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LECTURE 16 : MODAL TREATMENT OF ANTENNA _SYSTEMS
WITH QUASI-OPTICAL FEEDS

16.1 INTRQD ON

Many high-gain antenna systems involve a large main reflector and several subsidiary
reflectors and/or lenses. One or more feed-homs provide signal power to, or receive from,
the subsidiary optics which together serve as feed 10 the main reflector. Some large
communications ground-stations and radio astronomical telescopes use "beam-wave-guides”
(see Figure 16.1) to transport the signal beam from the main reflector to the receiver(s) in
such a way that the receivers may remain stationary as the main reflector tracks a source,
or in order that, with simple optical swiiching, different receivers may be used, diplexed
or sequentially. Beam-mode analysis can be used to design and to optimise such
configurations.

Recent developments of satellite-bome radiometric earth-remote-sensing using
millimetre-wave frequencies involve operating in several bands through a single
high-performance reflector antenna. One such radiometric system, for example, uses the -
bands 86-92 GHz, 148-152 GHz, and 175-191 GHz (divided imto three sub-bands). In
such a system the incoming signals are all received by the same dual-reflector antenna, are
separated in a quasi-optical demultiplexer, and delivered to a receiver for each band.
Beam-mode analysis is required in the design of a system of this kind.

Some of the uses made of beam-mode analysis in these contexts will be examined in
this Lecture.

We begin with the simplest case of a single receive-hom antenna to explain the ideas
of mode coupling.
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16.1 Coupling between an incident beam and a receiving feed-horn

In Lecture 5 it was shown how the beam transmitted or radiated
by a source mounted in a corrugated feed-horn can be analysed into
Caussian beam-modes. 1 wish now to show how the signal level recorded
by a detector mounted in a receiving feed-horn is determined.

First recall that the beam transmitted from any aperture antenna,
including feed-horns, can be written as an angular spectrum of plane-waves
(Lecture 2). This spectrum, A(ky,ky), is obtained by Fourier-
transforming the field over the aperture. |If A(kx,ky) is re-written in
terms of polar coordinates 6,y rather than the transverse components of the
wave-vector kx,ky (using k, = ksinfcosyp and ky = ksinfsing) the result,
A(8,p), when normalised to unity on-axis, is the complex antenna pattern
of the aperture antenna; the usual "antenna pattern” is the squared modulus
of A(8,p). (We are using scalar descriptions of the fields in this

_discussion, implying treatment of co-polar behaviour only; cross-polar

effects could be separately treated along the same lines).

Now, there is a fundamental reciprocity theorem in Electromagnetism
which relates the transmitting and receiving properties of an antenna.
For our purposes it can be conveniently expressed as follows. The relative
signal amplitude and phase recorded by a coherent detector in a receiving
antenna when a plane-parallel beam is incident upon the antenna from the
direction #,p are equal to the amplitude and phase of A*(B,p); relative
here means relative to the amplitude and phase recorded by the detector
when an on-axis plane-parallel beam, with the same amplitude and the
same phase (on a far-field spherical surface) is incident on the antenna.

Now note that an arbitrary incident signal beam can itself be analysed
into an angular spectrum of plane waves, Ag(0,p) say, or As(kx,ky) in
terms of the transverse components of the wave-vector. The reciprocity
theorem then implies that the relative amplitude and phase of the detector

output are given by the amplitude and phase of the complex number obtained
by evaluating the integral
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where a subscript A (for antenna) has been added to A(kxﬁy)-

Use can now be made of the "generalised Parseval theorem” of Fourier-
transform theory, i.e.
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where fy(x,y) and fo(x,y) are arbitrary functions of x,¥ and gl(kx,ky)
and gz(kx,ky) are, respectively, their Fourier transforms. Using this
theorem we can re-write Equation 16.1 in terms of the Fourier transforms
of AA(kkay) and Ag(ky.ky), namely the antenna-transmit field yp(x,y,0),
and the incident-signal ¥ie1d Yg(x,y,0), respectively, in the aperture
plane z=0. That is, the relative amplitude and phase of the detector

output is given by the complex number which results from an evaluation
of the integral '

[ j Ya(x,¥.2) ¥ (x,y,2)dxdy (16.3)
C

where the plane of integration, C, is the aperture plane 2=0. However,
the same result would be obtained if the integral of Equation 16.3 were
evaluated over any constant-z cross-sectional plane through the beams,

) '

The Case of a Gaussian Antenna Pattern and a Caussian Signal Beam

Consider the case where both the antenna and the signal beams are
fundamental Gaussian beam-modes, say UA(x,y,z) and Ug(x,y,z). The
relative amplitude of the coherently detected signal is thus given by the
overlap integral, or "inner product", <UAIUS>- i.e.

