
 of
[image: image1.png]UK

Astronomy Technology Centre

HERSCHEL
SPIRE
SPIRE BSM

BSM to MCU

V 1.0
 Ref: SPI-BSM-PRJ-0713-f

 Page : 20 of 1
 Date : 28 Jun 2001

 Author: Ian Pain

BSM to MCU

Interface Control Document

v 1.0
Distribution List

SPIRE‑Project
Ken J. King

Bruce M. Swinyard

Matt Griffin

Doug Griffin

John Delderfield

UK ATC
Colin Cunningham

Gillian Wright

Ian Pain

Brian Stobie

Brenda Graham

LAM
Dominique Pouliquen

Patrick Levacher

Didier Ferrand

Record of Issue

Date
Index
Remarks

20. Jul.01
4.0
 First Issue in this form (previously released as two separate documents)

CONTENTS
31
Warm Electronics Interfaces

1.1
BSM Assembly to Warm Electronics
3
1.2
BSM to Warm Electronics Interface
 4
1.3
Position Sensor Interface
4
1.4
Electronics to SMEC Processor Interface
5
1.5
DEPLOYABLE END-STOP SIGNALS
5
1.6
PCAL TO WARM ELECTRONICS INTERFACE
5
1.7
ISOLATION
6
1.8
CONNECTOR TYPE
6
2
SOFTWARE REQUIREMENTS
9
2.1
CHANGE RECORD
9
2.2
INTRODUCTION
10
2.3
WAVEFORM COMMAND REQUIREMENTS
10
2.4
CONTROL SYSTEM DIAGNOSTIC DATA
11
2.5
CONTROL ALGORITHMS
11
2.6
CHOP CONTROL
11
2.7
JIGGLE CONTROL
 16
2.8
LAUNCH CONTROLS
21

Introduction

This document outlines interfaces between the BSM and the MCU, in two sections: warm electronics and software.

1 Warm Electronics Interfaces

This document outlines the electrical interface between the Beam Steering Mirror (BSM) assembly and the warm electronics.

The BSM assembly comprises two controllable axes with position sensors and torque motors. It operates at 4 deg. K, remotely (approx. 5m) from the warm electronics, which operates at ~300 deg K.

The BSM electronics has 3 types of analogue sub-circuits per axis :

a)
Position sensor current source

b)
Position sensor output instrumentation amplifier

c)
Motor power amplifier.

In addition, there is provision for a deployable end-stop (DES) to ensure any mechanical failure on launch would leave the mirror in a useable attitude. A launch damper may be instigated instead of (or in parallel with) the DES, which will work by shorting the motor coils by means of switches in the warm electronics. The PCAL mechanism and thermometry wiring are also attached to the BSM structure and harness.

All BSM sub-circuits and associated wiring are duplicated to provide full redundancy. In the event of a detected error, the faulty component will be switched out and the backup component used.

1.1 BSM Assembly to Warm Electronics

Each position sensor has 5 connections to a magnetoresistive element designed to form half of a Wheatstone bridge. Two connections supply current and three sense the bridge voltage. The warm electronics has a constant current source and a set of differential receivers for each axis sensor. It also contains voltage-to-current power amplifiers for each axis motor. This ensures that the motor is driven by the correct current independent of its resistance.

To enable back-EMF sensing for the estimation of rate if a position sensor fails, 4-wire connections are used for the motors.

The BSM wiring diagram is shown in Figure 1, and Table 1 lists the wiring requirements for screening and pairing of signals.

Note that the prime and redundant wiring is identical and has separate connectors, so Figure 1 shows the wiring for either the Prime or Redundant circuits. Therefore, the complete BSM wiring will comprise twice the wiring shown in Figure 1.

Dashed lines around an assembly indicate a common assembly to both Prime and Redundant circuits, e.g. the ‘Deployable End-stop’ assembly is one assembly with a total of 4 wires running to it, 2 Prime and 2 Redundant.

The instrument wiring harness wiring for the motor is defined to have a maximum resistance of 20 ohms.

1.2 BSM to Warm Electronics Interface

The position sensor, power amplifier and Deployable Endstop connect to the warm electronics power amplifiers, differential amplifiers and A-D and D-A converters.

