
FOR SPACE STANDARDIZATION

EUROPEAN COOPERATION

ECSS

Space engineering

Software

ECSS Secretariat
ESA--ESTEC

Requirements & Standards Division
Noordwijk, The Netherlands

ECSS--E--40A

13 April 1999

Authorised User
 SPIRE-ESA-DOC-001313

ECSS13 April 1999
ECSS--E--40A

2

Published by: ESA Publications Division
ESTEC, P.O. Box 299,
2200 AG Noordwijk,
The Netherlands

ISSN: 1028--396X

Price: DFl 35

Printed in The Netherlands

Copyright 1999 E by the European Space Agency for the members of ECSS

ECSS 13 April 1999

ECSS--E--40A

3

Foreword

This Standard is one of the series of ECSS Standards intended to be applied to-
gether for themanagement, engineering and product assurance in space projects
and applications. ECSS is a cooperative effort of the European Space Agency,
National Space Agencies and European industry associations for the purpose of
developing and maintaining common standards.

Requirements in thisStandardaredefined in termsofwhatshallbeaccomplished,
rather than in terms of how to organize and perform the necessary work. This al-
lows existing organizational structures andmethods to be appliedwhere they are
effective, and for the structures and methods to evolve as necessary without re-
writing the standards.

The formulation of this Standard takes into account the existing ISO 9000 family
of documents, and the ISO 12207:1995 standard.

This Standard has been prepared by the ECSS Software Engineering Working
Group, reviewedby theECSSTechnicalPanelandapprovedby theECSSSteering
Board.

ECSS13 April 1999
ECSS--E--40A

4

(This page is intentionally left blank)

ECSS 13 April 1999

ECSS--E--40A

5

Contents list

Foreword 3. .

1 Scope 7. .

2 Normative references 9. .

3 Terms, definitions and abbreviated terms 11. .

3.1 Terms and definitions 11. .

3.2 Abbreviated terms 12. .

4 Space system software engineering 15. .

4.1 Introduction 15. .

4.2 Organization of this standard 16. .

4.3 Space system software engineering processes 16. .

4.4 Relation to ECSS-M and ECSS-Q standards 21. .

4.5 Verification engineering 22. .

4.6 Tailoring of this standard 23. .

5 General requirements 25. .

5.1 Introduction 25. .

5.2 System engineering processes related to software 25. .

ECSS13 April 1999
ECSS--E--40A

6

5.3 Software management 29. .

5.4 Software requirements engineering process 33. .

5.5 Software design engineering process 35. .

5.6 Software verification and validation (qualification) process 39.

5.7 Software operations engineering process 45. .

5.8 Software maintenance process 47. .

6 Special requirements 51. .

6.1 Introduction 51. .

6.2 Space segment software 51. .

6.3 Ground segment software 53. .

6.4 Software reuse 53. .

6.5 Man-machine interfaces 54. .

6.6 Critical software 55. .

Annex A (normative) Software documentation 57. .

A.1 Introduction 57. .

A.2 The Requirements Baseline (RB) 58. .

A.3 Technical Specification (TS) 59. .

A.4 Design Justification File (DJF) 60. .

A.5 Design Definition File (DDF) 62. .

A.6 System level documentation 63. .

Annex B (informative) Requirement cross references 65.

Annex C (informative) References to other ECSS Standards 67.

Bibliography 69. .

Figures

Figure 1: The recursive customer - supplier model 17. .

Figure 2: Overview of the software development processes 18. .

Figure 3: Process constraints 18. .

Figure 4: Accommodation of different software life cycles 19. .

Figure A-1: Overview of software engineering documents 57. .

ECSS 13 April 1999

ECSS--E--40A

7

1

Scope

Thissoftware engineering standard concernsthe “Productsoftware”, i.e. software
that is part of a space systemproduct tree anddeveloped aspart of a space project.

This standard is applicable to all the elements of a space system, including the
space segment, the launch service segment and the ground segment.

This standard covers all aspects of space software engineering including require-
ments definition, design, production, verification and validation, and transfer,
operations and maintenance.

It defines the scope of the space software engineering process and its interfaces
with management and product assurance, which are addressed in the Manage-
ment (-M) andProduct assurance (-Q) branches of theECSSSystem, andexplains
how they apply in the software engineering process.

This standard reflects the specific methods used in space system developments,
and the requirements for the software engineering process in this context. To-
getherwith the requirements found in the other branches of theECSSStandards,
this standardprovides a coherent and complete framework for software engineer-
ing in a space project.

This standard is intended to help customers in formulating their requirements
and suppliers in preparing their response and implementing the work.

This standard is not intended to replace textbookmaterial on computer science or
technology, and suchmaterial has been avoided in this standard. The readers and
users of this standard are assumed to possess general knowledge of computer
science.

The scope of this standard is the software developed as part of a space project, i.e.
“Space system product software”. It is not intended to cover software develop-
ments out of scopewith theECSSSystemof standards. An example is thedevelop-
ment of commercial software packages, where software is developed for a (large)
volume market and not just for a single customer, and the main requirement
analysis consists of market analysis, combined with a marketing strategy.

Other classes of software products not covered are:management information sys-
tems (e.g. finance, planning), technical information systems (e.g. CAD/CAM,
analysis packages) and supporting software products for documentation systems,
database systems, spread-sheets. These usually result from the procurement or
adaptation of existing commercial products, and not part of the space system de-
velopment. Such software productswill, however, often be part of a supporting in-
frastructure for space systems.

ECSS13 April 1999
ECSS--E--40A

8

(This page is intentionally left blank)

ECSS 13 April 1999

ECSS--E--40A

9

2

Normative references

This ECSSStandard incorporates by dated or undated reference, provisions from
other publications. These normative references are cited at the appropriateplaces
in the text, andpublicationsare listedhereafter. Fordated references, subsequent
amendments toor revisionsof anyof theseapply to thisECSSStandard onlywhen
incorporated in itbyamendmentorrevision.Forundatedreferencesthe latestedi-
tion of the publication referred to applies.

ECSS--P--001 Glossary of terms

ECSS--E--00 Space engineering -- Policy and principles

ECSS--E--10 Space engineering -- System engineering

ECSS--M--00 Space project management -- Policy and principles

ECSS--M--10 Space projectmanagement -- Project breakdownstructures

ECSS--M--20 Space project management -- Project organization

ECSS--M--30 Space projectmanagement -- Project phasing andplanning

ECSS--M--40 Space project management -- Configuration management

ECSS--M--50 Space project management -- Information/documentation
management

ECSS--M--60 Space project management -- Cost and schedule manage-
ment

ECSS--M--70 Space project management -- Integrated logistic support

ECSS--Q--20 Space product assurance -- Quality assurance

ECSS--Q--80 Space product assurance -- Software product assurance

ISO/IEC 12207:1995 Information technology -- Software life cycle processes

ISO 8402:1994 Quality management and quality assurance -- Vocabulary

These are the level 3 documents referenced by this standard.

ECSS--E--40--01 Space engineering -- Space segment software (to be pub-
lished)

ECSS--E--40--03 Space engineering -- Ground segment software (to be pub-
lished)

ECSS13 April 1999
ECSS--E--40A

10

(This page is intentionally left blank)

ECSS 13 April 1999

ECSS--E--40A

11

3

Terms, definitions and abbreviated terms

3.1 Terms and definitions
Termsforwhich theECSS--P--001definitionshavebeen further expanded to cover
softwarespecific issues (withoutchangingthegeneraldefinition inECSS--P--001),
and terms particular for ECSS--E--40:

3.1.1 (Top-level) Architecture
The highest level(s) structure of the components of a program or system, their in-
terrelationships, and principles and guidelines governing their design and evol-
ution over time.

3.1.2 Embedded software
There is no commonly agreed consistent definition of this term. It is sometimes
used to denote the self-evident observation that software, at varying levels, ispart
of a system. The term is also sometimes used to emphasize that the software in
question has extensive hardware interface requirements or real-time require-
ments. The term is purely descriptive. Use of the term is therefore discouraged.

3.1.3 Margin philosophy
The margin philosophy describes the rationale for margins allocated to the per-
formance parameters and computer resources of a development, and how these
margins shall be managed during the execution of the project.

3.1.4 Migration
Porting of a software product to a complete new opportunely environment.

3.1.5 Singular input
Individual parameter stress testing.

3.1.6 Software component
General term for a part of a software system. Componentsmay be assembled and
decomposedtoformnewcomponents. In theproductionphase, componentsareim-
plemented as modules, tasks or programs, any of which may be configuration
items. This use of the term is more general than in ANSI/IEEE parlance, which
defines a component asa “basic part of a systemor program”; in ECSS--E--40, com-
ponents may not be “basic” as they can be decomposed.

ECSS13 April 1999
ECSS--E--40A

12

3.1.7 Software item
See Software product.

3.1.8 Software intensive system
Aspacesoftwareproductwhere thedominantpartof theconstituentsaresoftware
elements. In such systems, sub-systems consistsmainly of software. For this type
of system, the majority of interfaces are software-software interfaces.

3.1.9 Software observability
The property of a system for which observations of the output variables always is
sufficient to determine the initial values of status variables.

3.1.10 Software product
The set of computer programs, procedures andpossibly associateddocumentation
and data.

3.1.11 Software unit
A separately compilable piece of code (ISO/IEC 12207). In ECSS--E--40 no distinc-
tion ismade between a softwareunit andadatabase; both are covered by the same
requirements.

3.1.12 Stress test
A test that evaluates a system or software component at or beyond the limits of its
specified requirements.

3.1.13 Validation
Confirmation by examination andprovision of objective evidence that theparticu-
lar requirements for a specific intended use are fulfilled (ISO 8402:1994).

The validation process (for software): to ensure that the requirements baseline
functionsandperformancesare correctly andcompletely implemented in the final
product.

3.1.14 Verification
Confirmationbyexaminationandprovisionof objective evidence that specifiedre-
quirements have been fulfilled (ISO 8402:1994).

The verification process (for software): to establish that adequate specifications
and inputs exist for any activity, and that the outputs of the activities are correct
and consistent with the specifications and input.

3.2 Abbreviated terms
The following abbreviations are defined and used within this standard.

Abbreviation Meaning

AR Acceptance Review

NOTE ThetermSW-ARmaybeused for clarity to denoteARs thatsolely
involve software products.

CDR Critical Design Review

NOTE The term SW-CDR may be used for clarity to denote CDRs that
solely involve software products.

CJF Change Justification File

ECSS 13 April 1999

ECSS--E--40A

13

COTS Commercial off-the-shelf Software

NOTE It denotes finished software products, that are procured from
third parties.

CPU Central Processing Unit

DDF Design Definition File

DJF Design Justification File

ICD Interface Control Document

IRB Interface Requirements Baseline

IRD Interface Requirements Document

ISV Independent Software Validation

ISVV Independent Software Verification and Validation

MMI Man Machine Interfaces

MOTS Modifiable off-the-Shelf

MP Maintenance Plan

OP Operational Plan

ORR Operational Requirements Review

PDR Preliminary Design Review

NOTE The term SW-PDR may be used for clarity to denote PDRs that
solely involve software products.

QR Qualification Review

NOTE ThetermSW-QRmaybeused for clarity todenoteQRsthatsolely
involve software products.

RB Requirements Baseline

SDE Software Development Environment.

NOTE Software tools that are supporting the software engineering pro-
cess.

SRR System Requirements Review

NOTE The term SW-SRR may be used for clarity to denote SRRs that
solely involve software products.

SW Software

TS Technical Specification

ECSS13 April 1999
ECSS--E--40A

14

(This page is intentionally left blank)

ECSS 13 April 1999

ECSS--E--40A

15

4

Space system software engineering

4.1 Introduction
This clause 4 introduces the structure of this standard and the framework of the
space software engineering process that form its basis.

The context of space software engineering is the overall space systemengineering
process. This clause 4 defines the general relationships between the software en-
gineering processes and the general engineering processes of space systems.

The software engineering standard differs from the other engineering disciplines
covered byECSS in one important aspect: software doesnot in itself produceheat,
havemassoranyotherphysicalcharacteristics.Thesoftwareengineeringactivity
is apurely intellectual activity andaprinciple output of theactivity isdocumenta-
tion. If the software code itself is considered as a specialized form of electronic
documents, all visible outputs are in fact documentation.

It followsthat thisstandard focuseson requirements for thestructure andcontent
of the documentation produced.

Software is used for the implementation of highly complex functions. The ability
todealwithahigh level of complexity ina flexiblewaymakessoftwareanessential
and increasing part of space segment and ground segment products. In space sys-
tems, software engineering is found at all levels ranging from system level func-
tions down to the firmware of a space system part.

Therefore the requirements engineering process, in which the software require-
ments and specificationsare defined, hasa special emphasis in this standard. The
software requirementsengineeringprocessconsumesa largeand oftenunderesti-
mated amount of effort in the development of software for space systems.

As a result of the complexity of the functional and performance requirements,
special measures and emphasis are required for software verification and vali-
dation, especially for space segment software. The functions assigned to software
may be critical to the space mission.

The maintenance of software for space systems also poses special problems, be-
cause they imply operational lifetimes that far exceedwhat is expected of general
computer software products.For thespace segment, this is further complicatedby
the fact that software in general is the only part of the space segment that under-
goesmajormaintenanceandrepair, sometimesevenre-design, after launch. Inex-

ECSS13 April 1999
ECSS--E--40A

16

treme cases, the space system mission itself is redesigned, implementing new
space segment software after launch. Ground segment software is similarly char-
acterized.

4.2 Organization of this standard
This standard is organized in two main parts:

D GeneralRequirements.Theseare thecorenormativerequirements forany
space system software engineering activity.

D Special Requirements. These are additional requirements for specific ap-
plicationareas.These requirementsarealwaysapplicable, butareonlyactive
in developments where the addressed disciplines or application areas occur.
This separation serves to make the general requirements core compact and
clear.

Software documentation summaries are included in annex A for information.

In the preparation of this standard the ISO/IEC 12207:1995 standard has been
used extensively, providing a common internationally recognized framework for
the terminology and engineering process description. For completeness, a cross-
reference between ECSS--E--40 and ISO/IEC 12207:1995 is included in annex B.

4.3 Space system software engineering processes
The software engineering processes regulated by this standard are based on the
definitions and requirements given in the ECSS--M series (in particular M--20,
M--30, M--40 and M--50), and the general engineering process requirements of
ECSS--E--00. These requirements have been used to define the top-level software
engineering processes. This general framework defines the processes (that are
later treated in detail in the following subclauses) and the top-level interface be-
tween thesoftwareengineeringprocessesandother spacedevelopmentprocesses.

