

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

DPU/ICU Derating and Worst Case Analysis

Document Ref: CNR.IFSI.2002TR06

Issue 1.4

Distribution List:

K. King	
O. Bauer	
K. Wafelbakker	
R. Cerulli	
S. Molinari	
S. Pezzuto	
A. Di Giorgio	

Prepared by: Renato Orfei Date: 24 September 2003

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

Document Status Sheet

Issue	Revision	Date	Reason for Change
Issue 1		31-01-2002	
	1	15-05-2002	Updating
	2	28-02-2003	Updating
	3	17-03-2003	Updating
	4	24-09-2003	Updating

Document Change Record

Document Title: DPU/ICU Derating and Worst Case Analysis				
Document Reference	Number: CNR.IFSI.2002TR6			
Document Issue/Rev	ision Number: Issue 1.4			
Section	Reason For Change			
All	Issue 1			
	Issue 1.1			
All	Full revision			
	Issue 1.2			
3.1.3	Added with 3 sub-sections			
3.2.3	Added with 4 subsections			
3.3.4	Added			

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

	Issue 1.3
2.1	Added documents 9, 10 and 11
2.2	Updated reference documents list
3.3.4	Changed the maximum working temperature
	Issue 1.4
3.4	Updated after SPIRE IHDR

DPU/ICU

Derating and Worst Case Analysis

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

ı	SCOPE		0
2	DOCUMEN	ITS	9
	2.1 APPL	ICABLE DOCUMENTS	9
	2.2 Refer	rence documents	9
3	Analysis o	of the "internal" electronics	11
	3.1.1 Ca 3.1.2 Re	20 MHz clock oscillator	11 11 12 12 12 13
	3.2.1 Ca 3.2.2 Re	pard Derating and Worst Case Analysis spacitors Derating and WCA esistors derating and WCA her Components Digital Integrated Circuits 16 MHz clock oscillator Diode 1N5811US HLP6002 STD-1553 transformers	13 13 14 14 15 15 15
	3.3.1 Ca 3.3.2 Re 3.3.3 Tra	C Converter Board Derating and Worst Case Analysis spacitors Derating and WCA esistors derating and WCA ansformers and inductances ansistors and diodes of the Power Converter Section	16 16 17 18 18
	3.4 Mothe	erboard Derating	21
4	Analysis o	f the electrical interfaces with the spacecraft	22
	4.1 Powe	er interface derating and Worst Case Analysis	22
	4.2 Space	ecraft Interface Derating and Worst Case Analysis	25

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

Acronyms

AD Architectural Design

ASI Italian Space Agency

ATP Acceptance Test Plan

AVM Avionic Model

BSW Basic SW

CDR Critical Design Review

CGS Carlo Gavazzi Space

CIDL Configuration Item Data List

CSL Configuration Status List

CNR Consiglio Nazionale delle Ricerche

CPP Co-ordinated Parts Procurement Board

CPU Control Processing Unit

CDMS Central Data Management System

CDMU Central Data Management Unit

CQM Cryogenic Qualification Model

DCU Detector Control Unit

DDD Detailed Design Document

DPU Digital Processing Unit

EEPROM Electrically Erasable Programmable Read Only Memory

EMC Electro Magnetic Compatibility

IFSI CNR

DPU/ICU

Derating and Worst Case Analysis

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

EMI Electro Magnetic Interference

ESA European Space Agency

FIRST Far InfraRed and Submillimeter Telescope

HK HouseKeeping

HW HardWare

IBDR Instrument Baseline Design Review

ICD Interface Control Document

ICDR Instrument Critical Design Review

ICU Instrument Control Unit

IHDR Instrument Hardware Design Review

IFSI Istituto di Fisica dello Spazio Interplanetario

ISVR Instrument Science Verification Review

LCU Local oscillator Control Unit

LVDS Low Voltage Differential Signal

MCU Mechanism Control Unit

NA Not Applicable

OBS On-Board Software

OBSM On Board Software Management

PA Product Assurance

PDU Power Distribution Unit

PROM Programmable Read Only Memory

PUS Packet Utilisation Standard

S/C SpaceCraft

IFSI CNR

DPU/ICU Derating and Worst Case Analysis

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

SCC SpaceCraft Components

SEU Single Event Upset

SPIRE Spectral and Photometric Imaging Receiver

S/S SubSystem

SPR Software Problem Report

SSD Software Specification Document

SVM Service Module

SW Software

TBC To Be Confirmed

TBD To Be Defined

TBW To Be Written

TV Thermal Vacuum

WBS Work Breakdown Structure

WCA Worst Case Analysis

WRT With Respect To

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

1 SCOPE

The Istituto di Fisica per lo Spazio Interplanetario (IFSI) of the Italian Consiglio Nazionale delle Ricerche (CNR) is responsible for the design and manufacturing of the three Digital Processing Units/Instrument Control Unit for the three instruments to be flown on board of the ESA satellite Herschel (ex FIRST): HIFI, PACS and SPIRE.