1.3 Position Sensor Interface

1.3.1 Current Source

Each position sensor requires a constant current from a suitable precision source, typically Analog Devices AD584.

Value

1.0 mA per sensor

Tolerance on value
+/- 5%
Variation over 4 hours
+/- 80 ppm (assumes temperature variation of 1 deg/hr in electronics)
Noise

< 1.0 (A rms, 0 to 25 Hz (TBD)
Load Voltage capability
> 1V
1.3.2 Position sensor amplifier

The position sensors require a high-impedance differential amplifier, typically Analog Devices AD524.

1.3.3 Motor Interface

Each axis motor is driven by a voltage-to-current amplifier.

Transfer function gain
10 mA/V +/- 5%

Current sensing resistor
1(
Load impedance

350 (+/- 25%
@20 deg.C

< 5 (

@ 4 deg.K
Load Current

50 mA peak (TBD)
-3 dB bandwid
> 5 kHz

1.3.4 Deployable Endstop Switch

Peak Current

50 mA (TBD)

1.3.5 Deployable Endstop Sensor Interface

Microswitch to + 5V supply (TBD), convert to logic level.

1.4 Electronics to SMEC Processor Interface

1.4.1 A-D and D-A Signals

 Sample Rate

The sample rate for chop and jiggle position sensor A-D and motor drive D-A interfaces is 100 (S.

1.4.2 Chop and Jiggle A-D

Resolution
12 bits (TBD) minimum

Full Scale i/p
+/- 10V

Conversion time < TBD (S

1.4.3 Chop and Jiggle D-A

Resolution
8 bits (TBD) minimum

Full Scale o/p
+/- 10V

Conversion time < TBD (S

1.5 DEPLOYABLE END-STOP SIGNALS

1.5.1 End-stop Command

Value
5V Logic

HIGH
=
Deploy End-stop

LOW
=
Withdraw End-stop

1.5.2 End-stop sensor

Value
5V Logic

HIGH
=
End-stop engaged

LOW
=
End-stop disengaged

1.6 PCAL TO WARM ELECTRONICS INTERFACE

Refer to the Design Description Document,Annex B for the PCAL INTERFACE.

To minimise noise coupling, the PCAL wiring is kept physically separate from the BSM wiring, and the connector spare pins are allocated between these groups also.

1.7 ISOLATION

The BSM electronics and wiring will have a minimum resistance to chassis of 10 Mohm (TBD) at 100V DC (TBD).

1.8 CONNECTOR TYPE

The Connector used will be a 37-way MDM micro-D type, one for prime wiring and one for redundant wiring.

