SPIRE SUGGESTED BASIC GROUNDING PRINCIPLE

POORLY CONDUCTIVE LINKS

All shown capacitance are unavoidable parasitic capacitance

EMC SPIRE GENERAL CONSIDERATION

2 main parasitic mechanisms:

-Induced voltage in signal bandwidth (electromagnetic field in loop, current injection in common impedance, cross effect...)

-RF detection in unlinear devices

Common mode induced voltage is more problematic for space application

global CMR(f) = VDM/VCM = CMRdev(f) * TI(f) * X(f) * ACM(f)

CMRdev:		Common mode rejection of victim device
TI	:	Transfer impedance (cable shielding efficiency)
Х	:	unbalanced line impedance/coupling factor
ACM	:	Common mode filtering attenuation factor

SPIRE PSU_DRCU Implementation

10 Triple output DC/DC Converter Modules

DS-18/03/03