The design, manufacturing, electrical and functional tests of the DPU/ICU boards and the Basic Software in PROM, are implemented by Carlo Gavazzi Space (CGS) under a contract with ASI. IFSI is responsible of the mechanical box, the box connectors, the electrical-mechanical integration, the environmental tests and the On Board Software.

The purpose of this document is to assess the derating concepts and the Worst Case Analysis used during the design of the DPU/ICU.

It has to be noted that all DPU/ICU electronic components will be purchased through the Coordinated Parts Procurement Agency set up by ESA and contracted to Tecnologica (Sevilla, Spain) and TOP-REL (Rome, Italy).

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

2 DOCUMENTS

2.1 APPLICABLE DOCUMENTS

AD	Name
01	Herschel/Planck Instrument Interface Document, part A
02	Herschel/Planck Instrument Interface Document, part B, Instrument PACS
03	Herschel/Planck Instrument Interface Document, part B Instrument HIFI
04	Herschel/Planck Instrument Interface Document, part B Instrument SPIRE
05	DPU/ICU PA Plan
06	PACS PA Plan
07	HIFI PA Plan
08	SPIRE PA Plan
09	PACS AVM Design Description
10	HIFI AVM Design Description
11	SPIRE AVM Design Description

2.2 Reference documents

Reference	Name
Document	
01	Derating Requirements Applicable to Electronic, Electrical and Electro-mechanical Components for ESA Space Systems (ESA PSS-01-301)
02	Declared Components Lists: IFSI/ICU/LI/2001-004
03	Declared Components, Materials and Processes Lists: PACS-CR-GS-012
04	Declared Components, Materials and Processes Lists: SPIRE-IFS-DOC-001031
05	PACS FMECA
06	HIFI FMECA
07	SPIRE FMECA
08	PAD for CGS made inductors
09	PAD for CGS made transformers
10	RFA for CGS made inductors
11	RFA for CGS made transformers
12	CPU Board Design
13	CPU Board Piggy-Back Design

IFSI CNR

DPU/ICU Derating and Worst Case Analysis

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

14	Interface Board Design
15	DC/DC Converter Board Design
16	Mother-Board Design
17	HLP-6000 Series Beta Transformer Technology Corporation data Sheet

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

3 Analysis of the "internal" electronics

For "internal electronics" it is meant all the electronics of the following boards, excluding the electrical interfaces with the spacecraft that will be dealt with in the following section:

- CPU board
- I/F board
- DC/DC Converter Board
- Motherboard.

According to a general statement in the contract ASI-CGS, all design activities are in agreement with the ESA applicable directives, e.g. as per REF 01.

3.1 CPU Board Derating and Worst Case Analysis

The whole CPU Board is powered with 5 V, the core of the FPGA RT54SX32S is powered with 2.5 V. The differences between the CPU boards for HIFI and SPIRE with respect to the PACS one is the presence on the PACS mezzanine board of the ATMEL chip TSS901ESBMV implementing 3 STD 1355 links and the relevant LVDS drivers/receivers. Hence from the point of view of the following analysis there is no difference in the CPU boards for the 3 instruments.

3.1.1 Capacitors Derating and WCA

As can be seen from REF 02-03-04 the capacitors of the CPU board are of the following types:

- -chip ceramic capacitors: 50 V 10%
- -Tantalum capacitors: 30 V 10% or 60V 10%

The required derating is 50% for chip ceramic capacitors: actual derating is 10 times.

The required derating is 60% for tantalum capacitors: actual derating is 6 or 12 times, respectively, with respect to 30 V or 60 V tantalum capacitors.

WCA: the delta C variations, a 50% drop in initial minimum insulation resistance, a 100% increase of the initial maximum leakage current are well within the selected capacitors rated values.

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

3.1.2 Resistors derating and WCA

As can be seen from REF 02-03-04 the resistors of the CPU board are of the following types:

-chip resistors: 0.1 W , 1%, 50 V, 200 ppm/C°

-network resistors: 0.325 W 5%

The required derating is 80% for voltage, 50% for power for chip resistors.

