

SRef.:SPIRE-UCF-PRJ-001149 CRef.: HSO-CDF-ICD-011 Issue: 2.0 Issue Date: 6th February 2002 Page: 1 of 14

Spectrometer Calibrator - Interface Control Document

Spectrometer Calibrator (SCAL)

Herschel

SPIRE

Interface Control Document

SPIRE Ref.: SPIRE-UCF-PRJ-1149 Cardiff Ref.: HSO-CDF-ICD-011 Issue: 2.0

Prepared by: Peter Hargrave

Approved by:

Distribution list

RAL	Bruce Swinyard	
	John Delderfield	
	Doug Griffin	
	Sam Heys	
MSSL	John Coker	
	Berend Winter	
	Chris Brockley-Blatt	
CEA	Christophe Cara	
	Jean-Louis Augerres	
Cardiff	Matt Griffin	
	Iris Didschuns	
IFSI	Riccardo Cerulli-Irelli	
	Anna Maria Di Giorgio	
LAM	Kjetil Dohlen	

Astronomy Instrumentation Group,	F:\Cardiff_workpackages\Configured_Documents\SCAL\SCAL_ICD_HSO
Department of Physics & Astronomy,	_CDF_ICD_011_2_0.doc
University of Wales, Cardiff,	
5 The Parade,	
Cardiff	
CF24 3YB	
+44 (0)2920 876682	

Update history

Date	Version	Remarks
7/9/01	1.0	First issue for DDR
6/02/02	2.0	Issue for IBDR.

List of Acronyms

Term	Meaning	Term	Meaning
AD	Applicable Document	IR	Infrared
ADC	Analogue to Digital Converter	IRD	Instrument Requirements Document
AIV	Assembly, Integration and Verification	IRTS	Infrared Telescope in Space
AME	Absolute Measurement Error	ISM	Interstellar Medium
AOCS	Attitude and Orbit Control System	JFET	Junction Field Effect Transistor
APART	Arizona's Program for the Analysis of Radiation Transfer	ISO	Infrared Space Observatory
APE	Absolute Pointing Error	LCL	Latching Current Limiter
ASAP	Advanced Systems Analysis Program	LIA	Lock-In Amplifier
ATC	Astronomy Technology Centre, Edinburgh	LVDT	Linear Variable Differential Transformer
AVM	Avionics Model	LWS	Long Wave Spectrometer (an instrument used on ISO)
BDA	Bolometer Detector Array	MAC	Multi Axis Controller
BFL	Back Focal Length	MAIV	Manufacturing, Assembly, Integration and Verification
BRO	Breault Research Organization	MCU	Mechanism Control Unit = HSMCU
BSM	Beam Steering Mirror	MGSE	Mechanical Ground Support Equipment
CBB	Cryogenic Black Body	M-P	Martin-Puplett
CDF	Cardiff, Department of Physics & Astronomy	NEP	Noise Equivalent Power
CDMS	Command and Data Management System	ODS	Neutron Transmutation Doped
CDMU	Command and Data Management Unit	OCSE	On-Board Soliware
CEA	Commisseriet a l'Energia Atomique	OUSE	Optical Ground Support Equipment
CMOS	Complimentary Metal Oxide Silicon	OND	Optical Path Difference
CMOS	Centre of Gravity	PACS	Photodetector Array Camera and Spectrometer
CPU	Central Processing Unit	PCAL	Photometer Calibration source
COM	Cryogenic Qualification Model	PFM	Proto-Flight Model
o q.n	erjogenne Quanneation moder		Proportional Integral and Differential (used in the context
CVV	Cryostat Vacuum Vessel	PID	of feedback control loop architecture)
DAC	Digital to Analogue Converter	PLW	Photometer, Long Wavelength
DAQ	Data Acquisition	PMW	Photometer, Medium Wavelength
DCU	Detector Control Unit = HSDCU	POF	Photometer Observatory Function
DDR	Detailed Design Review	PROM	Programmable Read Only Memory
DM	Development Model	PSW	Photometer, Short Wavelength
DPU	Digital Processing Unit = HSDPU	PUS	Packet Utilisation Standard
DSP	Digital Signal Processor	RAL	Rutherford Appleton Laboratory,
DQE	Detective Quantum Efficiency	RD	Reference Document
EDAC	Error Detection and Correction	RMS	Root Mean Squared
EGSE	Electrical Ground Support Equipment	SCAL	Spectrometer Calibration Source
EM	Engineering Model	SCUBA	Submillimetre Common User Bolometer Array
EMC	Electro-magnetic Compatibility	SED	Spectral Energy Distribution
EMI	Electro-magnetic Interference	SMEC	Spectrometer Mechanics
ESA	European Space Agency	SMPS	SWITCH Mode Power Supply
FID	For Infromd	SOE	Spactromator Observatory Eurotion
FIRST	Far Infra-Red and Submillimetre Telescope	SPIRE	Spectral and Photometric Imaging Receiver
FOV	Field of View	SRAM	Static Random Access Memory
F-P	Fabry-Perot	SSSD	SubSystem Specification Document
FPGA	Field Programmable Gate Array	STP	Standard Temperature and Pressure
FPU	Focal Plane Unit	SVM	Service Module
FS	Flight Spare	TBC	To Be Confirmed
FTS	Fourier Transform Spectrometer	TBD	To Be Determined
FWHM	Full Width Half maximum	TC	Telecommand
GSFC	Goddard Space Flight Center	URD	User Requirements Document
HK	House Keeping	UV	Ultra Violet
HOB	Herschel Optical Bench	WE	Warm Electronics
HPDU	Herschel Power Distribution Unit	ZPD	Zero Path Difference
HSDCU	Herschel-SPIRE Detector Control Unit		
HSDPU	Herschel-SPIRE Digital Processing Unit		
HSFCU	Herschel-SPIRE FPU Control Unit	l	
HSU	Herschei Space Observatory	ł	
	Interface	ł	
IID-A	Instrument Interface Document - Part A		
IID-B	Initial Mass Function	1	
11411	initial mass fulletion	1	

