

SPIRE Interfa

SPIRE BSM Interface Control Document Issue 3.2 Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 1 of 51 Date : 28th Sep 2004

SPIRE BSM

Interface Control Document

Issue 3.2

28th September 2004

Approval Type	Role	Person	Signature & Date
Prepared by	Mechanical Engineer	Tom Paul	TAVail 30/8/0
Prepared by	Electronic / Control Engineer	Brian Stobie	J. Str. 2-10%
Release	BSM Project Manager	Phil Parr-Burman	Phil Phil Parr-Burman
Approval	ATC Checking Engineer	Colin Cunningham	Mart Tippy
Approval	LAM Systems Engineer	Dominique Pouliquen	.,
Approval	UoC,W Systems Engineer	Peter Hargrave	
Approval	MSSL Systems Engineer	Berend Winters	
Approval	SPIRE Systems Engineer	Doug Griffin	
Approval	SPIRE Instrument Development manager	Eric Sawyer	

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

SPIRE BSM Interface Control Document Issue 3.2

Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 2 of 51 Date : 28th Sep 2004

DISTRIBUTION LIST

SPIRE-Project	Doug Griffin
	Bruce M. Swinyard
	Matt Griffin
UK ATC	Colin Cunningham
	Gillian Wright
	Phil Parr-Burman
	Brian Stobie
	Tom Paul
	Vivienne Bon
UoC	Peter Hargrave
MSSL	Berend Winter
LAM	Didier Ferrand
	Dominique Pouliquen
	Patrick Levacher

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 2 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

RECORD OF ISSUE

Date	Index	Remarks
10 Jan 2002	0.1	Creation of the document (break out from Design description presented art DDR)
10.Jan.02	1.0	Minor updates and first Issue
07.Feb.02	2.0	Changes to structure mass and inertia properties
24 Nov 03	3.0	Major re-write: Re-structured document to include all interfaces, including electronics in one document
26 Nov 03	3.1	Corrected error in wiring table
28 Sep 04	3.2	Replace pseudo-code with block diagrams, add parameter lists for PFM and FSM

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

Table of Contents

1. De	ocuments	
1.1	Applicable documents	6
1.2	Reference documents	6
1.3	Glossary	7
2. IC	D Philosophy	
3. Di	imensions	
4. M	ass Properties	1
5. W	arm Electronics Interfaces	1
5.1	BSM Assembly to Warm Electronics	17
5.2	BSM to Warm Electronics Interface	17
5.3	Position Sensor Interface	17
5.3	3.1 Current Source	17
5.3	3.2 Position sensor amplifier	18
э 		18
5.4	Electronics to SMEC Processor Interface	18
5.4 5.4	4.1 A-D and D-A Signals 4.2 Chon and Jiggle A-D	10 18
5.4	4.3 Chop and Jiggle D-A	18
5.5	PCAL TO WARM ELECTRONICS INTERFACE	18
5.6	ISOLATION	19
5.7		 19
6. SC	OFTWARE REQUIREMENTS	2
СН	ANGE RECORD (SOFTWARE)	23
6.1		23
6.2	WAVEFORM COMMAND REQUIREMENTS	24
6.3	CONTROL SYSTEM DIAGNOSTIC DATA	24
6.4	CONTROL ALGORITHMS	 25
6.4	4.1 Description	25
7. Pl	FM BEAM STEERING MIRROR PARAMETER LIST	2
7.1	PFM CHOP CONTROL PARAMETERS	26
7.2	PFM CHOP DEGRADED MODE	27
7.3	PFM CHOP SENSOR CALIBRATION	28
7.		28
7.	3.2 REDUNDANI	29
UK A	stronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH	19 4

3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130

H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

	HERSCHEL	SPIRE BSM	R
UK	SPIRE	Interface Control Document	P
Astronomy Technology Centre		Issue 3.2	D

7.4 F	PFM CHOP MOTOR RESISTANCE	30
7.5 F	PFM CHOP POWER DISSIPATION	30
7.6	JIGGLE CONTROL PARAMETERS	31
7.7 F	PFM JIGGLE DEGRADED MODE	32
7.8 F	PFM JIGGLE SENSOR CALIBRATION	33
7.8.1 7.8.2	PRIME	33
7.9 F	PFM JIGGLE MOTOR RESISTANCE	35
7.10	PFM JIGGLE POWER DISSIPATION	35
7.11	FSM CHOP CONTROL PARAMETERS	39
7.12	FSM CHOP DEGRADED MODE	40
7.13	FSM CHOP SENSOR CALIBRATION	41
7.13. 7.13	1 PRIME 2 REDUNDANT	41 42
7.14	FSM CHOP MOTOR RESISTANCE	43
7.15	FSM CHOP POWER DISSIPATION	43
7.16	JIGGLE CONTROL PARAMETERS	44
7.17	FSM JIGGLE DEGRADED MODE	45
7.18	FSM JIGGLE SENSOR CALIBRATION	46
7.18.		46
7.10. 7 19		4/
7.15		
7.20		
Table 1	BSM Prime and Redundant Wiring	
Table 2	Waveform Commands	
Table 3	Control System Diagnostic Data	
Figure 1	The BSM Prime (and Redundant) Wiring	
Figure 2	Parameter Block Diagram Block Diagram for Degraded Mode	
Figure 4	Digital Filtered Difference Block	
Figure 5	Digital Integration Block	
Figure 6	Parameter Block Diagram	
Figure 7	Switched Feed-forward Block	
Figure 8	BIOCK DIAGRAM FOR DEGRAGED MODE	

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 5 3HJ

Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130

H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

1. Documents

1.1 Applicable documents

	Title	Author	Reference	Date	
AD1	Not used				
AD2	BSM ICD drawing	T. Paul	SPIRE-BSM-061-002 Rev 1. Sheets 1 to 4 Included in this document for information.	24 th 2003	Nov
AD3	ICD drawing: Structure: BSM	MSSL	Drg No A2/5264/907 issue 9	3 rd 2003	July
AD4	N/A				
AD5	SPIRE Harness Definition	D.K.Griffin	SPIRE-RAL-PRJ-000608 v1.1	5 th 2003	March
AD6	PCAL ICD		SPIRE-BSM-020-001-004 Rev 1 (note ATC drawing is the definitive one: UCL ref is SPIRE-UCF-PRJ-001150, dated 6 th Feb 2002)	June 2	2001

1.2 Reference documents

	Title	Author	Reference	Date
RD 1	Thermal Configuration Control Document	S.Heys	SPIRE-RAL-PRJ-000560	18.Apr.01