<UptUg> = |j l U:(x,y,z)-US(x,y,z)dxdy (16.4)
C

evaluated over any convenient constant-z plane, C. This integral is
straightforwardly evaluated using the explicit form for the fundamental
Caussian beam-mode given in Equation 2.5. If Uy and Ug are both
normalised to unity power, i.e. <UplUp> and <UglUg> are both equal to 1,
the maximum possible value of <UplUg> is 1 and this value (s obtained if
the modes Uy and Ug are co-axial and have equal and coincident beam-
waists; otherwise <Up|Ug> will be less tham 1, indicating, of course,

an imperfect match of incident signal to antenna pattern.

Coaxial modes. Consider first modes having a common axis but non-
coincident, and not necessarily equal, beam-waists. The following
result is obtained whenlé.4 is evaluated at a cross-sectional plane,
C, in which the beam-width parameters of the two modes are wy and wg
and the phase-front curvatures are Kp = 1/Rp and kg = 1/Rg.

<Up1Ug> = 4{“(WA/WS + wg/wp) 2 + (kWAWs)Z(KA~Ks)2}q% (16.5)
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The expressions in Equation 2.6 for w(z) and x(z) in a fundamental
Gaussian beam-mode can be used to re-express this in terms of the beam-
waist sizes, wgop and Wyg, and the separation of the beam-waists

A=z, 0 - Zgg. (The beam-waists are not necessarily real; that for
the antenna wiil usually be virtual - i.e. inside the horn - and so,
too, might be the beam-waist for the received signal beam.) The result
is ‘
— -3 o = of Wt
<UplUs> = (kwg)? {(kzwg)Z + (kA)2} (16.6)

where ;0 denotes the geometrical mean of wga and w,g, and w% denotes the
mean of w°A2 and WOS2' Note that this expression retains nothing to
identify the plane C; this confirms the contention made earlier that
<Up1Ug> has a value which is independent of the choice of cross-
sectional plane over which it is evaluated.

If the beams Uy and Ug have equal beam-waists, Wgp = W5 = Vg,
Equation 16.6 reduces to

<UptUg> = {1 + (kA/k2wg)2}'5 (16.7)

The expressions 16.6 and 16.7 show how the efficiency of coupling
of the incident signal beam to the receiving antenna varies with the -
position of the antenna, along the line of incidence of the signal beamn,
as measured by the separation, A, of the respective beam-waists. The
larger the value of kw,, the greater the tolerance on A.

‘Note that we have been considering field amplitude detection; the

power coupling is given by the squares of the expressions in Equations
16.3 to 16.7.

Laterally displaced modes. Suppose now that the fundamental modes Uy
and Ug have parallel, but not coincident, axes. Evaluation of the overlap
integral in Equation 16.4 for a lateral displacement of the axes, d, gives

<Up|Ug> = <Up|Ug>q-exp(-d?/d3) (16.8)

where d2 = 2{(k2;2)2 + (kA)2}/k4;%.

Here <Up|Ug>, denotes the value for d » O,
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Rotationally displaced modes. If the axes of the modes Uy and Ug are
inclined at a (small) angle 6, evaluation of the overlap integral in

Equation 16.4 gives

CUAIUg> = <UplUg>o- exp(-6"/6%) (16.9)

where 03 = {s;ﬁ/k?ﬁﬁ} + {ﬁ‘*(xrxsﬂ/&?}

where kp and xg are the curvatures of the phase-fronts, and w2 is the
mean-square, and w the geometric mean, of the beam-width parameters wpy
and wg, in the particular cross-sectional plane which contains the point
where the mode axes cross. The value of <Up|Ug> does not depend on the
cross-section over which it is evaluated and an expression can be
obtained for 8% which depends only on the beam-waist sizes wgp and wig
and on the distances between the beam-waists and the crossing-point of
the axis; it is, however, a much more complicated expression than that
given above. '