Table of Contents

1. Scop	De	5
2. Doc	uments	5
2.1.	Applicable documents	5
3. Mec	hanical Interface	5
3.1.	Mass	9
3.2.	Centre of Gravity	9
3.3.	Resonance	9
4. The	mal Interface	9
4.1.	Contact force	9
4.2.	Surface Area	9
5. Opti	cal Interface	9
6. Elec	trical Interface	9
6.1.	Heater Impedance	9
6.2.	Maximum Drive Current	9
6.3.	Adjustability of Drive Current	9
6.4.	Required Maximum Drive Voltage	9
6.5.	Drive Current Stability	
6.6.	Power Supply Redundancy	
6.7.	Thermometer Details	
6.8.	Requirements on Thermometry Accuracy	
6.9.	Connector Pin-Outs and Harness Definition	
7. Data	Interface	
7.1.	Commands	
7.2.	PID parameters	

1. Scope

The purpose of this document is to define the interfaces between the spectrometer calibrator (SCAL) and SPIRE.

The intention of this document is to present all interface information available at a given release date and will be updated as and when changes to the design are made under configuration control.

2. Documents

2.1. Applicable documents

All applicable documents are listed in the AD chapter of the CIDL (HSO-CDF-LI-029).

3. Mechanical Interface

The SCAL assembly will bolt directly to a baffle, provided by MSSL, which also houses SM8B (see Figure 1, Figure 2 and Figure 3). To ensure adequate heat sinking, provision will be made for the attachment of a thermal strap.

Figure 1 Isometric view of SCAL interface to baffle.

Figure 2 Plan view of SCAL and baffle.

Figure 3 Plan view of SCAL and baffle. Top cover has been removed to show SM8B and beams.

Figure 4 SCAL-structure interface drawing

Figure 5 SCAL interface drawing

HSO-CDF-ICD-011 Spectrometer Calibrator Interface Control Document Page 8 of 14

3.1. Mass

The current mass estimate for the entire SCAL assembly is 126.2 g.

3.2. Centre of Gravity

3.3. Resonance

A full mechanical analysis is in progress.

4. Thermal Interface

There is no direct thermal interface between SCAL and the SPIRE optical bench, as SCAL is mounted off the SCAL/SM8 baffle. In the unlikely event that heat sinking through the baffle to the SOB proves insufficient, provision is made for a thermal strap from the SCAL baseplate directly to the SOB. A thermometer on the SCAL baseplate will monitor the temperature of the SCAL interface.

The SCAL interface surface will be aluminium alloy, grade 6061, coated with electroless nickel (nominally 10 microns) and gold (nominally 5 microns). The interface surface provides a precision central hole and six mounting holes, tapped 4-40 UNC, with locking inserts.

4.1. Contact force

4.2. Surface Area

5. Optical Interface

The SCAL sources are placed at a pupil at the second input port to the FTS. The SCAL_A and SCAL_B sources fill 4% and 2% respectively of the pupil area, and are coated with a high (99%) emissivity finish. The rest of the pupil area is at the temperature of the SPIRE optical bench (SOB), and coated with the same high emissivity finish.

6. Electrical Interface

6.1. Heater Impedance

The nominal impedance of all SCAL source heaters is 500 Ω .

6.2. Maximum Drive Current

Maximum power is specified as 5mW (goal - TBC), but we may want to run at higher power. Therefore we have allowed for a maximum power dissipation of 15mW. Assuming a 500 Ω heater resistor, this gives a required drive current of 5.5mA.

6.3. Adjustability of Drive Current

12-bit resolution (minimum) is required in the range 0 - 5.5 mA. This will give a minimum of 2275 adjustment steps in the target operating range.

6.4. Required Maximum Drive Voltage

The required maximum drive voltage, assuming a 30 Ω harness impedance in each direction, is 3.08 V. The voltage drop across the heater in this situation will be 2.75 V.

6.5. Drive Current Stability

The required repeatability for calibrator radiant power is 1%.

The stability and repeatability of the drive current should be within $5\mu A$ or 0.5% of the drive current, whichever is the greater.

6.6. Power Supply Redundancy

Separate power supplies are required for each SCAL heater -2 prime, 2 redundant. Completely independent circuits will drive the prime and redundant SCAL heaters.