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

1.3 Glossary

AD	Applicable Document	MAC	Multi-Axis Controller
CEA	Commissariat à l'Energie Atomique	MCE	Mechanism Control Electronics
CDR	Critical Design Review	MGSE	Mechanical Ground Support
	5		Equipment
CNES	Centre National des Etudes Spatiales	MPIA	Max Planck Institute for
			Astronomy
CoG	Center of Gravity	MSSL	Mullard Space Science
			Laboratory
CQM	Cryogenic Qualification Model	NA	Not Applicable
DDR	Detailed Design Review	OGSE	Optical Ground Support
			Equipment
DESP	Département des Etudes SPAtiales	PFM	ProtoFlight Model
А			
DM	Development Model	RAL	Rutherford Appleton Laboratory
DRCU	Digital Read-out and Control Unit	RD	Reference Document
EGSE	Electrical Ground Support Equipment	BSM	Beam Steering Mirror
Hersch	Far InfraRed Space Telescope	UK ATC	United Kingdom Astronomy
el			Technology Centre
FPU	Focal Plane Unit	BSM	Beam Steering Mirror
FS	Flight Spare model	SPIRE	Spectral and Photometric
			Imaging REceiver
LAM	Laboratoire d'Astrophysique de	TBC	To Be Confirmed
	Marseille		
FTS	Fourier Transform Spectrometer	TBD	To Be Defined
		WE	Warm Electronics

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 7 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 8 of 51 Date : 28th Sep 2004

2. ICD Philosophy

The BSMm interfaces with other subsystems in the SPIRE instrument. This document defines the interface characteristics of the BSMm for the structure and electronics.

The optical interface (controlled by MSSL) is complex and is not easy to represent in a single ICD. In practice this has been done using 3D files (IGES). In order to have a controlled interface:

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 8 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 9 of 51 Date : 28th Sep 2004

3. Dimensions

These are defined in:

BSMm interface: drawing no SPIRE-BSM-061-002 Rev 2. 24th Nov 2003. Sheets 1 to 4 Shoe interface: drawing no SPIRE-BSM-060-001-002 Rev 1, 28th July 2003

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 9 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 10 of 51 Date : 28th Sep 2004

Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 12 of 51 Date : 28th Sep 2004

HERSCHEL SPIRE

SPIRE BSM Interface Control Document Issue 3.2

Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 13 of 51 Date : 28th Sep 2004

Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 15 of 51 Date : 28th Sep 2004

4. Mass Properties

Mass properties for the assembly are shown below:

NB. ADD ON 50g FOR WIRING TO THE MASS FIGURE SHOWN BELOW

VOLUME = 2.4021643e+05 MM^3 SURFACE AREA = 2.3483331e+05 MM^2 AVERAGE DENSITY = 3.1293682e-06 KILOGRAM / MM^3

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 15 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire bsm icd v3.2.doc

MASS = 7.5172564e-01 KILOGRAM

CENTER OF GRAVITY with respect to ACS2 coordinate frame: X Y Z 9.3911513e-02 3.9517599e+01 5.8794322e+01 MM

INERTIA with respect to ACS2 coordinate frame: (KILOGRAM * MM^2)

INERTIA TENSOR: Ixx Ixy Ixz 5.3326860e+03 2.4894535e+01 -7.9300866e+01 Iyx Iyy Iyz 2.4894535e+01 4.2932193e+03 -1.4516490e+03 Izx Izy Izz -7.9300866e+01 -1.4516490e+03 2.0907542e+03

INERTIA at CENTER OF GRAVITY with respect to ACS2 coordinate frame: (KILOGRAM * MM^2)

INERTIA TENSOR: lxx lxy lxz 1.5602162e+03 2.7684307e+01 -7.5150240e+01 lyx lyy lyz 2.7684307e+01 1.6946683e+03 2.9491818e+02 lzx lzy lzz -7.5150240e+01 2.9491818e+02 9.1682229e+02

PRINCIPAL MOMENTS OF INERTIA: (KILOGRAM * MM^2) 11 12 13 8.0911662e+02 1.5687257e+03 1.7938645e+03

ROTATION MATRIX from ACS2 orientation to PRINCIPAL AXES:

0.10598	0.99432	0.01007
-0.31717	0.02420	0.94806
0.94243	-0.10367	0.31794

ROTATION ANGLES from ACS2 orientation to PRINCIPAL AXES (degrees): angles about x y z -71.461 0.577 -83.916

RADII OF GYRATION with respect to PRINCIPAL AXES: R1 R2 R3 3.2807707e+01 4.5681865e+01 4.8850063e+01 MM

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 16 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

5. Warm Electronics Interfaces

This section outlines the electrical interface between the Beam Steering Mirror (BSM) assembly and the warm electronics.

The BSM assembly comprises two controllable axes with position sensors and torque motors. It operates at 4 deg. K, remotely (approx. 5m) from the warm electronics, which operates at \sim 300 deg K.

The BSM electronics has 3 types of analogue sub-circuits per axis :

- a) Position sensor current source
- b) Position sensor output instrumentation amplifier
- c) Motor power amplifier.

The PCAL mechanism and thermometry wiring are also attached to the BSM structure and harness.

All BSM sub-circuits and associated wiring are duplicated to provide full redundancy. In the event of a detected error, the faulty component will be switched out and the backup component used.

5.1 BSM Assembly to Warm Electronics

Each position sensor has 5 connections to a magnetoresistive element designed to form half of a Wheatstone bridge. Two connections supply current and three sense the bridge voltage. The warm electronics has a constant current source and a set of differential receivers for each axis sensor. It also contains voltage-to-current power amplifiers for each axis motor. This ensures that the motor is driven by the correct current independent of its resistance.

To enable back-EMF sensing for the estimation of rate if a position sensor fails, 4-wire connections are used for the motors.

The BSM wiring diagram is shown in Figure 1, and Table 1 lists the wiring requirements for screening and pairing of signals.

Note that the prime and redundant wiring is identical and has separate connectors, so Figure 1 shows the wiring for either the Prime or Redundant circuits. Therefore, the complete BSM wiring will comprise twice the wiring shown in Figure 1.

Dashed lines around an assembly indicate a common assembly to both Prime and Redundant circuits.

The instrument wiring harness wiring for the motor is defined to have a maximum resistance of 20 ohms.

5.2 BSM to Warm Electronics Interface

The position sensor and power amplifier connect to the warm electronics power amplifiers, differential amplifiers and A-D and D-A converters.

5.3 Position Sensor Interface

5.3.1 Current Source

Each position sensor requires a constant current from a suitable precision source, typically Analog Devices AD584.

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 17 3HJ

Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130

H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire bsm icd v3.2.doc

Value	1.0 mA per sensor
Tolerance on value	+/- 5%
Variation over 4 hours	< +/- 80 ppm (assumes temperature variation of 1 deg/hr in electronics)
Noise	< 1.0 µÅ rms, 0 to 25 Hz (nominal)
Load Voltage capability	> 1V

5.3.2 Position sensor amplifier

The position sensors require a high-impedance differential amplifier, typically Analog Devices AD524. Noise

 $< 1 \,\mu V \,rms$ (input)

5.3.3 Motor Interface

Each axis motor is driven by a voltage-to-current amplifier.