The actual voltage derating is 10 times.

The power derating is such that the minimum allowed resistor directly connected between 5V and GND is 500 OHM. By checking REF 12 and REF 13 it is clear that this is not the case.

WCA: the worst case for all chip resistors is during thermal vacuum at about 70 °C, in this condition, by allowing a 2% reduction in resistance and taking into account the delta °C variations, a minimum resistance of 517 OHM directly connected between 5V and GND is allowed. By checking the schematics shown in REF 12 and REF 13 it is clear that this is not the case.

3.1.3 Other Components

As can be seen from REF 02-03-04 the remaining CPU board components are :

- digital integrated circuits
- 20 MHz clock oscillator
- 1 diode 1N6642US20

3.1.3.1 Digital Integrated Circuits

The digital integrated circuits are:

-powered with 5 V (greater than the minimum (4.5 V) recommended voltage and less than the 75% of the maximum specified rated value (7V)); maximum recommended voltage is 5.5 V.

(The FPGA power supply is 2.5 V, within the recommended 2,25 V \div 2.75 V)

-connected to other CMOS circuits via buffers to increase the fan-out.

WCA: no degradation beyond the minimum specified input and output voltage range is to be considered

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

3.1.3.2 20 MHz clock oscillator

For the digital integrated circuit what is above applies; for the quartz temperature the operating temperature is well higher than 10 $^{\circ}$ C WRT the minimum specified value (-55 $^{\circ}$ C) and 10 $^{\circ}$ C less than the maximum specified value (125 $^{\circ}$ C).

WCA: there is no DPU-ICU specification of the clock frequency stability, the quartz stability of a maximum of 65 ppm over the full temperature range -55° C to $+125^{\circ}$ C is more than sufficient.

3.1.3.3 Diode 1N6642US

The diode is used for further protection of a CMOS input of the switch-on circuitry (RD12). It is in 5 V circuit as far as the reverse voltage is concerned (rated 75 V) and its direct current is limited by a 100 OHM resistor in series with a 5V generator, plus CMOS internal resistance, well below the 65% of the rated 0.3 A.

WCA: leakage current (NA), breakdown voltage (reduced by 5%) and forward voltage (NA) are well below the rated values.

3.2 I/F Board Derating and Worst Case Analysis

The I/F Board is powered with 5 V, the core of the FPGA RT54SX32S is powered with 2.5 V; the analogue electronics and the DDC chip BU-61582F1 implementing the STD 1553B are powered with +15 V and - 15 V (the DDC chip also with +5 V). The differences between the I/F boards for HIFI and SPIRE with respect to the PACS one is the absence on the PACS I/F board of the FIFOs and the balanced line drivers and receivers as the internal I/F to/from subsystems is made in PACS, as already written, via the ATMEL chip TSS901ESBMV implementing 3 STD 1355 links and the relevant LVDS drivers/receivers. Hence from the point of view of the following analysis there is no difference in the I/F boards for the 3 instruments.

3.2.1 Capacitors Derating and WCA

As can be seen from REF 02-03-04 the capacitors of the CPU board are of the following types:

-chip ceramic capacitors: 50 V 10% -chip ceramic capacitors: 100 V 10%

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

-Tantalum capacitors: 50 V 10%

The required derating is 50% for chip ceramic capacitors: actual derating is 10 times for capacitors connected to + 5 V, and it is more than 3 times for those connected to + - 15 V.

The required derating is 60% for tantalum capacitors: actual derating is 10 times for capacitors connected to +5 V, and it is more than 3 times for those connected to +-15 V.

WCA: the delta C variations, a 50% drop in initial minimum insulation resistance, a 100% increase of the initial maximum leakage current are well within the selected capacitors rated values.

3.2.2 Resistors derating and WCA

As can be seen from REF 02-03-04 the resistors of the I/F board are of the following types:

-chip resistors: 0.1 W , 1%, $\,$ 50 V, 200 ppm/C $^{\circ}$

-metal film resistors 0.125 W 0.1% 200 V 5ppm

-network resistors: 0.325 W 5%.

The required derating is 80% for voltage, 50% for power for chip resistors.

The actual voltage derating:

- for chip resistors is 10 times at +5 V, more than 3 times at +-15 V;
- for metal film resistors is 40 times at +5 V, more than 10 times at +-15 V.

The power derating is such that the minimum allowed resistor directly connected between 5V and GND is 500 OHM and from +15 V and GND is 4500 OHM. By checking the schematics shown in REF 14 it is clear that this is not the case.