The fundamental principle of this standard is the customer-supplier relationship,
assumed for all software developments. The organizational aspects of this are de-
fined in ECSS--M--20. The customer is, in the general case, the procurer of two
strongly associated products: the hardware and the software for a system, subsys-
tem, set, equipment or assembly (see ECSS--E--00). The concept of the customer--
supplier relationship is applied recursively, i.e. the customer may himself be a
supplier to a higher level in the space system as shown in Figure 1. The software
customer therefore has two important interfaces. The first interface is to his soft-
ware and hardware suppliers and this includes the functional analysis required
for the adequate allocation of function and performance requirements to his
suppliers. The other where he is in his role as supplier at a higher level, where he
shall ensure higher level systemrequirements are adequately taken into account.

The customer derives the functional and performance requirements for the hard-
ware and software, based onsystemengineeringprinciples andmethods. Thecus-
tomer also controls the interface between the software and hardware. Software
items are defined in the system breakdown at different levels. Nevertheless, it is
important to manage the software-software interfaces irrespective of the level at
which they occur.The customer’s requirements aredefined by this initializingpro-
cess, and provide the starting point for the software engineering.

ECSS 13 April 1999

ECSS--E--40A

17

...

Customer

Supplier

Customer

Supplier

Customer

Supplier

Customer

Supplier

Customer

H/W S/W S/W

H/W S/W

Level n

Level n+1

Level n+2

Figure 1: The recursive customer -- supplier model
Reviews are the main interaction points between the customer and supplier. The
reviews relevant to the software engineering process are the SRR, PDR, CDR,QR
andAR, asdefined byECSS--M--30. All reviews are applicable to software. The re-
views occur at different levels in the customer-supplier hierarchy and are se-
quencedaccording to the overall system level planning. This standard is designed
to be applied at any level, without explicit assumptions of how these reviews shall
be integrated with other reviews in the development of a space system. An over-
view is shown in Figure 2. The commonly designatedmission phases (e.g. 0, A, B)
are used for the overallmission phases, and play no direct role in the software en-
gineering activities as such. This means that the software engineering processes,
together with their reviews and attached milestones as defined in this standard,
are not to be scheduled as the higher-level systemmission phases. They should be
planned in relation to the immediate higher level development processes.

The notion of engineering processes is fundamental to this standard, as the pro-
cesses provide the means to describe the overall constraints and interfaces to the
software engineering process at system level, and at the same time, provide the
necessary freedom to the supplier to implement the individual activities implied
by the processes. The freedomgiven to the supplier to implement the engineering
processes is especially important for software engineering, becauseof the require-
ment to organize the work in accordance with a well defined software life cycle1.
There is a requirement to accommodate different typesof software life cycles, both
for reasons of efficient organization of the work and also for reasons related to
competitivenessandchoiceofsoftwareengineeringtechnology.Differentsoftware
life cycle types can be accommodated within the requirements in this standard.
Figure 3 illustrates the constraints imposed. Figure 4 shows examples of vari-
ations within these constraints.

1 Software life cycles

There is an abundant technical literature on the different types of software life cycles. This standard does not recommend any specific life

cycle. Instead the requirements to be used in the choice of a life cycle for a given software project are to be defined, such that the software

life cycle remains consistent with the overall organization and management of the space project organization and management, and that

the life cycle outputs remain consistent with the requirements of ECSS. Commonly known classes of software life cycles are:

S the Waterfall life cycle,

S the Incremental life cycle, and

S the Evolutionary life cycle.

This standard has been verified for compatibility with these, but the choice is not limited to these three types.

ECSS13 April 1999
ECSS--E--40A

18

Qualification Engineering
Software Verification and Validation

(5.6)Design Engineering
(5.5)

Requirements Engineering
(5.4)

SRR PDR CDR QR AR

Requirements
Baseline
DJF

Technical
Specification
ICD
DJF

DDF DJF DJF

Legend:

Process

Review

Product flow

Generated Products:

Requirements Baseline (RB)
Technical Specification (TS)
Interface Control Document (ICD)
Design Definition file (DDF)
Design Justification File (DJF)

Customer
requirement

Figure 2: Overview of the software development processes

Activities

Requirements engineering

Verification

SRR PDR CDR QR AR

Functional state

Specified state
Defined state

Qualified state

Accepted state

Legend:

Float limit of activity

State of project

Time

Design engineering

Validation

Figure 3: Process constraints

ECSS 13 April 1999

ECSS--E--40A

19

Design engineering

Verification

SRR PDR CDR QR AR

Validation

Time

(a) “Waterfall” life cycle

Requirements eng.

Design eng.

Verification

SRR PDR QR AR

Validation

(b) Evolutionary life cycle

CDR

Requirements eng.

Design eng.

Verification

SRR PDR QR AR

Validation

CDR

Optional process early
in the life-cycle

Legend:

Final and completing
invocation of the process

Requirements engineering

Figure 4: Accommodation of different software life cycles

4.3.1 Software requirements engineering process
The first part of the requirements engineering process produces the information
required for input to theSystemRequirementsReview (SRR).This establishes the
functional and performance requirements baseline of the software development,
and the preliminary interface requirements.

A secondpart of the software requirements engineering process is the elaboration
of the technical specification,which is thesupplier’s response to theRequirements
Baseline. This processmay start in parallel or after the elaborationof theRequire-
ments Baseline. The software product tree is defined by this process. The Techni-
cal Specification shall contain a precise and coherent definition of functions, per-
formances, cost, schedule and implementation plans for all levels of the software
to be developed. The preliminary Interface Control Document (ICD) is generated
by this process.

During thesoftware requirementsengineeringactivity, the resultof allsignificant
trade-offs, feasibility analyses, make-or-buy decisions and supporting technical
assessments shall be documented in a Design Justification File (DJF)

The software requirements engineering process is completed by the Preliminary
DesignReview (PDR). The input to thePDR is the technical specification, prelimi-
nary ICD and theDJF. The top-level architectural design is reviewed at the PDR.
If the customer requires an additional review of the software architecture, this
may be specifically included in the organization of the project.

The state of the software development after PDR is called “specified state”.

ECSS13 April 1999
ECSS--E--40A

20

4.3.2 Software design engineering process
The “Design and configuration engineering process” mentioned in ECSS--E--10 is
in software developments referred to as the “Design engineering process”.

This process should not start before SRR. It may start before the PDR, but it is
after the PDR when the results of the Requirements Engineering Process are re-
viewed and baselined to be used as inputs to the Design Engineering Process.

The process produces the design of each element of the software product tree, in
response to the requirements contained in the Technical Specification, ICD and
DJF.All elementsof thesoftware design shall bedocumented in theDesignDefini-
tion File (DDF). TheDDF contains all the levels of design engineering results, in-
cluding software code listings.

The rationale for important design choices, and analysis and test data that shows
that the design meets all requirements, is added to the DJF by this process. The
results of this process are the input to theCriticalDesignReview (CDR). TheCDR
signals the end of the design phase. For large software projects, all software sub-
systems shall undergo a CDR before they are integrated with the next highest
level in the systemhierarchy. Large software developments should be partitioned
in smallermanageable projects that aremanaged like any other subsystemdevel-
opment in space projects.

The state of the software project after CDR is called “defined state”.

4.3.3 Software verification and validation (qualification)
process

Thesoftwareverificationandvalidationprocessmay startany timeafter theSRR.

This process is intended to confirm that the customer’s requirements have been
properly addressed, that all requirements have been met and that all design con-
straints are respected.

The result of this process is included in the DJF.

The process shall include a Qualification Review (QR), with the DJF as input.

The state of the software project after QR is called the “qualified state”.

A sub-process of this process is the transfer and acceptance of the software to the
customer. This latter sub-process is completed by anAcceptanceReview (AR), that
may take place after QR. The Acceptance Review is a formal event in which the
software product is evaluated in its operational environment. It should be carried
out after the software product has been installed and transferred to the customer
and installed on an operational basis. Software validation activities terminatewi-
th the Acceptance Review.

This state of the software after AR is called the “accepted state”.

NOTE Theterm“qualificationengineering” isoften usedsynonymously
with the term “verification engineering” in projects delivering
hardware. For the sake of clarity, “qualification engineering” is
used in this Standard to denote “the total set of verification and
validation activities”. This should be consistentwith otherECSS
Standards outside the software engineering discipline, and to
avoid confusion with the general verification engineering acti-
vities that are invoked in many places in software projects.

4.3.4 Software operations engineering process
The operationsprocessmay start after completion of theAcceptanceReview of the
software. Since software products form an integrated part of a space system, the
phasing andmanagement of operations shall be determined by the overall system
requirements and applied to the software products. The operations engineering
processes are not directly connected to the overall mission phase E, but are, in-

ECSS 13 April 1999

ECSS--E--40A

21

stead, determinedby therequirementatsystemlevel to operatethesoftwareprod-
uct at a given time.

4.3.5 Software maintenance process
This separate process is started after the completion of the AR.

This process is activated when the software product undergoes any modification
to code or associated documentation as a result of correcting an error, a problem
or implementing an improvement or adaptation. The process endswith the retire-
ment of the software product.

NOTE The software analysis process (as a general engineering process
defined in the ECSS--M standards) is invoked by the require-
ments and design engineering processes. No separate output is
produced by this process. The results produced by the analysis
process are integrated with the requirements and design engin-
eering outputs.

4.4 Relation to ECSS-M and ECSS-Q standards
This subclause discusses how this standard interfaces with other ECSS series,
namely the ECSS--Q series of standards (Product assurance) and the ECSS--M
series of standards (Project management).

4.4.1 Software product assurance
Requirements on software product assurance are defined in ECSS--Q--80, which
is the entry level document of theECSS--Qseries (Productassurance) for software
projects.

4.4.2 Software project management
ECSS--M standards define the requirements to be applied to the management of
space projects. The following subclauses describe how the ECSS--M standards
apply to the management of software projects.

In addition, normative requirements which cannot be found in M-series, because
they are specific to software project management, are provided in subclause 5.3.

4.4.2.1 ECSS-M-00: Policy and principles

ECSS--M--00 isatop-leveldocumentwhichdefinesprojectmanagementprinciples
and general requirements to be applied to all aspects of a space project including
software.

Riskmanagement is coveredbyECSS--M--00.Somerisk factors, such asexceeding
the assigned memory budget or CPU load, are specific to software.

The terms “customer” and “supplier” used in ECSS--E--40 are defined in
ECSS--M--00A, subclause 5.2.

4.4.2.2 ECSS-M-10: Project breakdown structures

The provisions of ECSS--M--10 shall apply to software, taking account of the spe-
cific features of the software.

The productsof asoftware projectare usuallydocuments (including code) butmay
also include computer devices in the case of software intensive systems.

“Model matrix” in ECSS--M--10A, subclause 5.2, is concerned with material mo-
dels and therefore is not relevant to software. However, these models shall not be
confusedwith logicalandphysical softwaremodelswhichmaybeproducedaspart
of a software specification and design, respectively.

ECSS13 April 1999
ECSS--E--40A

22

4.4.2.3 ECSS-M-20: Project organization

ECSS--M--20provides a clear definition of the role and responsibility of each party
to the project. ECSS--M--20 covers the requirements for software projects.

4.4.2.4 ECSS-M-30: Project phasing and planning

ECSS--M--30 defines the phasing and planning requirements for an entire space
project. But some requirements also affect software development, because they
are specified in ECSS--M--30 as applicable at any level of the project organization.

Project phases as defined in ECSS--M--30 are top-level (mission) phases, used to
structure thewhole space project. Theydonotapply recursively to softwaredevel-
opment. They should not be confused with the phases which are defined to give
structure to software development life cycles, and for which no specific definition
is imposed in ECSS--E--40.

Similarly, the reviews as defined in ECSS--M--30 do not apply directly to software
eventhoughtheconceptof reviewappliesrecursively toall levelsofaspaceproject.

The terms “SRR”, “PDR”, “CDR”, “QR” and “AR” are defined in ECSS--M--30 , and
these are reused to define joint technical reviews for a software development as
described in subclause 4.3.

These reviews shall be synchronized with higher level reviews in a way which is
project dependant. In clause 6, interface requirements are given for particular
types of software. Requirements concerning phasing and reviews, and which are
specific to software are given in subclause 5.3.

4.4.2.5 ECSS-M-40: Configuration management

The requirements, also for software developments, are contained inECSS--M--40.

One facet of software configuration management is that all configuration items
may be regarded as documents (even code). Due to this, ECSS--M--40 is strongly
connected to ECSS--M--50 when applied to software, making software configur-
ation control a highly automated process, and which may be simplified with re-
spect to the general approach.

4.4.2.6 ECSS-M-50: Information/documentation management

Theobjectivesof informationanddocumentationmanagementareparticularlyre-
quired to ensure the accessibility of information to all parties of the project and to
ensure the coherence of this information. These objectives also apply to software
projects, and the relevant requirements are to be found in ECSS--M--50.

4.4.2.7 ECSS-M-60: Cost and schedule management

ECSS--M--60 contains requirements on software projects, although requirements
onschedulemanagementaremoredirectly applicable to software, thancostingre-
quirements.

4.4.2.8 ECSS-M-70: Integrated logistic support

ECSS--M--70 is mainly of concern to large or software-intensive systems.

4.5 Verification engineering
Verification engineering supports requirements definition, design, coding, in-
tegration, operations and maintenance. The requirements of ECSS--E--10A, sub-
clause 4.6, are applicable to the software with the following interpretation:

“Verification engineering determines whether the software products
fulfil the requirementsandconditions imposed.Verificationactivities
should be integrated, as early as possible, with requirements engin-
eering and design engineering.”

ECSS 13 April 1999

ECSS--E--40A

23

Verification engineering activities may be executedwith varying degrees of inde-
pendence. The degree of independencemay range fromthe sameperson, or differ-
ent person in the same organization, to a person in a different organization, with
varying degrees of separation. In the casewhere the processes are executed by an
organization independent of the supplier, it is called Independent SoftwareVerifi-
cation and Validation (ISVV). The individual verification requirements for the
various software engineering processes are given in clause 5.

4.6 Tailoring of this standard
The general requirements for selection and tailoring of applicable standards are
defined in ECSS--M--00.

ECSS13 April 1999
ECSS--E--40A

24

(This page is intentionally left blank)

ECSS 13 April 1999

ECSS--E--40A

25

5

General requirements

5.1 Introduction
Thisclause5defines therequirements for engineering software for spacesystems.
They shall be applied to any space projects producing computer software.

