	942.11	0.000	0.055	0.000	0.001	0.000	0.000
13	1123.30	0.002	0.239	0.000	0.000	0.000	0.001
14	1134.00	0.000	0.075	0.054	0.000	0.000	0.000
15	1155.91	0.003	0.003	0.005	0.000	0.000	0.000
16	1162.85	0.004	0.002	0.159	0.001	0.001	0.000
17	1201.24	0.000	0.012	0.000	0.000	0.000	0.000
18	1216.20	0.007	0.151	0.000	0.000	0.000	0.000
19	1229.58	0.000	0.000	0.010	0.000	0.000	0.000
20	1264.89	0.000	0.050	0.006	0.000	0.000	0.000
21	1279.99	0.001	0.000	0.005	0.000	0.000	0.000
22	1318.76	0.000	0.025	0.007	0.000	0.000	0.000
23	1379.99	0.003	0.000	0.034	0.000	0.000	0.000
24	1421.38	0.000	0.002	0.007	0.000	0.000	0.000
25	1448.95	0.001	0.000	0.001	0.000	0.000	0.000
26	1499.29	0.000	0.006	0.037	0.000	0.000	0.000
27	1534.68	0.000	0.003	0.055	0.001	0.000	0.000
28	1561.52	0.000	0.000	0.013	0.000	0.000	0.000
29	1588.92	0.000	0.015	0.003	0.000	0.000	0.000
30	1606.00	0.001	0.000	0.003	0.000	0.000	0.000
31	1650.42	0.000	0.001	0.000	0.000	0.000	0.000
32	1689.48	0.000	0.006	0.002	0.000	0.000	0.000
33	1751.87	0.000	0.001	0.000	0.000	0.000	0.000
34	1781.12	0.000	0.000	0.000	0.000	0.000	0.000
35	1792.42	0.000	0.000	0.001	0.000	0.000	0.000
36	1814.44	0.003	0.003	0.005	0.000	0.000	0.000
37	1871.25	0.001	0.000	0.001	0.000	0.000	0.000
Masse	modes	1.339	1.370	1.577	0.016	0.015	0.016
Masse	reelle	1.716	1.716	1.716	0.017	0.016	0.023
Masse	residu	0.377	0.346	0.139	0.001	0.001	0.007
% de ma	sse totale :	78.04%	79.84%	91.88%	93.25%	93.30%	68.82%

Le Tableau 4 ci-dessous donne les masses modales et le Tableau 5 les facteurs de participation.

