

Spectrometer Calibrator

Failure Modes Effects & Criticality Analysis (FMECA) Report

SPIRE Ref.: SPIRE-QMW-PRJ-001102 Cardiff Ref.: HSO-CDF-RP-030 Issue: 1.1

Prepared by: Peter Hargrave Last Modified on: 15 November 2001 Approved by:

Distribution list

Update history

Date	Version	Remarks
31/08/01	1.0	First Issue for DDR
15/11/01	1.1	Minor corrections

List of Acronyms

Term	Meaning	Term	Meaning				
AD	Applicable Document	IR	Infrared				
ADC	Analogue to Digital Converter	IRD	Instrument Requirements Document				
AIV	Assembly, Integration and Verification	IRTS	Infrared Telescope in Space				
AME	Absolute Measurement Error	ISM	Interstellar Medium				
AOCS	Attitude and Orbit Control System	JFET	Junction Field Effect Transistor				
APART	Arizona's Program for the Analysis of Radiation	ISO					
	Transfer		Infrared Space Observatory				
APE	Absolute Pointing Error	LCL	Latching Current Limiter				
ASAP	Advanced Systems Analysis Program	LIA	Lock-In Amplifier				
ATC	Astronomy Technology Centre, Edinburgh	LVDT	Linear Variable Differential Transformer				
AVM	Avionics Model	LWS	Long Wave Spectrometer (an instrument used on ISO)				
BDA	Bolometer Detector Array	MAC	Multi Axis Controller				
BFL	Back Focal Length	MAIV	Manufacturing, Assembly, Integration and Verificatio				
BRO	Breault Research Organization	MCU	Mechanism Control Unit = HSMCU				
BSM	Beam Steering Mirror	MGSE	Mechanical Ground Support Equipment				
CBB	Cryogenic Black Body	M-P	Martin- Puplett				
CDF	Cardiff, Department of Physics & Astronomy	NEP	Noise Equivalent Power				
CDMS	Command and Data Management System	NTD	Neutron Transmutation Doped				
CDMU	Command and Data Management Unit	OBS	On-Board Software				
CDR	Critical Design Review	OGSE	Optical Ground Support Equipment				
CEA	Commissariat a l'Energie Atomique	OMD	Observing Modes Document				
CMOS	Complimentary Metal Oxide Silicon	OPD	Optical Path Difference				
CoG	Centre of Gravity	PACS	Photodetector Array Camera and Spectrometer				
CPU	Central Processing Unit	PCAL	Photometer Calibration source				
CQM	Cryogenic Qualification Model	PFM	Proto-Flight Model				
сvv		PID	Proportional, Integral and Differential (used in the				
	Cryostat Vacuum Vessel		context of feedback control loop architecture)				
DAC	Digital to Analogue Converter	PLW	Photometer, Long Wavelength				
DAQ	Data Acquisition	PMW	Photometer, Medium Wavelength				
DCU	Detector Control Unit = HSDCU	POF	Photometer Observatory Function				
DDR	Detailed Design Review	PROM	Programmable Read Only Memory				
DM	Development Model	PSW	Photometer, Short Wavelength				
DPU	Digital Processing Unit = HSDPU	PUS	Packet Utilisation Standard				
DSP	Digital Signal Processor	RAL	Rutherford Appleton Laboratory,				
DQE	Detective Quantum Efficiency	RD	Reference Document				
EDAC	Error Detection and Correction	RMS	Root Mean Squared				
EGSE	Electrical Ground Support Equipment	SCAL	Spectrometer Calibration Source				
EM EMC	Engineering Model	SCUBA SED	Submillimetre Common User Bolometer Array				
EMI	Electro-magnetic Compatibility Electro-magnetic Interference	SMEC	Spectral Energy Distribution Spectrometer Mechanics				
ESA	European Space Agency	SMPS	Switch Mode Power Supply				
FCU	FCU Control Unit = HSFCU	SOB	SPIRE Optical Bench				
FIR	Far Infrared	SOF	Spectrometer Observatory Function				
FIRST	Far Infra-Red and Submillimetre Telescope	SPIRE	Spectral and Photometric Imaging Receiver				
FOV	Field of View	SRAM	Static Random Access Memory				
F-P	Fabry-Perot	SSSD	SubSystem Specification Document				
FPGA	Field Programmable Gate Array	STP	Standard Temperature and Pressure				
FPU	Focal Plane Unit	SVM	Service Module				
FS	Flight Spare	TBC	To Be Confirmed				
FTS	Fourier Transform Spectrometer	TBD	To Be Determined				
FWHM	Full Width Half maximum	TC	Telecommand				
GSFC	Goddard Space Flight Center	URD	User Requirements Document				
<u>ее, е</u> НК	House Keeping	UV	Ultra Violet				
НОВ	Herschel Optical Bench	WÉ	Warm Electronics				
HPDU	Herschel Power Distribution Unit	ZPD	Zero Path Difference				
HSDCU	Herschel-SPIRE Detector Control Unit						
HSDPU	Herschel-SPIRE Digital Processing Unit						
HSFCU	Herschel-SPIRE FPU Control Unit						
HSO	Herschel Space Observatory						
IF	Interface						
IID-A	Instrument Interface Document - Part A						
IID-B	Instrument Interface Document - Part B						
IMF	Initial Mass Function	1					