Each requirement can be identified by a hierarchical number. The text of the re-
quirement is followed, where necessary, by further explanation of the aim. For
each requirement the associated output is given in the output section. With each
output (e.g. “a.”, “b.”), the required destination (document) of the output is indi-
cated in brackets together with the corresponding review. For example: “[DDF,
DJF; QR]” denotes an output to the Design Definition File and the Design Justi-
fication File. The output in this example is required for the qualification review.

5.2 System engineering processes related to software

5.2.1 Introduction
This subclause 5.2 describes activities which are under the customer responsibil-
ity. The customer shall be responsible for the delivery of a system inwhich the de-
velopedsoftwarewillbe integrated(refer totherecursive customer-suppliermodel
described in 4.3).

The customer activities described here are only those that require introduction of
additional requirements particular for software development:

D system requirement analysis;
D system partitioning;
D system level requirements for software verification and validation;
D system level integration of software;
D software operations.
System level documentation is a prerequisite to the requirements engineering of
the software. The aimof the requirements given in this subclause shall ensure the
completeness and correctness of the customer’s system level documentation and
toestablishacompleteandverifiedrequirementsbaseline for thesoftwareproject.

ECSS13 April 1999
ECSS--E--40A

26

5.2.2 System requirements analysis
This activity consists of the following tasks:

D system requirements specification;
D system and functional criticality analysis.

5.2.2.1
Systemrequirementsshallbederived fromananalysisof thespecific intendeduse
of the system to be developed. All system requirements shall be documented.

EXPECTED OUTPUT: a. functions and performance requirements of the system[RB;
SRR];

b. operations and maintenance requirements [RB; SRR];

c. interface requirements [IRB; SRR];

d. design constraints and verification and validation
requirements [RB; SRR];

e. identificationof lower levelsoftware engineeringstandards
that will be applied [RB; SRR]..

5.2.2.2
System criticality analysis and critical functions analysis shall be performed for
the system.

EXPECTED OUTPUT: a. overall safetyandreliability requirements of the software to
be produced [RB; SRR];

b. critical function identification and analysis [RB; SRR].

5.2.3 System partitioning

5.2.3.1 Introduction

As part of the SystemDesign process, a physical architecture and design (includ-
ing HW, SW and manual operations) of the system shall be derived: this is called
top-levelpartitioningof thesystem.Thissystemdesignisderivedfromananalysis
of the requirements on the system and its functions. Conformance to the system
design with all system requirements shall be verified. All system requirements
shallbeallocated (andshall be traceable) to the differentsystemdesignpartitions.

5.2.3.2
A top-level partitioning of the system shall be established. This partitioning shall
identify items of hardware, software and manual operations. It shall be ensured
that all the system requirements are allocated to items. Hardware configuration
items, software configuration items, and operatingmanual shall be subsequently
identified fromthese items.The systempartitioning andthe systemrequirements
allocated to the individual items shall be documented.

EXPECTED OUTPUT: a. system partition with definition of items [RB; SRR];

b. software/hardware interface requirements [IRD; SRR];

c. system configuration items list [RB; SRR];

d. traceability to system partitioning [DJF; SRR].

5.2.4 System level requirements for software verification and
validation

5.2.4.1 Introduction

The general ECSS approach to the verification process is described in
ECSS--E--10Aclauses 4and5, covering both verification and validation activities.

ECSS 13 April 1999

ECSS--E--40A

27

NOTE 1 It is assumed that for all space projects certain verification and
validation activities will always be applied. Therefore the ISO/
IEC 12207 requirements to determine if validation and verifica-
tion is required have no equivalent here (tailoring of ISO/IEC
12207).

NOTE 2 The supplier process verification is handled as part of the ECSS
management and is therefore not covered as part of the software
activities (tailoring of ISO/IEC 12207:1995 6.4.2.2). In addition,
ECSS--Q standards provide requirements related to the supplier
process assessment which are not repeated in this standard.

5.2.4.2
The customer shall adapt the requirement for qualification engineering given in
subclause 5.6 to system level requirements.

AIM: To identify the customer’s verification andvalidation process requirements
at system level, and to prepare for software acceptance and software
integration by introducing the corresponding verification and validation
process requirements in the requirements baseline.

EXPECTED OUTPUT: Verification and validation process requirements [RB; SRR].

5.2.4.3
The customer shall verify the requirements baseline.

In cases where the customer’s product is an integrated hardware and software
product, thisshallbeperformedasrequiredbytheECSSsystemengineeringstan-
dards. In cases where the customer’s product is a software product, the customer
shall apply this standard in his role as “supplier” at a higher level in the product
tree.

EXPECTED OUTPUT: Requirements justifications [Customer DJF for system level].

NOTE This output is a special case:
The output is not part of the customer-supplier interface to the
software engineering processes, and is therefore not part of any
milestone input. Instead the output is part of the customer’s own
systemDJF, and should be used only by the customer in his role
assupplier to thenexthigher level intheproducttree.Theoutput
is mentioned here for completeness only.

5.2.5 System level integration of software
This activity consists of the following tasks, which the customer shall perform or
support as required for system level activities, in the customer’s role as supplier
of the overall system:

D identificationof requiredsoftwareobservability for thesupportof softwarein-
tegration;

D required control and data interfaces for system level integration;

D data media requirements for integration;

D functional software integration support requirements;

D system level inputs required for the supplier’s preparation of integration of
the software;

D supplier software engineering outputs required for system level integration
preparation;

D required supplier for system level integration.

The software product integration atsystem level takesplaceonly after completion
of theCDRof the softwareproduct, whereasthe engineering, design andplanning

ECSS13 April 1999
ECSS--E--40A

28

activities supporting the later systemlevel integrationare completed for theprod-
uct before CDR.

5.2.5.1
If a software product is integrated into a system, all software observability re-
quirements, necessary to facilitate the software integration, shall be specified by
the customer.

EXPECTED OUTPUT: Software observability requirements [RB; SRR].

5.2.5.2
If the software is integrated into a system, all the interfaces between the software
andthesystemshallbespecifiedbythecustomer, including thestatic anddynamic
aspects, for nominal and degraded modes (e.g. behaviour in case of failure).

The external interfaces, specific to software integrated in a system, may be:

D software interfacewith other software on the system (operating system, files,
database management system or other applications software);

D hardware interfaces to the specific hardware configuration;
D communication interfaces (particular network protocol for example).

EXPECTED OUTPUT: System level interface requirements [IRD; SRR].

5.2.5.3
The customer shall identify the interface data medium and prepare the require-
ments accordingly.

For example, the interface datamay be defined and structured in such a way that
interface data may be automatically acquired by the supplier SDE. Trade-offs
shall be performed, taking into account the number of software packages in the
system, the evolution of interface data, and the number of interface data sets.

EXPECTED OUTPUT: System level data interfaces [IRD; SRR].

5.2.5.4
If necessary, the customer shall define specific development constraints on the
supplier required to support the integration of the software into the system.

When the software is integrated into a system, some harmonization constraints
may be required such as:

D specification of the operating system to be used;
D specification of COTS to be used (e.g. Database, MMI generator);
D specification of the SDE to be used.

EXPECTED OUTPUT: Development constraints [RB; SRR].

5.2.5.5
Where necessary, the customer shall identify and plan the specific inputs he shall
provide to the supplier to support the integration of the software into the system,
and he shall prepare the requirements baseline accordingly.

When the software is integrated into a system, the customer may provide the
supplier with specific inputs for validating the software in a representative envi-
ronment. These inputs can be:

D breadboard or computer model;
D a simulator of the hardware and/or software environment.

EXPECTED OUTPUT: System level integration support products [IRD; SRR].

ECSS 13 April 1999

ECSS--E--40A

29

5.2.5.6
The customer shall identify and plan the specific outputswhich the supplier shall
deliver to support the integration of the software into thesystem, andhe shallpre-
pare the requirements baseline accordingly.

When software is integrated into a system, some prototype versions or intermedi-
ate versions may be required by the customer to prepare for integration. Func-
tionalities and delivery dates required for each of these versions shall be defined.

EXPECTED OUTPUT: System level integration preparation requirements [IRD;
SRR].

5.2.5.7
The customer shall plan to support the software supplier in integration of the soft-
ware at system level, and prepare the requirements baseline accordingly.

Thiscan includeactivitiessuchas: training,maintenance, configuration, testsup-
port.

EXPECTED OUTPUT: System level integration support requirements [IRD; SRR].

5.2.6 Software operations
Since software products are an integrated part of the space system, the phasing
andmanagement of operations shall be determinedby the overall systemrequire-
ments and shall be applied to software products.

5.2.6.1
For all software products the customer shall identify the supplier who performs
the operations process (called “operator” hereafter).

5.2.6.2
The customer shall establish system requirements for the operation of software
products. The supplier of the operation service (operator) shall prepare the re-
sponse to the operational requirements, anddocumenthis response inaccordance
with the requirements in subclause 5.7. The supplier’s response shall be agreed
with the customer in an Operational Requirements Review (ORR), intended to
release the operational plans for execution.

5.3 Software management

5.3.1 Introduction
Mostofthespecific requirements for themanagementandcontrolof spacesystems
software projects exist in the ECSS--M series of documents. They are not repeated
here. In addition, the software product assurance requirements described in
ECSS--Q--80 are also used for the control of space systems software projects. The
requirements described in this subclause 5.3 are necessary for the engineering
and control of software development in a space systems project, and they bridge
the gapbetween the otherECSSStandardsmentionedabove and the software en-
gineering activities in space projects.

The management and control described in this subclause are:

D software life cycle;
D interface management;
D technical budget and margin management.
The requirements in this subclause 5.3 shall be applied to any type of software in
a space project.

As defined in more detail in following subclauses, the software shall undergo the
overall software milestone reviews SRR, PDR, CDR, QR and AR as a minimum.
Further reviews (e.g. review of project plans, before the PDR) may be required by
the customer and they should follow requirements mentioned in subclause 5.6.8.

ECSS13 April 1999
ECSS--E--40A

30

5.3.2 Software life cycle
Toassureeffectivephasingandplanning, thesoftwaredevelopmentlife cycleshall
be broken into phases, each having its associated milestones.

5.3.2.1
The software supplier shall define and follow a software development life cycle in
accordance with subclause 4.3, and covering all activities from the statement of
requirement to theentry of thesoftware into service.Thedefinition of the life cycle
shall be associated with choices of techniques used during the development (e.g.
database management system, extensive product reuse), with the risks inherent
totheproject(e.g. highlychangeable specification,stringentscheduleconstraints)
and with synchronization points with the upper level.

The choice of software life cycle shall be in accordance with the overall project re-
quirements, andtheprocessmodelof subclause4.3andECSS--M--30shallbeused.

EXPECTED OUTPUT: Project software development life cycle definition, included in
the software project development plan [TS; PDR].

5.3.2.2
The development life cycle shall define the input and output required for each
phase and its associated milestones.

The output for each phase may consist of documents in complete or outline ver-
sions, including the results of verification of the technical outputs of the phase.

Milestones are the joint technical reviews required by the customer (SRR, PDR,
CDR, QR and AR) and internal reviews at the supplier level.

The outputs for each milestone are documents submitted for examination and
which are explicitly listed in the software life cycle definition.

5.3.2.3
The interface between development and maintenance (e.g. documents to be pro-
duced, tools to be kept in maintenance) shall be identified for the software life
cycle.

AIM: Define and prepare during development input necessary for maintenance
process for the software product. See subclause 5.8.

EXPECTED OUTPUT: Elements of the software maintenance plan [TS; PDR].

5.3.2.4
The customer’s release of the software requirements baseline shall be included in
the material submitted to the SRR.

The software requirements baseline results froma system requirements analysis
anda systempartitioning conductedby thecustomer. It represents thecustomer’s
requirements towards the software to be developed:

D customer’s requirements;
D external interfaces of the software.
EXPECTED OUTPUT: a. Customer approval of requirements baseline [RB; SRR]

b. SRR Milestone Review Report [DJF; SRR].

5.3.2.5
A software technical specification phase shall be included at the beginning of the
development life cycle.

AIM: To establish the technical specification baseline for the project. This is the
software suppliers response to the requirements baseline. The technical
specification captures all technical requirements for the software product,
and it is aimed to establish the technical specification early in the project.

ECSS 13 April 1999

ECSS--E--40A

31

EXPECTED OUTPUT: a. technical specification of the software [TS; PDR];

b. top-level architectural design [DDF; PDR];

c. interface control document [ICD; PDR];

d. top-level design trade-offs [DJF; PDR].

5.3.2.6
On completion of the specification phase, the software supplier shall hold a Pre-
liminary Design Review (PDR) to which the customer shall be invited to attend.

AIM: S Agree with the customer or their representatives that all requirements
with respect to the requirements baseline are captured in the technical
specification.

S Review the top-level software architecture.

EXPECTED OUTPUT: Customer approval of technical specification and
top-level architecture [TS, DDF, ICD, DJF; PDR].

5.3.2.7
At the end of the design, the software supplier shall hold aCritical DesignReview
(CDR) to which the customer shall be invited to attend.

AIM: During theCDR, the design definition file, operationsmanual and the asso-
ciated design justification file are reviewed.

The completeness of the verification and validation plan and the availability of
necessary supporting resources (e.g. test case specification, simulators) shall be
reviewed.

EXPECTED OUTPUT: a. customer approval of the design definition file (e.g.
architectural design and detailed design, code) [DDF;
CDR];

b. customerapprovalof thedesignjustificationfile (e.g.results
of unit and integration tests) [DJF; CDR];

c. customer approval of the design of system level interfaces
and the system level integration plan [DDF, DJF; CDR];

d. customer approval of the operations manual [TS; CDR].

5.3.2.8
To ensure that the software product conforms with its technical specification,
verification and validation shall be carried out at the end of the development life
cycle.

AIM: To ensure, by means of verification and validation processes in a
representative environment, that the software product conforms to its
technical specification before integration in the system.

5.3.2.9
The software supplier shall hold aQualificationReviewto verify that thesoftware
product meets all of its specified requirements.

AIM: To verify that the software meets all of its specified requirements, and in
particular thatverificationandvalidationprocessoutputsenabletransition
to “qualified state” for the software products.

During QR, a summary of tests reports and operationsmanual are reviewed. The
consistency of all software documentation (TS, DDF, ICD, DJF, operations man-
ual) shall be verified.

EXPECTED OUTPUT: Customer’s approval of qualified state [DJF; QR].

ECSS13 April 1999
ECSS--E--40A

32

5.3.2.10
After the Qualification Review, the customer shall hold an Acceptance Review.

AIM: Acceptance of the software with respect to the intended operational
environment.