TABLE 1
BSM Prime and Redundant Wiring

TP
=
Twisted pair

TT
=
Twisted triple

TQ
=
Twisted quad

Pin
Title
Max Voltage
Max Current
Wire Type /Comment

15
Chop motor supply
+/- 15 V
40 mA
STP(15,34)

34
Chop motor return
0V
40 mA
STP(15,34)

16
Chop motor supply sense
+/- 15 V
10 (A
STP(16,35)

35
Chop motor return sense
0V
10 (A
STP(16,35)

36
Jiggle motor supply
+/- 15 V
40 mA
STP(36,18)

18
Jiggle motor return
0V
40 mA
STP(36,18)

37
Jiggle motor supply sense
+/- 15 V
10 (A
STP(37,19)

19
Jiggle motor return sense
0V
10 (A
STP(37,19)

17
Motor screen
0V
0
Screen (commoned)

1
Chop sensor supply
0.4 V
1 mA
STP(1,20)

20
Chop sensor return
0V
1 mA
STP(1,20)

2
Chop sensor supply sense
0.4 V
10 (A
STT(2,3,21)

3
Chop sensor return sense
0V
10 (A
STT(2,3,21)

21
Chop sensor o/p
0.4V
10 (A
STT(2,3,21)

4
Jiggle sensor supply
0.4 V
1 mA
STP(4,23)

23
Jiggle sensor return
0V
1 mA
STP(4,23)

5
Jiggle sensor supply sense
0.4 V
10 (A
STT(5,6,24)

6
Jiggle sensor return sense
0V
10 (A
STT(5,6,24)

24
Jiggle sensor o/p
0.4V
10 (A
STT(5,6,24)

22
Sensor screen
0V
0
Screen (commoned)

7
Mechanism Thermometer 1
0V
2.5 nA
STQ(7,26,8,27)

26
Mechanism Thermometer 2
0V
2.5 nA
STQ(7,26,8,27)

8
Mechanism Thermometer 3
0V
2.5 nA
STQ(7,26,8,27)

27
Mechanism Thermometer 4
0V
2.5 nA
STQ(7,26,8,27)

25
Thermometer Screen
0V
0
Screen(7,26,8,27)

13
Deployable Endstop Engage
+28V
100 mA
STT(13,22,14)

22
Deployable Endstop Retract
+28V
100 mA
STT(13,22,14)

14
Deployable Endstop Common
0V
100 mA
STT(13,22,14)

33
Dep. Endstop Actuator Screen

Screen(13,22,14)

12
Deployable Endstop Sensor
5 V
10 mA
STP(12,30)

30
Deployable Endstop Sensor Return
0 V
10 mA
STP(12,30)

31
Deployable Endstop Sensor Screen
0 V
0
Screen(12,30)

28
PCAL 1
TBD
TBD
STQ(28,29,10,11)

29
PCAL 2
TBD
TBD
STQ(28,29,10,11)

10
PCAL 3
TBD
TBD
STQ(28,29,10,11)

11
PCAL 4
TBD
TBD
STQ(28,29,10,11)

33
PCAL Screen
0V
0
Screen(28,29,10,11)

[image: image1.png]
FIGURE 1
The BSM Prime (and Redundant) Wiring.

BEAM STEERING MIRROR CONTROL

2 SOFTWARE REQUIREMENTS

2.1 CHANGE RECORD

1.0
First Issue

1.1
Remove ‘Control Structure Command Requirements’ section – include necessary flags, etc in control parameters table.

Correct observer coefficients used in code for variable ‘cha_h’.

Add note to indicate that any suitable code for sinusoidal shaping would be OK (maybe some easier assembler method ?)

1.2
Fix some variable name errors.

Correct integral gain term in expression for ‘ch_pe’.

Include ‘Kt’ in control parameter list.

1.3
Add the Jiggle code – copy of Chop code with name changes

1.4
Incorporated into the BSM Design Description annex G

2.2 INTRODUCTION

This document describes the BSM software operation in ‘pseudo-code’ – however, the automatically produced code by the Matlab/Simulink Real-Time Workshop build process that links to the hardware-in-the-loop dSPACE development system used with the BSM should be used in preference, as no manual translation is involved.

The BSM is controlled via software running on a DSP. The BSM software controls the position of the two BSM axes in response to external commands from the host software. Each axis can move independently.

The movement with respect to time is profiled via stored parameters to give a minimum energy, minimum noise position change, particularly for step commands.

In general the movements are repetitions of the same position/time profile.

In addition, in the event of measured behaviour resulting in a fault diagnosis, some system backup procedures are available.

Diagnosis of excessive position errors and analysis of recorded transient behaviour during operation can result in modifications to the control system by uploading different parameters into electrically-eraseable memory.

2.3 WAVEFORM COMMAND REQUIREMENTS

The BSM is slaved to the input demands at all times, so to perform a repetitive chop pattern the host processor has to issue a succession of position demands at the relevant times.

For example, to perform a 2 Hz chop between BSM positions p1 and p2, the following chop axis demand sequence and timing is required.

The command update rate (Ts) must always be >= 0.1 mS .

2.3.1.1.1 Time

Demand

0.0 ((0.5-Ts)

p1

0.5 ((1.0-Ts)

p2

1.0 ((1.5-Ts)

p1

1.5 ((2.0-Ts)

p2

2.0 ((2.5-Ts)

p1

etc.

A step command waveform is assumed, and above a certain amplitude (10% of peak), it is profiled to produce a sinusoidal acceleration demand.

Other waveforms, such as triangular, can be approximated by a succession of incremental step demands, however the resolution will always be dependant on the update rate.

Table 1 : Waveform Commands

No.
Parameter
Value or Range

1
Chop Position
+/- 2.4 degrees (BSM axes)

2
Jiggle Position
+/- 0.6 degrees (BSM axes)

2.4 CONTROL SYSTEM DIAGNOSTIC DATA

Some control system data may be used by the host system to determine detected failure correction activities.