Transfer function gain Current sensing resistor	5 mA/V +/- 5% 10Ω	
Load impedance	< 500 Ω < 1 Ω	@20 deg.C
Load Current -3 dB bandwidTH	50 mA peak >= 5 kHz	w + ucy.ix

5.4 **Electronics to SMEC Processor Interface**

5.4.1 A-D and D-A Signals

Sample Rate

The sample rate for chop and jiggle position sensor A-D and motor drive D-A interfaces is 360 μS.

5.4.2 Chop and Jiggle A-D

Resolution	16 bits minimum
Full Scale i/p	+/- 10V
Conversion time	To suit loop sample time

5.4.3 Chop and Jiggle D-A

Resolution	8 bits minimum
Full Scale o/p	+/- 10V
Conversion time	To suit loop sample time

5.5 PCAL TO WARM ELECTRONICS INTERFACE

Refer to the Design Description Document, Annex B for the PCAL INTERFACE.

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 18 3HJ

Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire bsm icd v3.2.doc

UK Astronomy Technology Centre	ERSCHEL SPIRE	SPIRE BSM Interface Control Document Issue 3.2	Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 19 of 51 Date : 28 th Sep 2004
-----------------------------------	------------------	--	---

To minimise noise coupling, the PCAL wiring is kept physically separate from the BSM wiring, and the connector spare pins are allocated between these groups also.

To minimise BSM internal wire bundle sizes, most of the harness screens terminate (open-circuit) at the 37-way connector, with the exception of the sensor screens.

5.6 ISOLATION

The BSM electronics and wiring will have a minimum resistance to chassis of 10 Mohm at 100V DC.

5.7 CONNECTOR TYPE

The Connectors used will be 37-way MDM micro-D types with sockets, one connector for prime wiring and one for redundant wiring.

SPIRE BSM Interface Control Document Issue 3.2

Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 20 of 51 Date : 28th Sep 2004

Table 1 BSM Prime and Redundant Wiring

STP	=	Screened Twisted Pair	

- STT = Screened Twisted Triple
- STQ = Screened Twisted Quad

Pin	Title	Max Voltage	Max Current	Wire Type /Comment
15	Chop motor supply	+/- 15 V	40 mA	STP(15,34)
34	Chop motor return	0V	40 mA	STP(15,34)
16	Chop motor supply sense	+/- 15 V	10 μA	STP(16,35)
35	Chop motor return sense	0V	10 μA	STP(16,35)
36	Jiggle motor supply	+/- 15 V	40 mA	STP(36,18)
18	Jiggle motor return	0V	40 mA	STP(36,18)
37	Jiggle motor supply sense	+/- 15 V	10 μA	STP(36,19)
19	Jiggle motor return sense	0V	10 μA	STP(37,19)
17	Motor Screens			screens (commoned)
1	Chop sensor supply	0.4 V	1 mA	STP(1,20)
20	Chop sensor return	0V	1 mA	STP(1,20)
2	Chop sensor supply sense	0.4 V	10 μA	STT(2,3,21)
21	Chop sensor o/p	0V	10 μA	STT(2,3,21)
3	Chop sensor return sense	0.4V	10 μA	STT(2,3,21)
4	Jiggle sensor supply	0.4 V	1 mA	STP(4,23)
23	Jiggle sensor return	0V	1 mA	STP(4,23)
5	Jiggle sensor supply sense	0.4 V	10 μA	STT(5,6,24)
24	Jiggle sensor o/p	0V	10 μA	STT(5,6,24)
6	Jiggle sensor return sense	0.4V	10 μA	STT(5,6,24)
22	Sensor screens			screens (commoned)
7	Mechanism Thermometer 1	0V	2.5 nA	Single
26	Mechanism Thermometer 2	0V	2.5 nA	Single
8	Mechanism Thermometer 3	0V	2.5 nA	Single
27	Mechanism Thermometer 4	0V	2.5 nA	Single
25	Spare			
13	Spare			
32	Spare			
14	Spare			
33	Spare			
12	Spare			
30	Spare			
31	Spare			
28	PCAL 1	TBD	IBD	STQ(28,29,10,11)
29	PCAL 2	IBD	IBD	STQ(28,29,10,11)
10	PCAL 3	IBD	IBD	STQ(28,29,10,11)
11	PCAL 4	IRD	IRD	STQ(28,29,10,11)
9	PCAL Screen			SIQ screen

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 20 3HJ

Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130

H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

The BSM Prime (and Redundant) Wiring.

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 21 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 22 of 51 Date : 28th Sep 2004

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 22 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 23 of 51 Date : 28th Sep 2004

6. SOFTWARE REQUIREMENTS

CHANGE RECORD (SOFTWARE)

1.0	First Issue
1.1	Remove 'Control Structure Command Requirements' section – include
	necessary flags, etc in control parameters table.
	Correct observer coefficients used in code for variable 'cha_h'.
	Add note to indicate that any suitable code for sinusoidal shaping would
	be OK (maybe some easier assembler method ?)
1.2	Fix some variable name errors.
	Correct integral gain term in expression for 'ch_pe'.
	Include 'Kt' in control parameter list.
1.3	Add the Jiggle code – copy of Chop code with name changes
1.4	Incorporated into the BSM Design Description annex G
2.0	Revise control code to use PID with Feed-forward, replace sinusoidal
	trajectory with slew-rate limit, add sensor linearisation, change sample
	time.
2.1	Change sample time. Revise Jiggle cross-coupling to include Chop
	acceleration.
2.2	Revise cross-coupling
2.3	Replace pseudo-code with block diagrams and add parameter lists

6.1 INTRODUCTION

This document describes the BSM software operation as Matlab Simulink block diagrams – the actual assembly code can be easily derived from these block diagrams.

The BSM is controlled via software running on a DSP. The BSM software controls the position of the two BSM axes in response to external commands from the host software. Each axis can move independently.

The movement with respect to time is profiled via stored parameters to give a minimum energy, minimum noise position change, particularly for step commands.

In general the movements are repetitions of the same position/time profile.

In addition, in the event of measured behaviour resulting in a fault diagnosis, some system backup procedures are available.

Diagnosis of excessive position errors and analysis of recorded transient behaviour during operation can result in modifications to the control system by uploading different parameters into electrically-eraseable memory.

NOTE : As each BSM has specific parameters, the indicated parameters in this document are only nominal values, and the specific values for each BSM are given in the calibration documents in the appendices.

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 23 3HJ

Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130

H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire bsm icd v3.2.doc

6.2 WAVEFORM COMMAND REQUIREMENTS

The BSM is slaved to the input demands at all times, so to perform a repetitive chop pattern the host processor has to issue a succession of position demands at the relevant times.

For example, to perform a 2 Hz chop between BSM positions p1 and p2, the following chop axis demand sequence and timing is required.

The command update time (Tu) must always be larger than the loop sample time (Ts). The resultant mirror movements will be limited by the bandwidth of the servo loops.