EXPECTED OUTPUT: Customer’s approval of accepted state [DJF; AR].

5.3.2.11
Eachsupplier shalldefine thesoftwareengineering standardshe intends to follow
for his application area. These standards shall be approved by the customer as
being fit for the application under development.

AIM: Define the software engineering standards applicable to the project.

EXPECTED OUTPUT: a. documentation standards [RB; SRR];

b. design standards [RB; SRR];

c. verification and validation standards [RB; SRR].

5.3.3 Interface management
Interfaces shall be defined in the requirements baseline in an interface require-
ments document, which defines the requirements applicable to various elements
of the system product tree.

Interface management procedures shall be defined in accordance with
ECSS--M--40 requirements.

AIM: Define procedures which guarantee the consistency of the system
interfaces.

EXPECTED OUTPUT: a. interface management procedures [RB; SRR];

b. part of configuration management plan [RB; SRR].

5.3.4 Technical budget and margin management
Software budgets considered in this subclauseare thoseassociatedwith computer
resources (CPU load, maximum memory size) and performance requirements.

5.3.4.1
Technical budget targets and margin philosophy dedicated to the software shall
be specified by the customer in the requirements baseline.

AIM: Define the limits to be considered by the supplier.

EXPECTED OUTPUT: Technical budgets and margin philosophy for the project [RB;
SRR].

5.3.4.2
The supplier shall manage margins regarding the technical budgets and present
their status at each milestone.

The margins shall be established by analysis in the early phases of development
andconsolidatedbyperformancemeasurementscommensuratewith thesoftware
implementation.

Hypothesis with which analysis are performed shall be described as part of the
evaluation results.

EXPECTED OUTPUT: Margins and technical budgets status [DJF; PDR, CDR, QR,
AR].

ECSS 13 April 1999

ECSS--E--40A

33

5.4 Software requirements engineering process

5.4.1 Introduction
Thesoftwarerequirementsengineeringprocessconsistsof thefollowingactivities:

D software requirements analysis;
D software top-level architectural design;
D software verification and validation.

5.4.2 Software requirements analysis
For each software item, this activity consists of the following tasks:

D establish and document software requirements;
D identify each requirement;
D evaluate the software requirements.

5.4.2.1
The supplier shall establish and document software requirements, including the
software quality requirements.

EXPECTED OUTPUT: (Technical specification baseline)
a. functional and performance specifications, including

hardware characteristics, and environmental conditions
under which the software item will execute [TS; PDR];

b. interfaces external to the software item [ICD; PDR];

c. verification plan (by invoking subclause 5.6.4.5) [DJF;
PDR];

d. safety specifications, including those related to methods of
operationandmaintenance, environmental influences,and
personnel injury [TS; PDR];

e. security specifications, including those related to factors
whichmight compromise sensitive information [TS; PDR];

f. human-factors engineering (ergonomics) specifications, in-
cluding those related to manual operations,
human-equipment interactions, constraints on personnel,
andareasrequiringconcentratedhumanattention, thatare
sensitive to human errors and training [TS; PDR];

g. data definition and database requirements [TS; PDR];

h. installation and acceptance requirements of the delivered
software product at the operation and maintenance site(s)
[TS; PDR];

i. identificationof lower levelsoftware engineeringstandards
thatwill beusedand thatwilldocument their compatibility
with this current standard [TS; PDR].

5.4.2.2
Each requirement shall be separately identified in order to allow for traceability.

5.4.2.3
The supplier shall evaluate the software requirements considering the criteria
listed below invoking the process “verification of software requirements” (sub-
clause 5.6.6.1). The results of the evaluation shall be documented:

a. traceability to system partitioning;

b. external consistency with system requirements;

c. internal consistency;

ECSS13 April 1999
ECSS--E--40A

34

d. verifiability;

e. feasibility of software design;

f. feasibility of operations and maintenance.

EXPECTED OUTPUT: a. requirement traceability matrices [DJF; PDR];

b. requirements verification report [DJF; PDR].

5.4.3 Software top-level architectural design
For each software item, this activity consists of the following tasks:

D transformation of software requirements into an architecture;
D development and documentation of the top-level design of the software inter-

faces (external and internal);
D development and documentation of preliminary versions of the operations

manual;
D definition and documentation of preliminary test requirements and a soft-

ware integration plan;
D evaluation of the top-level architectural design;
D conducting a Preliminary Design Review.

5.4.3.1
The supplier shall transformthe requirements for thesoftware iteminto anarchi-
tecture that describes its top-level structure and identifies the software compo-
nents. It shall be ensured that all the requirements for the software item are allo-
cated to its software components and further refined to facilitate detailed design.
The top-level architecture of the software item shall be documented.

EXPECTED OUTPUT: a. software architectural design [DDF; PDR];

b. top-level architectural design to requirements traceability
matrices [DJF; PDR].

5.4.3.2
The supplier shall develop and document a top-level design for the interfaces ex-
ternal to the software item and between the software components of the software
item.

EXPECTED OUTPUT: a. preliminary (top-level) external interfaces design [ICD;
PDR];

b. preliminary (top-level) internal interfaces design [ICD;
PDR].

5.4.3.3
The supplier shall develop and document preliminary versions of the operations
manual.

EXPECTED OUTPUT: Preliminary version of operations manual [TS; PDR].

5.4.3.4
The supplier shall define and document preliminary test requirements and the
plan for software integration.

EXPECTED OUTPUT: Preliminary software integration plan [DJF; PDR].

5.4.3.5
The supplier shall evaluate the architecture of the software itemand the interface
designs considering the criteria listed below. The results of the evaluations shall
be documented. The verification process “verification of thesoftware design” (sub-
clause 5.6.6.2) shall be invoked for verification of the architectural design:

a. traceability from the software requirements to the software item;

ECSS 13 April 1999

ECSS--E--40A

35

b. external consistency with the requirements of the software item;

c. internal consistency between the software components;

d. appropriateness of design methods and standards to be used for the item;

e. feasibility of detailed design;

f. feasibility of operation and maintenance.

EXPECTED OUTPUT: Architecture and interface verification report [DJF; PDR].

5.4.3.6
Thesupplier shall conductaPreliminaryDesignReview (PDR)inaccordancewith
subclause 5.3.2.6. The successful completion of the review establishes a baseline
for the development of the software item.

EXPECTED OUTPUT: PDR milestone report [DJF; PDR].

5.4.4 Software verification and validation

5.4.4.1
The technical specifications shall include specification of verification and vali-
dation of the software product. These specifications are determined by the cus-
tomer’s requirements baseline (subclause 5.2.4.2) and by invoking the relevant
verification and validation processes.

The processes invoked are:

a. verification process implementation (subclause 5.6.4);

b. validation process implementation (subclause 5.6.5).

EXPECTED OUTPUT: a. software verification plan - criticality and effort [DJF;
PDR];

b. software verification plan - methods and tools [DJF; PDR];

c. software verification plan - organization [TS; PDR];

d. software validation plan - effort and independence [DJF;
PDR];

e. software validation plan - methods and tools [DJF; PDR];

f. software validation plan - independent validation [DJF;
PDR];

g. software validation plan - organization [TS; PDR].

5.5 Software design engineering process

5.5.1 Introduction
The software design engineering process consists of the following activities:

D design of software items;
D coding and testing;
D integration.

5.5.2 Design of software items
For each software item, this activity consists of the following tasks:

D design of each software component;
D development and documentation of a design for the interfaces;
D updating of the operations manual;
D definition and documentation of a unit test specification and plan;
D updating the test specification and the schedule for integration;
D evaluation of the software detailed design and test specification.

ECSS13 April 1999
ECSS--E--40A

36

5.5.2.1
The supplier shall develop a detailed design for each component of the software.
Each software component shall be refined into lower levels containing software
units that can be coded, compiled, and tested. It shall be ensured that all the soft-
ware requirements are allocated from the software components to softwareunits.
The design shall be documented.

EXPECTED OUTPUT: Software components design documents [DDF; CDR].;

5.5.2.2
Thesupplier shalldevelopanddocumentadetaileddesign for the interfacesexter-
nal to the software item, between the software components, and between the soft-
ware units. The detailed design of the interfaces shall permit coding without the
requirement for further information.

EXPECTED OUTPUT: a. external ICDs (update) [ICD; CDR];

b. internal ICDs (update) [ICD; CDR].

5.5.2.3
The supplier shall update the operations manual as necessary.

EXPECTED OUTPUT: operations manual (update) [TS; CDR].

5.5.2.4
The supplier shall define and document test requirements and plan for testing
software units. The test specifications shall include stressing the software at the
limits of its requirements.

EXPECTED OUTPUT: Software test plan [DJF; CDR].

5.5.2.5
The supplier shall update the test requirements andthe plan for software integra-
tion.

EXPECTED OUTPUT: Integration test plan (update) [DJF; CDR].

5.5.2.6
Thesupplier shall evaluate thesoftwaredesignandtest specificationsconsidering
thecriteria listedbelow.Theprocess in “verificationof softwaredesign” (subclause
5.6.6.2) shall be invoked for this. The results of the evaluations shall be docum-
ented:

a. traceability to the architectural design of the software item;

b. external consistency with architectural design;

c. internal consistency between software components and software units;

d. appropriateness of integration test methods and standards used;

e. feasibility of testing;

f. feasibility of operation and maintenance.

EXPECTED OUTPUT: a. design verification report [DJF; CDR];

b. design traceability matrices [DJF; CDR].

5.5.3 Coding and testing
For each software item, this activity consists of the following tasks:

D development and documentation of software units, test procedures and test
data;

D testing of each software unit and database;
D updating the operations manual;
D updating the test requirements and the schedule for integration;
D evaluation of software code and test results.

ECSS 13 April 1999

ECSS--E--40A

37

5.5.3.1
The supplier shall develop and document the following:

a. the coding of each software unit;

b. test procedures and data for testing each software unit.

EXPECTED OUTPUT: a. software component design documents and code (update)
[DDF; CDR];

b. unit test plan (update) [DJF; CDR].

5.5.3.2
The supplier shall test each software unit ensuring that it satisfies its require-
ments, using the process “verification of code” (subclause 5.6.6.3). The test results
shall be documented.

EXPECTED OUTPUT: a. software component design document and code (update)
[DDF; CDR];

b. unit test reports [DJF; CDR].

5.5.3.3
The supplier shall update the operations manual as necessary.

EXPECTED OUTPUT: Operations manual (update) [TS; CDR].

5.5.3.4
The supplier shall update the test requirements andthe plan for software integra-
tion.

AIM: To make the test requirements and integration plan consistent with the
results of the code design process.

EXPECTED OUTPUT: Software integration plan (update) [DJF; CDR].

5.5.3.5
The supplier shall evaluate software code and test results, invoking the process
“verification of code” (subclause 5.6.6.3) and taking account of the criteria listed
below. The results of the evaluation shall be documented:

a. traceability between the design of the software item and the code of the soft-
ware units;

b. external consistency with the requirements and design of the software item;

c. internal consistency between unit requirements;
d. test coverage of units;

e. conformance to coding methods and standards;

f. feasibility of software integration and testing;

g. feasibility of operation and maintenance.

EXPECTED OUTPUT: a. software code verification report [DJF; CDR];

b. software code traceability matrices [DJF; CDR].

5.5.4 Integration
The following refers to the software integration of the software product, i.e. the
software product delivered by the supplier to the customer. The integration pro-
cess shall include preparation for validation testing of the integrated product.

The integrationof thesoftware producthasarelation to the integrationof thesoft-
ware in a space system. At system level, which is the nexthigher level in the prod-
uct tree, the system level integration takes place. The system level integration
nominally takes place after completion of the QR for the software product to be
integratedwith the system.However, depending on the system level life cycle and

ECSS13 April 1999
ECSS--E--40A

38

risk sharing approach, the system integration process may be specified invoked
earlier (see for example subclause 5.2.5.6), but not earlier than the softwareCDR.

For each software item, this activity consists of the following tasks:

D development of an integration plan;
D integration and testing of the software units and software components;
D updating the operations manual;
D evaluation of the integration plan, design, code, tests, test results, and oper-

ations manual;
D conducting a joint review (CDR) before starting validation.

5.5.4.1
The supplier shall develop an integration plan to integrate the software units and
software components into the software item. The plan shall include test require-
ments, procedures, data, responsibilities, and schedule. The plan shall be docum-
ented.

EXPECTED OUTPUT: Software integration plan [DJF; CDR].

5.5.4.2
The supplier shall integrate the softwareunits and software components andtest,
as the aggregates are developed, in accordance with the integration plan. It shall
beensured thateachaggregate satisfies the requirementsof thesoftware itemand
that the software item is integrated at the conclusion of the integration activity.
The integration and test results shall be documented.

EXPECTED OUTPUT: Software integration test report [DJF; CDR].

5.5.4.3
The supplier shall update the operations manual as necessary.

EXPECTED OUTPUT: operations manual (update) [TS; QR].

5.5.4.4
The supplier shall evaluate the integration plan, design, code, tests, test results,
and operations manual considering the criteria listed below. The results of the
evaluation shall be documented.

The verification process “verification of software integration” (subclause 5.6.6.4)
shall be invoked:

a. traceability to the system requirements;

b. external consistency with the system requirements;

c. internal consistency;

d. test coverage of the requirements of the software item;

e. appropriateness of test standards and methods used;

f. conformance to expected results;

g. feasibility of software validation testing;

h. feasibility of operation and maintenance.

EXPECTED OUTPUT: Softwareintegrationverificationreportcontainingthereports
a., b., c. and d. below:
a. software integration verification report [DJF; CDR];

b. software documentation verification report [DJF; CDR];

c. evaluationof testcompletenessandcodeconformance[DJF;
CDR];

d. feasibility confirmation of validation testing, operations
and maintenance [DJF; CDR];

ECSS 13 April 1999

ECSS--E--40A

39

e. software validation testing specification [DJF; CDR].

5.5.4.5
Thesupplier shall conductaCriticalDesignReview(CDR) inaccordancewithsub-
clause 5.3.2.7. All outputs required for CDR shall be prepared and verified by the
process “verification of software documentation” (subclause 5.6.6.5) in prepara-
tion of the CDR.

AIM: That the supplier baselines his design documentation for the project to
transit from “specified state” to the “defined state”, thereby achieving the
milestone of a completed design.

EXPECTED OUTPUT: CDR milestone report [DJF; CDR].