WCA: the worst case for all resistors is during thermal vacuum at about 70 C°, in this condition, by allowing a 2% reduction in resistance and taking into account the delta °C variations, a minimum resistance of 517 OHM directly connected between 5V and GND and of 4650 OHM between +-15 V and GND are allowed. By checking the schematics shown in REF 14 it is clear that this is not the case.

3.2.3 Other Components

As can be seen from RF 02-03-04 the remaining I/F board components are :

- digital integrated circuits
- 16 MHz clock oscillator for the DDC chip implementing the STD-1553

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

- 1 diode 1N5811US

- 2 transformers HLP6002 for the "long stub" implementation of the STD-1553

3.2.3.1 Digital Integrated Circuits

The digital integrated circuits are:

powered with 5 V (greater than the minimum (4.5 V) recommended voltage and less than the 75% of the maximum specified rated value (7V)); maximum recommended voltage is 5.5 V. (The FPGA power supply is 2.5 V, within the recommended 2,25 V \div 2.75 V)

WCA: no degradation beyond the minimum specified input and output voltage range is to be considered

3.2.3.2 16 MHz clock oscillator

For the digital integrated circuit what is above applies; for the quartz temperature the operating temperature is well higher than 10 °C WRT the minimum specified value (-55 °C) and 10 °C less than the maximum specified value (125 °C).

WCA: the STD-1553 specifies a clock frequency stability better than 1%: i.e. 1 MHz ± 10 kHz, which, referred to the 16 MHz clock means 16 MHz ± 160 kHz. The quartz stability of a maximum of 65 ppm over the full temperature range -55° C to $+125^{\circ}$ C is far better (1040 Hz).

3.2.3.3 Diode 1N5811US

The diode is used for further protection of a CMOS input of the switch-on circuitry (RD14). It is in 5 V circuit as far as the reverse voltage is concerned (rated 150 V) and its direct current is limited by the CMOS internal resistance well below the 65% of the rated 3 A.

WCA: leakage current (NA), breakdown voltage (reduced by 5%) and forward voltage (NA) are well below the rated values.

3.2.3.4 HLP6002 STD-1553 transformers

The HLP6002 transformer is manufactured by Beta Transformer Technology Corporation (RD17), a subsidiary of DDC (Data Device Corporation, the firm which produces the chip that implements the

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

STD-1553). The transformer is guaranteed to be built and tested for the STD-1553A and B, MIL-PRF-21038, designed to meet ESDS Test, MIL-STD-883, Method 3015.3 Category B, operating temperature range $-55^{\circ}\text{C} \div 130^{\circ}\text{C}$.

WCA: no degradation is foreseen for the Worst Case Analysis for transformers, chokes, coils, motor windings components characteristics (section 3.3, page 8 of REF 01).

3.3 DC/DC Converter Board Derating and Worst Case Analysis

The circuits of the DC/DC Board powered with 28 V are:

- the soft start circuitry,
- the Under Voltage Protection,
- the "power" switching section.

The switching control section is powered with 15 V.

The differences between the DC/DC boards for PACS and SPIRE with respect to the HIFI one is the absence on the PACS and SPIRE board of 3 regulated and 3 unregulated additional voltages used to power the HIFI subsystem FCU. The general concept of the different output voltages is always the same and so we can consider that there are no relevant differences among the three DC/DC converters, two of them (i.e. PACS and SPIRE) actually identical in design and implementation.

3.3.1 Capacitors Derating and WCA

As can be seen from REF 02-03-04 the capacitors of the DC/DC board are of the following types:

chip ceramic capacitors: 50 V 10%
chip ceramic capacitors: 100 V 10%
Tantalum capacitors: 50 V 10%
Tantalum capacitors: 60 V 10%

Looking at the schematics in REF15, page 2 of 6, one can see that capacitor C6 in series with C16, and capacitor C19 in series with C21 are connected to the input lines. The capacitors are identical and of 3.3 nF, 50 V 10%, so the nominal derating is greater than 3 times.

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

The capacitors directly connected to Power GND and to + 28 V are C10, C11, C12 and C13, all tantalum 8.2 uF 60 V: derating greater than 2 times; the capacitors C14 and C15 are also connected to Power GND and to 28 V: they are .1uF 100 V and their derating is larger than 3 times; capacitors C4 in series with C17 and the like C5 in series with C18 are .47uF and 50 V, their derating is larger than 3 times.