Tableau 4 : Masses modales

					Document	D	OC/LAM/	F02/045
					Edition 1	dı	ı 19/02/02	
					Page	22	2	_
		Fac	teurs de	participa	tion			
Mode	f (Hz)	Fx	Fy	Fz	Rx	Ry	Rz	
1	193.90	0.815	-0.058	0.158	0.018	0.061	-0.062	
2	270.43	0.082	0.775	-0.051	-0.078	0.011	0.061	
3	344.08	0.033	-0.189	-0.077	0.009	0.008	0.039	
4	416.85	-0.517	0.051	0.862	0.057	-0.068	0.043	
5	455.28	-0.552	-0.081	-0.511	-0.032	0.042	0.029	
6	522.49	0.246	-0.012	0.105	0.010	-0.024	-0.018	
7	600.55	0.001	-0.054	0.049	0.009	-0.003	-0.010	
8	711.15	0.008	-0.099	0.000	0.008	-0.002	-0.014	
9	809.30	0.087	-0.001	0.314	0.012	-0.044	-0.007	
10	854.88	-0.029	-0.039	-0.126	-0.015	0.017	-0.006	
11	881.20	0.011	-0.238	0.050	0.007	-0.005	-0.016	
12	942.11	0.019	0.235	0.008	0.033	-0.005	0.014	
13	1123.30	-0.046	0.489	0.021	0.009	-0.007	0.036	
14	1134.00	-0.007	0.273	-0.232	-0.013	0.019	0.018	
15	1155.91	0.051	-0.059	-0.071	-0.004	-0.001	-0.008	
16	1162.85	0.067	-0.041	-0.398	-0.023	0.024	-0.007	
17	1201.24	-0.010	-0.109	-0.002	0.008	-0.006	-0.005	
18	1216.20	0.081	0.389	0.012	-0.001	0.002	0.019	
19	1229.58	-0.017	-0.001	0.099	0.009	-0.008	0.002	
20	1264.89	-0.022	-0.225	0.076	-0.004	-0.007	-0.016	
21	1279.99	-0.022	0.004	0.070	0.002	-0.007	0.002	
22	1318.76	-0.013	-0.158	-0.086	-0.003	0.009	-0.011	
23	1379.99	-0.058	-0.011	-0.184	-0.012	0.017	0.003	
24	1421.38	0.002	0.049	-0.084	-0.002	0.006	0.007	
25	1448.95	0.026	-0.014	0.039	0.008	-0.004	-0.002	
26	1499.29	0.004	0.077	-0.192	-0.013	0.013	0.004	
27	1534.68	-0.002	-0.054	-0.235	-0.031	0.017	-0.006	
28	1561.52	-0.004	0.007	-0.115	-0.010	0.008	0.007	
29	1588.92	-0.009	-0.122	0.055	0.021	-0.002	-0.008	
30	1606.00	-0.029	0.011	-0.059	-0.012	0.009	0.002	
31	1650.42	-0.014	-0.023	0.017	0.006	0.000	-0.003	
32	1689.48	0.003	0.079	-0.043	-0.009	0.002	0.009	
33	1751.87	0.003	-0.032	-0.007	-0.009	0.002	-0.002	
34	1781.12	0.002	-0.004	0.014	0.001	0.000	0.000	
35	1792.42	0.022	0.016	-0.026	-0.001	-0.002	-0.001	
36	1814.44	-0.054	0.059	0.072	0.007	0.004	0.009	
37	1871.25	-0.025	0.015	0.025	0.002	0.004	0.003	

6.3. CONCLUSION DE L'ETUDE MODALE

La première fréquence propre de 193.9 Hz respecte bien la spécification de 170 Hz.

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	23

7. ETUDE DYNAMIQUE SINUS

Axe	Fréquence	Niveau
Х	5 – 40 Hz 40 – 100 Hz	Le plus favorable de 22 mm (pic-pic) ou 30 g 20 g
Y	5 –100 Hz	Le plus favorable de 22 mm (pic-pic) ou 20 g
Z	5 – 50 Hz 50 – 100 Hz	Le plus favorable de 22 mm (pic-pic) ou 20 g 25 g

L'étude sinus est demandée pour une plage de fréquences allant jusqu'à 100 Hz (cf. Tableau 6) :

 Tableau 6 : Excitation dynamique sinus (hors coeff. 1.5)

Or, le premier mode propre de la structure (193.9 Hz) se situe largement au-delà de la plage d'étude.

L'étude sinus n'est pas dimensionnante par rapport à l'étude aléatoire. Le calcul n'est donc pas effectué.

 Document
 DOC/LAM/F02/045

 Edition 1
 du 19/02/02

 Page
 24

8. ETUDE DYNAMIQUE ALEATOIRE

8.1. SPECTRES D'EXCITATION ALEATOIRE

Les spectres en aléatoire sont définies dans le Tableau 7 ci-dessous et sont représentés sur la Figure 23 :

Axe	Montée	Plateau	Descente	g - rms
Х	+6 dB/oct 20 – 100 Hz	$0.2 \text{ g}^2/\text{Hz} 100 - 300 \text{ Hz}$	-6 dB/oct 300 – 2000 Hz	~ 10.2
Y	+6 dB/oct 20 – 100 Hz	0.3 g ² /Hz 100 – 200 Hz	-6 dB/oct 200 – 2000 Hz	~ 9.9
Z	+6 dB/oct 20 – 100 Hz	0.2 g ² /Hz 100 – 200 Hz 0.1 g ² /Hz 200 – 400 Hz	-6 dB/oct 400 – 2000 Hz	~ 11.3

Tableau 7 : Spectres aléatoires (hors coeff. 1.5)

Figure 23 : Spectres aléatoires dans les 3 directions

8.2. AMORTISSEMENT DE LA STRUCTURE

L'amortissement structurel utilisé pour les calculs est de 2.5% (soit une amplification Q = 20).