5.6 Software verification and validation (qualification) process

5.6.1 Introduction
This verification and validation processes may be executed with varying degrees
of independence. The degree of independencemay range from the same person, or
different person in the same organization, to a person in a different organization,
with varying degrees of separation. In the case where the processes are executed
by an organization independent of the supplier, it is called Independent Software
Verification and Validation (ISVV); or Independent Software Validation (ISV), if
only the Validation Process is independent.

The requirements of this subclause 5.6 are in two parts. The first part concerns
engineering activities for theQRandARmilestones (5.6.2), the second part (5.6.3
onwards) contains requirements called up by other processes.

NOTE 1 It is assumed that for all space projects certain verification and
validation activities are always applied. Therefore the require-
mentsdonot addresswhether ornot theseactivities are required
(tailoring of ISO/IEC 12207).

NOTE 2 The supplier process verification is handled as part of the ECSS
management and is therefore not covered as part of the software
activities (tailoring of ISO/IEC 12207:1995 6.4.2.2).

5.6.2 Milestones

5.6.2.1
The Qualification Review (QR) shall be conducted in accordance with subclause
5.3.2.9.

AIM: To verify that the software meets all the requirements, and in particular
that verification and validation process outputs enable transition to
“qualified state” for the software products.

EXPECTED OUTPUT: a. preliminary software acceptance data package [DJF; QR];

b. preliminary software release documentation [DDF; QR];

c. preliminarily software delivery on specified data medium
[DDF; QR];

d. software design and test evaluation report [DJF; QR];

e. validation testing report [DJF; QR];

f. test specification evaluation [DJF; QR];

g. qualification review records [DJF; QR].

ECSS13 April 1999
ECSS--E--40A

40

5.6.2.2
The Acceptance Review (AR) shall be conducted in accordance with subclause
5.3.2.10.Thesoftwaresupplier’sacceptancesupportprocessshall support thecus-
tomer’s acceptance activities in preparation of the AR.

AIM: To ensure that the customer will receive adequate supplier support to
perform his acceptance and integration activities in preparation of the AR.
Theprocess “support to acceptance reviewsandtesting” (subclause5.6.7.7),
is invoked for this.

EXPECTED OUTPUT: a. final software acceptance data package [DJF; AR];

b. acceptance testing documentation [DJF; AR];

c. acceptance review records [DJF; AR];

d. software release documentation [DDF; AR];

e. software delivery on specified data medium [DDF; AR].

5.6.3 Verification and validation processes
The following subclauses are intended to be invoked by other parts of this stan-
dard. For this reason the output destination is not noted explicitly.

The software verification and validation engineering processes consist of:

D verification process implementation;
D validation process implementation;
D verification process;
D validation process;
D joint technical reviews.

5.6.4 Verification process implementation
This activity consists of the following tasks:

D determination of the verification effort for the project;
D establishment of verification process;
D selection of organization responsible for conducting the verification;
D determination of life cycle activitiesand softwareproducts requiringverifica-

tion;
D development and documentation of a verification plan.

5.6.4.1 Determination of the verification effort for the project
A determination shall be made concerning the verification effort and the degree
of organizational independence of that effort required. ECSS--M--00A subclause
6.3 (management of risks), and ECSS--Q--80A subclauses 3.2.2 (software depend-
ability and safety) and 3.2.5.p (independent software verification and validation)
shall be checked for applicability. The project requirements shall be analysed for
criticality. Criticality may be gauged in terms of:

a. the potential of an undetected error in a system or software requirement for
causing death or personal injury, mission failure, or financial or catastrophic
equipment loss or damage;

b. the maturity of and risks associated with the software technology to be used;

c. availability of funds and resources.

EXPECTED OUTPUT: Software verification plan - criticality and effort.

5.6.4.2 Establishment of the verification process
A verification process shall be established to verify the software product(s).

ECSS 13 April 1999

ECSS--E--40A

41

5.6.4.3 Selection of the organization responsible for conducting the
verification

If the projectwarrantsan independentverification effort, a qualifiedorganization
responsible for conducting the verification shall be selected. This organization
shallbeassuredofthe independenceandauthority toperformtheverificationacti-
vities. ECSS--Q--80A subclause 3.2.5.p (independent software verification and
validation), ECSS--M--00A subclause 7.2.3 and ECSS--M--20 (project organiz-
ation) contain further requirements relevant for this subclause.

AIM: A coherent and consistent approach to project organization within each
project.

EXPECTED OUTPUT: Appropriate element of project requirements documents deal-
ing with project organization.

5.6.4.4 Determination of life cycle activities and software products
requiring verification

Based upon the scope, magnitude, complexity, and criticality analysis abovemen-
tioned, target life cycle activities and software products requiring verification
shall be determined. Verification activities and tasks defined in subclause 5.6.6,
including associated methods, techniques, and tools for performing the tasks,
shall be selected for the target life cycle activities and software products.

EXPECTED OUTPUT: Verification plan - methods and tool.

5.6.4.5 Development and documentation of a verification plan covering
the software verification activities

Basedupon theverification tasksasdetermined, averification planshall bedevel-
opedanddocumented. The plan shall address the life cycle activities and software
products subject to verification, the required verification tasks for each life cycle
activity and software product, and related resources, responsibilities, and sched-
ule. The plan shall address procedures for forwarding verification reports to the
customer and other involved organizations.

EXPECTED OUTPUT: Verification plan - organization.

5.6.5 Validation process implementation
This activity consists of the following tasks:

D determination of the validation effort for the project;
D establishment of the validation process;
D selection of validation organization;
D development and documentation of the validation plan.

5.6.5.1 Determination of the validation effort for the project
The validation effort and the degree of organizational independence of that effort
shall be determined, coherent with ECSS--Q--80A subclause 3.2.5.p.

EXPECTED OUTPUT: Validation plan - effort and independence.

5.6.5.2 Establishment of a validation process
The validation process shall be established to validate the software product. Vali-
dation tasksdefined in subclause5.6.7, includingassociatedmethods, techniques,
and tools for performing the tasks, shall be selected.

EXPECTED OUTPUT: Validation plan - methods and tools.

ECSS13 April 1999
ECSS--E--40A

42

5.6.5.3 Selection of a validation organization
If the project warrants an independent validation effort, a qualified organization
responsible for conducting the effort shall be selected. The conductor shall be as-
suredof the independenceandauthority to performthe validation tasks. Thissub-
clause shall be applied with ECSS--M--00A subclause 7.2.3.

EXPECTED OUTPUT: a. appropriate element of project requirements documents
dealing with project organization.

b. independent validation plan.

5.6.5.4 Development and documentation of a validation plan
Avalidation plan shall be developed and documented. The plan shall include, but
shall not be limited to, the following:

a. items subject to validation;

b. validation tasks to be performed;

c. resources, responsibilities, and schedule for validation;

d. procedures for forwarding validation reports to the customer and other
parties.

EXPECTED OUTPUT: Validation plan - organization

5.6.6 Verification process
This activity consists of the following engineering tasks:

D verification of software requirements;
D verification of the software design;
D verification of code;
D verification of software integration;
D verification of software documentation;
D evaluation of test specifications;
D problem and nonconformance handling.

5.6.6.1 Verification of software requirements
The requirements shall be verified considering the criteria listed below:

a. The software requirements are consistent (not implying formal proof con-
sistency), feasible, verifiable, and accurately reflect system requirements.

b. The software requirements related to safety, security, and criticality are cor-
rect as shown by suitably rigorous methods.

EXPECTED OUTPUT: a. requirement traceability matrices;

b. requirements verification report.

5.6.6.2 Verification of the software design
The design shall be verified considering the criteria listed below:

a. The design is correct and consistent with and traceable to requirements and
interfaces.

b. The design implements a proper sequence of events, inputs, outputs, inter-
faces, logic flow, allocation of timing and sizing budgets, and error definition,
isolation, and recovery.

c. The selected design can be derived from requirements.

d. The design implements safety, security, and other critical requirements cor-
rectly as shown by suitable rigorous methods.

EXPECTED OUTPUT: a. top-level architectural design to requirements traceability
matrice;

b. architecture and interface verification report;

ECSS 13 April 1999

ECSS--E--40A

43

c. design traceability matrice;

d. design verification report.

5.6.6.3 Verification of code
The code shall be verified taking into consideration the criteria listed below:

a. Thecode is traceable todesignandrequirements, testable, correct, and incon-
formity to software requirements and coding standards.

b. The code implements proper event sequence, consistent interfaces, correct
data and control flow, completeness, appropriate allocation timing and sizing
budgets, and error definition, isolation, and recovery.

c. Selected code can be derived from design or software requirements.

d. The code implementssafety, security, and other critical requirementscorrect-
ly as shown by suitable rigorous methods.

EXPECTED OUTPUT: a. software code traceability matrices;

b. software code verification report.

5.6.6.4 Verification of software integration
The integration shall be verified considering that the software components and
units of each software itemhave been completely and correctly integrated into the
software item.

EXPECTED OUTPUT: Software integration verification report

5.6.6.5 Verification of software documentation
The documentation shall be verified considering the criteria listed below:

a. The documentation is adequate, complete, and consistent.

b. Documentation preparation is timely.

c. Configuration management of documents follows specified procedures.

EXPECTED OUTPUT: Software documentation verification report

5.6.6.6 Evaluation of test specifications
Test requirements, test cases, and test specifications shall demonstrate the cover-
age of all software requirements of the technical specification.

EXPECTED OUTPUT: Test specification evaluation.

5.6.6.7 Problem and nonconformance handling
Problems and nonconformances detected by the software verification effort shall
be entered into the problem resolution process (ECSS--Q--80Asubclause 2.3.5 and
2.3.6).Allproblemsandnonconformancesshallberesolved.Resultsof theverifica-
tion activities shall bemade available to the customer and other involved organiz-
ations.

EXPECTED OUTPUT: Problem and nonconformance reports.

5.6.7 Validation process
This activity consists of the following tasks:

D development and documentation of validation testing specification;
D conducting the validation tests;
D updating the operations manual;
D evaluation of the design, code, tests, test results, and operations manual;
D updating and preparation of the deliverable software product;
D problem and nonconformance handling;
D support to acceptance reviews and testing;

ECSS13 April 1999
ECSS--E--40A

44

D provision of initial and continued training and support.

5.6.7.1 Development and documentation of a software validation
testing specification

The supplier shall develop and document, for each validation requirement of the
software item, a set of tests, test cases (inputs, outputs, test criteria), and test pro-
cedures for conducting software validation testing. The supplier shall ensure that
the integrated software item is ready for software validation testing.

EXPECTED OUTPUT: Software validation testing specification.

5.6.7.2 Conducting the validation tests
The validation tests shall be conducted as specified in the output of subclause
5.6.7.1 above, including:

a. testing with stress, boundary, and singular inputs;

b. testing the software product for its ability to isolate and minimize the effect
oferrors; thatisgracefuldegradationuponfailure, requestfor operatorassist-
ance upon stress, boundary and singular conditions;

c. testing that thesoftwareproduct canperformsuccessfully in arepresentative
operational environment.

EXPECTED OUTPUT: Validation testing report.

5.6.7.3 Updating the operations manual
The supplier shall update the operations manual as necessary.

EXPECTED OUTPUT: Operations manual (update).

5.6.7.4 Evaluation of the design, code, tests, test results, and operations
manual

The supplier shall evaluate the design, code, tests, test results, and operations
manual considering the criteria listed below. The results of the evaluations shall
be documented.

a. test coverage of the requirements of the software item;

b. conformance to expected results;

c. feasibility of system integration and testing, if conducted;

d. feasibility of operation and maintenance.

EXPECTED OUTPUT: Software design and test evaluation report.

5.6.7.5 Updating and preparation of the deliverable software product
Upon successful completion of the audits, if conducted, the supplier shall:

a. update and prepare the deliverable software product as specified in the re-
quirements baseline for system integration, system validation testing, soft-
ware installation, or software acceptance support as applicable;

b. update the established baseline for the design and code of the software item.

EXPECTED OUTPUT: a. software delivery on specified data medium

b. software release documentation;

c. software acceptance data package.

5.6.7.6 Problem and nonconformance handling
Problemsandnonconformancesdetectedduring thevalidation shallbe thesubject
of a problem resolution process (ECSS--Q--80A subclauses 2.3.5 and 2.3.6). All
problems and nonconformances shall be resolved. Results of the validation acti-
vities shall be made available to the customer and other involved organizations.

EXPECTED OUTPUT: Problem and nonconformance report.

ECSS 13 April 1999

ECSS--E--40A

45

5.6.7.7 Support to acceptance reviews and testing
The supplier shall support the customer’s acceptance reviews and testing of the
software product. Acceptance reviews and testing shall consider the results of the
joint reviews (ECSS--Q--20A subclauses 4.6.4.4 and 8.3), audits (ECSS--Q--20A
subclause 2.6), software validation testing (ECSS--Q--80A subclause 3.3.4), and
systemvalidation testing (if performed).Theresultsof theacceptance reviewsand
testing shall be documented.

EXPECTED OUTPUT: Acceptance testing documentation.

5.6.7.8 Provision of initial and continued training and support
The supplier shall provide initial and continuing training and support to the cus-
tomer as specified in the technical specification.

EXPECTED OUTPUT: Training material.

5.6.8 Joint technical review process
The joint review process is a process for evaluating the status and products of an
activity of a project as appropriate. Joint reviews shall be held throughout the life
cycle of the software. This processmay be employed by any twoparties, where one
party (reviewing party) reviews another party (reviewed party).

5.6.8.1 Support to software reviews
The software support of joint technical reviews shall be related to project phasing
andplanning (refer toECSS--M--30). Therefore software shallundergo theoverall
software milestone reviews SRR, PDR, CDR, QR and AR as a minimum. Further
reviews may be required by the customer.

EXPECTED OUTPUT: Milestone review reports.

5.6.8.2
Technical reviews (includingmilestone reviews) shall be held to evaluate the soft-
ware products or services under consideration and provide evidence that:

a. they are complete;

b. they conform to applicable standards and specifications;

c. changes are properly implemented and affect only those areas identified by
the configuration management process;

d. they adhere to applicable schedules;

e. they are ready for the next activity;

f. the development, operation, or maintenance is being conducted according to
the plans, schedules, standards, and guidelines laid down for the project.

Reviews shall be planned of each identified software product within its defined
software life cycle according to the criteria above.

EXPECTED OUTPUT: Technical review reports.