16.3 Beams which include Higher-order Modes.

To give a good representation of the antenna transmit beam and of
the incident signal beam, it may be necessary to include higher-order
modes. The coupling coefficient of Equation 16.3 would then involve inner
products between modes of different orders. A fuil derivation of the
magnitudes of these coupling coefficients is given by Kogelnik,

A
(;ea References .
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16.3 APER

One use of beam-mode analysis in the context of reflector antennas is the
investigation of the dependence of gpermre efficiency on the design details of the optical
system, including, for example, the precise positioning of the receiver’s feed-hom.

Aperture efficiency is essentially a measure of the degree of coupling between an
incoming, on-axis, plane-wave beam and the receiver (assuming no dissipative absorptive
losses in the system). 100% aperture cfficiency would mean the complete transfer of the
power incident over the full area of the antenna’s aperture, to the receiver (unattainable, of
course).

To determine the aperture efficiency of a Cassegrain antenna (Figure 16.2) for
example, we can follow the basic idea traced in the preceding section. The receiver hom
is viewed, first, in its transmit mode to find the field it produces at the secondary
reflector. The field produced by the incoming plane-wave beam at the secondary, after
traversing the main reflector, is then determined (Figure 16.3). The aperture efficiency is
then evaluated as a coupling integral. We outline this procedure below (see References).

The incoming plane-wave passes through the primary reflector (which is large so

diffraction at its edges will be neglected) to produce after reflection from the secondary
reflector, a field of the following form

-irr2

1 r Az
Yelr,zg, @) = ﬁa-ﬂ-[—zﬂ-e s (i

Here a is the radius of the secondary and z; the distance from its focus.

I{(x ) the top-hat function given by

1 Ixl g %
M(x) ~

Ciern
0 Ix| > % et

The fundamental Gaussian Beam-Mode field generated by a corrugated horn

set on the axis of the telescope with a beamwaist offset from the
secondary focus by A will be, in the usual notation

2 2
_ r il Tr _ -1 =
iy - 2 1% . Wi . ifkz + B tan™l Zal |
- - . ]
2 (J£.12)

where the reduced distance is Z given by

A
A > (z-8) (6.3
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The coupling coefficient between these two fields will be

—a+iX : ran=13
Ca = b (B e TOETETERY Cit. iy
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a - L;;} ; >< - 5 [ﬁ; # E;J (L6.13)

and wg = w(zZg), Rg = R(zg).

From the definition of aperture efficiency ) cne can
see that it is equivalent to the power coupling coefficient

*

Ca €a
which leads to 75 the aperture efficiency being given by

- Tg- MA (;éj;a)
where

2 1 - g™

L5 S 1 + 7@ umhfﬁik @ﬁ &&é (it f7B)

is the measure of the taper efficiency,
-2 ' -
s = 1 -e™® Onﬂ"w (g f7¢)

the spillover efficiency and

coshoy - cosX

A - 2
(1+%‘} ] (cosha-1) Ge?7d)

is the phase efficiency, resulting from axial defocusing of the horn.
Fig. (6.4 . shows variations of np with X for constant .
If X is zero, 14 is unity, which corresponds to perfect matching of the
phase of Yo and Y4. 7; and 75 are shown in Fig. 6.5 as a function of o

and the product has a maximum of 81% when a corresponds to an edge taper
of 10.91 dB.

1
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Naow extend this analysis by looking at the effect of th;e’higher
order modes produced by corrugated-horns, The aperture efficiency
is given by

® 2

20 Ap elep Cap (1648}
p_

where p is the mode number, A, the normalised amplitude coefficients of
the modes generated by the horn and pp the relative phase slippage
between the modes (s2¢ {[zcture §: Section D-.Z).

