

Ref: SPIRE-RAL-NOT-001187
Issue: Draft
Date: 1st March 2002

Page: 1 of 7
SPIRE

Technical Note
Concept for IA

Users
SPIRE IA will support both expert users in the ICC and consortium, and the general
astronomer in the community. It is anticipated that all users will run the same IA system, with
differences for different types of user being different configurations and privileges.

Users are not required to buy commercial software licences in order to run IA.

Access to Data
The normal access to data is expected to be by downloading it over the network from an HCSS
node. It should be transparent to the user exactly where the data is located. All related data
(e.g. calibration objects) have to be transferred as well. A request is expected to immediately
initiate the data transfer.

Security considerations imply that the transfer for normal users will probably have to use the
HTTP/HTTPS protocol or its successor. The architecture should allow different protocols to be
used, so that, for example, an expert ICC user could run IA as a database client.

Data products produced by a pipeline at the HSC could also be transferred. Calibration objects
retrieved with the data have to be the correct ones pertaining both to the version of IA being
used and the date of the data being processed. It is possible that the processing time range
might span more than one version of an object.

After downloading data, it will be possible for the user to save it to his or her personal file
store. It will also be possible to copy this data onto other devices (e.g. laptop, mobile phone
etc.) and continue processing from there. The user is not required to maintain a continuous
network connection.

History
Data processed by IA will have a “memory” of what has been done to it. The IA will inform
the user if a processing step is impossible or inappropriate given the previous processing.
There are cases when the IA must refuse to perform the processing step. If it is possible to
allow the processing step, then this should take the form of a warning that the user may choose
to ignore.

This history mechanism will contain all the information required to allow the same processing
to be applied to the same input data. In this way, any errors can be reproduced in a controlled
fashion. In some cases (e.g. manual deglitching) the history could contain a significant amount
of data. The user should not therefore (normally) be presented with all the data maintained by
the history, but be able to view an easily readable log of the processing steps that have been
applied.

It is also possible that the history of one product could be applied to a different dataset in order
to process it in the same way. This does not make sense for certain types of processing step
(e.g. manual deglitching again), so the history would have to maintain a state of whether this
operation remained valid or not.

Ref: SPIRE-RAL-NOT-001187
Issue: Draft
Date: 1st March 2002

Page: 2 of 7
SPIRE

Technical Note
Concept for IA

The history could also be used to implement an “undo” mechanism. For certain operations this
implies that data must be copied and a process applied to the copy. In some cases this could
result in a severe performance penalty. Therefore it should be optional whether a process
implements “undo” or not. If it does, it should be possible to turn it off to gain performance
benefits, both at system-wide and single process levels. In particular, a pipeline should run
with “undo” turned off.

When data is saved to a product, the history must be saved with it. This is essential to allow
saved data to be restored in the same state, and also to enable products to be transferred
between users.

Similarly, if data is exported to an external data format, the history has to go with it. If data is
imported from an external format, whether it originated in the IA or not, it has to be tagged as
such. This is because it is impossible for the IA to know for sure what has been done to it.

Language
It is envisaged that the IA software will be developed entirely in Java. A scripting language is
also needed. Currently Jython appears to be the best candidate for this. The architecture should
not prevent the scripting language from being changed at a later date.

Interfaces to other Software
Data can be transferred to and from external packages by exporting to and importing from a
common file format (e.g. FITS).

The IA architecture should allow additional processing modules, either written by ICC
members or external users, to be “plugged in”, provided they adhere to the interface
specification. It is currently planned that only the plugging in of Java modules will be
supported by the ICC. However, the architecture should allow the possibility of plugging in
modules written in different languages (principally IDL and C). It is possible that these
modules would either run directly on the client or on a remote server. In the latter case, this
would require the IA session to be continuously connected to the network.

These additional modules can become a part of a future version of the IA system. In this case,
they must be written in Java. If they were originally developed using a different language, then
they have to be ported.

User Interfaces
IA functionality will be available both from a command line and through a GUI. GUI displays
could have their own command lines built in (e.g. like WinCVS). There will not be a single
large GUI – each function will have its own display brought up by a master display.

A user-friendly possibility is to present a main display as a flowchart (representing a pipeline)
indicating which processes have been executed. It will be possible to omit or repeat steps.
Steps could be run by clicking on the relevant process. It will be possible to run all the steps
together i.e. as a pipeline. There will be a number of different pipeline chains depending on
instrument mode. It will also be possible for a user to create his or her own tailored pipelines.

Ref: SPIRE-RAL-NOT-001187
Issue: Draft
Date: 1st March 2002

Page: 3 of 7
SPIRE

Technical Note
Concept for IA

It will be possible to save and restore processing state at any stage that a processing step is not
running. Note that a processing step could be a composite of a number of processes.

It will also be possible to apply different processing steps of the same type to the same product.
For example, a user may wish to apply two different flat-fielding algorithms to an image and
compare the results. Similarly, a user may wish to apply two different flat fields (with the same
algorithm) and compare the results.

Output Products
IA will be able to produce “products” as an output. These are products in the same sense as
those produced by the HSC pipeline and therefore can be treated in an identical way be the IA,
i.e. the output can become an input.

The general user will not be allowed to write products back into the database. However, in
order to achieve a cohesive data archive and maximise data mining potential, a privileged user
will be able to do so. Note that this does not disallow the addition to the archive of user-
reduced data. Products that are added should be associated with the appropriate data in the
archive. This is not necessarily an observation – it could, for example, be a survey.

Ref: SPIRE-RAL-NOT-001187
Issue: Draft
Date: 1st March 2002

Page: 4 of 7
SPIRE

Technical Note
Concept for IA

Appendix – Data Processing Flow

Ref: SPIRE-RAL-NOT-001187
Issue: Draft
Date: 1st March 2002

Page: 5 of 7
SPIRE

Technical Note
Concept for IA

Ref: SPIRE-RAL-NOT-001187
Issue: Draft
Date: 1st March 2002

Page: 6 of 7
SPIRE

Technical Note
Concept for IA

Ref: SPIRE-RAL-NOT-001187
Issue: Draft
Date: 1st March 2002

Page: 7 of 7
SPIRE

Technical Note
Concept for IA

	Users
	Access to Data
	History
	Language
	Interfaces to other Software
	User Interfaces
	Output Products
	Appendix – Data Processing Flow