5.7 Software operations engineering process

5.7.1 Introduction
The operation process may start after completion of software acceptance. Since
software products are an integrated part of the space system, the phasing and
management of operation should be determined by the overall system require-
ments and applied to the software products. The operation engineering processes
are therefore not directly connected to the overall mission phase E, but are deter-
mined by the system level requirement to operate the software product at a given
time.Ground segment software products are for example in extensive operational
use to qualify the ground segment, well before the actualmission operation occur.
Similarly, for flightsegmentsoftware,extensivegroundoperationsare, ingeneral,

ECSS13 April 1999
ECSS--E--40A

46

required for testing flight equipment long before space system flight operations
begin.

Both the documents and the reviews identified as outputs by the subclauses of 5.7
are therefore part of the operations activities for the space systems, and the re-
quirements for these reviewsand their documentation formspart of the spacesys-
tem operations engineering requirements covered in other ECSS Standards. The
provisions of this subclause 5.7 are intended to produce the required software en-
gineering inputs for the system level activities.

5.7.2 Operation process
The operation process comprises the activities and tasks of the operator. The pro-
cess covers the operation of the software productand operational support tousers.
Because operation of a software product is integrated into the operation of thesys-
tem, the activities and tasks of this process shall refer to the system.

Theoperatormanagestheoperationprocessat theproject level following theman-
agement process (ECSS--M--30). This process consists of the following activities:

D process implementation;
D operational testing;
D system operation;
D user support.

5.7.3 Process implementation
This activity consists of the following tasks:

D development of operational plans and set standards;
D definition of procedures for problem handling;
D definition of operational testing specifications.

5.7.3.1
Theoperator shalldevelopaplanandsetoperational standards forperformingthe
activities and tasks of this process. The plan shall be documented and executed.

EXPECTED OUTPUT: Operational plan - plan and standards [OP; ORR].

5.7.3.2
The operator shall establish procedures for receiving, recording, resolving, track-
ing problems, andproviding feedback.Whenever problemsare encountered, they
shall be recorded in accordance with the change control established and main-
tained in conformance with ECSS--M--40.

EXPECTED OUTPUT: Operational plan - procedures for problem handling [OP;
ORR].

5.7.3.3
The operator shall establish procedures for testing the software product in its
operation environment, for entering problemreports andmodification requests to
the maintenance process (subclause 5.8), and for releasing the software product
for operational use in accordance with the change control established and main-
tained in conformance to ECSS--M--40.

EXPECTED OUTPUT: Operational plan - operational testing specifications [OP;
ORR].

5.7.4 Operational testing
For each release of the software product, the operator shall perform operational
testing in accordancewith the change control established andmaintained in con-
formance to ECSS--M--40. On satisfying the specified criteria, the software prod-
uct shall be released for operational use.

ECSS 13 April 1999

ECSS--E--40A

47

5.7.5 System operation
The system shall be operated in its intended environment according to the oper-
ations manual.

5.7.6 User support
This activity consists of the following tasks:

D user assistance and consultation;
D handling of user requests for software maintenance;
D provision of work-around solutions.

5.7.6.1
The operator shall provide assistance and consultation to the users as requested.
These requests and subsequent actions shall be recorded and monitored.

5.7.6.2
The operator shall forward user requests, as necessary, to the maintenance pro-
cess for resolution. These requests shall be addressed and the actions that are
planned and taken shall be reported to the originators of the requests. All resol-
utions shall be monitored to conclusion.

5.7.6.3
If a reported problem has a temporary work-around before a permanent solution
can be released, the originator of the problem report shall be given the option to
use it. Permanent corrections, releases that include previously omitted functions
or features, and system improvements shall beapplied to the operational software
product using the maintenance process (subclause 5.8).

5.8 Software maintenance process

5.8.1 Introduction
Themaintenance process contains the activities and tasks of themaintainer. This
process shall be activated when the software product undergoes modifications to
code and associated documentation due to a problem or the requirement for im-
provement or adaptation. The objective is to modify an existing software product
while preserving its integrity. This process shall include themigration and retire-
mentof thesoftwareproduct.Theprocessshall endwith the retirementof thesoft-
ware product.

The activities provided in this subclause 5.8 are specific to the maintenance pro-
cess; however, the processmay utilize other processes in this standard. If the soft-
ware engineering process (subclause 4.3) is utilized, the term supplier there is in-
terpreted as maintainer.

Themaintainer shallmanage themaintenance process at the project level follow-
ing themanagement process (ECCS--M--10), which is instantiated for software in
this process.

Both thedocumentsandthereviews identifiedas outputsby thesubclauses in this
subclause 5.8 are part of the generalmaintenance activities for the space systems,
andtherequirements for these reviewsanddocumentation ispartof thespacesys-
tem maintenance engineering requirements, covered in other ECSS Standards.
The provisions of this subclause 5.8 shall produce the required software engineer-
ing inputs for these system level activities.

This process consists of the following activities:

D process implementation;
D problem and modification analysis;
D modification implementation;
D maintenance review/acceptance;

ECSS13 April 1999
ECSS--E--40A

48

D software migration
D software retirement.

5.8.2 Process implementation
This activity consists of the following tasks:

D maintenance procedure development and planning;
D implementation of a configuration control process for problem reporting and

handling.

5.8.2.1
The maintainer shall develop, document, and execute plans and procedures for
conducting the activities and tasks of the maintenance process.

EXPECTED OUTPUT: Maintenance plan - plans and procedures [MP; System].

5.8.2.2
The maintainer shall establish procedures for receiving, recording and tracking
problem reports andmodification requests fromthe users and providing feedback
to the users. Whenever problems are encountered, they shall be recorded and en-
tered in accordancewith thechange control establishedandmaintained in confor-
mance to ECSS--M--40.

EXPECTED OUTPUT: Maintenance plan - problem reporting and handling [MP;
System].

5.8.2.3
The maintainer shall implement (or establish organizational interface with) the
configuration management process (ECSS--M--40) for managing modifications.

5.8.3 Problem and modification analysis
This activity consists of the following tasks:

D problem analysis;
D problem verification;
D development of options for modifications;
D documentation of problems, analysis and implementation options;
D obtaining customer approval for selected modification option.

5.8.3.1
The maintainer shall analyse the problem report or modification requests for its
impact on the organization, the existing system, and the interfacing systems for
the following:

a. type (e.g. corrective, improvement, preventive, or adaptive to new environ-
ment);

b. scope (e.g. size of modification, cost involved, time to modify);

c. criticality (e.g. impact on performance; safety, or security).

5.8.3.2
The maintainer shall reproduce or verify the problem.

5.8.3.3
Based upon the analysis, the maintainer shall develop options for implementing
the modification.

5.8.3.4
Themaintainer shalldocument theproblem/modification request, theanalysis re-
sults and implementation options.

EXPECTED OUTPUT: Change justification file - problem analysis report [CJF].

ECSS 13 April 1999

ECSS--E--40A

49

5.8.3.5
The maintainer shall obtain approval for the selected modification option in ac-
cordance with procedures agreed with the customer.

5.8.4 Modification implementation
This activity consists of the following tasks:

D analysing and documenting which products require modification;
D invoking the software development process to implement the modifications.

5.8.4.1
Themaintainer shall conduct analysis and determinewhich documentation, soft-
ware units, and versions thereof shall be modified. These shall be documented.

EXPECTED OUTPUT: Change justification file - modification identification [CJF;
System].

5.8.4.2
Themaintainer shall enter thesoftwareengineeringprocess (subclause4.3) to im-
plement themodifications. The requirements of the development process shall be
supplemented as follows:

a. Test and evaluation criteria for testing and evaluating the modified and the
unmodifiedparts(softwareunits, components,andconfiguration items) of the
system shall be defined and documented.

b. The complete and correct implementation of the new and modified require-
ments shall be ensured. It also shall be ensured that the original, unmodified
requirements were not affected. The test results shall be documented.

5.8.5 Maintenance review/acceptance
The maintainer shall conduct joint review(s) with the organization authorizing
themodification to determine the integrity of the modified system. Upon success-
ful completion of the reviews, a baseline for the change shall be established.

EXPECTED OUTPUT: Change justification file - baseline for changes [CJF].

5.8.6 Software migration
This activity consists of the following tasks:

D coherent application of standards for migration;
D developing, documenting and executing a migration plan;
D notifying the space system users of migration plans and activities;
D provision of training, andparallel operations of existing andmigratedsystem

where required;
D notification of transition to migrated system;
D performanceof technical review toassess impactof transition to newenviron-

ment;
D maintaining data of former systems.

5.8.6.1
If a system or software product (including data) is migrated from an old to a new
operational environment, it shall be ensured that any software product or data
produced or modified during migration are in accordance with this Standard.

5.8.6.2
A migration plan shall be developed, documented, and executed. The planning
activities shall include users. Items included in the plan shall include the follow-
ing:

a. requirements analysis and definition of migration;

ECSS13 April 1999
ECSS--E--40A

50

b. development of migration tools;

c. conversion of software product and data;

d. migration execution;

e. migration verification;

f. support for the old environment in the future.

EXPECTED OUTPUT: Migration plan

5.8.6.3
Users shall be given notification of the migration plans and activities.

Notifications shall include the following:

a. statement of why the old environment is no longer to be supported;

b. description of the new environment with its date of availability;

c. description of other support options available, if any, once support for the old
environment has been removed.

EXPECTED OUTPUT: Migration justification file

5.8.6.4
Parallel operation of the old and new environmentsmay be conducted for smooth
transition to the new environment. During this period, training shall be provided
as necessary and specified in the operational plan.

5.8.6.5
When the scheduled migration takes place, notification shall be sent to all con-
cerned. All associated old environment’s documentation, logs, and code shall be
placed in archives.

5.8.6.6
Apost-operation review shall be performed to assess the impact of changing to the
new environment. The results of the review shall be sent to the appropriate auth-
orities for information, guidance, and action.

5.8.6.7
Data used by or associatedwith the old environment shall be accessible in accord-
ance with the requirements for data protection and audit applicable to the data.

5.8.7 Software retirement
Refer to the disposal activities described in ECSS--M--30.

ECSS 13 April 1999

ECSS--E--40A

51

6

Special requirements

6.1 Introduction
This clause 6 defines the specific requirements for engineering software for space
systems. They are special in the sense that they are only to be applied where the
software engineering disciplines or technologies identified in this clause are ex-
ploited in the project.

6.2 Space segment software
The space segment software calls for special engineering requirements, due to the
highly specialized environment and because the software implements functions
that directly relate to space system dependability.

The detailed technical engineering requirements are found expanded in
ECSS--E--40--01, at this level the main top-level requirements are defined.

6.2.1 Critical functions

6.2.1.1
The system criticality analysis produced by the customer (subclause 5.2.2.2) shall
be produced as a separate input to the SRR.

AIM: To partition the system such that the criticality of software elements is
agreed between the customer and supplier already at the functional state
of the project. The different levels of criticality to be defined for the project
as required by ECSS--Q--80. See subclause 6.6 for further explanation.

EXPECTED OUTPUT: Software criticality analysis report [DJF; SRR].

6.2.1.2
The supplier’s response to the criticality requirements baseline shall be docum-
ented as a separate input to the PDR.

AIM: To completely specify the methods and means the supplier will apply to
achieve the required response to the criticality related requirements. All
elements of the software life cycle as well as the criticality of COTS and of
the engineering tools required to produce the software shall be included.

EXPECTED OUTPUT: Specificationofdesignresponsetocriticalityrequirements[TS,
DJF; PDR].

ECSS13 April 1999
ECSS--E--40A

52

6.2.1.3
The supplier shall demonstrate the achieved level of dependability as a separate
input to the CDR.

AIM: To ensure that a sufficient level of dependability has been achieved by the
design, already at CDR.

EXPECTED OUTPUT: Preliminary design verification, validation results and
supporting analysis [DJF; CDR].

6.2.1.4
The customer shall include requirements for validation of all elements of the soft-
ware at system level, including validation at mission level.

Ingeneral, noprototype flightsarepossible, thesoftware shallbe fully operational
at first flight. Therefore the aim of this subclause is to ensure the software is vali-
dated at system level with realistic mission data and operational environments,
and to minimize the functions that can only be validated by actual flight.

EXPECTED OUTPUT: Functional requirements for support to system and mission
level validation [RB; SRR].

6.2.2 System interfaces
TheInterfaceRequirementsDocument (IRD)andtheInterfaceControlDocument
(ICD) shall be produced as separate inputs to SRR and PDR, respectively.

AIM: Space segment software is in general integrated with highly specialized
processors and electrical equipment. The IRC and ICD therefore have a
special importance and shall be controlled separately to ensure consistent
design throughout the hardware and software life cycle.

EXPECTED OUTPUT: a. IRD for space segment software as separate output [IRD;
SRR];

b. ICD for space segment software as separate output [ICD;
PDR].

6.2.3 In-flight software modifications

6.2.3.1
For space segment software where ability to perform software modifications in
flight is required, the special customer requirements for this shall be documented
in the requirements baseline, and the supplier’s response shall be documented in
the technical specification baseline.

AIM: In addition to software maintenance, space segment software may be
required to support reprogramming in flight. In addition to software
maintenance, this implies the software design process is re-invoked to
include changed or added requirements. Therefore, themeans to re-invoke
the complete design process is required to be maintained for these cases
additional to the means for maintaining the software end-product.

Space segment software shall not always be reprogrammable in flight. In cases
where reprogramming is required, the appropriate requirements shall be cap-
tured already at SRR, and the supplier’s design baseline shall incorporate the
corresponding design at PDR. Due to the long life-time often encountered with
space segment software, special requirements may also exist to ensure the sup-
porting tools (e.g. compilers, engineering tools) can support the reprogramming in
orbit during the required life-time.

EXPECTED OUTPUT: Requirements of in-flightmodificationcapabilities [RB;SRR].

ECSS 13 April 1999

ECSS--E--40A

53

6.2.3.2
For space segment software requiring in-flight modification, the supplier shall
performanalysis of the specific implications for the software design processes and
include the necessary functional and performance requirements in the Technical
Specification.

EXPECTED OUTPUT: Specifications for in-flight software modifications [TS; PDR].

6.3 Ground segment software
Nospecialrequirementsconcerning thesoftwareengineeringprocesseshavebeen
identified at this level. Detailed special software engineering requirements for
ground segments are found in the level 3 standard ECSS--E--40--03.

6.4 Software reuse
The following subclauses shall be applied in the software engineering process for
projects where:

D it is intended to reuse the software products being developed for other space
projects;

D it is intended to reuse software products from other space projects and third-
party “commercial off-the-shelf tools” are intended to be part of the software
product.

6.4.1 Developing software for intended reuse

6.4.1.1
The customer shall specify the special constraints that apply for the development,
to enable future reuse of the software.