Time	Demand
0.0 → (0.5-Tu)	p1
0.5 → (1.0-Tu)	p2
1.0 → (1.5-Tu)	p1
1.5 → (2.0-Tu)	p2
2.0 → (2.5-Tu)	p1
etc.	

A step command waveform is assumed. Other waveforms, such as triangular, can be approximated by a succession of incremental step demands, however the resolution will always be dependent on the update rate.

Table 2 Waveform Commands

No.	Parameter	Value or Range
1	Chop Position	+/- 2.53 degrees (BSM axes)
2	Jiggle Position	+/- 0.573 degrees (BSM axes)

6.3 CONTROL SYSTEM DIAGNOSTIC DATA

Some control system data may be used by the host system to determine detected failure correction activities.

Table 3 Control System Diagnostic Data

No.	Parameter	Range
1	Chop position	+/- 10V = +/-2.6deg (CAL)
2	Chop motor current	+/- 10V = +/-50mA
3	Jiggle position	+/- 10V = +/-0.6 deg (CAL)
4	Jiggle motor current	+/- 10V = +/-50mA
5	Chop position error	+/- 10V = +/-2.6deg (CAL)
6	Jiggle position error	+/- 10V = +/-0.6deg (CAL)

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 24 3HJ

Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130

H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire bsm icd v3.2.doc

6.4 CONTROL ALGORITHMS

Both axes have position control loops, running at a fixed sample time of 360 $\mu S,$ a sample rate of 2.778 kHz.

6.4.1 Description

The algorithm comprises three main parts – the control loop itself, an input slew rate limiter and a sensor linearisation look-up table. On reception of a new position, the transition will be slew-rate limited, and the rate-limited demand applied to the control loop.

The control loop processes the position demand using a digital filter to produce a torque demand to the mirror motor. The algorithm implements a PID servo with position feed-forward.

The slew-rate limiter reduces the rate of change of the Chop demand to a fixed value to reduce power dissipation during step changes.

The control algorithms are illustrated by the Matlab-Simulink block diagram in the following Appendices for the PFM and FSM BSM's. This is based on the simulink model used during dSPACE testing of the BSM.

HERSCHEL SPIRE Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 26 of 51 Date : 28th Sep 2004

7. PFM BEAM STEERING MIRROR PARAMETER LIST

This section lists the calibration and control design parameters for the PFM Beam-Steering Mirror.

Refer to Figures 1,2,3 and 4 for the control parameter block diagram functions.

7.1 PFM CHOP CONTROL PARAMETERS

PRIME		
Parameter	Description	Value
c_pid_p	PID proportional	2.8
	gain	
c_pid_i	PID integral gain	230
c_intref	integrator reference	6.5
c_pid_ilim	integrator limit	0.006
c_ff_g	feed-forward gain	0.1
c_ff_d	feed-forward diff	0
	gain	
c_rfbkg	rate feedback gain	0.014
dfilter_t1	differential filter t.c. 1	847.458
dfilter_t2	differential filter t.c. 2	0.69491
i/p slew		1000deg/s
limit		
ffxtalk	cross-coupling	0.0727

REDUNDANT

Parameter	Description	Value
c_pid_p	PID proportional	3.082
	gain	
c_pid_i	PID integral gain	220
c_intref	integrator reference	20
c_pid_ilim	integrator limit	0.006
c_ff_g	feed-forward gain	0.05
c_ff_d	feed-forward diff	0
	gain	
c_rfbkg	rate feedback gain	0.012
dfilter_t1	differential filter t.c. 1	847.458
dfilter_t2	differential filter t.c. 2	0.69491
i/p slew		750deg/s
limit		-
ffxtalk	talk cross-coupling	

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 26 3HJ

Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130

H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire bsm icd v3.2.doc

SPIRE BSM Interface Control Document Issue 3.2

Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 27 of 51 Date : 28th Sep 2004

7.2 PFM CHOP DEGRADED MODE

PRIME

Parameter	Description	Value
c_ff_g	feed-forward gain	1.07
c_curr_gain	current gain	0
cmot_r	voltage gain	6
cmot_l	inductive gain	-0.003
c_nps_rsf	bemf gain	0.1
nps_t1	BEMF rate filter t.c.	847.458
nps_t2	BEMF rate filter t.c. 2	0.69491

REDUNDANT

Parameter	Description	Value
c_ff_g	feed-forward gain	0.975
c_curr_gain	current gain	0
cmot_r	voltage gain	6
cmot_l	inductive gain	0
c_nps_rsf	bemf gain	0.1
nps_t1	BEMF rate filter t.c.	847.458
nps_t2	BEMF rate filter t.c. 2	0.69491

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 27 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

7.3 PFM CHOP SENSOR CALIBRATION

Angles are with respect to axis zero, 'csensor' is digitised sensor voltage after preamplification. Axis zero is defined at normal to PCAL calibration mirror. The Chop axis demand in degrees is divided by the linear scale factor.

7.3.1 PRIME

ELECTRICAL OFFSET ADDED TO 'censor' TO GIVE ZERO DEGREES AT MECHANICAL ZERO = -0.1635LINEAR SCALE FACTOR = 3.082SENSOR_OP = $50^{(V(21,2)-V(3,21))+10Voffset}$, where V(21,2) = voltage at BSM pin 21 with respect to voltage at BSM pin 2. (NOTE: The polarity of this should be checked with the final LAM preamplifier board. If necessary, a software inversion should be added before applying the following table).

The following Matlab file creates the lookup table for use in the Simulink model, where the lookup table input vector is 'chop_in', and the table output is 'chop_out'.

% SPIRE PFM PRIME Sensor scaling vectors B.Stobie UKATC 27/04/04 % --% % NOTE 'raw' vectors are by cut-and-paste from spreadsheets % 'pfm sensor scaling PRIME 230404' and % 'pfm_sensor_scaling_REDUNDANT_230404' % chop outx = [1.01968 1.00031 0.96637 0.92559 0.87984 0.82990 0.77789 0.72383 0.66906 0.61409 0.55997 0.50751 0.45413 0.40124 0.34725 0.29248 0.23660 0.17969 0.12113 0.06132 0.00000 -0.05824 -0.11415 -0.16817 -0.22028 -0.27136 -0.31999 -0.36766 -0.41393 -0.45913 -0.50323 -0.54651 -0.58914 -0.63055 -0.67172 -0.71144 -0.74917 -0.78441 -0.81598 -0.84038 -0.85420]; % % Simulink Lookup Table expects vectors in the form [-1:1] % instead of [1:-1]; chop out = fliplr(chop outx); % chop inx = [0.83063 0.82134 0.80436 0.78237 0.75634 0.72680 0.69414 0.65864 0.62049 0.57989 0.53696 0.49182 0.44459 0.39534 0.34416 0.29112 0.23628 0.17970 0.12143 0.06151 0.00000 -0.05839 -0.11526 -0.17057 -0.22428 -0.27634 -0.32668 -0.37526 -0.42201 -0.46685 -0.50969 -0.55044 -0.58899 -0.62519 -0.65889 -0.68989 -0.71793 -0.74264 -0.76352 -0.77963 -0.78845]; chop in = fliplr(chop inx); %