8.3. RESULTATS DU CALCUL ALEATOIRE

8.3.1. Efforts RMS dans les pivots

Le Tableau 8 donne les torseurs d'efforts RMS (root mean square) obtenus dans les pivots pour les trois cas d'excitation aléatoire. Ces torseurs sont exprimés dans le repère général, et le coefficient de qualification de 1.5 ainsi que les 4σ sont inclus dans les résultats.

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	25

Comme pour l'étude quasi-statique, les cas dimensionnant est l'excitation aléatoire suivant l'axe X. On obtient un effort radial maximal de 938 N pour une valeur admissible de l'ordre de 250 N !!!

Document Edition 1 Page DOC/LAM/F02/045 du 19/02/02 26

Random X : Torseurs RMS à 4s (coeff. 1.5 inclus)								
n°CELAS	Fx (N)	Fy (N)	Fz (N)	Mx (Nmm)	My (Nmm)	Mz (Nmm)	F rad (N)	Angle (°)
1	30.7	22.9	595.1	180.4	0.7	490.9	595.9	3.0
11	41.5	32.8	770.3	146.4	0.8	1086.8	771.4	3.1
21	65.1	174.3	599.8	1241.2	0.6	110.1	603.3	6.2
31	47.8	196.8	737.7	1791.4	0.6	407.0	739.3	3.7
41	294.0	49.2	330.9	75.7	0.6	905.1	442.6	41.6
51	286.8	48.0	201.0	143.2	0.5	890.6	350.2	55.0
61	62.6	101.6	116.6	693.1	0.4	783.8	132.3	28.2
71	51.2	112.2	97.1	1117.9	0.5	918.2	109.7	27.8
81	238.2	44.5	907.5	129.5	0.7	329.4	938.3	14.7
91	251.7	32.7	706.4	277.7	0.8	390.2	749.9	19.6
101	32.1	43.2	72.9	130.5	0.5	1123.7	79.6	23.8
111	38.4	40.0	70.3	149.3	0.5	883.4	80.1	28.7
121	131.7	181.1	716.1	2033.6	0.2	368.2	728.1	10.4
131	154.0	151.1	552.8	1523.8	0.2	362.6	573.8	15.6
141	373.9	108.4	111.4	1502.1	0.5	1414.8	390.1	73.4
151	415.8	74.2	127.3	1151.7	0.4	1343.1	434.9	73.0
Maxi. :	415.8	196.8	907.5	2033.6	0.8	1414.8	938.3	

	Random Y : Torseurs RMS à 4s (coeff. 1.5 inclus)							
n°CELAS	Fx (N)	Fy (N)	Fz (N)	Mx (Nmm)	My (Nmm)	Mz (Nmm)	F rad (N)	Angle (°)
1	16.6	16.0	212.2	82.8	0.2	370.0	212.9	4.5
11	16.6	17.8	274.6	76.3	0.2	376.2	275.1	3.4
21	24.0	73.3	184.6	706.4	0.2	147.4	186.1	7.4
31	26.1	75.6	239.0	841.4	0.2	288.3	240.4	6.2
41	79.2	29.0	109.3	59.2	0.2	420.3	135.0	35.9
51	99.0	34.5	297.0	56.3	0.2	347.9	313.1	18.4
61	23.1	72.9	184.7	574.0	0.2	289.3	186.2	7.1
71	18.4	74.8	129.6	589.9	0.2	325.1	130.9	8.1
81	66.8	28.4	410.6	91.3	0.2	308.1	416.0	9.2
91	92.2	19.3	426.7	134.4	0.2	525.7	436.5	12.2
101	22.3	34.2	100.0	147.6	0.2	437.7	102.5	12.6
111	26.9	18.2	69.7	74.0	0.2	373.0	74.7	21.1
121	65.0	88.7	235.3	755.1	0.1	376.4	244.1	15.4
131	44.7	76.5	161.0	621.7	0.1	208.8	167.1	15.5
141	146.2	81.5	181.4	742.4	0.1	505.4	233.0	38.9
151	118.7	80.5	212.1	729.1	0.1	435.4	243.0	29.2
Maxi. :	146.2	88.7	426.7	841.4	0.2	525.7	436.5	