Table 2 : Control System Diagnostic Data

No.
Parameter
Range

1
Chop position
+/- TBD

2
Chop current
+/- TBD

3
Chop motor voltage
+/- TBD

4
Jiggle position
+/- TBD

5
Jiggle current
+/- TBD

6
Jiggle motor voltage
+/- TBD

2.5 CONTROL ALGORITHMS

Both axes have position control loops, running at a fixed sample rate of 100 (S.

2.6 CHOP CONTROL

2.6.1 Description

The algorithm comprises two main parts – the control loop itself, and the trajectory sequencer. On reception of a new position, the transition will be profiled, and the profile applied to the control loop. Smaller changes than 10% of maximum will be applied to the control loop directly

The control loop processes the position demand using a digital filter to produce a torque demand to the mirror motor. The algorithm implements rate feedback with low-error position integration.

2.6.2 Trajectory Sequencer

(NOTE : Any other suitable code that is more efficient may be used instead of the following algorithm, as long as the maximum error between the resultant sinusoidal sequence and a perfect sinusoidal sequence is no more than 7.5% of full scale at any point, and the harmonic content is less than 5% of full scale)

This is a pseudo-code description of the trajectory sequencer. A sample rate of ‘Ts’ seconds is assumed, where Ts >= 0.1 mS.

The trajectory shape is stored as a vector of normalised positions.

If the input to the sequencer (i.e. the demand from the MCU) changes, and the change is large enough to require profiling, any further changes that occur within the nominal step time (15 mS for chop, 50 mS for jiggle) are ignored to ensure completion of the step.

2.6.3 CHOP CONSTANT LIST

Position change threshold at which profiling is assumed necessary:

Pcth =
0.24 deg

2.6.3.1 CHOP VARIABLE LIST

Pc1

Present position command from host

Pc0

Previous position command from host

Pc

Position command to chop position loop

sequencer
Flag = TRUE when sending a sequence to the mirror control loop

Psc

Discrete value of sinusoidal sequence, obtained by multiplying the normalised sine

table by the difference between the new position and the last position

m,n

counter variables

Pic

Interpolated values between discrete sine levels obtained from ‘Psc’

CHOP PROFILE TABLE

n

Prc(n)

1

0.0

2

0.013

3

0.05

4

0.109

5

0.188

6

0.283

7

0.389

8

0.5

9

0.611

10

0.717

11

0.812

12

0.891

13

0.95

14

0.987

15

1.0

2.6.3.2 CHOP SEQUENCER PSEUDO-CODE

The trajectory time is chosen to be 15 mS for Chop.

Code is expected to be running at a sample time of Ts = 0.1 mS.

The symbol % indicates a comment following the symbol.

% (The new value of demanded position, Pc1, is obtained from the MCU.)

%

% Set a flag true if a change has occurred, and we are not in the middle of a previous sequence :

IF ((abs(Pc1 – Pc0) > Pcth) AND sequencer = FALSE) THEN sequencer = TRUE

% If flag is true, then calculate the next position value in the sequence :

IF (sequencer = TRUE)

THEN

FOR n = 1 to 15

BEGIN

% Generate discrete sine steps :

Psc = Pc0 + (Pc1-Pc0)*Prc(n)

FOR m = 1 to 10

BEGIN

% Interpolate between steps :

IF (n<15)

THEN

% Generate interpolations (Prc(x) is from table) :

Pic = (Pc1-Pc0)*(Prc(n+1)-Prc(n))*m/10

ELSE

% Don’t interpolate last discrete step :

Pic = 0

END IF

% Calculate complete profile value for this step :

Pdc = Psc + Pic

% (Insert code to output ‘Pdc’ to mirror axis D-A converter)

% Re-set flag to allow another sequence if this is the last sequence value :

IF ((m+n) = 25) THEN sequencer = FALSE

END

END

ELSE

% Simply pass on the latest position value as no sequence is required :

Pdc = Pc1

% (Insert code to output ‘Pdc’ to mirror axis D-A converter)

END IF

% Store previous value of position

Pc0 = Pc1

2.6.4 Chop Control Code

2.6.4.1 Description

This pseudo-code description can be used as an alternative to the code automatically produced by dSPACE, which is the hardware-in-the-loop simulation system used in BSM development. However, the dSPACE code should be used in preference, as it does not involve ‘manual’ translation from the Simulink block diagrams.