Looking at the schematics in REF15, page 3 of 6, one can see the remaining capacitors directly connected to Power GND and to 28 V in the switching transformer: C134, C136, C137, and C144 all tantalum 8.2 uF 60 V: derating greater than 2 times; the capacitors C129 and C147 are .1uF 100 V and their derating is larger than 3 times.

The required derating is 50% for chip ceramic capacitors: actual derating is 10 times for capacitors connected to + 5 V, and it is more than 3 times for those connected to + - 15 V.

The required derating is 60% for tantalum capacitors: actual derating is 10 times for capacitors connected to + 5 V, and it is more than 3 times for those connected to + - 15 V.

WCA: the delta C variations, a 50% drop in initial minimum insulation resistance, a 100% increase of the initial maximum leakage current are well within the selected capacitors rated values.

3.3.2 Resistors derating and WCA

As can be seen from REF 02-03-04 the resistors of the DC/DC board are of the following types:

-chip resistors: 0.25~W , 1% , 50~V , $200~ppm/C^\circ$ -metal film resistors 0.125~W , 0.1% , 200~V~5ppm

-low valued resistors: 1 W 1%

The required derating is 80% for voltage, 50% for power for chip resistors.

The actual voltage derating:

- for chip resistors is 10 times at +5 V, more than 3 times at +-15 V;
- for metal film resistors is 40 times at +5 V, more than 10 times at +-15 V.
- at least 2 chip resistors are in series if connected to Power GND and to + 28 V, so their derating is larger than 3 times.

The power derating is such that the minimum allowed resistor directly connected between 5V and GND is 500 OHM and from +-15 V and GND is 4500 OHM. By checking REF 15 it is clear that this is not the case.

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

WCA: the worst case for all chip resistors is during thermal vacuum at about 70 °C, in this condition, by allowing a 2% reduction in resistance and taking into account the delta °C variations, a minimum resistance of 517 OHM directly connected between 5V and GND and of 4650 OHM between +- 15 V and GND are allowed. By checking REF 15 it is clear that this is not the case.

3.3.3 Transformers and inductances

All transformers and inductances are designed in agreement with REF 01 with respect to:

- the voltage applied, to be considered for insulation properties (REF 08 and 10);
- the current flowing, to be considered for the transformer/inductance core selection and wire gauge selection (REF 08 and 10).

WCA: no degradation is foreseen for the Worst Case Analysis for transformers, chokes, coils, motor windings components characteristics (section 3.3, page 8 of REF 01).

3.3.4 Transistors and diodes of the Power Converter Section

The Part Stress Analysis and the Worst Case Analysis for diodes and transistors follows. The DC/DC schematics (REF15) shows the components types, the thermal worst case analysis is shown in AD 9-10-11.

UNIT: DPU-ICU	Date: 28/02/2003
Schematic drawing: DPU-EM-310.02-0	Analysed by: Renato Orfei
Parts List: IFSI/ICU/LI/2001-004 (HIFI)	Parts List :PACS-CR-GS-012
Parts List :SPIRE-IFS-DOC-001031	
Ambient Temperature: Typ. 25 °C	
S/C max: 40 °C	
max 72 °C	

Ref	Type Value	Para.	RatedValue	Derat.	Oper.	C	Remark
Des.				value	value		
Q1	2N7236	Id	18 A @ 25 °C	11 A	2A	Y	Used for soft start