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 28 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

7.3.2 REDUNDANT

ELECTRICAL OFFSET ADDED TO 'censor' TO GIVE ZERO DEGREES AT MECHANICAL ZERO = -0.2315 LINEAR SCALE FACTOR = 3.082 SENSOR OP = $50^{(V(21,2)-V(3,21))+10Voffset}$, where V(21,2) = voltage at BSM pin 21 with respect to voltage at BSM pin 2. (NOTE: The polarity of this should be checked with the final LAM preamplifier board. If necessary, a software inversion should be added before applying the following table). The following table is used to scale any demands into the BSM, and the inverse table needs to be used to translate amplified sensor voltages into actual angles (see block diagram in Appendix 1) % SPIRE PFM REDUNDANT Sensor scaling vectors B.Stobie UKATC 26/03/04 % --% for matlab-simulink Lookup-Table block. % NOTE 'raw' vectors are by cut-and-paste from spreadsheets % 'pfm sensor scaling PRIME 230404' and % 'pfm sensor scaling REDUNDANT 230404' % % REDUNDANT chop outx = [1.01064 0.98361 0.94100 0.89337 0.84279 0.78993 0.73532 0.67925 0.62289 0.56712 0.51260 0.45949 0.40789 0.35715 0.30702 0.25702 0.20685 0.15617 0.10503 0.05302 0.00000 -0.06412 -0.12480 -0.18346 -0.23995 -0.29466 -0.34732 -0.39846 -0.44781 -0.49544 -0.54158 -0.58577 -0.62935 -0.67137 -0.71193 -0.75099 -0.78798 -0.82215 -0.85213 -0.87608 -0.88961]; % % Simulink Lookup Table expects vectors in the form [-1:1] % instead of [1:-1]; chop out = fliplr(chop outx); % chop inx = [0.77872 0.77001 0.75409 0.73348 0.70906 0.68138 0.65076 0.61747 0.58171 0.54365 0.50340 0.46108 0.41680 0.37063 0.32265 0.27292 0.22151 0.16847 0.11384 0.05767 0.00000 -0.06968 -0.13755 -0.20356 -0.26766 -0.32978 -0.38987 -0.44785 -0.50363 -0.55714 -0.60827 -0.65690 -0.70290 -0.74611 -0.78633 -0.82333 -0.85679 -0.88628 -0.91119 -0.93043 -0.94095]; chop in = fliplr(chop inx); %

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 29 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire bsm icd v3.2.doc

7.4 PFM CHOP MOTOR RESISTANCE

PRIME Rmotor = 0.822 ohm

REDUNDANT Rmotor = 0.835 ohm

7.5 PFM CHOP POWER DISSIPATION

Average Power Dissipation = Chop transient power + I*I*R + Sensor Power

From PFM test data, Chop transient power can be estimated at 5mW average for 25mS. Therefore at 2 Hz the average transient power is 5.0*25/250 = 0.5mW.

Chop sensor power = 0.46mW.

 $I^{I}R$ can be obtained from data in spreadsheet "pfm_power.xls" (Appendix A), where I = 21 mA/deg

e.g. if the PRIME Chop axis continuously moves between -1.25 and 1.25 deg., the average power is

0.0005 + (1.25*0.021)²*0.822 + 0.00046 W = 0.0005 + 0.00057 + 0.00046 W

= 1.53mW.

For more complex sets of movements, a spreadsheet can be used to calculate the average dissipation based the time sequence of movements, and assuming a linear relationship between transient power and chopped angle.

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 30 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

SPIRE BSM Interface Control Document Issue 3.2

Ref: SPI-BSM-PRJ-0713 RAL: SPIRE-ATC-PRJ-001171 Page : 31 of 51 Date : 28th Sep 2004

7.6 JIGGLE CONTROL PARAMETERS

PRIME

Parameter	Description	Value
j_pid_p	PID proportional	1.1
	gain	
j_pid_i	PID integral gain	100
j_intref	integrator reference	2.8
j_pid_ilim	integrator limit	0.01
j_ff_g	feed-forward gain	1.7
j_ff_d	feed-forward diff	0
	gain	
j_rfbkg	rate feedback gain	0.047
dfilter_t1	differential filter t.c. 1	847.458
dfilter_t2	differential filter t.c. 2	0.69491
jsign	invert motor drive	-1

REDUNDANT

Paramotor	Description	Value
Falametei	Description	value
j_pid_p	PID proportional	1.1
	gain	
j_pid_i	PID integral gain	100
j_intref	integrator reference	2.8
j_pid_ilim	integrator limit	0.01
j_ff_g	feed-forward gain	1.5
j_ff_d	feed-forward diff	0
	gain	
j_rfbkg	rate feedback gain	0.044
dfilter_t1	differential filter t.c. 1	847.458
dfilter_t2	differential filter t.c. 2	0.69491
jsign	invert motor drive	1

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 31 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

7.7 PFM JIGGLE DEGRADED MODE

PRIME

Parameter	Description	Value
j_ff_g	feed-forward gain	3.63
j_curr_gain	current gain	0
jmot_r	voltage gain	15
jmot_l	inductive gain	-0.014
j_nps_rsf	bemf gain	-0.28
nps_t1	BEMF rate filter t.c. 1	847.458
nps_t2	BEMF rate filter t.c. 2	0.69491
jsign	invert motor drive	-1

REDUNDANT

	-	
Parameter	Description	Value
j_ff_g	feed-forward gain	3.41
j_curr_gain	current gain	0
jmot_r	voltage gain	15
jmot_l	inductive gain	-0.014
j_nps_rsf	bemf gain	0.28
nps_t1	BEMF rate filter t.c.	847.458
nps_t2	BEMF rate filter t.c. 2	0.69491
jsign	invert motor drive	1

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 32 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

7.8 PFM JIGGLE SENSOR CALIBRATION

Angles are with respect to axis zero, 'jsensor' is digitised sensor voltage after preamplification. Axis zero is defined at normal to PCAL calibration mirror. The Jiggle axis demand in degrees is divided by the linear scale factor.