	Random Z : Torseurs RMS à 4s (coeff. 1.5 inclus)							
n°CELAS	Fx (N)	Fy (N)	Fz (N)	Mx (Nmm)	My (Nmm)	Mz (Nmm)	F rad (N)	Angle (°)
1	28.4	158.3	267.0	894.1	0.2	1520.0	268.5	6.1
11	29.7	156.1	271.3	853.8	0.1	1582.1	272.9	6.3
21	17.5	49.2	125.3	890.9	0.2	575.9	126.5	8.0
31	17.7	48.1	132.6	973.7	0.2	613.7	133.7	7.6
41	60.0	182.3	97.8	364.7	0.2	601.0	114.8	31.5
51	41.5	174.5	126.7	366.4	0.1	762.5	133.4	18.1
61	37.9	50.2	155.1	1059.8	0.1	514.8	159.6	13.7
71	49.2	45.0	138.1	1101.4	0.1	300.9	146.5	19.6
81	107.4	185.6	386.9	970.8	0.2	384.7	401.5	15.5
91	57.6	186.8	587.9	951.0	0.2	540.6	590.7	5.6
101	38.5	115.9	37.2	274.1	0.2	443.6	53.6	46.0
111	34.4	125.5	44.3	309.8	0.1	621.2	56.1	37.8
121	52.2	35.1	148.4	857.8	0.1	330.5	157.3	19.4
131	24.1	31.6	117.4	897.5	0.1	611.1	119.9	11.6
141	106.4	77.4	183.3	871.3	0.1	226.8	212.0	30.1
151	52.2	67.1	170.3	892.8	0.1	578.2	178.1	17.1
Maxi. :	107.4	186.8	587.9	1101.4	0.2	1582.1	590.7	
Max absolu	415.8	196.8	907 5	2033.6	0.8	1582.1	938.3	

Tableau 8 : Torseurs RMS dans les pivots

8.3.2. Densités spectrales de force

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	27

Sur la Figure 24 on a représenté les Densités Spectrales de Force (hors coeff. 1.5 et 4σ) obtenues pour le pivot le plus sollicité (Pivot n°81) pour le Cas aléatoire 1 (10.2 g rms / X).

Densité spectrale de force Pivot 81

Figure 24 : Densité spectrale de force pour le pivot 81.

On constate que les maxima sont obtenus au voisinage de la première fréquence propre (193.9 Hz).

Document	DOC/LAM/F02/045
Edition 1	du 19/02/02
Page	28

9. CONCLUSION GENERALE

Le cas de charge dimensionnant est l'excitation aléatoire suivant X, qui conduit à un effort radial maximal dans les pivots de l'ordre de 938 N, ce qui est bien supérieur à la valeur admissible de 250 N (ordre de grandeur compatible avec les spécifications [R4]).

Certaines modifications ont été envisagées, afin de tenter de diminuer les efforts dans les pivots :

- Rigidification du plateau fixe
- Rigidification du plateau mobile
- Rigidification de la structure supérieure
- Encastrement du plateau fixe sur tout son pourtour
- Fixation du plateau fixe en 8 points (4 dans coins + 4 sous compartiment moteur)

Mais aucune de ces actions ne conduit à une diminution significative des efforts.

Par ailleurs, le fait de choisir des pivots plus raides ne permettra pas d'atteindre des valeurs admissibles de l'ordre de 900 N (avec un diamètre de bague inférieur ou égal à 12).

Le meilleur moyen d'améliorer la situation reste donc de diminuer les niveaux des spectres d'entrée et / ou de diminuer la masse mobile de façon significative.