DPU/ICU

Derating and Worst Case Analysis

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

	(IRFM9140)		11 A @100 °C	6.6 A			
		BVdss	100 Vmin	95V	35V		
		Tj	150 °C	110 °C	72 °C		
Q3,	2N2905A	Ic	600 mA@25°C	450 mA	240mA	Y	HIFI-FCU +5V
		P	600mW@25°C	360mW	324mW		stabilised
		VCEsat	0.71V@240mA	0.78V	1.35V		CN: SRON-
		Tj	200 °C	110 °C	72 °C		U/HIFI/CN/2002-003
							pending
Q5,	2N2905A	Ic	600 mA@25°C	450 mA	190mA	Y	HIFI-FCU +15V
		P	600mW@25°C	360mW	256mW		stabilised
		VCEsat	0.71V@240mA	0.78V	1.35V		CN : SRON-
		Tj	200 °C	110 °C	72 °C		U/HIFI/CN/2002-003
							pending
Q6	2N2905A	Ic	600 mA@25°C	450 mA	150mA	Y	HIFI-FCU -15V
		P	600mW@25°C	360mW	150mW		stabilised
		VCEsat	0.71V@240mA	0.78V	1.35 V		CN : SRON-
		Tj	200 °C	110 °C	72 °C		U/HIFI/CN/2002-003
							pending
Q4	2N5154	Ic	10A <8,3 ms	7,5 A	-	Y	HIFI-FCU +5 V
		Ic	2A continuous	1,4 A	-		stabilized craw-bar
		P	1W @25 °C	600mW	-		protection
		Tj	200 °C	110 °C	40 °C		
Q7,	2N7224	Id	34 A @ 25 °C	20 A	1A	Y	Used in the push-pull
Q8			21 A @ 100 °C	12 A			for HIFI-FCU
`		BVdss	100 Vmin	95V	58V		
		Tj	150 °C	110 °C	72 °C		
Q9,	2N7224	Id	34 A @ 25 °C	20 A	1A	Y	Used in the push-pull
Q10			21 A @ 100 °C	12 A			for DPU-ICU
		BVdss	100 Vmin	95V	58V		
		Tj	150 °C	110 °C	72 °C		
Q11,	2N2222	Ic	500 mA	375 mA	<10mA	Y	Used at signal levels
Q12,	SMD	P	500mW	300mW	<10mW		
Q13		Tj	200 °C	110 °C	40 °C		
D2	1N4467	I	120 mA	60mA	< 2mA	Y	
	12V/0.12A	P	1,5W	0.75W	<25 mW	1	
	Zener	Tj	175 °C	110 °C	40 °C		
		1 ⁻ J				1	1

DPU/ICU Derating and

Derating and Worst Case Analysis

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

D3	1N5811US	Vr	150V	112V	35V	Y	Inversion protection
D6	1N4465	Ι	143 mA	70mA	< 3mA	Y	
	10V/0.14A	P	1,5W	0.75W	<30 mW		
	Zener	Tj	175 °C	110 °C	40 °C		
D7,	1N5811US	Vr	150V	112V	15V	Y	Used at signal level
D10		I	3A@55°C	1.5A	< 5 mA		
		Tj	175°C	110°C	40 °C		
D9,	1N5811US	Vr	150V	112V	70V	Y	Snubber circuit for
D17		I	3A@55°C	1.5A	< 40 mA		HIFI-FCU
		Tj	175°C	110°C	40 °C		
D8,	1N5822US	Vr	40V	30V	15V	Y	5V Rectifier for 5 V
D11		I	3A@55°C	1.5A	< 300 mA		stabilized for HIFI-FCU
		Tj	175°C	110°C	40 °C		
D12,	1N5811US	Vr	150V	112V	36V	Y	±15V Rectifier for ±16
D14,		I	3A@55°C	1.5A	<1 A		V Stabilized for FCU
D18,		Tj	175°C	110°C	40 °C		
D19							
D13,	1N5811US	Vr	150V	112V	15V	Y	PWM feed-back control
D15		I	3A@55°C	1.5A	< 500 mA		for FCU
		Tj	175°C	110°C	40 °C		
D18	1N6642US	Vr	100V	75V	15V	Y	Used at signal level
		I	300mA@25°C	150mA	< 5 mA		
		Tj	175°C	110°C	40 °C		
D20,	1N5822US	Vr	40V	30V	20V	Y	8V Rectifier for 8 V
D22		I	3A@55°C	1.5°	< 50 mA		unregulated for FCU
		Tj	175°C	110°C	40 °C		
D21,	1N5811US	Vr	150V	112V	40V	Y	±18V Rectifier for ±
D23,		I	3A@55°C	1.5A	< 80 mA		18V unregulated for
D25,		Tj	175°C	110°C	40 °C		FCU
D26							
D24,	1N5811US	Vr	150V	112V	15V	Y	Used at signal level
D27		I	3A@55°C	1.5A	< 5 mA		
		Tj	175°C	110°C	40 °C		
D54	1N4465	I	143 mA	70mA	< 10mA	Y	
	10V/0.14A	P	1,5W	0.75W	<100 mW		
	Zener	Tj	175 °C	110 °C	40 °C		
D28,	1N5811US	Vr	150V	112V	70V	Y	Snubber circuit for