7.8.1 PRIME

ELECTRICAL OFFSET ADDED TO 'jensor' TO GIVE ZERO DEGREES AT MECHANICAL ZERO = -0.1187 LINEAR SCALE FACTOR = 1.954 SENSOR OP = 50(V(5,24)-V(24,6))+10Voffset, where V(5,24) = voltage at BSM pin 5 with respect to voltage at BSM pin 24. (NOTE: The polarity of this should be checked with the final LAM preamplifier board. If necessary, a software inversion should be added before applying the following table). The following table is used to scale any demands into the BSM, and the inverse table needs to be used to translate amplified sensor voltages into actual angles (see block diagram in Appendix 1) % SPIRE PFM PRIME Sensor scaling vectors B.Stobie UKATC 27/04/04 % ---% NOTE 'raw' vectors are by cut-and-paste from spreadsheets % 'pfm sensor scaling PRIME 230404' and % 'pfm_sensor_scaling_REDUNDANT_230404' % Jiggle sensor feedback is inverted between prime and redundant, so % inversion is used in prime, and % 'flipIr' is used in redundant. % % PRIME jig_outx = [0.36869 0.35062 0.31864 0.27815 0.23158 0.18020 0.12446 0.06433 0.00000 -0.04780 -0.09330 -0.13501 -0.17309 -0.20748 -0.23721 -0.26024 -0.27324]; jig_out = -jig_outx; % jig inx = [0.37359 0.35708 0.32689 0.28780 0.24151 0.18900 0.13094 0.06781 0.00000 -0.05016 -0.09686 -0.13981 -0.17865 -0.21289 -0.24181 -0.26414 -0.27636]; jig in = -jig inx; %

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 33 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

7.8.2 REDUNDANT

% - however Jiggle sensor feedback is inverted between prime and

% redundant, so inversion is used in prime, and

% 'flipIr' is used in redundant.

% flipir is used in redundant. % % % REDUNDANT jig_outx = [0.36516 0.34837 0.31818 0.27959 0.23440 0.18327 0.12733 0.06638 0.00000 -0.04596 -0.08828 -0.12856 -0.16613 -0.20052 -0.23046 -0.25461 -0.26802]; jig_out = flipIr(jig_outx); jig_inx = [0.40942 0.39132 0.35824 0.31540 0.26467 0.20712 0.14349 0.07431 0.00000 -0.04923 -0.09506 -0.13722 -0.17534 -0.20895 -0.23733 -0.25925 -0.27124]; jig_in = flipIr(jig_inx); %

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 34 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

7.9 PFM JIGGLE MOTOR RESISTANCE

PRIME Rmotor = 0.799 ohm

REDUNDANT Rmotor = 0.828 ohm

7.10 PFM JIGGLE POWER DISSIPATION

Average Power Dissipation = Jiggle transient power + I*I*R + Sensor Power

From PFM test data, Jiggle transient power can be estimated as 2.0mW for 100mS. Therefore at 0.5Hz the average transient power is 2.0*(0.1/1) = 0.2mW

Jiggle sensor power = 0.46mW.

 I^*I^*R can be obtained from data in spreadsheet "pfm_power.xls" (Appendix A), where I = 97 mA/deg

e.g. if the PRIME Jiggle axis continuously moves between -0.28 and 0.28 deg., the average power is

0.0002 + (0.28*0.097)²*0.822 + 0.00046 W = 0.0002 + 0.00061 + 0.00046 W

= 1.27mW.

For more complex sets of movements, a spreadsheet can be used to calculate the average dissipation based the time sequence of movements, and assuming a linear relationship between transient power and Jiggled angle

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 35 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713-spire_bsm_icd_v3.2.doc

	SPIRE Project Document	Ref: SPIRE-ATC-XXX-000xxx
Astronomy Technology Centre	BSM Pointing Head Assembly FSM Parameter List	Date: 20 August 2004 Author : Brian Stobie

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713-spire_bsm_icd_v3.2.doc

Figure 5

Digital Integration Block

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 38 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

SPIRE Project DocumentRedBSM Pointing Head AssemblyDateFSM Parameter ListAu

FSM BEAM STEERING MIRROR PARAMETER LIST

This section lists the calibration and control design parameters for the FSM Beam-Steering Mirror.

Refer to Figures 1 and 2 for the control parameter block diagram functions.

7.11 FSM CHOP CONTROL PARAMETERS

PRIME		
Parameter	Description	Value
c_pid_p	PID proportional	2.8
	gain	
c_pid_i	PID integral gain	168
c_intref	integrator reference	50
c_pid_ilim	integrator limit	0.006
c_ff_g	feed-forward gain	0.0
c_ff_g_L	large demand F-F	0.059
	gain	
c_ff_ul	F-F gain upper limit	0.5106
c_ff_ll	F-F gain lower limit	-0.6329
c_ff_d	feed-forward diff	0
	gain	
cp_rfbkg	pos rate feedback	0.0143
	gain	
cn_rfbkg	neg rate feedback	0.0139
	gain	
dfilter_t1	differential filter t.c. 1	847.458
dfilter_t2	differential filter t.c. 2	0.69491
i/p slew		1000deg/s
limit		-
ffxtalk	cross-coupling	0.042

REDUNDANT

	-	
Parameter	Description	Value
c_pid_p	PID proportional	3.0
	gain	
c_pid_i	PID integral gain	176
c_intref	integrator reference	45
c_pid_ilim	integrator limit	0.006
c_ff_g	feed-forward gain	0.0
c_ff_g_L	large demand F-F	0.06
	gain	
c_ff_ul	F-F gain upper limit	0.5154
c_ff_ll	F-F gain lower limit	-0.6794
c_ff_d	feed-forward diff	0
	gain	

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 39 3HJ

 Tel.
 +44 (0)131 668 8100
 Fax
 +44 (0)131 668 1130

 H:\SPIRE\Documents\ACTIVE\BSM\Controlled
 Project
 Docs (PRJ)\PRJ-0713

spire_bsm_icd_v3.2.doc

cp_rfbkg	pos rate feedback gain	0.0147
cn_rfbkg	neg rate feedback gain	0.0145
dfilter_t1	differential filter t.c. 1	847.458
dfilter_t2	differential filter t.c. 2	0.69491
i/p slew		750deg/s
limit		
ffxtalk	cross-coupling	0.042

7.12 FSM CHOP DEGRADED MODE

PRIME		
Parameter	Description	Value
c_ff_g	feed-forward gain	0.66
c_curr_gain	current gain	0
cmot_r	voltage gain	6
cmot_l	inductive gain	-0.003
c_nps_rsf	bemf gain	0.1
nps_t1	BEMF rate filter t.c.	847.458
nps_t2	BEMF rate filter t.c. 2	0.69491

REDUNDANT

	-	
Parameter	Description	Value
c_ff_g	feed-forward gain	0.698
c_curr_gain	current gain	0
cmot_r	voltage gain	6
cmot_l	inductive gain	0
c_nps_rsf	bemf gain	0.1
nps_t1	BEMF rate filter t.c.	847.458
nps_t2	BEMF rate filter t.c. 2	0.69491

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 40 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

7.13 FSM CHOP SENSOR CALIBRATION

Angles are with respect to axis zero, 'csensor' is digitised sensor voltage after preamplification. Axis zero is defined at normal to PCAL calibration mirror. The Chop axis demand in degrees is divided by the linear scale factor.