AIM: Specification of the customer’s generic application domain for the parts
where the customer requires reuse of developed software components. This
may for example include requirements on software architecture for given
target computers and operating systems, the interfaces required for reuse
and the level where reuse is required (e.g. function, sub-system, code
modules).

EXPECTED OUTPUT: Design for reuse requirements [RB; SRR].

6.4.1.2
The supplier shall define procedures, methods and tools for reuse, and he shall
apply these to the software engineering processes to conform to the reusability re-
quirements for the software development. In particular, this implies:

a. An evaluation of the reuse potential of the software to be conducted at PDR
and CDR.

b. Design choices for testing and documentation that shall support the future
existence of software reuse components as independent sub-products of the
software engineering processes.

c. Specification of any special configurationmanagement required for the reuse
items.

EXPECTED OUTPUT: a. Design for reuse specification [TS; PDR];

b. Design for reuse - justification of methods and tools [DJF;
PDR];

c. Design for reuse - evaluation of reuse potential [DJF; PDR,
CDR];

d. Design for reuse - organizationandcontent of theuserman-
ual or equivalent document to help people in reusing
software [DJF; PDR, CDR].

ECSS13 April 1999
ECSS--E--40A

54

6.4.2 Reusing software from other projects

6.4.2.1
The supplier shall consider the “reuse” of already developed, commercial off-the-
shelf andmodifiableoff-the-shelf software, if requiredby thecustomer. Theanaly-
sis of the potential reusability of existing software components shall be performed
through:

a. Identification of the reuse componentswith respect to the functional require-
ments baseline.

b. A quality evaluation of these components, invoking ECSS--Q--80A subclause
3.2.7

NOTE There are no special requirements concerning the verification
and validation requirements for reused software. The require-
ments are the sameas for software developedwithout reuse. The
difference is that some already existing verification and vali-
dation plansand resultsmight beavailablewith the reusedprod-
ucts. However, the full verification and validation requirement
apply to reused software as for any other part of the software de-
velopment.

EXPECTED OUTPUT: a. Specification of intended reuse [TS; PDR];

b. Justificationofreusewith respect toRequirementsBaseline
[DJF; PDR].

6.4.2.2
For projects, in which the customer intends to use commercial off-the-shelf soft-
ware products or modified versions thereof, the customer shall tailor the acquisi-
tion process of software destined for reuse as described in document IEEE Stan-
dard 1062--1993, referenced in annex C, (or in a similar standard, if available) to
the project requirements. The tailored acquisition process shall be documented in
the Requirements Baseline.

AIM: To baseline the procurementprocess requirements for commercialproducts
supporting the software development (e.g. compilers, operating system,
development tools).

EXPECTED OUTPUT: Software acquisition process for COTS and MOTS Products
[RB; SRR]..

6.4.2.3
Thesuppliershall implementthesoftwareacquisitionprocessfor reusedsoftware,
and document the process in the Technical Specification.

EXPECTED OUTPUT: Software acquisition process implementation [TS; PDR].

6.5 Man-machine interfaces

6.5.1
Softwareprojectswhich include thedevelopmentofasignificant interactivedirect
interface to a human user or operator, require the specialized software engineer-
ing disciplines covering this field, and the requirements of this subclause 6.5 shall
be applied.

The reason for the special subclauses is thatmodernMMI technology (e.g. graphi-
cal user interfaces,multi-layeredchoicemenus), is not feasible to specify ordesign
using conventional softwareengineeringdocumentationmethods.Thenon-linear
and multi-dimensional nature of modern MMI cannot be described adequately
onlyusing two-dimensionaldocuments thatbynatureare linear in structure.This
isvery similar toothersystemswithsignificanthumanfactorsrequirements, such
as cars, airplanes, buildings. In those cases a mock-up or model is implemented

ECSS 13 April 1999

ECSS--E--40A

55

duringthe“requirementsengineering”.Ananalogousapproachin softwareengin-
eering is required for software with extensive human interaction requirements.

6.5.2
For software that requires interface to human operator(s), the customer shall,
based on the complexity and requirements of the MMI, determine if a software
mock-up of the MMI is required to support the requirements engineering pro-
cesses.

EXPECTED OUTPUT: MMI software mock-up requirements [RB; SRR].

6.5.3
The customer shall determine if generalMMI standards or guidelines shall be ap-
plicable to the software project and include these requirements in the require-
ments baseline.

AIM: To ensure for example that appropriate guidelines and style-guides are
selected for projects in cases where a common MMI style and functionality
is required for several suppliers’ products.

EXPECTED OUTPUT: MMI general requirements and guidelines [RB; SRR]

6.5.4
For developments requiring a softwaremock-up of theMMI, thesupplier shallde-
velop a software mock-up to support the requirements engineering process. The
supplier shall use themock-up to prototype the specifications of man-machine in-
terfaces for thesoftware, such thatMMIspecificationsare consolidatedandevalu-
ated with respect to human factors and use.

The aim of this subclause includes:

D proper consideration of human factors;
D that theman-machine interface reach anacceptable stateof definitionduring

requirements engineering activities;
D that the technical performance of the man-machine interface is verified.

NOTE Depending on the nature of the project, the suppliermight opt to
later upgrade the software mock-up of the MMI to become part
of the final software product. However, unless the mock-up is
later upgraded to becomepart of the final product tree, themock-
up is not required to be a formal delivery to the customer.

EXPECTED OUTPUT: a. MMI specifications for software [TS; CDR];

b. ReportonevaluationofMMIspecificationsusingasoftware
mock-up [DJF; PDR].

6.6 Critical software
This topic is dealt with in depth in ECSS--Q--80. Here the basic principles are re-
peated together with the effects it has on the software engineering process.

Software criticality is not inherent to software by itself; criticality is determined
by factors outside the software development. These factors can be related to re-
quirements that are not functional ones, e.g. a development schedule, but other
critical factors of more direct influence on the software engineering process are
those where functions allocated to software implementation are critical system
functions. In all cases, the criticality requirements originate externally with re-
spect to the software project. Therefore, it is by definition, that the customer shall
perform the criticality analysis (see subclause 5.2.2.2), whereas the supplier im-
plements the corresponding specialmeasures, as agreedwith the customer in the
Technical Specification Baseline.

ECSS13 April 1999
ECSS--E--40A

56

The criticality analysis results in a classification according to criticality levels,
such that each software product corresponds to awell defined criticality level (ref.
ECSS--Q--80). For each level of criticality, appropriatemeasures shall be specified
by thesupplier andagreedwith thecustomer.Witheach level ofcriticality, thepre-
cise measures (e.g. formal proof, independent validation, test coverage
completeness and analysis, development of redundant software) shall be defined,
and the implementation shall be introduced into the engineering processes at
SRR.

“Software errors” are understood as errors that are introduced by any of the soft-
ware engineering processes covered by this standard. It is important to note, that
the validation of specificationsaswell as code and testing processes shall be there-
by included.

With reference to other ECSS--Q standards, it is important to note that software
errors are not stochastic in nature, anddonot follow the statistical laws oftenused
to determinehardware reliability. Software errors are all, by definition, engineer-
ing errors, and persist until the design is corrected. The software testing effort
should reduce the probability of remaining design errors, not to be confused with
reliability or “mean-time-between-failures”.

With reference to the fault tree analysis defined in ECSS--Q standards, it shall be
taken intoaccount, thatnosoftwareof significantsize can bemade completely free
of design errors. It is beyond current state of the art. Fault tree analysis shall
therefore assume software design errors exist for large software, and the system
engineering processes shall introduce appropriate measures to overcome this
problem.

ECSS 13 April 1999

ECSS--E--40A

57

Annex A (normative)

Software documentation

A--A --

A.1 Introduction
This annex defines the contents of the software engineering documents to be pro-
duced. The contents are defined by the outputs of the clauses in this standard, and
the list of the outputs for each milestone of the project is provided below. The de-
tailed structure of the software documents (e.g. table of contents, number of vol-
umes) are not defined here, but left open to be determined by the size and nature
of the individual software projects. The overall structure is given in Figure A--1.

RB
Requirement
Baseline

Customer’s requirements

Interface requirements

...

...

TS
Technical

Specification

Supplier Specification

Interface Control Document

Operation Manual

Maintenance, ...

Justification of design trades

Verification and Validation plans

Milestone reports, Test results, ...

...

Design of all components

Software Code

Release information

..

DJF
Design

Justification File

DDF
Design

Definition File

Figure A--1: Overview of software engineering documents

ECSS13 April 1999
ECSS--E--40A

58

A.2 The Requirements Baseline (RB)
The RB expresses the customer’s requirements. It is generated by the require-
ments engineering processes, and it is the primary input to the SRR review pro-
cess.

A.2.1 Requirements baseline contents at SRR

Requirement RB Contents at SRR Milestone

5.2.2.1--a. Functions and performance requirements of the system
[RB; SRR]

5.2.2.1--b. Operations and maintenance requirements [RB; SRR]

5.2.2.1--d. Design constraints and verification and validation require-
ments [RB; SRR]

5.2.2.1--e. Identification of lower level software engineering standards
that will be applied [RB; SRR]

5.2.2.2--a. Overall safety and reliability requirements of the software
to be produced [RB; SRR]

5.2.2.2--b. Critical function identification and analysis [RB; SRR]

5.2.3.2--a. System partition with definition of items [RB; SRR]

5.2.3.2--c. System configuration items list [RB; SRR]

5.2.4.2 Verification and validation process requirements [RB; SRR]

5.2.5.1 Software observability requirements [RB; SRR]

5.2.5.4 Development constraints [RB; SRR]

5.3.2.4--a. Customer approval of requirements baseline [RB; SRR]

5.3.2.11--a. Documentation standards [RB; SRR]

5.3.2.11--b. Design standards [RB; SRR]

5.3.2.11--c. Verification and validation standards [RB; SRR]

5.3.3--a. Interface management procedures [RB; SRR]

5.3.3--b. Part of configuration management plan [RB; SRR]

5.3.4.1 Technical budgets and margin philosophy for the project
[RB; SRR]

A.2.2 Interface Requirements Document (IRD)
The IRD expresses the customer’s interface requirements for the software to be
produced by the supplier. It is required in all cases where the software product is
intended for integration with the customer’s hardware or software products. This
document is part of the requirements baseline. Depending on the size and nature
of the project, the IRD sub-document may form separate clauses or separate vol-
umes of the RB.

Requirement IRD contents at SRR milestone

5.2.2.1--c. Interface requirements [IRB; SRR]

5.2.3.2--b. Software/hardware interface requirements [IRD; SRR]

5.2.5.2 System level interface requirements [IRD; SRR]

5.2.5.3 System level data interfaces [IRD; SRR]

5.2.5.5 System level integration support products [IRD; SRR]

5.2.5.6 System level integration preparation requirements [IRD;
SRR]

5.2.5.7 System level integration support requirements [IRD; SRR]

ECSS 13 April 1999

ECSS--E--40A

59

A.3 Technical Specification (TS)
The TS contains the supplier’s response to the requirements baseline, and is the
primary input to the PDR review process. It includes the plans defined as part of
the software development processes.

Depending on the size and nature of the project, the following sub-documents can
be separate clauses or separate volumes of the TS.

Requirement TS contents at PDR

5.3.2.1 Project software development life cycle definition, included
in the software project development plan [TS; PDR]

5.3.2.5--a. Technical specification of the software [TS; PDR]

5.3.2.6 Customer approval of technical specification and top-level
architecture [TS, DDF, ICD, DJF; PDR]

5.4.2.1--a. Functional and performance specifications, including hard-
ware characteristics, and environmental conditions under
which the software item will execute [TS; PDR]

5.4.2.1--d. Safety specifications, including those related to methods of
operation and maintenance, environmental influences, and
personnel injury [TS; PDR]

5.4.2.1--e. Security specifications, including those related to factors
which might compromise sensitive information [TS; PDR]

5.4.2.1--f. Human-factors engineering (ergonomics) specifications, in-
cluding those related to manual operations, human-equip-
ment interactions, constraints on personnel, and areas re-
quiring concentrated human attention, that are sensitive to
human errors and training [TS; PDR]

5.4.2.1--g. Data definition and database requirements [TS; PDR]

5.4.2.1--h. Installation and acceptance requirements of the delivered
software product at the operation and maintenance site(s)
[TS; PDR]

5.4.2.1--i. Identification of lower level software engineering standards
that will be used and that will document their compatibility
with this current standard [TS; PDR]

5.4.4.1--c. Software verification plan -- organization [TS; PDR]

5.4.4.1--g. Software validation plan -- organization [TS; PDR]

Requirement TS contents at CDR

5.5.3.4 Software integration plan (update) [DJF; CDR]

5.5.4.1 Software integration plan [DJF; CDR]

ECSS13 April 1999
ECSS--E--40A

60

A.3.1 Interface Control Document (ICD)
The ICD is the suppliers response to the IRD, and is part of the TS.

Requirement ICD contents at PDR

5.3.2.5--c. Interface Control Document [ICD; PDR]

5.3.2.6 Customer approval of technical specification and top-level
architecture [TS, DDF, ICD, DJF; PDR]

5.4.2.1--b. Interfaces external to the software item [ICD; PDR]

5.4.3.2--a. Preliminary (top-level) external interfaces design [ICD;
PDR]

5.4.3.2--b. Preliminary (top-level) internal interfaces design [ICD;
PDR]

Requirement ICD contents at CDR

5.5.2.2--a. External ICDs (update) [ICD; CDR]

5.5.2.2--b. Internal ICDs (update) [ICD; CDR]

A.3.2 Software maintenance plan

Requirement Maintenance plan contents at PDR

5.3.2.3 Elements of the software maintenance plan [TS; PDR]

A.3.3 Operations manual

Requirement Operations manual contents at PDR

5.4.3.3 Preliminary version of operations manual [TS; PDR]

Requirement Operations manual contents at CDR

5.3.2.7--d. Customer approval of the operations manual [TS; CDR]

5.5.2.3 Operations manual (update) [TS; CDR]

5.5.3.3 Operations manual (update) [TS; CDR]

Requirement Operations manual contents at QR

5.5.4.3 Operations manual (update) [TS; QR]

A.4 Design Justification File (DJF)
The DJF is generated and reviewed at all stages of the development and review
processes. It contains the documents that describe the trade-offs, design choice
justifications, test procedures, test results, evaluationsandany otherdocumenta-
tion called for to justify the design of the supplier’s product. The DJF is a primary
input to theQRandARmilestones, and supporting input for the othermilestones.