One might think that these higher order modes, which contain less
than 2.1% of the power transmitted by the horn, would have litrle
effect upon the aperture efficiency. However , *Row & o <ibar
Gﬂu}m:& in efficiency between the simple fundamental mode model and a
model” using just the fundamental and the second mode. The effect is quite
striking -~ near the optimum o (edge taper) the efficiency is increased
by 7%; using all 11 modes given in Lecture 5 shows less change, 3%. To obuin a
precise understanding of the efficiencies of Cassegrain antennas clearly requires
consideration of higher-order modes - even with the nearly-pure Gaussian field of a
corrugated feed-homn. -

More extensive quantitative design information for multi-mirror antennas can be gained
by an extension of this kind of beam-mode analysis. Several such studies are listed in
the References.




16.4 FREQUENCY-INDEPENDENT FEED SYSTEMS

Recent developments of satellite-bome radiometric earth-remote-sensing using
millimetre-wave frequencies involve operating in several bands through a single
high-performance reflector antenna. One such radiometric system, for example, uses the
bands 86-92 GHz, 148-152 GHz, and 175-191 GHz (divided into three sub-bands). In
such a sysiem the incoming signals are all received by the same dual-reflector antenna, are
separated in a quasi-optical demultiplexer, and delivered to a recciver for each band.
Beam-mode analysis is required in the design of a system of this kind. It will usually be
required that the antenna pattemn be precisely the same in angular-width and
beam-efficiency for all frequency-bands. The "frequency-independent” configurations
discussed in Lectures 3 and 4 are therefore pertinent.

Figure 16.6 iilustrates the idea of a dual-reflector antenna fed by a quasi-optical
multiplexing system. Frequency diplexing components are discussed in Lecture 8; we are
concemned here with the beam-control optical train in which the multiplexing elements are
incorporated.

Figure 16.7 illustrates an approach with a number of desirable attributes; one
frequency channel is shown. The feed-hom feeds (in a time-reversed description) a pair
of off-axis ellipsoidal reflectors which in wum feed a dual-reflector antenna. 1If the hom is
of a design that produces coincident beam-waists for all its beam-modes (Lecture 5) and is
placed so that the beam-waist loction is at the focal distance from the first reflector; and
if the two reflectors are scparated by the sum of their focal lengths; the field at the
beam-waist plane of the horn will be re-created at the focal distance from the second
reflector (Lecture 4). And, if that focal distance coincides with the geometrical focal
plane of the dual-reflector combination, the angular distribution in the antenna pattem will
be of the same form as the field distribution in the hom’s beam-waist plane, i.e. strongly
tapered giving high beam-efficiency.

Note that the relationships between the fields in different planes cited above are
independent of frequency (within the range of balanced operation of the homn).

The description above is based on the properties of "“ideal lenses" and that leaves two
matters for further consideration:

effects of truncation at apertures, and
aberrations and mode-conversion at the off-axis reflectors.

Ways in which design parameters can be chosen to minimise such effects have been
given in Lectures 15 and 17. Once a system optical design is arrived at (including, no
doubt, folding into small space with plane reflectors) a numerical computational
assessment of performance might be made.

=
=
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The following papers deal with beam-mode analyses of the performance efficiencies of
reflector antenna systme. The treatment outlined in Section 16.3 and Figures 16.2 to 16.6
are based on the paper by JW. LAMB.

I.W. Lamb, Quasi-optical Coupling of Gaussian Beam Systems
to Large Cassegrain Antennas.
Int.J Infrared and Millimetre Waves, 7, 1511-1535, 1986.

R. Padman, J.A. Murphy and R.E. Hills, Gaussian Mode Analysis
of Cassegrain Antenna Efficiency.

IEEE Trans., AP35, 1093-1103, 1987.

Ta-shing Chu, An Imaging Beam Wave-guide Feed.
IEEE Trans., AP31, 614-619, 1983

See also i

P.S. Kildal and K.R. Jacobsen, Scalar Hom with Shaped Lens
Improves Cassegrain Efficiency.

[EEE Trans., AP32, 1094-1100, 1984.

A full derivation of the 'magnitudes of the coupling coefficients
between modes of different orders is given in. '

H. Kogelnik, Coupling and Conversion Coefficients for Optical
Modes in Quasi-Optics, Microwave Research institute .Symposia
Series 14 (Polytechnic Press, New York, 1964) .

Sez «.:lso
Ww.B. Joyce and B.C. DeLoach, Alignment of Gaussian Beams,
App.Optics, 23, 4187, 1984.
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