CNR

DPU/ICU Derating and Worst Case Analysis

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

201		-			10 1		
D31		I	3A@55°C	1.5A	< 40 mA		DPU-ICU
		Tj	175°C	110°C	40 °C		
D29,	1N5811US	Vr	150V	112V	15V	Y	PWM feed-back control
D30		I	3A@55°C	1.5A	< 500 mA		for DPU-ICU
		Tj	175°C	110°C	40 °C		
D40,	1N5811US	Vr	150V	112V	32V	Y	±15V Rectifier for
D42,		Ι	3A@55°C	1.5A	< 300 mA		DPU-ICU
D44,		Tj	175°C	110°C	40 °C		
D47							
D32,	1N6642US	Vr	100V	75V	15V	Y	Used at signal level
D33,		I	300mA@25°C	150mA	< 5 mA		
D34,		Tj	175°C	110°C	40 °C		
D35,							
D36,							
D37,							
D38,							
D39,							
D41,							
D49							
D43,	1N6642US	Vr	100V	75V	30V	Y	Rectifier for PWM
D48		Ι	300mA@25°C	150mA	< 45 mA		control
		Tj	175°C	110°C	40 °C		
D53	1N6660	Vr	45V	33V	12V	Y	5V Rectifier for DPU-
		Ι	15A@25°C	7.5A	< 2 A		ICU
		Tj	150°C	110°C	40 °C		

WCA: the breakdown decrease of 5%, the 10% increase in the forward voltages and the increase of 5 times of the leakage currents do not affect the performances of the above diodes and transistors.

3.4 Motherboard Derating

The Motherboard is purely passive and contains only 12 DIN 41612 Eurocard connectors. The PCB itself, as all Printed Circuit Boards, will be designed and manufactured according to ESA approved Flight quality rules both for the materials and for the technology design rules. The DIN 41612 connectors are designed to withstand 2A per pin/socket. With reference to RD16 we can see what shown in the following table for the Nominal (or Prime) DPU:

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

Connector	Pins	Current	Maximum	Note
		expected	allowed Current	
		(A)	(A)	
P6	1,33,65; 3,35,67	< 2A	6A	+28 Bus
	22-31,54-63,86-95	<1A	6A	5,±15,8V, ±18V
				only HIFI FCU
P5	1,33,65,2,3,35,36,66,	<2A	16A	5V DPU
	17,81,30,32,62,64,94,96			
	34	<100mA	2A	2.5V FPGA
	29,61,93; 31,63,95	<0,5A	6A	±15 V DPU

The same applies for DPU Redundant on the same pins for connectors P11 and P12.

4 Analysis of the electrical interfaces with the spacecraft

The interfaces of the DPU/ICU with the spacecraft are:

- mechanical,
- thermal
- electrical.

Only the electrical interfaces will be dealt with in the following and these can be splinted in two:

- Power interface
- Telemetry and Telecommand interface.

4.1 Power interface derating and Worst Case Analysis

The DPU/ICU power interface with the spacecraft is shown in the following figure.

It is to be recalled that in a single DPU/ICU box there will be two completely separated units with one ON while the other is OFF in cold redundancy state. The spacecraft decides which unit is ON by powering it via the 28 V lines.

The interfaces with the S/C power system are:

- a) the wires from the spacecraft PDU to DPU/ICU connector(s);
- b) the power connector pins;
- c) the common mode transformer located in the DC/DC converter board.
- a) The wires from the PDU to DPU/ICU are not considered here as they are S/C provided.

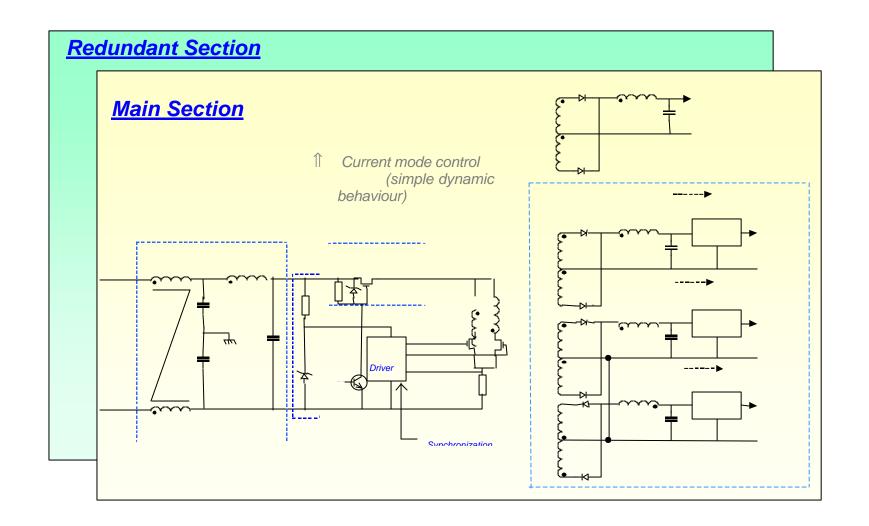
Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Date: 24/09/2003

b) There are 2 power connector pins for +28 V and 2 power connector pins for 28 V return. The maximum steady current is less than 1 A for PACS and SPIRE and less than 2 A for HIFI, when HIFI is fully operational. The 2 pins are well beyond the 50% required derating as each connector pin is rated 5 A.