Requirement DJF contents at SRR Milestone

5.2.3.2--d. Traceability to system partitioning [DJF; SRR]

5.3.2.4--b. SRR milestone review report [DJF; SRR]

Requirement DJF contents at PDR milestone

5.3.2.5--d. Top-level design trade-offs [DJF; PDR]

5.3.2.6 Customer approval of technical specification and top-level
architecture [TS, DDF, ICD, DJF; PDR]

5.3.4.2 Margins and technical budgets status [DJF; PDR, CDR,
QR, AR]

5.4.2.3--a. Requirement traceability matrices [DJF; PDR]

ECSS 13 April 1999

ECSS--E--40A

61

5.4.2.3--b. Requirements verification report [DJF; PDR]

5.4.3.1--b. Top-level architectural design to requirements traceability
matrices [DJF; PDR]

5.4.3.4 Preliminary software integration plan [DJF; PDR]

5.4.3.5 Architecture and interface verification report [DJF; PDR]

5.4.3.6 PDR milestone report [DJF; PDR]

5.4.4.1--a. Software verification plan -- criticality and effort [DJF;
PDR]

5.4.4.1--b. Software verification plan -- methods and tools [DJF; PDR]

5.4.4.1--d. Software validation plan -- effort and independence [DJF;
PDR]

5.4.4.1--e. Software validation plan -- methods and tools [DJF; PDR]

5.4.4.1--f. Software validation plan -- independent validation [DJF;
PDR]

Requirement DJF contents at CDR milestone

5.5.2.4 Software test plan [DJF; CDR]

5.5.2.6--a Design verification report [DJF; CDR]

5.5.2.6--b. Design traceability matrices [DJF; CDR]

5.3.2.7--b. Customer approval of the design justification file (e.g. re-
sults of unit and integration tests) [DJF; CDR]

5.3.2.7--c. Customer approval of the design of system level interfaces
and the system level integration plan [DDF, DJF; CDR]

5.3.4.2 Margins and technical budgets status [DJF; PDR, CDR,
QR, AR]

5.5.3.1--b. Unit test plan (update) [DJF; CDR]

5.5.3.2--b. Unit test reports [DJF; CDR]

5.5.3.5--a. Software code verification report [DJF; CDR]

5.5.3.5--b Software code traceability matrices [DJF; CDR]

5.5.4.1 Software integration plan [DJF; CDR]

5.5.4.2 Software integration test report [DJF; CDR]

5.5.4.4--a. Software integration verification report [DJF; CDR]

5.5.4.4--b. Software documentation verification report [DJF; CDR]

5.5.4.4--c. Evaluation of test completeness and code conformance
[DJF; CDR]

5.5.4.4--d. Feasibility confirmation of validation testing, operations
and maintenance [DJF; CDR]

5.5.4.4--e. Software validation testing specification [DJF; CDR]

5.5.4.5 CDR milestone report [DJF; CDR]

Requirement DJF Contents at QR Milestone

5.6.2.1--a. Preliminary software acceptance data package [DJF; QR]

5.6.2.1--d. Software design and test evaluation report [DJF; QR]

5.6.2.1--e. Validation testing report [DJF; QR]

5.6.2.1--f. Test specification evaluation [DJF; QR]

5.6.2.1--g. Qualification review records [DJF; QR]

ECSS13 April 1999
ECSS--E--40A

62

5.3.2.9 Customer’s approval of qualified state [DJF; QR]

5.3.4.2 Margins and technical budgets status [DJF; PDR, CDR,
QR, AR]

Requirement DJF contents at AR milestone

5.3.2.10 Customer’s approval of accepted state [DJF; AR]

5.6.2.2--a. Final software acceptance data package [DJF; AR]

5.6.2.2--b. Acceptance testing documentation [DJF; AR]

5.6.2.2--c. Acceptance review records [DJF; AR]

5.3.4.2 Margins and technical budgets status [DJF; PDR, CDR,
QR, AR]

A.5 Design Definition File (DDF)
TheDDFisasupplier-generateddocumentthatdocumentstheresultof thedesign
engineering processes. The DDF is the primary input to the CDR review process
which shall containall thedocumentscalled for by thedesignengineeringrequire-
ments.

Requirement DDF contents at PDR

5.3.2.5--b. Top-level architectural design [DDF; PDR]

5.3.2.6 Customer approval of technical specification and top-level
architecture [TS, DDF, ICD, DJF; PDR]

5.4.3.1--a. Software architectural design [DDF; PDR]

Requirement DDF contents at CDR

5.5.2.1 Software components design documents [DDF; CDR]

5.5.3.1--a. Software component design documents and code (update)
[DDF; CDR]

5.5.3.2--a. Software component design document and code (update)
[DDF; CDR]

5.3.2.7--a. Customer approval of the design definition file (e.g. archi-
tectural design and detailed design, code) [DDF; CDR]

5.3.2.7--c. Customer approval of the design of system level interfaces
and the system level integration plan [DDF, DJF; CDR]

Requirement DDF contents at QR

5.6.2.1--c. Preliminarily software delivery on specified data medium
[DDF; QR]

5.6.2.2--d. Software release documentation [DDF; AR]

Requirement DDF contents at AR

5.6.2.2--d. Software release documentation [DDF; AR]

5.6.2.2--e. Software delivery on specified data medium [DDF; AR]

ECSS 13 April 1999

ECSS--E--40A

63

A.6 System level documentation

A.6.1 Introduction
The system level documentation is governed by the ECSS system engineering
standard. The relevant input for software elements at system level are found in
subclause 5.2. In the special case where the customer is himself a software
supplier (a product consisting solely of software) for the next higher level in the
systemproduct tree, the customerbecomesa supplierat that leveland therequire-
ments of this current standard are applied recursively for that case.

A.6.2 Operations, maintenance, migration and retirement
documentation

The operations, maintenance, migration and retirement processes are system
level activities, defined by the customer’s requirements for the space system. The
corresponding software engineering processes are therefore not independent en-
gineering activities, but are support processes at system level. Hence, the output
of the processes are contributions to system level outputs, and the outputs below
will therefore eitherbe integratedwith thesoftware developmentdocumentation,
or controlled and developed as part of a system documentation tree. The outputs
are identified and grouped below. The system level documentation tree defines
how the documents shall be included.

Requirement Operational documentation

5.7.3.1 Operational plan -- plan and standards [OP;ORR]

5.7.3.2 Operational plan -- procedures for problem handling [OP;
ORR]

5.7.3.3 Operational plan -- operational testing specifications [OP;
ORR]

Requirement Maintenance

5.8.2.1 Maintenance plan -- plans and procedures [MP; System]

5.8.2.2 Maintenance plan -- problem reporting and handling [MP;
System]

5.8.3.4 Change justification file -- problem analysis report [CJF]

5.8.4.1 Change justification file -- modification identification [CJF;
System]

5.8.5 Change justification file -- baseline for changes [CJF]

Requirement Migration

5.8.6.2 Migration plan

5.8.6.3 Migration justification file

Requirement Retirement

ECSS--M--30 (Refer to disposal activities described there)

ECSS13 April 1999
ECSS--E--40A

64

(This page is intentionally left blank)

ECSS 13 April 1999

ECSS--E--40A

65

Annex B (informative)

Requirement cross references

Reference Subclause
ECSS--M--40A, 5.2. 5.3.3
ECSS--Q--80A -- 3.1. f 5.3.2.5
ECSS--Q--80A -- 3.1.a 5.3.2.1
ECSS--Q--80A -- 3.1.r 5.3.2.2
ECSS--Q--80A -- 3.1.r 5.3.2.8
ISO/IEC 12207 5.1.2.2 4.6
ISO/IEC 12207: 5.2.4.2 5.3.2.1
ISO/IEC 12207: 5.3.10.1 5.2.5
ISO/IEC 12207: 5.3.13.2 5.6.7.7
ISO/IEC 12207: 5.3.13.3 5.6.7.8
ISO/IEC 12207: 5.3.4.1 5.4.2.1
ISO/IEC 12207: 5.3.4.2 5.4.2.3
ISO/IEC 12207: 5.3.5 5.4.3
ISO/IEC 12207: 5.3.5.1 5.4.3.1
ISO/IEC 12207: 5.3.5.2 5.4.3.2
ISO/IEC 12207: 5.3.5.4 5.4.3.3
ISO/IEC 12207: 5.3.5.5 5.4.3.4
ISO/IEC 12207: 5.3.5.6 5.4.3.5
ISO/IEC 12207: 5.3.6.1 5.5.2.1
ISO/IEC 12207: 5.3.6.2 5.5.2.2
ISO/IEC 12207: 5.3.6.4 5.5.2.3
ISO/IEC 12207: 5.3.6.5 5.5.2.4
ISO/IEC 12207: 5.3.6.6 5.5.2.5
ISO/IEC 12207: 5.3.6.7 5.5.2.6
ISO/IEC 12207: 5.3.7.1 5.5.3.1
ISO/IEC 12207: 5.3.7.2 5.5.3.2
ISO/IEC 12207: 5.3.7.3 5.5.3.3
ISO/IEC 12207: 5.3.7.4 5.5.3.4
ISO/IEC 12207: 5.3.7.5 5.5.3.5
ISO/IEC 12207: 5.3.8.1 5.5.4.1
ISO/IEC 12207: 5.3.8.2 5.5.4.2

ECSS13 April 1999
ECSS--E--40A

66

Reference Subclause
ISO/IEC 12207: 5.3.8.4 5.6.7.1
ISO/IEC 12207: 5.3.9.1 5.6.7.2
ISO/IEC 12207: 5.3.9.2 5.6.7.3
ISO/IEC 12207: 5.3.9.3 5.5.4.4
ISO/IEC 12207: 5.3.9.3 5.6.7.4
ISO/IEC 12207: 5.3.9.5 5.6.7.5
ISO/IEC 12207: 5.4.1 5.7.3
ISO/IEC 12207: 5.4.1.3 5.7.3.3
ISO/IEC 12207: 5.5.1.2 5.8.2.2
ISO/IEC 12207: 5.5.1.3 5.8.2.3
ISO/IEC 12207: 5.5.2.1 5.8.3.1
ISO/IEC 12207: 5.5.2.2 5.8.3.2
ISO/IEC 12207: 5.5.2.3 5.8.3.3
ISO/IEC 12207: 5.5.2.4 5.8.3.4
ISO/IEC 12207: 5.5.2.5 5.8.3.5
ISO/IEC 12207: 5.5.3.1 5.8.4.1
ISO/IEC 12207: 5.5.3.2 5.8.4.2
ISO/IEC 12207: 5.5.3.4 5.8.5
ISO/IEC 12207: 5.5.5.1 5.8.6.1
ISO/IEC 12207: 5.5.5.2 5.8.6.2
ISO/IEC 12207: 5.5.5.3 5.8.6.3
ISO/IEC 12207: 5.5.5.4 5.8.6.4
ISO/IEC 12207: 5.5.5.5 5.8.6.5
ISO/IEC 12207: 5.5.5.6 5.8.6.6
ISO/IEC 12207: 5.5.5.7 5.8.6.7
ISO/IEC 12207: 5.5.6 5.8.7
ISO/IEC 12207: 6.4.1.1 5.6.4.1
ISO/IEC 12207: 6.4.1.2 5.6.4.2
ISO/IEC 12207: 6.4.1.3 5.6.4.3
ISO/IEC 12207: 6.4.1.4 5.6.4.4
ISO/IEC 12207: 6.4.1.5 5.6.4.5
ISO/IEC 12207: 6.4.1.6 5.6.6.7
ISO/IEC 12207: 6.4.2.3 5.6.6.1
ISO/IEC 12207: 6.4.2.4 5.6.6.2
ISO/IEC 12207: 6.4.2.5 5.6.6.3
ISO/IEC 12207: 6.4.2.6 5.6.6.4
ISO/IEC 12207: 6.4.2.7 5.6.6.5
ISO/IEC 12207: 6.5.1.1 5.6.5.1
ISO/IEC 12207: 6.5.1.2 5.6.5.2
ISO/IEC 12207: 6.5.1.3 5.6.5.3
ISO/IEC 12207: 6.5.1.4 5.6.5.4
ISO/IEC 12207: 6.5.1.5 5.6.7.6
ISO/IEC 12207: 6.5.2.1 5.6.7.1
ISO/IEC 12207: 6.5.2.2 5.6.6.6
ISO/IEC 12207: 6.5.2.3 5.6.7.2
ISO/IEC 12207: 6.6.1.1 to 6.6.1.6 5.6.8
ISO/IEC 12207: 6.6.3.1 5.6.8.1

ECSS 13 April 1999

ECSS--E--40A

67

Annex C (informative)

References to other ECSS Standards

Referenced ECSS Standard Page

ECSS--E--00 16

ECSS--E--10 20, 22, 23, 26

ECSS--E--40--01 51

ECSS--E--40--03 53

ECSS--M 21, 29

ECSS--M--00 21, 23, 40, 41, 42

ECSS--M--10 21, 46

ECSS--M--20 16, 22, 41

ECSS--M--30 17, 22, 30, 45, 46, 50

ECSS--M--40 22, 32, 46, 48

ECSS--M--50 22

ECSS--M--60 22

ECSS--M--70 22

ECSS--P--001 11

ECSS--Q 21, 27, 56

ECSS--Q--20 45

ECSS--Q--80 21, 29, 40, 41, 43, 44, 45, 51, 54, 55, 56

ECSS13 April 1999
ECSS--E--40A

68

(This page is intentionally left blank)

ECSS 13 April 1999

ECSS--E--40A

69

Bibliography

IEEE Std. 1062--1993: Recommended Practices for Software Acquisition.

ECSS13 April 1999
ECSS--E--40A

70

(This page is intentionally left blank)

ECSS 13 April 1999

ECSS--E--40A

71

ECSS Document Improvement Proposal
1. Document I.D.
ECSS--E--40A

2. Document Date
13 April 1999

3. Document Title
Software

4. Recommended Improvement (identify clauses, subclauses and include modified text
and/or graphic, attach pages as necessary)

5. Reason for Recommendation

6. Originator of recommendation

Name: Organization:

Address: Phone:
Fax:
E--Mail:

7. Date of Submission:

8. Send to ECSS Secretariat

Name:
W. Kriedte
ESA--TOS/QR

Address:
ESTEC, Postbus 299
2200 AG Noordwijk
The Netherlands

Phone: +31--71--565--3952
Fax: +31--71--565--6839
E--Mail: wkriedte@estec.esa.nl

Note: The originator of the submission should complete items 4, 5, 6 and 7.
This form is available as a Word and Wordperfect--Template on internet under

http://www.estec.esa.nl/ecss/improve/

ECSS13 April 1999
ECSS--E--40A

72

(This page is intentionally left blank)