Code is expected to be running at a sample time of Ts = 0.1 mS.

The Control loop is based on a state-variable feedback scheme, using an observer to estimate the rate and acceleration of the mirror. The acceleration feedback is used to limit actual mirror acceleration to allow a limited slew rate in the power amplifier at the loop bandwidth required.

At low errors, an integrator is used to reduce position errors further.

Two backup control schemes are used – for the case of a broken flex, the control code is the same, but the control constants are different. For the case of no position sensor being available, the axis rate and accelerations are estimated from the motor voltage.

No useful operation is likely with complete flex joint failure AND no position sensor data – however, ‘parking’ to a useful fixed position may be possible.

2.6.4.2 Chop Control Parameters

Parameter
Description
Value

prime
prime control scheme
0

broken_flex
control scheme for broken flex joint
1

no_sensor
control scheme for no position sensor
2

chop_control
Select control scheme
prime, broken_flex, no_sensor

Parameter
Description

 Control Scheme Value

Prime
Broken Flex
No Pos. Sensor

Kt
motor torque const.
TBD
TBD
not used

ch_perr_gain
position loop gain
TBD
TBD
not used

ch_rat_gain
rate loop s.f.
TBD
TBD
TBD

ch_acc_gain
acceleration loop s.f.
TBD
TBD
not used

ch_acc_lim
acceleration limit
TBD
TBD
not used

ch_int_gain
integral gain
TBD
TBD
not used

ch_rat_lim
rate limit
TBD
TBD
not used

ch_int_th
integration threshold
TBD
TBD
not used

ch_obs_a1
state coefficient 1
TBD
TBD
not used

ch_obs_a2
state coefficient 2
TBD
TBD
not used

ch_obs_a3
state coefficient 3
TBD
TBD
not used

ch_obs_a4
state coefficient 4
TBD
TBD
not used

ch_obs_b1
input coefficient 1
TBD
TBD
not used

ch_obs_b2
input coefficient 2
TBD
TBD
not used

ch_obs_b3
input coefficient 3
TBD
TBD
not used

ch_obs_b4
input coefficient 4
TBD
TBD
not used

ch_obs_c1
output coefficient 1
TBD
TBD
not used

ch_obs_c2
output coefficient 2
TBD
TBD
not used

ch_obs_d3
output coefficient 3
TBD
TBD
not used

ch_obs_d4
output coefficient 4
TBD
TBD
not used

ch_pos_sf
position s.f.
not used
not used
TBD

ch_cur_sf
current s.f.
not used
not used
TBD

ch_curd_sf
current_dot s.f.
not used
not used
TBD

ch_ddif1
diff. filter coeff1
not used
not used
TBD

ch_ddif2
diff. filter coeff2
not used
not used
TBD

2.6.4.3 Chop Control Pseudo-Code

%
(Accept position demand ‘Pdc’ from Trajectory Sequencer)

IF (chop_control = prime) OR (chop_control = broken_flex)

THEN

%
Observer to estimate rate and acceleration :

% ---

%
(Read the scaled Position Sensor output ‘pc’, and scaled current ‘ci’)

cob_u1
=
pc*Kt

% torque = current measurement*torque constant

cob_u2
=
ci

%
state update :

cx1
=
ch_obs_a1*cx1_p + ch_obs_a2*cx2_p + ch_obs_b1*ob_u1 + ch_obs_b2*cob_u2

cx2
=
ch_obs_a3*cx1_p + ch_obs_a4*cx2_p + ch_obs_b3*ob_u1 + ch_obs_b4*cob_u2

%
output update :

chr_h
=
ch_obs_c1*cx1_p

% rate estimate

cha_h
=
ch_obs_c2*cx2_p + ch_obs_d3*cob_u1 + ch_obs_d4*cob_u2
% accel. estimate

%
store states for next cycle :

cx1_p
=
cx1

cx2_p
=
cx2

END IF

IF (chop_control = no_sensor)