7.13.1 PRIME

ELECTRICAL OFFSET ADDED TO 'censor' TO GIVE ZERO DEGREES AT MECHANICAL ZERO = -0.1175LINEAR SCALE FACTOR = 3.082SENSOR_OP = $50^{(V(21,2)-V(3,21))+10Voffset}$, where V(21,2) = voltage at BSM pin 21 with respect to voltage at BSM pin 2. (NOTE: The polarity of this should be checked with the final LAM preamplifier board. If necessary, a software inversion should be added before applying the following table).

The following Matlab file creates the lookup table for use in the Simulink model, where the lookup table input vector is 'chop_in', and the table output is 'chop_out'.

% SPIRE FSM PRIME Sensor scaling vectors B.Stobie UKATC 01/07/04 % -----% for matlab-simulink Lookup-Table block. % NOTE 'raw' vectors are by cut-and-paste from spreadsheets % 'fsm sensor scaling PRIME 010704' and 'fsm sensor scaling REDUNDANT xxxxxxxx' % - however Jiggle sensor feedback is inverted between prime and redundant, so inversion is used in prime, and % 'flipIr' is used in redundant. % % PRIME % chop outx = [0.86479 0.85028 0.82459 0.79191 0.75479 0.71456 0.67179 0.62753 0.58185 0.53499 0.48752 0.43956 0.39128 0.34290 0.29446 0.24595 0.19734 0.14835 0.09935 0.05010 0.00000 -0.06275 -0.12333 -0.18171 -0.23826 -0.29287 -0.34570 -0.39644 -0.44579 -0.49314 -0.53859 -0.58227 -0.62393 -0.66423 -0.70232 -0.73860 -0.77196 -0.80259 -0.82942 -0.85009 -0.86167]; chop out = flipIr(chop outx); % chop inx = [0.58404 0.57751 0.56557 0.55011 0.53180 0.51103 0.48807 0.46310 0.43629 0.40773 0.37755 0.34581 0.31260 0.27797 0.24199 0.20469 0.16613 0.12635 0.08538 0.04325 0.00000 -0.05526 -0.10909 -0.16145 -0.21228 -0.26155 -0.30921 -0.35519 -0.39943 -0.44187 -0.48242 -0.52099 -0.55748 -0.59174 -0.62364 -0.65299 -0.67952 -0.70291 -0.72267 -0.73793 -0.74627]; chop in = fliplr(chop inx);

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 41 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130

H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire bsm icd v3.2.doc

7.13.2 REDUNDANT

ELECTRICAL OFFSET ADDED TO 'censor' TO GIVE ZERO DEGREES

AT MECHANICAL ZERO = -0.2355

LINEAR SCALE FACTOR = 3.082

SENSOR_OP = $50^{(V(21,2)-V(3,21))+10Voffset}$, where

V(21,2) = voltage at BSM pin 21 with respect to voltage at BSM pin 2.

(NOTE: The polarity of this should be checked with the final LAM preamplifier board. If necessary, a software inversion should be added before applying the following table).

The following table is used to scale any demands into the BSM, and the inverse table needs to be used to translate amplified sensor voltages into actual angles (see block diagram in Appendix 1)

% SPIRE FSM REDUNDANT Sensor scaling vectors B.Stobie UKATC 02/07/04 % ------

% for matlab-simulink Lookup-Table block.

% NOTE 'raw' vectors are by cut-and-paste from spreadsheets

% 'fsm sensor scaling PRIME 010704' and 'fsm sensor scaling REDUNDANT 020704'

% - however Jiggle sensor feedback is inverted between prime and redundant, so inversion is used in prime, and

% 'flipIr' is used in redundant.

%

% REDUNDANT

%

chop_outx = [0.87171 0.85470 0.82504 0.78864 0.74797 0.70460 0.65924 0.61266 0.56549 0.51788 0.47033 0.42303 0.37585 0.32878 0.28244 0.23567 0.18886 0.14201 0.09496 0.04761 0.00000 -0.06518 -0.12750 -0.18752 -0.24531 -0.30076 -0.35399 -0.40540 -0.45509 -0.50297 - 0.54886 -0.59273 -0.63483 -0.67459 -0.71217 -0.74768 -0.77998 -0.80956 -0.83469 -0.85478 - 0.86595];

chop_out = fliplr(chop_outx);

% chop_inx = [0.58404 0.57751 0.56557 0.55011 0.53180 0.51103 0.48807 0.46310 0.43629 0.40773 0.37755 0.34581 0.31260 0.27797 0.24199 0.20469 0.16613 0.12635 0.08538 0.04325 0.00000 -0.06007 -0.11858 -0.17549 -0.23074 -0.28430 -0.33610 -0.38607 -0.43417 -0.48030 -0.52437 -0.56630 -0.60595 -0.64320 -0.67787 -0.70977 -0.73861 -0.76404 -0.78551 -0.80209 -0.81116]; chop in = fliplr(chop inx);

%

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 42 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713-

spire_bsm_icd_v3.2.doc

7.14 FSM CHOP MOTOR RESISTANCE

PRIME Rmotor = 0.80 ohm

REDUNDANT Rmotor = 0.78 ohm

7.15 FSM CHOP POWER DISSIPATION

Average Power Dissipation = Chop transient power + I*I*R + Sensor Power

From FSM test data, Chop transient power can be estimated at 2mW average for 25mS. Therefore at 2 Hz the average transient power is 2.0*25/250 = 0.2mW. Chop sensor power = 0.48mW.

I*I*R can be obtained from data in spreadsheet "pfm_power.xls" (Appendix A), where I = 14 mA/deg

e.g. if the PRIME Chop axis continuously moves between -1.25 and 1.25 deg., the average power is 0.0002 + (1.25*0.014)²*0.8 + 0.00048 W

= 0.0002 + 0.00024 + 0.00046 W

= 0.9mW.

For more complex sets of movements, a spreadsheet can be used to calculate the average dissipation based the time sequence of movements, and assuming a linear relationship between transient power and chopped angle.