Table of Contents

1.	<u>Scope</u>	5
	Documents	
	2.1. Applicable documents	
	2.2. Reference documents	5
<u>3.</u>	Details of the analysis	5

1. Scope

This document presents the results of the FMECA carried out on the SCAL design.

2. Documents

2.1. Applicable documents

All applicable documents are listed in the AD chapter of the CIDL (HSO-CDF-LI-029).

2.2. Reference documents

3. Details of the analysis

A failure modes effects and criticality analysis has been performed on all functional elements of SCAL (excluding structural elements whose integrity has been assessed with stress analysis and fracture mechanics analysis as necessary) which can cause failure effects within the experiment or cause damage to or interfere with, the proper functioning of the SPIRE instrument or Herschel spacecraft.

Each failure effect identified has been given a criticality category according to the definition below:

- Category 1: The failure effect is not confined to the subsystem. When this failure results also in loss or degradation of the instruments function this shall be stated.
- Category 2: The failure results in loss or degradation of the subsystems function but the effect is confined to the subsystem.
- Category 3: Minor internal subsystem failures.

The following attributes have been added to the criticality category as appropriate:

- "R", if the design contains a redundant item which can perform the same function
- "SH", if the failure effect causes a safety hazard
- "SPF" if the failure is caused by a single point failure.

The following failure modes have been considered: -

Premature operation Failure to operate (at the prescribed time) Failure to cease operation (at the prescribed time) Failure during operation Degradation or out of tolerance operation For failure at component level e.g. hardware interface - short circuit - open circuit - open circuit - incorrect function e.g. from single event upset - ex: latch-ups. Incorrect commands or sequence of commands Incorrect software functions Mechanical failure

Design specifications, descriptions functional diagrams etc. used in the preparation of the FMECA shall be attached or referenced.

 Table 1 Results of FMECA of SCAL subsystem.

				FAILURE M	ODES EFFECTS AND CRITIC	ALITY /	ANALYSIS (FMEC	CA)		
Project/P System/S Mission µ Prepared Approve Date: 25/		pment: SCAL nal Mode: Spac	e Flight							
ld number	ltem/ block	Function	Failure mode	Failure cause	Failure effects a. Local effects b. End effects	Severity	Failure detection method/ observable symptoms	Compensation provisions	Correction actions	Remarks
000.001	SCAL Assembly		Input power short to ground (source A or B)	Connector Failure	a. Loss of SCAL_A or SCAL_B sources b. Degraded dynamic range for spectrometer detectors	2R	No source heating for one of the prime sources	Switch to redundant side	Can run second prime source – impaired telescope nulling	There are two prime sources with full redundancy. Running the other prime source will still allow some degree of telescope nulling with perhaps increased power dissipation
000.002	SCAL assembly		Input power open circuit (source A or B)	Connector Failure	a. Loss of SCAL_A or SCAL_B sources b. Reduced dynamic range for spectrometer detectors	2R	No source heating for one of the prime sources	Switch to redundant side	Can run second prime source – impaired telescope nulling	There are two prime sources with full redundancy. Running the other prime source will still allow some degree of telescope nulling with perhaps increased power dissipation
000.003	SCAL assembly		Thermometry short (source A or B)	Connector Failure	a. Inability to monitor SCAL_A or SCAL_B temperatures b. Loss of thermometry data for source	3R	Low impedance reading on source thermometer	Switch to redundant side	Can still run source "blind" based on experimental data until we maximise the central peak in the interferogram	

FAILURE MODES EFFECTS AND CRITICALITY ANALYSIS (FMECA)