6.7. Thermometer Details

The thermometers to be used in the heater bodies are Lakeshore Cernox 1030 sensors.

6.8. Requirements on Thermometry Accuracy

The warm electronics requirements for the SCAL thermometers are:

- (1) Constant current drive
- (2) Drive current in the range $10 30 \,\mu\text{A}$. Currents above this range may cause unacceptable self-heating.
- (3) 16-bit ADC resolution.
- (4) Stability: 1% on drive current required, driving through resistances of $(500+2000)\Omega$ (2k Ω from two harness wires), up to ~35k Ω .

6.9. Connector Pin-Outs and Harness Definition

A schematic of the SCAL harness is shown in Figure 6. This harness, to be supplied by Cardiff with SCAL, is isothermal, and runs between SCAL and the RF filter box. All conductors will be made from copper, and the harness length and routing is to be defined by MSSL. The pin allocation for the MDM37 PSB connectors (prime and redundant) is illustrated by Figure 7, and wiring details of the SPIRE cryoharness, C10, are shown in Table 1 and Figure 6.

Figure 6 Schematic of SCAL harness wiring scheme. The same scheme is used for prime and redundant harnesses.

Function	37way	Max.	Wire	Max	100way #10
	J21	current	lay-up	Ohms	
HS Spect. 4% temperature I+ SCAL_A	5	1 µA	Insulated	1000	
HS Spect. 4% temperature V+	6	N/A	screened	1000	
HS Spect. 4% temperature V-	24	N/A	twisted quad	1000	
HS Spect. 4% temperature I-	25	1 µA		1000	
HS Spect. 4% temperature shld*	23	N/A	-	N/A	
HS Spect. 2% temperature I+ SCAL_B	7	1 µA	Insulated	1000	
HS Spect. 2% temperature V+	8	N/A	screened	1000	
HS Spect. 2% temperature V-	26	N/A	twisted quad	1000	
HS Spect. 2% temperature I-	27	1 µA	-	1000	
HS Spect. 2% temperature shld*	9	N/A	-	N/A	
HS Spect. Stim near SOB temperature I+	10	1 µA	Insulated	1000	
HS Spect. Stim near SOB temperature V+	11	N/A	screened	1000	
HS Spect. Stim near SOB temperature V-	28	N/A	twisted quad	1000	
HS Spect. Stim near SOB temperature I-	29	1 µA	-	1000	
HS Spect. Stim near SOB temperature shld*	30	N/A		N/A	
HS Spect. 4% heater I+ SCAL_A	14	9 mA	Twisted	30	
HS Spect. 4% heater V+	15	9 mA	quad	30	
HS Spect. 4% heater I-	33	9 mA		30	
HS Spect. 4% heater V-	34	9 mA		30	
HS Spect. 2% heater I+ SCAL_B	16	7 mA	Twisted	30	
HS Spect. 2% heater V+	17	7 mA	quad	30	
HS Spect. 2% heater I-	35	7 mA		30	
HS Spect. 2% heater V-	36	7 mA]	30	

Table 1 Wiring details for SPIRE cryoharness, C10.

Figure 7 Schematic of pin allocation on SCAL prime and redundant connectors

7. Data Interface

The following information applies to both prime and redundant sources.

SCAL has two heated sources, each with its own thermometer. These sources are labelled as SCAL_A and SCAL_B.

Normal operation of SCAL will involve the continuous application of a specified drive current for the duration of the "on" state to each of the heater sources. Each heater source may be run independently, or together at different commanded current levels. Each source needs to be controlled via a feedback loop.

Command ID	IFSI Designation	Name	Description
SCAL A1		SCAL A on/off	Switches SCAL A drive circuit
_		_	on/off
SCAL A2		SCAL A current	Sets SCAL A current level
		level	
0.011 1.0			
SCAL_A3		SCAL_A read	Reads thermometer on SCAL_A
SCAL_B1		SCAL_B on/off	Switches SCAL_B drive circuit
			on/off
SCAL_B2		SCAL_B current	Sets SCAL_B current level
		level	
SCAL_B3		SCAL_B read	Reads thermometer on SCAL_B
SCAL_SOB1		SCAL_SOB read	Reads thermometer at SCAL
			interface. Note – this command may
			be incorporated in the general SPIRE
			housekeeping.

7.1. Commands

7.2. PID parameters

The time constants stated in this table are those predicted for heating the sources to ~50K for good matching of the nominal telescope spectrum (80 K, 4% emmisivity)

SCAL_A	Time constant (90% rise time)	15 minutes (TBC)
	Current drive	0-5.5mA with 12-bit
		resolution
	Thermometer readout	Cernox-1030 thermometer –
		calibration will be supplied
SCAL_B	Time constant (90% rise time)	10 minutes (TBC)
	Current drive	0-5.5mA with 12-bit
		resolution
	Thermometer readout	Cernox-1030 thermometer –
		calibration will be supplied

It may be necessary to reduce the warm up time by applying a warm-up sequence with a higher peak current. This should be provided for by the use of an OBS script in the DPU.