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 43 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

7.16 JIGGLE CONTROL PARAMETERS

PRIME

Parameter	Description	Value
j_pid_p	PID proportional	1.1
	gain	
j_pid_i	PID integral gain	90
j_intref	integrator reference	5.8
j_pid_ilim	integrator limit	0.01
j_ff_g	feed-forward gain	0.795
j_ff_d	feed-forward diff	0
	gain	
j_rfbkg	rate feedback gain	0.0355
dfilter_t1	differential filter t.c. 1	847.458
dfilter_t2	differential filter t.c. 2	0.69491
jsign	invert motor drive	-1

REDUNDANT

Parameter	Description	Value
j_pid_p	PID proportional	1.1
	gain	
j_pid_i	PID integral gain	90
j_intref	integrator reference	5.8
j_pid_ilim	integrator limit	0.01
j_ff_g	feed-forward gain	1.08
j_ff_d	feed-forward diff	0
	gain	
j_rfbkg	rate feedback gain	0.0355
dfilter_t1	differential filter t.c. 1	847.458
dfilter_t2	differential filter t.c. 2	0.69491
jsign	invert motor drive	1

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 44 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

7.17 FSM JIGGLE DEGRADED MODE

PRIME

Parameter	Description	Value
j_ff_g	feed-forward gain	2.61
j_curr_gain	current gain	0
jmot_r	voltage gain	15
jmot_l	inductive gain	-0.014
j_nps_rsf	bemf gain	0.23
nps_t1	BEMF rate filter t.c. 1	847.458
nps_t2	BEMF rate filter t.c. 2	0.69491
jsign	invert motor drive	-1

REDUNDANT

Parameter	Description	Value
j_ff_g	feed-forward gain	2.7
j_curr_gain	current gain	0
jmot_r	voltage gain	15
jmot_l	inductive gain	-0.014
j_nps_rsf	bemf gain	0.28
nps_t1	BEMF rate filter t.c.	847.458
nps_t2	BEMF rate filter t.c. 2	0.69491
jsign	invert motor drive	1

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 45 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

SPIRE Project Document BSM Pointing Head Assembly FSM Parameter List

7.18 FSM JIGGLE SENSOR CALIBRATION

Angles are with respect to axis zero, 'jsensor' is digitised sensor voltage after preamplification. Axis zero is defined at normal to PCAL calibration mirror.

The Jiggle axis demand in degrees is divided by the linear scale factor.

7.18.1 PRIME

ELECTRICAL OFFSET ADDED TO 'jensor' TO GIVE ZERO DEGREES AT MECHANICAL ZERO = 0.118 LINEAR SCALE FACTOR = 1.954 SENSOR OP = 50(V(5,24)-V(24,6))+10V offset, where V(5,24) = voltage at BSM pin 5 with respect to voltage at BSM pin 24. (NOTE: The polarity of this should be checked with the final LAM preamplifier board. If necessary, a software inversion should be added before applying the following table). The following table is used to scale any demands into the BSM, and the inverse table needs to be used to translate amplified sensor voltages into actual angles (see block diagram in Appendix 1) % SPIRE FSM PRIME Sensor scaling vectors B.Stobie UKATC 01/07/04 % -----% for matlab-simulink Lookup-Table block. % NOTE 'raw' vectors are by cut-and-paste from spreadsheets % 'fsm sensor scaling PRIME 010704' and 'fsm sensor scaling REDUNDANT xxxxxxxx' % - however Jiggle sensor feedback is inverted between prime and redundant, so inversion is used in prime, and % 'flipIr' is used in redundant. % % PRIME jig_outx = [0.33757 0.31950 0.28741 0.24801 0.20374 0.15619 0.10630 0.05420 0.00000 -0.05998 -0.11485 -0.16469 -0.20963 -0.24914 -0.28271 -0.30892 -0.32350]; jig_out = -jig_outx; % jig inx = [0.35824 0.34241 0.31346 0.27597 0.23158 0.18123 0.12556 0.06502 0.00000 -0.07431 -0.14349 -0.20712 -0.26467 -0.31540 -0.35824 -0.39132 -0.40942]; jig_in = -jig_inx; %

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 46 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

	SPIRE Project Document	Ref: SPIRE-ATC-XXX-000xxx
Astronomy Technology Centre	BSM Pointing Head Assembly FSM Parameter List	Issue: 1.0 Date: 20 August 2004 Author : Brian Stobie

7.18.2 REDUNDANT

ELECTRICAL OFFSET ADDED TO 'jensor' TO GIVE ZERO DEGREES AT MECHANICAL ZERO = -0.181 LINEAR SCALE FACTOR = 1.954 SENSOR OP = 50(V(5,24)-V(24,6))+10Voffset, where V(5,24) = voltage at BSM pin 5 with respect to voltage at BSM pin 24. (NOTE: The polarity of this should be checked with the final LAM preamplifier board. If necessary, a software inversion should be added before applying the following table). % SPIRE FSM REDUNDANT Sensor scaling vectors B.Stobie UKATC 02/07/04 % ---% for matlab-simulink Lookup-Table block. % NOTE 'raw' vectors are by cut-and-paste from spreadsheets % 'fsm_sensor_scaling_PRIME_010704' and 'fsm_sensor_scaling_REDUNDANT_020704' % - however Jiggle sensor feedback is inverted between prime and redundant, so inversion is used in prime, and % 'flipIr' is used in redundant. % % REDUNDANT % jig_outx = [0.30987 0.29489 0.26764 0.23322 0.19354 0.15001 0.10266 0.05266 0.00000 -0.05618 -0.10803 -0.15643 -0.20013 -0.23955 -0.27371 -0.29964 -0.31452]; jig_out = fliplr(jig_outx); % jig_inx = [0.33265 0.31795 0.29107 0.25626 0.21504 0.16829 0.11659 0.06038 0.00000 -0.06502 -0.12556 -0.18123 -0.23158 -0.27597 -0.31346 -0.34241 -0.35824]; jig_in = fliplr(jig_inx); %

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 47 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

7.19 FSM JIGGLE MOTOR RESISTANCE

PRIME Rmotor = 0.69 ohm

REDUNDANT Rmotor = 0.66 ohm

7.20 FSM JIGGLE POWER DISSIPATION

Average Power Dissipation = Jiggle transient power + I*I*R + Sensor Power

From PFM test data, Jiggle transient power can be estimated as 2.0mW for 100mS. Therefore at 0.5Hz the average transient power is 2.0*(0.1/1) = 0.2mW

Jiggle sensor power = 0.49mW.

 I^*I^*R can be obtained from data in spreadsheet "pfm_power.xls" (Appendix A), where I = 68 mA/deg

e.g. if the PRIME Jiggle axis continuously moves between -0.28 and 0.28 deg., the average power is

0.0002 + (0.28*0.068)²*0.69 + 0.00046 W = 0.0002 + 0.00025 + 0.00046 W = 0.91mW.

For more complex sets of movements, a spreadsheet can be used to calculate the average dissipation based the time sequence of movements, and assuming a linear relationship between transient power and Jiggled angle

Figure 6

Parameter Block Diagram

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh 49 EH9 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc

	SPIRE Project Document	Ref: SPIRE-ATC-XXX-000xxx
Astronomy Technology Centre	BSM Pointing Head Assembly FSM Parameter List	Date: 20 August 2004 Author : Brian Stobie

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713-spire_bsm_icd_v3.2.doc

	Ref: SPIRE-ATC-XXX-000xxx
,	Issue: 1.0
	Date: 20 August 2004
	Author : Brian Stobie

Block Diagram for Degraded Mode

UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh 51 EH9 3HJ Tel. +44 (0)131 668 8100 Fax +44 (0)131 668 1130 H:\SPIRE\Documents\ACTIVE\BSM\Controlled Project Docs (PRJ)\PRJ-0713spire_bsm_icd_v3.2.doc