THEN

%
read motor voltage ‘ch_volts’ and motor currrent ‘ch_cur’

%
calculate filtered differential of current

ch_curd
=
ch_ddif1*ch_curd_p + ch_ddif2*(ch_cur – ch_cur_p)

%
now estimate rate :

chr_h
=
ch_volts – ch_cur_sf*ch_cur – ch_curd_sf*ch_curd

%

%
store variables for next cycle

ch_cur_p
=
ch_cur

ch_curd_p
=
ch_curd

END IF

%
Axis control code using previous estimates :

% ---

IF (chop_control = prime) OR (chop_control = broken_flex)

THEN

ch_err
=
Pdc – pc

% position summing junction

%
windowed integrator :

IF (abs(ch_err) > ch_int_th) THEN

chio
=
0.5e-4*ch_err*(1.0 + che_p + chio_p)
% assumes Ts = 1e-4

ELSE

chio
=
0

END IF

che_p
=
ch_err

% store for next cycle

chio_p
=
chio

ch_pe
=
ch_perr_gain*(ch_err + ch_int_gain*chio)

IF (abs(ch_pe) > ch_rat_lim) THEN

% rate limit

ch_pel
=
ch_rat_lim*sgn(ch_pe)

END IF

ch_ad
=
ch_pel – ch_rat_gain*chr_h

% rate summing junction

IF (abs(ch_ad) > ch_acc_lim) THEN

% acceleration limit

ch_adl
=
ch_acc_lim*sgn(ch_ad)

END IF

ch_id
=
ch_adl – ch_acc_gain*cha_h

% chop current demand

END IF

IF (chop_control = no_sensor)

THEN

ch_id
=
ch_pos_sf*P_dc – ch_rat_gain*chr_h

END IF

See File SPIRE-ATC-MDL-XXX for the Matlab/Simulink model representing the control loop and mechanism.

See File SPIRE-ATC-SW-XXX for the ‘C’ code produced by the dSPACE prototyping system from a Matlab/Simulink model, performance verified by hardware-in-the-loop tests in report SPIRE-ATC-XXX-000xxx.

2.7 JIGGLE CONTROL

2.7.1 Description

The algorithm is essentially similar to the Chop axis, apart from some parameter values to suit the different inertia, motor torque and flex joint characteristics.

2.7.2 Trajectory Sequencer

This is a pseudo-code description of the trajectory sequencer. A sample rate of ‘Ts’ seconds is assumed, where Ts >= 0.1 mS.

The trajectory shape is stored as a vector of normalised positions.

2.7.2.1 JIGGLE CONSTANT LIST

Position change threshold at which profiling is assumed necessary:

Pjth =
0.06 deg

2.7.2.2 JIGGLE VARIABLE LIST

Pj1

Present position command from host

Pj0

Previous position command from host

Pj

Position command to chop position loop

Pj1

Present position command from host

Pj0

Previous position command from host

Pj

Position command to chop position loop

sequencer
Flag = TRUE when sending a sequence to the mirror control loop

Psj

Discrete value of sinusoidal sequence, obtained by multiplying the normalised sine

table by the difference between the new position and the last position

m,n

counter variables

Pij

Interpolated values between discrete sine levels obtained from ‘Psj’

JIGGLE PROFILE TABLE

n

Prj(n)

1

0.0

2

0.004

3

0.017

4

0.038

5

0.067

6

0.103

7

0.146

8

0.196

9

0.25

10

0.309

11

0.371

12

0.435

13

0.5

14

0.565

15

0.629

16

0.691

17

0.75

18

0.804

19

0.854

20

0.897

21

0.933

22

0.962

23

0.983

24

0.996

25

1.0

2.7.2.3 JIGGLE SEQUENCER PSEUDO-CODE

The trajectory time is chosen to be 50 mS for Jiggle.

Code is expected to be running at a sample time of Ts = 0.1 mS.

The symbol % indicates a comment following the symbol.

% (The new value of demanded position, Pj1, is obtained from the MCU.)