WCA: no degradation is foreseen for the Worst Case Analysis for the connectors components characteristics (section 3.6, page 11 of REF 01).


- c) The common mode transformer is designed in agreement with REF 01 with respect to:
 - the voltage applied, to be considered for insulation properties (REF 08 and 10);
 - the current flowing, to be considered for the transformer core selection and wire gauge selection (REF 08 and 10).

WCA: : no degradation is foreseen for the Worst Case Analysis for transformers, chokes, coils, motor windings components characteristics (section 3.3, page 8 of REF 01).

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

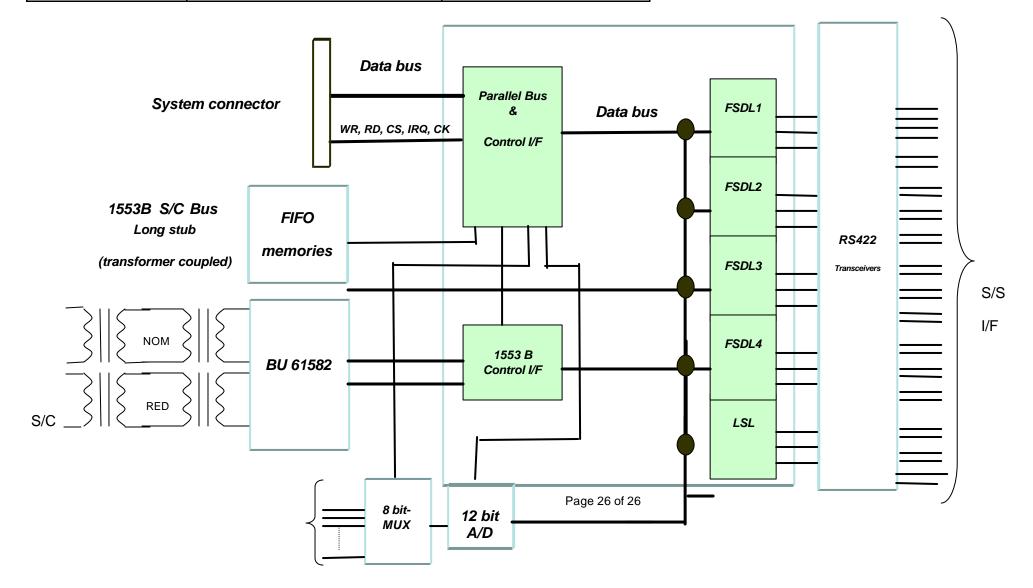
Date: 24/09/2003

4.2 Spacecraft Interface Derating and Worst Case Analysis

In the following figure the spacecraft interface circuitry is shown as part of the interface board. The interface is based on the MIL STD 1553B, that is on the spacecraft side (acting as Bus Controller) there is a bus on which are serially transmitted telecommands and serially received the telemetry from the instruments (acting as Remote Terminals).

The chosen configuration is "long stub" and the electrical interface is implemented via a suitable transformer. It is to be noted that there are a Prime ("A") and Redundant (B") connections to the Prime CDMS, and the same applies for the Redundant CDMS and the Redundant DPU/ICU.

There are no derating and/or WCA rules to be followed in the cabling from CDMU (S/C responsibility) and the pertinent DPU/ICU box connectors, as the current flowing via the sockets is well below the rated 5 A (28 Vpp on 75 OHM).


The transformer used to interface with the spacecraft 1553B bus in the "long stub" configuration is just designed by BTC (a subsidiary of DDC) to this purpose and recommended by DDC (the manufacturer of the special hybrid device that implements the 1553B standard). The transformer characteristics (type HLP6002) are then such as to be selected and be put in the Co-ordinated Parts Procurement Agency. No further analysis is then carried out about this component and thus this has to be considered "passed" as far as the derating criteria are concerned (see also section 3.2.3.4).

WCA: this interface has to be considered compliant not only because the transformers are purchased via the Co-ordinated Parts Procurement Agency, but also because no degradation is foreseen for the Worst Case Analysis for transformers, chokes, coils, motor windings components characteristics (section 3.3, page 8 of REF 01).

Ref.: CNR.IFSI.2002TR06

Issue: 1.4