Product: SPIRE Instrument Project/Phase: Herschel System/Subsystem/Equipment: SCAL Mission phase/Operational Mode: Space Flight Prepared by: P.Hargrave Approved by: Date: 25/08/01 Document reference: Issue:

ld number	Item/ block	Function	Failure mode	Failure cause	Failure effects a. Local effects b. End effects	Severity	Failure detection method/ observable symptoms	Compensation provisions	Correction actions	Remarks
000.004	SCAL assembly		Thermometry open circuit (source A or B)	Connector Failure	a. Inability to monitor SCAL_A or SCAL_B temperatures b. Loss of thermometry data for source	3R	Open circuit reading for thermometer	Switch to redundant side	Can still run source "blind" based on experimental data until we maximise the central peak in the interferogram	
100.001	SCAL_A(P) – prime 4% source assembly	Radiant source for telescope nulling	Heater body breaks off strut	Manufacturing error. Part failure.	a. Loss of SCAL_A(P) source b. Degraded dynamic range for spectrometer detectors. Possible damage to other subsystem and instrument components (e.g. SM8B, beam splitter)	1R	Open circuit reading for thermometer and heater	a. Switch to redundant side b. None	Can run second prime source – impaired telescope nulling	
101.001	SCAL_A(P) – heater body		Loss of black coating	Manufacturing error.	 a. Reduced emissivity of source – increased power dissipation to achieve required level of nulling. Impaired nulling. b. Possible damage to other subsystem and instrument components (e.g. SM8B, beam splitter) from coating fragments 	1R		a. Switch to redundant side b. None	Can run second prime source – impaired telescope nulling	May not be possible to match spectrum within requirements
102.001	SCAL_A(P) – strut	Supports heater body – provides thermal isolation	Breaks	Material failure	a. Loss of source b. Reduced dynamic range for spectrometer detectors. Possible damage to other subsystem and instrument components (e.g. SM8B, beam splitter)	1R		a. Switch to redundant side b. None	Can run second prime source – impaired telescope nulling	

FAILURE MODES EFFECTS AND CRITICALITY ANALYSIS (FMECA)

Product: SPIRE Instrument Project/Phase: Herschel System/Subsystem/Equipment: SCAL Mission phase/Operational Mode: Space Flight Prepared by: P.Hargrave Approved by: Date: 25/08/01 Document reference: Issue:

ld number	ltem/ block	Function	Failure mode	Failure cause	Failure effects a. Local effects b. End effects	Severity	Failure detection method/ observable symptoms	Compensation provisions	Correction actions	Remarks
103.001	SCAL_A(P) – sapphire plate	Provides electrical isolation for heater resitor & good thermal path to heater body	Cracks	error. Differential	a. Impaired thermal path to heater body – increased warm-up time b. Longer warm-up	3R		Switch to redundant side		May be detectable by performing cross- calibration with redundant side sources.
104.001	SCAL_A(P) – thermometer	Monitors source temperature	Short		a. Inability to monitor SCAL_A temperature b. Loss of thermometry data for source	3R	Low impedance reading on source thermometer	Switch to redundant side	Can still run source "blind" based on experimental data until we maximise the central peak in the interferogram	
104.002			Open		a. Inability to monitor SCAL_A temperature b. Loss of thermometry data for source	3R	Open circuit reading for thermometer	Switch to redundant side	Can still run source "blind" based on experimental data until we maximise the central peak in the interferogram	
104.003			Erratic output	Manufacturing error. Part failure.	a. Inability to monitor SCAL_A temperature b. Loss of thermometry data for source	3R		Switch to redundant side	Can still run source "blind" based on experimental data until we maximise the central peak in the interferogram	

FAILURE MODES EFFECTS AND CRITICALITY ANALYSIS (FMECA)

Product: SPIRE Instrument Project/Phase: Herschel System/Subsystem/Equipment: SCAL Mission phase/Operational Mode: Space Flight Prepared by: P.Hargrave Approved by: Date: 25/08/01 Document reference: Issue:

ld number	ltem/ block	Function	Failure mode	Failure cause	Failure effects a. Local effects b. End effects	Severity	Failure detection method/ observable symptoms	Compensation provisions	Correction actions	Remarks
104.004			No output	Manufacturing error. Part failure.	a. Inability to monitor SCAL_A temperature b. Loss of thermometry data for source	3R		Switch to redundant side	Can still run source "blind" based on experimental data until we maximise the central peak in the interferogram	
105.001	SCAL_A(P) – Heater resistor	Heater for source		Manufacturing error. Part failure.	a. Loss of source b. Reduced dynamic range for spectrometer detectors	2R	No source heating	Switch to redundant side	Can run second prime source – impaired telescope nulling	There are two prime sources with full redundancy. Running the other prime source will still allow some degree of telescope nulling with perhaps increased power dissipation
105.002			Short	Manufacturing error. Part failure.	a. Loss of source b. Reduced dynamic range for spectrometer detectors	2R	No source heating	Switch to redundant side	Can run second prime source – impaired telescope nulling	There are two prime sources with full redundancy. Running the other prime source will still allow some degree of telescope nulling with perhaps increased power dissipation
105.003			Changed value	Manufacturing error. Part failure.	a. Change in drive requirements b. None	3R	Monitor I/V values for heater (4 wire configuration)	Change drive current Switch to redundant side?	Change drive current	
1							1			

HSO-CDF-RP-030