%

% Set a flag true if a change has occurred, and we are not in the middle of a previous sequence :

IF ((abs(Pj1 – Pj0) > Pcth) AND sequencer = FALSE) THEN sequencer = TRUE

% If flag is true, then calculate the next position value in the sequence :

IF (sequencer = TRUE)

THEN

FOR n = 1 to 25

BEGIN

% Generate discrete sine steps :

Psj = Pj0 + (Pj1-Pj0)*Prj(n)

FOR m = 1 to 20

BEGIN

% Interpolate between steps :

IF (n<25)

THEN

% Generate interpolations (Prj(x) is from table) :

Pij = (Pj1-Jc0)*(Prj(n+1)-Prj(n))*m/10

ELSE

% Don’t interpolate last discrete step :

Pij = 0

END IF

% Calculate complete profile value for this step :

Pdj = Psj + Pij

% (Insert code to output ‘Pdj’ to mirror axis D-A converter)

% Re-set flag to allow another sequence if this is the last sequence value :

IF ((m+n) = 45) THEN sequencer = FALSE

END

END

ELSE

% Simply pass on the latest position value as no sequence is required :

Pdj = Pj1

% (Insert code to output ‘Pdj’ to mirror axis D-A converter)

END IF

% Store previous value of position

Pj0 = Pj1

2.7.3 Jiggle Control Code

2.7.3.1 Description

Code is expected to be running at a sample time of Ts = 0.1 mS.

The Control loop is based on a state-variable feedback scheme, using an observer to estimate the rate and acceleration of the mirror. The acceleration feedback is used to limit actual mirror acceleration to allow a limited slew rate in the power amplifier at the loop bandwidth required.

At low errors, an integrator is used to reduce position errors further.

2.7.3.2 Jiggle Control Parameters

Parameter
Description
Value

prime
prime control scheme
0

broken_flex
control scheme for broken flex joint
1

no_sensor
control scheme for no position sensor
2

jig_control
Select control scheme
prime, broken_flex, no_sensor

Parameter
Description

 Control Scheme Value

Prime
Broken Flex
No Pos. Sensor

Kt
motor torque const.
TBD
TBD
not used

jg_perr_gain
position loop gain
TBD
TBD
not used

jg_rat_gain
rate loop s.f.
TBD
TBD
TBD

jg_acc_gain
acceleration loop s.f.
TBD
TBD
not used

jg_acc_lim
acceleration limit
TBD
TBD
not used

jg_int_gain
integral gain
TBD
TBD
not used

jg_rat_lim
rate limit
TBD
TBD
not used

jg_int_th
integration threshold
TBD
TBD
not used

jg_obs_a1
state coefficient 1
TBD
TBD
not used

jg_obs_a2
state coefficient 2
TBD
TBD
not used

jg_obs_a3
state coefficient 3
TBD
TBD
not used

jg_obs_a4
state coefficient 4
TBD
TBD
not used

jg_obs_b1
input coefficient 1
TBD
TBD
not used

jg_obs_b2
input coefficient 2
TBD
TBD
not used

jg_obs_b3
input coefficient 3
TBD
TBD
not used

jg_obs_b4
input coefficient 4
TBD
TBD
not used

jg_obs_c1
output coefficient 1
TBD
TBD
not used

jg_obs_c2
output coefficient 2
TBD
TBD
not used

jg_obs_d3
output coefficient 3
TBD
TBD
not used

jg_obs_d4
output coefficient 4
TBD
TBD
not used

jg_pos_sf
position s.f.
not used
not used
TBD

jg_cur_sf
current s.f.
not used
not used
TBD

jg_curd_sf
current_dot s.f.
not used
not used
TBD

jg_ddif1
diff. filter coeff1
not used
not used
TBD

jg_ddif2
diff. filter coeff2
not used
not used
TBD

2.7.3.3 Jiggle Control Pseudo-Code

(Except for the change in variable names, the jiggle control code is the same as the chop code)

%
(Accept position demand ‘Pdj’ from Trajectory Sequencer)

IF (jig_control = prime) OR (jig_control = broken_flex)

THEN

%
Observer to estimate rate and acceleration :

% ---

%
(Read the scaled Position Sensor output ‘pj’, and scaled current ‘ji’)

job_u1
=
pj*Kt

% torque = current measurement*torque constant

job_u2
=
ji

%
state update :

jx1
=
jg_obs_a1*jx1_p + jg_obs_a2*jx2_p + jg_obs_b1*ob_u1 + jg_obs_b2*job_u2

jx2
=
jg_obs_a3*jx1_p
 + jg_obs_a4*jx2_p + jg_obs_b3*job_u1 +

jg_obs_b4*job_u2

%
output update :

jgr_h
=
jg_obs_c1*jx1_p

% rate estimate

jga_h
=
jg_obs_c2*jx2_p + jg_obs_d3*job_u1 + jg_obs_d4*job_u2
% accel. estimate

%
store states for next cycle :

jx1_p
=
jx1

jx2_p
=
jx2

END IF

IF (jig_control = no_sensor)

THEN

%
read motor voltage ‘jg_volts’ and motor currrent ‘jg_cur’

%
calculate filtered differential of current

jg_curd
=
jg_ddif1*jg_curd_p + jg_ddif2*(jg_cur – jg_cur_p)

%
now estimate rate :

jgr_h
=
jg_volts – jg_cur_sf*jg_cur – jg_curd_sf*jg_curd

%

%
store variables for next cycle

jg_cur_p

=
jg_cur

jg_curd_p
=
jg_curd

END IF

%
Axis control code using previous estimates :

% ---

IF (jig_control = prime) OR (jig_control = broken_flex)

THEN

jg_err
=
Pdj – pj

% position summing junction

%
windowed integrator :

IF (abs(jg_err) > jg_int_th) THEN

jgio
=
0.5e-4*jg_err*(1.0 + jge_p + jgio_p)
% assumes Ts = 1e-4

ELSE

jgio
=
0

END IF

jge_p
=
jg_err

% store for next cycle

jgio_p
=
jgio

jg_pe
=
jg_perr_gain*(jg_err + jg_int_gain*jgio)

IF (abs(jg_pe) > jg_rat_lim) THEN

% rate limit

jg_pel
=
jg_rat_lim*sgn(jg_pe)

END IF

jg_ad
=
jg_pel – jg_rat_gain*jgr_h

% rate summing junction

IF (abs(jg_ad) > jg_acc_lim) THEN

% acceleration limit

jg_adl
=
jg_acc_lim*sgn(jg_ad)

END IF

jg_id
=
jg_adl – jg_acc_gain*jga_h

% jgop current demand

END IF

IF (jig_control = no_sensor)

THEN

jg_id
=
jg_pos_sf*P_dc – jg_rat_gain*jgr_h

END IF

See File SPIRE-ATC-MDL-XXX for the Matlab/Simulink model representing the control loop and mechanism.

See File SPIRE-ATC-SW-XXX for the ‘C’ code produced by the dSPACE prototyping system from a Matlab/Simulink model, performance verified by hardware-in-the-loop tests in report SPIRE-ATC-XXX-000xxx.

2.8 LAUNCH CONTROLS

During launch, a deployable end-stop and switchable damping by short-circuiting the motors prevents flex joint damage.

2.8.1 Deploy End-stop and Dampers

Variable Name

Value

Meaning

deploy_endstop

1

Deploy endstop and dampers

0

Remove endstop and dampers

2.8.2 End-stop Status
Variable Name

Value

Meaning

endstop_status

1

End-stop and dampers on

0

End_stop and dampers off

� EMBED Visio.Drawing.5 ���

Created with:

MS Word 97 SR-1

File:

H:\SPIRE\DOCUMENTS\ACTIVE\BSM\Controlled Project Docs (PRJ)\Master_Assembly_ICD.doc

[image: image2.wmf]Chop

Motor

Jiggle

Motor

Flexible

Link

Chop

Sensor

Jiggle

Sensor

Deployable

Endstop

CONNECTOR

Mechanism

Temperature

Sensor

PCAL

[image: image3.wmf]Chop

Motor

Jiggle

Motor

Flexible

Link

Chop

Sensor

Jiggle

Sensor

Deployable

Endstop

CONNECTOR

Mechanism

Temperature

Sensor

PCAL

_1053161744.vsd
Chop Motor�

Jiggle Motor�

Flexible
Link�

Chop
Sensor�

Jiggle
Sensor�

Deployable
Endstop�

�

�

�

�

�

�

�

�

�

CONNECTOR�

Mechanism
Temperature
Sensor�

PCAL�

