

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 1 of 44

CNR
IFSI

HERSCHEL

SPIRE On Board Software Software Specification Document

Document Ref.: SPIRE-IFS-PRJ-001036

Issue: 1.1

Prepared by: Sergio Molinari
 Riccardo Cerulli-Irelli

Approved by: Renato Orfei
 Ken J. King
 Bruce M. Swinyard

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 2 of 44

1 Introduction..3
1.1 Purpose of the Document...3
1.2 Acronyms ...3
1.3 References..4

1.3.1 Applicable Documents...4
1.3.2 Reference Documents ..4

1.4 Document Change Record ...5
2 Software Requirements ..6

2.1 Initialization and Configuration Requirements..6
2.2 Spacecraft Interface Requirements ..7
2.3 Telecommand Requirements..10
2.4 Telemetry Requirements ..11
2.5 Functional and Operational Requirements...12
2.6 Memory Management Requirements...14
2.7 Subsystem Interface Requirements..15
2.8 Synchronization Requirements ..17

3 Architectural Design ..18
3.1 The DPU/VIRTUOSO/OBS System ...18
3.2 The SPIRE OBS...18

3.2.1 The Virtual Machine ..18
3.2.2 Hardware/Software Interactions ..19
3.2.3 OBS Tasks..20
3.2.4 Data Memory Management On-Board ..24
3.2.5 C Interrupt Service Routines..26
3.2.6 Tasks Description...28

4 User Requirements Traceability Matrix...37
4.1 Switch-on Requirements ..37
4.2 Telecommands Requirements ..37
4.3 Telemetry Generation Requirements ...39
4.4 Synchronization Requirements ..41
4.5 Testing and Maintainance Requirements ...41
4.6 Autonomy Function Requirements ..42
4.7 Functional Requirements ...43
4.8 Operating Modes Requirements...43

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 3 of 44

1 Introduction

1.1 Purpose of the Document

This document describes the Architecture Design that led to the generation of the SPIRE On-Board
Software. The OBS runs under the VIRTUOSO Operating System, which is designed for Real-
Time DSP applications. We will first describe the main features of VIRTUOSO kernel services that
are used in the OBS: Tasks, Semaphores, FIFO Message Queues, Events and Memory Pools. We
will then describe the implementation of the on-board memory management. Finally, we will
describe the OBS applicative by a series of Architecture Diagrams where the OBS is broken down
into the individual tasks; each task is then decomposed into modules. Each diagram module maps
one, or a group, of modules in the OBS code. Blocks and modules will be described in detail,
enhancing the design features that implement the various requirements in the URD AD7.
 The DPU Switch-on and Boot procedure is not implemented as part of the OBS, but it is
implemented as a separate entity stored on a PROM. See RD8 for details.

1.2 Acronyms

ACE 1553 Advance Computing Engine
AOT Astronomical Observation Template
APID Application Identifier
CASE Computer Aided Software Engineering
CDMS Command and Data Management System
CNR Consiglio Nazionale delle Ricerche
CPU Control Processing Unit
DPU Digital Processing Unit
DRCU Detector Readout and Control Unit
EEPROM Electrically Erasable Programmable Read Only Memory
FCU FPU Control Unit
HERSCHEL Far InfraRed and Submillimeter Telescope
FOV Field Of View
FPU Focal Plane Unit
FTS Fourier Transform Spectrometer
HIFI Heterodyne Instrument for HERSCHEL
HK HouseKeeping
HS High Speed
HW HardWare
ICC Instrument Control Centre
ICS Instrument Command Sequence
IFSI Istituto di Fisica dello Spazio Interplanetario
MCU Mechanical Control unit
MOC Mission Operations Centre
OBS On Board Software
OIRD Operations Interface Requirements Document
PACS Photoconductor Array Camera and Spectrometer

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 4 of 44

PROM Programmable Read Only Memory
RAM Random Access Memory
ROM Read Only Memory
SA 1553 DPRAM SubAddress
SPIRE Spectral and Photometric Imaging Receiver
SW SoftWare
TAI Temps Atomique International
TBC To Be Confirmed
TBD To Be Defined
TBW To Be Written
TC TeleCommand
TM TeleMetry
UR User Requirement
URD UR Document
WE Warm Electronics

1.3 References

1.3.1 Applicable Documents

Document
Reference

Name Number

AD1 FIRST/Planck Instrument Interface Document Part A PT-IIDA-04624
AD2 FIRST/Planck Instrument Interface Document Part B

Instrument “SPIRE”
SCI-PT-IIDB

AD3 FIRST/PLANCK Operations Interface Requirements
Document

SCI-PT-RS-07360

AD4 FIRST/PLANCK Packet Structure Interface Control
Document

SCI-PT-IF-07527

AD5 FIRST Instrument Commanding Concepts
AD6 Operating Modes for the SPIRE Instruments SPIRE-RAL-DOC-000320
AD7 SPIRE OBS User Requirement Document SPIRE-IFS-PRJ-000444
AD8 FIRST SPIRE Electrical Interface Control Document SPIRE-Sap-Cca-24-00
AD9 SPIRE Data Interface Control Document SPIRE-RAL-DOC-001078
AD10 SPIRE DRCU/DPU Interface Control Document SPIRE-SAp-PRJ-001324

1.3.2 Reference Documents

Document
Reference

Name Number

RD1 Guide to applying the ESA software engineering
standards to small software projects

BSSC(96)2

RD2 FIRST SPIRE DPU subsystem specification
document

RD3 FIRST SPIRE DPU-DRCU Interfaces SP-RCI-5.7.00

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 5 of 44

RD4 Telemetry and Telecommand Packet Utilisation
Standard

ECSS-E-70/41

RD5 Herschel/Planck Instrument Data Rates H-P-1-ASPI-TN-0204
RD6 SPIRE DPU Virtual Machine
RD7 SPIRE OBS User Manual
RD8 DPU Boot Software Architectural Design DPU-AD-CGS-001
RD9 VIRTUOSO User’s Guide for ADSP-21020

1.4 Document Change Record

Issue Revision Date Reason for Change
0 2 18/05/2001 First draft. The document consists of the Software

specifications that are common to the three
instruments.

0 9 17/04/2002 Added a quite general version of the OBS Logical
Model, mostly mutuated from HIFI. Also added a
first draft of a SPIRE-specific architecture design
and module description

1 0 18/05/2003 Complete rewrite. Logical Model and Software
specifications removed. Architecture design
description has been updated and greatly enhanced.

1 1 15/08/2004 Added Software Requirements section aligned with
version 1.2.j of the OBS. Design description aligned
with OBS version 1.2.j; it also includes features
(monitoring, autonomy) that are not in 1.2.j but that
will be implemented according to this design.

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 6 of 44

2 Software Requirements

2.1 Initialization and Configuration Requirements

ID Requirement Related UR Design
SP-SR-IN1 SPIRE will act as a Remote Terminal
SP-SR-IN2 The OBS shall support Mode Commands as shown in

Table~3.2.4-1 of AD4 (3045-DLL)

SP-SR-IN3 The OBS shall support the subaddress (SA) allocation
shown in Table 3.2.3-1 of AD4 (3050-DLL)

SP-SR-IN4 The OBS shall implement the SA utilization
Table~3.2.3-1 of AD4 (3135-DLL-R,T, 3140-DLL)

SP-SR-IN5 The OBS shall use SA 0R for mode command (3145-
DLL)

SP-SR-IN6 The OBS shall support the mode commands listed in
Table~3.2.4-1 of AD4 (3250-DLL)

SP-SR-IN7 The OBS shall use SA 1T to transmit instrument status
(3150-DLL)

SP-SR-IN8 The OBS shall use SA 8R to receive spacecraft time
(3180-DLL)

SP-SR-IN9 The OBS shall use SA 10T to inform spacecraft that a
new telemetry packet is ready (3185-DLL-T)

SP-SR-IN10 The OBS shall use SA 11--26T to transfer telemetry
packets from instrument to spacecraft (3195-DLL)

SP-SR-IN11 The OBS shall use SA 11--14R to transfer telecommand
packets from spacecraft (3200-DLL)

SP-SR-IN12 The OBS shall use SA 27R to prepare instrument for
telecommand transfer (3205-DLL)

SP-SR-IN13 The OBS shall place in SA 27T, after reading the
telecommand packet, the confirmation message (3210-
DLL)

SP-SR-IN14 The OBS shall use SA 30T (Data Wrap read) for test
purposes (3235-DLL)

SP-SR-IN15 The OBS shall use SA 30R (Data Wrap write) for test
purposes (3240-DLL)

SP-SR-IN16 The OBS will read the 1553 configuration register and
store in memory the value of the RT address

SP-SR-IN17 The OBS will configure SA11-27T as circular buffers
with a size of 128 words

SP-SR-IN18 The 1553 I/F will be configured to issue an interrupt
signal upon reception of the Synchronize with and
without data word mode command

INIT Task
(§3.2.6.1)

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 7 of 44

2.2 Spacecraft Interface Requirements

ID Requirement Related UR Design
SP-SR-SC1 The OBS shall support a cyclic satellite Data Bus

Protocol based on a 1 second period called Frame,
divided into 64 subframes, each containing a number of
Mil Std 1553B messages (4105-TFL, 4120-TFL)

UR-TC3 TMTC
(§3.2.6.3)
ISR1553
(§3.2.5.1)

SP-SR-SC2 Each packet transfer shall be controlled by the exchange
of a Packet Transfer Request/Descriptor and a Packet
Transfer Confirmation, providing the necessary
(handshake) information about the transfer (4195-TFL)

 ISR1553
(§3.2.5.1)

SP-SR-SC3 The OBS shall check the status of the packet transfer that
has taken place in the previous Subframe, within the
receiving of the next Subframe Sync Message, at the
latest (4200-TFL)

 ISR1553
(§3.2.5.1)

SP-SR-SC4 If a packet transfer has been performed then the RT shall
update the TM packet data buffer within 2 msec, and
shall update the TM packet Packet Transfer Request
Words within 2 msec (4205-TFL, 4210-TFL)

 TMTC
(§3.2.6.3)
ISR1553
(§3.2.5.1)

SP-SR-SC5 Only one TM packet transfer from each RT at a time is
allowed. If there is more than one packet to be sent the
RT shall queue the TM packets (4220-TFL)

 TMTC
(§3.2.6.3)

SP-SR-SC6 TM packets shall be transferred within one Subframe
(4230-TFL)

 TMTC
(§3.2.6.3)

SP-SR-SC7 The OBS shall support Packet Transfer Requests via SA
10T and Packet Transfer Descriptors via SA 27R (4240-
TFL)

 ISR1553
(§3.2.5.1)

SP-SR-SC8 In case of TM packets the OBS shall provide the
following parameters with these words: i)The number of
needed messages, and ii) The number of words in the
last message (4245-TFL)

 TMTC
(§3.2.6.3)
ISR1553
(§3.2.5.1)

SP-SR-SC9 For TC packets the above parameters are provided by the
BC. The OBS shall utilize these parameters to re-
assemble the TC packets (4250-TFL)

 TMTC
(§3.2.6.3)
ISR1553
(§3.2.5.1)

SP-SR-SC10 The OBS shall read the RT address in the Subframe User
field (see Figure~4.2-1 of AD4) (4275-TFL)

 ISR1553
(§3.2.5.1)

SP-SR-SC11 The OBS shall support an internal Subframe Counter and
shall provide the value for BC access (4295-TFL)

 ISR1553
(§3.2.5.1)

SP-SR-SC12 When receiving the first Subframe each second the
Subframe Counter shall be set to 0 and the OBS shall
increment this value by one with every received Sync
with Data Word command (4300-TFL)

 ISR1553
(§3.2.5.1)

SP-SR-SC13 The OBS shall copy the Time Message to SA 8T
immediately after receiving the Mode Command
Synchronize at the beginning of a frame. At
initialization, before receiving any valid Time

 TIME
(§3.2.6.2)

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 8 of 44

Distribution Message, the OBS shall set the buffer at SA
8T to zero (4345-TFL)

SP-SR-SC14 The RT status information shall be available via SA
using the layout shown in Figure~4.4-1 of AD4 (4355-
TFL, 4360-TFL)

 ISR1553
(§3.2.5.1)

SP-SR-SC15 The TC packet shall be received by OBS in the TC Data
receive SAs, beginning with SA 11R (4415-TFL)

 TMTC
(§3.2.6.3)

SP-SR-SC16 The Packet Transfer Descriptor shall be received by
OBS in the SA 27R, according to the layout shown in
Table~4.5.1-1 of AD4 (4420-TFL, 4421-TFL)

 ISR1553
(§3.2.5.1)

SP-SR-SC17 The OBS shall evaluate the TC Packet Transfer
Descriptor after the reception of the next Subframe Sync,
within one Subframe (4425-TFL)

UR-TC12 ISR1553
(§3.2.5.1)

SP-SR-SC18 The OBS shall store the new TC packet immediately and
copy the associated words of the Packet Transfer
Descriptor to SA 27T, to become the TC Packet
Confirmation, according to the layout shown in
Table~4.5.1-2 of AD4 (4430-TFL)

UR-TC12 TMTC
(§3.2.6.3)

SP-SR-SC19 To receive a TC packet the RT shall adopt the procedure
shown in Figure~4.5.1-1 of AD4 (4435-TFL)

 TMTC
(§3.2.6.3)
ISR1553
(§3.2.5.1)

SP-SR-SC20 If the packet counter contained in a valid TC PTD will
be different from the counter of the PTD of the previous
TC +1, a TM (5,1) event will be generated to signal the
anomaly.

UR-TC21 TMTC
(§3.2.6.3)

SP-SR-SC21 The layout of the Packet Transfer Request shall be in
accordance with Table~4.6.1.1-1 of AD4 where:

i. reserved bits shall be set to zero (4505-TFL)
ii. No. of messages for next packet shall indicate the

number of messages needed for the packet the
OBS is intending to send in the next Subframe.
The first message of a TM packet shall always
stored at SA 11T (4510-TFL)

iii. No. of Data Words shall indicate the number of
data words transmitted in the last message. In case
of 32 words this field shall be set to 00000B
(4515-TFL)

iv. since data packets have always a size of n times
16 bit, with n an even number, no filling area shall
be foreseen (4520-TFL)

v. Event fields A and B shall be set to 0 (no Event
message pending) (4525-TFL, 4535-TFL)

vi. the Burst Mode field shall be set to 0 (Nominal
Mode) (4545-TFL, 4550-TFL)

vii. Flow Control field shall be set by RT according to
the status of TM transfer immediately. Its value
shall be: 00B (No transfer pending), 01B (Transfer

 TMTC
(§3.2.6.3)
ISR1553
(§3.2.5.1)

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 9 of 44

is pending) (4555-TFL, 4560-TFL, 4565-TFL,
4570-TFL. 4572-TFL)

viii. Packet Count field shall be used to support a
OBS-generated counter. To avoid that after an
OBS initialisation or reset an identical packet
number is used, there shall be one number
foreseen for that case. This number shall never
appear in the cyclical transmission (4575-TFL)

SP-SR-SC22 The OBS shall support a circular Packet Counter in the
range 1 to 255 decimal (4585-TFL, 4590-TFL)

 ISR1553
(§3.2.5.1)

SP-SR-SC23 After initialization or restart the OBS shall set the
counter value to 0 for the first TM Packet Transfer
(4595-TFL)

 ISR1553
(§3.2.5.1)

SP-SR-SC24 The OBS shall not use this counter for any other purpose
than defined in Chapter~4.6 of AD4 (4600-TFL)

 TMTC
(§3.2.6.3)
ISR1553
(§3.2.5.1)

SP-SR-SC25 After requesting a TM packet transfer, the RT shall
determine if the packet transfer was performed via the
handshake signal (TM Packet Confirmation) sent by BC
(4265-TFL)

 ISR1553
(§3.2.5.1)

SP-SR-SC26 The OBS shall receive the Packet Confirmation on SA
10R according to the layout shown in Figure~4.6.1.2-1
of AD4 (4635-TFL, 4640-TFL)

 ISR1553
(§3.2.5.1)

SP-SR-SC27 The OBS shall request a TM packet transfer (RT to BC)
by setting its TM Packet transfer control words (SA 10T)
(4685-TFL)

 TMTC
(§3.2.6.3)
ISR1553
(§3.2.5.1)

SP-SR-SC28 For the exchange of TM packets in normal data bus
mode, the RT shall support the logic shown in
Figure~4.6.1.3-1 of AD4 (4690-TFL)

UR-TM2 TMTC
(§3.2.6.3)
ISR1553
(§3.2.5.1)

SP-SR-SC29 After a TM packet transfer, in case there is no new TM
packet pending the RT shall set the first word of the TM
Packet Transfer Request to 0000 0000B, and the Packet
Count value of the second word shall stay unchanged.
The Flow Control field bits shall be set to 00B (4695-
TFL)

 ISR1553
(§3.2.5.1)

SP-SR-SC30 The OBS shall generate TM-packets with a maximum
size of 1024 octets (4020-TFL)

 INIT
(§3.2.6.1)
TMTC
(§3.2.6.3)
HS
(§3.2.6.7)
HK_ASK
(§3.2.6.6)

SP-SR-SC31 The OBS shall support the exchange of variable length
packets (4030-TFL)

 TMTC
(§3.2.6.3)

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 10 of 44

ISR1553
(§3.2.5.1)

SP-SR-SC32 A new TM packet will be loaded on the 1553 DPRAM
only if there is free space available

 TMTC
(§3.2.6.3)

SP-SR-SC33 The OBS will maintain a circular buffer containing the
TM Packet Transfer Requests.

 ISR1553
(§3.2.5.1)

SP-SR-SC34 A new TM PTR will be added to the TM PTR circular
buffer when a new TM packet has been copied from the
memory pools into SA11-27T of the 1553 DPRAM

 ISR1553
(§3.2.5.1)

2.3 Telecommand Requirements

ID Requirement Related UR Design
SP-SR-TC1 The OBS shall accept TC-packets with a maximum size

of 248 octets (4025-TFL)
UR-TC3 INIT

(§3.2.6.1)
SP-SR-TC2 There will be only two immediate commands: “Abort

VM” and “Abort Memory Dump”
UR-TC6
UR-TC18

TMTC
(§3.2.6.3)
CMD_SEQ
(§3.2.6.4)

SP-SR-TC3 The interpretation and execution of immediate
commands will take precedence over normal
commands.

UR-TC4
UR-TC12
UR-TC6
UR-TC7

CMD_SEQ
(§3.2.6.4)

SP-SR-TC4 The OBS will check that the APID of the TC is legal.
In case of failure a TM (1,2) will be sent with codes
and parameters as per PSICD.

UR-TC8
UR-TC11

CMD_SEQ
(§3.2.6.4)

SP-SR-TC5 The OBS will check that the packet length computed
from the number of 1553 data words contained in the
TC PTD is consistent with the length parameter in the
TC packet header. In case of failure a TM (1,2) will be
sent with codes and parameters as per PSICD.

UR-TC8
UR-TC11

CMD_SEQ
(§3.2.6.4)

SP-SR-TC6 The OBS will implement the CRC checksum algorithm
to compute the CRC on the incoming TC and compare
it to the CRC word at the end of the TC packet. In case
of failure a TM (1,2) will be sent with codes and
parameters as per PSICD.

UR-TC8
UR-TC11

CMD_SEQ
(§3.2.6.4)

SP-SR-TC7 The OBS will check that the packet type is a valid one.
In case of failure a TM (1,2) will be sent with codes
and parameters as per PSICD.

UR-TC8
UR-TC11

CMD_SEQ
(§3.2.6.4)

SP-SR-TC8 The OBS will check that the packet subtype is among
the valid subtypes for that type. In case of failure a TM
(1,2) will be sent with codes and parameters as per
PSICD.

UR-TC8
UR-TC11

CMD_SEQ
(§3.2.6.4)

SP-SR-TC9 The OBS will support all the services of AD4, with the
exceptions listed in AD9.

UR-TC20 CMD_SEQ
(§3.2.6.4)

SP-SR-TC10 The OBS will accept and execute all commands UR-TC1 CMD_SEQ

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 11 of 44

specified in AD9 UR-GE3-5 (§3.2.6.4)
SP-SR-TC11 Once a TC has been successfully verified its contents

will be checked for executability. In case the TC
contains inconsistent or incorrect parameters for that
particular packet type and subtype, a TM (1,8) TC
execution failure will be generated containing all the
information needed to identify the occurred problem.

UR-TC10
UR-TC14
UR-TC16

CMD_SEQ
(§3.2.6.4)

2.4 Telemetry Requirements

ID Requirement Related UR Design
SP-SR-TM1 The OBS shall be able to generate all TM packets

specified in AD9.
UR-TM1 TMTC

(§3.2.6.3)
HS
(§3.2.6.7)
HK_ASK
(§3.2.6.6)

SP-SR-TM2 The generation of TM (1,1) (1,3) (1,5) (1,7) will be
carried out according to the “ACK” bits contained in
the header of the related telecommand.

UR-TC5
UR-TC15

CMD_SEQ
(§3.2.6.4)

SP-SR-TM3 It will be possible to simultaneously run 4 independent
HK collection tasks in the OBS

UR-TM14
UR-TM15
UR-TM17
UR-GE3-5
UR-GE13

HK_ASK
(§3.2.6.6)

SP-SR-TM4 The nominal HK collection task will record the time of
start HK collection at each periodic activation, and
include this time as a parameter in the HK packet.

UR-TM11 HK_ASK
(§3.2.6.6)

SP-SR-TM5 The list of HK parameters to be collected will be
contained in an on-board table

UR-TM9
UR-TM12

HK_ASK
(§3.2.6.6)

SP-SR-TM6 Each running HK packet collection task will be
associated to one and only one packet definition table

UR-TM12 HK_ASK
(§3.2.6.6)

SP-SR-TM7 The HK packet definition will contain the list of
commands needed to get the parameters

UR-TM13 HK_ASK
(§3.2.6.6)

SP-SR-TM8 DPU internal parameters will be collected using
commands that implement the same syntax as for the
S/S commands

UR-TM9
UR-TM10

HK_ASK
(§3.2.6.6)

SP-SR-TM9 The location of an HK parameter in an HK packet will
be defined by the ordinal location of the related
command in the HK packet definition table

UR-TM13 HK_ASK
(§3.2.6.6)

SP-SR-TM10 The HK collection will be periodic, with a sampling
interval that can be configured via TC (3,1) as per
AD4.

UR-TM16 HK_ASK
(§3.2.6.6)

SP-SR-TM11 The HK collection will be handled by tasks that will be
activated by Events triggered by VIRTUOSO timers
preset to the periodicity equal to the chosen sampling

UR-TM16 HK_ASK
§3.2.6.6

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 12 of 44

rate.
SP-SR-TM12 It will not be possible to change the HK packet

definition table for a running HK collection task.
 CMD_SEQ

(§3.2.6.4)
SP-SR-TM13 The HK task activation/deactivation will be done via

TC as specified in AD4.
UR-SM9 CMD_SEQ

(§3.2.6.4)
SP-SR-TM14 The OBS will use separate buffers in the memory pools

to hold science frames for each different frame ID
UR-GE8-10 (§3.2.4.2)

SP-SR-TM15 Each science buffer in the memory pools will contain
as many science frames (of a specific frame ID) as a
TM packet can hold

UR-TM18 HS
(§3.2.6.7)

SP-SR-TM16 A science buffer that cannot contain any more frames
for that specific ID will be considered complete, and a
new science buffer will be created in the memory pools

 HS
(§3.2.6.7)

SP-SR-TM17 After a FIFO flush, all science buffers containing
frames with IDs pertinent to the flushed FIFO will be
considered complete.

 HS
(§3.2.6.7)

SP-SR-TM18 A HK buffer or complete science buffer will be
integrated with a packet header compliant to AD9 and
AD4 to become a TM packet

UR-TM4 TMTC
(§3.2.6.3)

SP-SR-TM19 It will be possible to select, via TC, subsets of science
frames to be copied into the science buffers

UR-TM7
UR-GE13

CMD_SEQ
(§3.2.6.4)
HS
(§3.2.6.7)

SP-SR-TM20 The OBS shall be able to support a total output
telemetry rate of 100 Kbps averaged on 24 hours

 TMTC
(§3.2.6.3)
ISR1553
(§3.2.5.1)

2.5 Functional and Operational Requirements

ID Requirement Related UR Design
SP-SR-FU1 The OBS will implement an on-board command

interpreter called the Virtual Machine (VM) that will be
able to execute commands at a predefined time.

UR-TC23
UR-SM10
UR-SM11
UR-FU1-9
UR-GE12

Hard_VM
(§3.2.5.2)
Soft_VM
(§3.2.6.10)
VM_SVC
(§3.2.6.11)

SP-SR-FU2 The VM will be able to interpret and execute
commands in the form of 32-bit words stored in tables
on-board

 Hard_VM
(§3.2.5.2)
Soft_VM
(§3.2.6.10)

SP-SR-FU3 The VM will be able to send commands to the S/S via
the LS interface

UR-FU10
UR-GE11

Hard_VM
(§3.2.5.2)
Soft_VM
(§3.2.6.10)

SP-SR-FU4 The VM will be able to read the reply word sent by the UR-FU10 Hard_VM

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 13 of 44

S/S via the LS interface UR-GE11 (§3.2.5.2)
Soft_VM
(§3.2.6.10)

SP-SR-FU5 The VM will be able to perform for cycles UR-GE11 Hard_VM
(§3.2.5.2)
Soft_VM
(§3.2.6.10)

SP-SR-FU6 The VM shall be able to perform conditional decisions
based on the values of some parameters

UR-GE11 Hard_VM
(§3.2.5.2)
Soft_VM
(§3.2.6.10)

SP-SR-FU7 The VM shall be able to read from/write to OBT UR-GE11 Hard_VM
(§3.2.5.2)
Soft_VM
(§3.2.6.10)

SP-SR-FU8 The VM will be able to generate TM (1,x) packets Hard_VM
(§3.2.5.2)
Soft_VM
(§3.2.6.10)
VM_SVC
(§3.2.6.11)

SP-SR-FU9 The VM will be able to generate TM (5,x) packets Hard_VM
(§3.2.5.2)
Soft_VM
(§3.2.6.10)
VM_SVC
(§3.2.6.11)

SP-SR-FU10 The VM will be able to generate TM (21,4) packets
limited to SID TBD

 Hard_VM
(§3.2.5.2)
Soft_VM
(§3.2.6.10)
VM_SVC
(§3.2.6.11)

SP-SR-FU11 There will be 1 VMs where the command timing will
be implemented by an HW interrupt line connected to a
DPU timer. This VM will be called Hard_VM.

 Hard_VM
(§3.2.5.2)

SP-SR-FU12 There will be 3 VMs where the command timing will
be implemented using task activation regulated by
VIRTUOSO SW timers. These VMs will be called
Soft_VMs.

 Soft_VM
(§3.2.6.10)

SP-SR-FU13 The execution of an observing procedure running as
VM code on the Hard VM will be stoppable by
disabling the DPU interrupt associated with the DPU
HW timer. It will be possible to do this via TC (Abort
Measurement)

UR-TC18 CMD_SEQ
(§3.2.6.4)

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 14 of 44

2.6 Memory Management Requirements

ID Requirement Related UR Design
SP-SR-MM1 The OBS will provide a protected DM memory area

where tables of data can be defined (called On-Bard
Tables – OBT)

 §3.2.4.1

SP-SR-MM2 It will be possible to create, update and delete an OBT
via TC

UR-TC19
UR-TM9
UR-TM12
UR-SM10
UR-SM11

CMD_SEQ
(§3.2.6.4)

SP-SR-MM3 OBT will be used to store HK packet definitions and
VM codes.

UR-TM12
UR-SM10
UR-SM11

CMD_SEQ
(§3.2.6.4)

SP-SR-MM4 Each OBT will be characterized by an ordinal ID
number and a length

 §3.2.4.1

SP-SR-MM5 The OBS shall maintain an updated list of IDs and
lengths for all currently defined OBTs

 §3.2.4.1

SP-SR-MM6 The OBS will allow the relative allocation and de-
allocation of OBTs

UR-TM12 CMD_SEQ
(§3.2.6.4)
+ §3.2.4.1

SP-SR-MM7 The OBS will dynamically re-allocate OBTs to
optimize memory occupation on board

UR-TM12 CMD_SEQ
(§3.2.6.4)
+ §3.2.4.1

SP-SR-MM8 Dynamic OBT re-allocation will have no impact on the
HK data collection or execution of VM code on the
Soft_VM

UR-TM12 CMD_SEQ
(§3.2.6.4)
+ §3.2.4.1

SP-SR-MM9 It will not be possible to dynamically re-allocate OBTs
while the Hard_VM is running

UR-TM12 CMD_SEQ
(§3.2.6.4)
+ §3.2.4.1

SP-SR-MM10 It will not be possible to modify or delete an OBT
currently associated to a running HK collection task

UR-TM12 CMD_SEQ
(§3.2.6.4)

SP-SR-MM11 It will not be possible to modify or delete an OBT that
contains VM code currently being executed

 CMD_SEQ
(§3.2.6.4)

SP-SR-MM12 The OBS will use internal protected fixed-size memory
areas configured as circular buffers (Memory Pools) to
build TM packets.

UR-TM5 §3.2.4.2

SP-SR-MM13 There will be separate memory pools for events and
report packets, housekeeping packets and science
packets

 §3.2.4.2

SP-SR-MM14 Memory blocks will be allocated in the memory pools
only if there is sufficient space available in the pool

UR-TM5 CMD_SEQ
(§3.2.6.4)
HS
(§3.2.6.7)
HK_ASK

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 15 of 44

(§3.2.6.6)
SP-SR-MM15 In case a memory block is requested and there is

insufficient space in the memory pool a TM (5,1) will
be generated to signal the anomaly

UR-TM5 CMD_SEQ
(§3.2.6.4)
HS
(§3.2.6.7)
HK_ASK
(§3.2.6.6)

SP-SR-MM16 The exchange of TM packets between OBS tasks will
be done by passing the pointer to the packet and not the
packet itself.

SP-SR-MM17 All information concerning TM packets within the
DPU memory, including its location, will be passed
from one task to the other using VIRTUOSO FIFO
queues.

 §3.2.3.3

SP-SR-MM18 After a TM packet has been copied from the relevant
buffer of the memory pools into the 1553 DPRAM, the
buffer will be released

 TMTC
(§3.2.6.3)

SP-SR-MM19 The OBS will implement two memory pools for
Telecommands (TCs): one for normal commands and a
higher priority one for immediate commands

UR-TC6
UR-TC7

§3.2.4.2

SP-SR-MM20 The exchange of TC packets between OBS tasks will
be done by passing the pointer to the packet and not the
packet itself.

SP-SR-MM21 All information concerning TC packets within the DPU
memory, including its location, will be passed from one
task to the other using VIRTUOSO FIFO queues.

 §3.2.3.3

SP-SR-MM22 The message enqueued on the VIRTUOSO FIFO with
the pointer of a new TC in the memory pools will also
contain the length of the packet as computed from the
TC PTD

 TMTC
(§3.2.6.3)

2.7 Subsystem Interface Requirements

ID Requirement Related UR Design
SP-SR-SS1 The OBS will support the syntax specified in AD10 to

send commands to the S/S
UR-TC14 LS

(§3.2.6.5)
SP-SR-SS2 In case of a “Sync DRCU Timers” S/S command, the

time when the command is actually written onto the LS
port is recorded and made available in a global variable
so that it can be used as an HK parameter.

UR-SY3 LS
(§3.2.6.5)

SP-SR-SS3 Commands will be sent by the OBS to the S/Ss using a
single SW interface. The only exception is the VM
activated by the HW DPU timer that will send the
command directly writing onto the HW interface

 LS
(§3.2.6.5)

SP-SR-SS4 The OBS will wait 2 msec after sending a command
through the LS port before reading the response word

 LS
(§3.2.6.5)

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 16 of 44

SP-SR-SS5 The OBS will check that the command ID in the
response word is identical to the command ID of the
command word sent. In case of failure a TM (5,1) event
will be generated to signal the anomaly and the OBS
will assume that the command was not correctly
received or executed by the S/S

 LS
(§3.2.6.5)

SP-SR-SS6 The OBS will check that the “Ack bits” in the reply
word are “00”. In case of failure that a TM (5,1) event
will be generated to signal the anomaly and the OBS
will assume that the command was not correctly
received or executed by the S/S

 LS
(§3.2.6.5)

SP-SR-SS7 It will not be possible to send a command via the LS
port unless the response to the previous command has
been read and processed. The only exception is for the
commands sent by the Hard VM

 LS
(§3.2.6.5)
Hard_VM
(§3.2.5.2)

SP-SR-SS8 In case the Hard VM sends a command via the LS port,
a copy of the data currently present on the receive
registers will be saved in memory

 Hard_VM
(§3.2.5.2)

SP-SR-SS9 The OBS will be able to read the 3 FIFOs where the
data sent by the S/S via the 3 High-Speed data links are
stored

UR-FU11 HS
(§3.2.6.7)

SP-SR-SS10 The OBS will be able to interpret the format with
which science data are sent by the S/Ss as per AD9 and
AD10

UR-GE8-10 HS
(§3.2.6.7)

SP-SR-SS11 The OBS will read the frame ID and check that it a
valid ID for that FIFO. In case of failure a TM (5,1)
shall be generated with specific error codes and
parameters to signal the error. The related FIFO
channel is then considered out-of-sync.

 HS
(§3.2.6.7)

SP-SR-SS12 The OBS will read the frame length and check that it is
a valid length for that frame ID. In case of failure a TM
(5,1) shall be generated with specific error codes and
parameters to signal the error. The related FIFO
channel is then considered out-of-sync.

 HS
(§3.2.6.7)

SP-SR-SS13 The OBS will read a number of words (from the FIFO)
consistent to the read frame length, compute the
resulting XOR and compare the resulting XOR with the
XOR checkword present at the end of the frame. In
case of failure a TM (5,1) shall be generated with
specific error codes and parameters to signal the error.
The related FIFO channel is then considered out-of-
sync.

 HS
(§3.2.6.7)

SP-SR-SS14 No attempt will be made to recover the data from a
FIFO is in an out-of–sync state. Instead the FIFO will
be reset.

 HS
(§3.2.6.7)

SP-SR-SS15 It will be possible to flush the FIFOs by TC CMD_SEQ
(§3.2.6.4)
HS

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 17 of 44

(§3.2.6.7)

2.8 Synchronization Requirements

ID Requirement Related UR Design
SP-SR-SY1 The time synchronization activities will be performed at

the earliest possible time after reception of the “sync
without data word” Mode command from the CDMS

UR-SY1 ISR1553
(§3.2.5.1)
TIME
(§3.2.6.2)

SP-SR-SY2 The OBS will use the timing information available on
the 1553 bus to synchronize the DPU timers to the
spacecraft time

UR-SY1 ISR1553
(§3.2.5.1)
TIME
(§3.2.6.2)

SP-SR-SY3 The OBS will check that the timing information has
been regularly updated before using it

UR-SY1 TIME
(§3.2.6.2)

SP-SR-SY4 The OBS will compute the difference between the DPU
time and the spacecraft time within 100 µsec from each
start of frame

UR-SY1 TIME
(§3.2.6.2)

SP-SR-SY5 The∆t parameter will be available to all OBS tasks that
will need to get a time stamp

UR-SY4 TIME
(§3.2.6.2)

SP-SR-SY6 The OBS will provide a time stamp for all needs in the
code by reading the operating system time and adding
the currently valid ∆t.

UR-TM3 §3.2.3

SP-SR-SY7 Whenever the time has not yet been synchronised (e.g.,
after switch on or reset), the OBS shall set to 1 the MSB
of the time field in the header of TM packets.

UR-SY2 TBD

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 18 of 44

3 Architectural Design

3.1 The DPU/VIRTUOSO/OBS System

The DPU OBS will run under VIRTUOSO, an operating system designed for use in DSP
environments, where speed of response to interrupts is usually critical. This environment allows the
implementation of a multitasking application: a VIRTUOSO task in the OBS is an independent
module consisting of one or more C routines, with its own thread of execution and set of system
resources. It performs a well-defined function or set of functions and communicates information to
other tasks. Tasks can be assigned priorities depending on their criticality: VIRTUOSO will assign
CPU resources accordingly. Task intercommunication and synchronization is accomplished through
a set of services like semaphores, events, FIFO messages, that are entirely managed by
VIRTUOSO.

3.2 The SPIRE OBS

The SPIRE OBS implements a parametric concept where a relatively limited set of services coded
in the software on-board can be invoked with different sets of parameters to provide all the
functionalities required. The goal is to build a flexible tool that can be configured and used to
execute all the required instrument functionalities by simply uploading tables of parameters,
without the need to add/change software modules. This approach has the advantage to allow the
development of the OBS application at an early time in the project, where the observing procedures
are in a poor state of definition and specification; likewise, it makes the patching of the OBS a
simple matter of uplinking tables of parameters rather than pieces of executable code.

3.2.1 The Virtual Machine

This concept is implemented in the SPIRE OBS via the Virtual Machines, a set of state machines
able to interpret and execute at a precise timing a set of so-called OPCODEs (32-bit words) that
provide basic functionalities like reading and writing into memory locations, register operations
(shift, add), reading and writing to the S/S interface. The set of OPCODEs currently available can
provide the typical functionalities of high-level programming languages like: variable definition,
‘if’ statements, conditional loops (e.g. ‘do while’) etc. The results in an “ad-hoc” programming
language in which a complex observing procedure can be reduced to a series of OPCODEs and thus
simply loaded as a series of 32-bits words.
 The complete description of the VM implementation is found in RD6. Five different and
independent VMs are implemented in the SPIRE OBS. The main VM is also called HARD_VM
because the timing of the OPCODE execution is implemented via one of the DPU interrupt lines
that is attached to a HW timer (§3.2.2.2.1). The other four VMs are called Soft_VMs because the
timing is implemented using software timers handled by VIRTUOSO. The HARD_VMs, thanks to
its excellent timing performances (10 µsec jitter) will be used to run observing procedures. The
other four VMs will be used to run (also simultaneously to and observation running on the
HARD_VM) batch procedures like PID temperature controls. Autonomy recovery functions can be
un on any VM depending on its criticality.

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 19 of 44

3.2.2 Hardware/Software Interactions

3.2.2.1 Interfaces

The DPU interfaces with the Herschel spacecraft computer on one side, and with instrument
subsystems on the other side. The spacecraft interface is implemented via a MIL-STB-1553B
interface according to specifications contained in AD4; the packet-level protocol is handled by the
interrupt-driven OBS task TMTC (§3.2.6.3). The subsystems interface is implemented via slow and
fast serial links to the three SPIRE S/S, as described in RD3. The slow bi-directional links used to
send commands and receive HK parameters from the from/to the S/S are handled by the OBS task
LS (§3.2.6.5). The fast mono-directional links used to receive science data from the S/S are handled
by the OBS task HS (§3.2.6.7).

3.2.2.2 Interrupts

There are three interrupt lines available on the SPIRE DPU. In ascending order of priority, they are
dedicated to the DPU FIFOs (where the science data on the fast data links from the subsystems are
received), the MIL-STD-1553B interface to the CDMS, and the DPU internal timer. The low-level
interaction of the interrupt lines with the VIRTUOSO kernel is done through small standard
assembler Interrupt Service Routines, called ISRi_Handler in the main OBS Architecture
Diagram. The only function of these assembler ISRs is to transfer control to a C module by raising a
VIRTUOSO Event; the target C module can either be directly associated to the interrupt via this
event (using the VIRTUOSO call KS_SetEventHandler) or it can be put in a wait state on the
VIRTUOSO Event. We briefly describe below the three interrupt lines available on the SPIRE
DPU; the tasks and modules mentioned are described in detail in the rest of the document.

3.2.2.2.1 The TIMER Interrupt

This is the highest priority interrupt. The DPU timer is used by the Virtual Machine Hard_VM task
to implement the SubSystem commanding at exact times with a less than 10 microseconds jitter.
The DPU timer is basically a down-counter starting from a programmable number (in
microseconds); when the down-counter reaches 0 it sends the Interrupt signal. This interrupt is
served by the irq3.s routine, which transfers directly, not via an event, but via a direct call to the
vm.c C routine, the control to the Hard_VM task.

3.2.2.2.2 The 1553 Interrupt

This is the second highest priority interrupt. This interrupt line is utilized by the MIL-STD-1553B
Advanced Computing Engine (ACE) chip that interfaces the DPU to the CDMS. The ACE is
software programmable to associate the interrupt line to any 1553B event (like reception of
messages on particular SAs, reception of Mode Codes, etc.). This interrupt line is served by the
irq2.s routine that raises the ISR_1553_Event; this event is associated to the ISR_1553 C module
which is configured as a VIRTUOSO Event Handler, that is the real Interrupt Service Routine for
this interrupt. Once the Event Handler has completed execution it can decide if the control has to
pass to other tasks waiting on that same event.

3.2.2.2.3 The FIFO Interrupt

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 20 of 44

This is the lowest priority interrupt. This interrupt is dedicated to the FIFOs on which the science
data coming on the fast data links from the SubSystems are received. This interrupt line can be
programmed to any of the empty/half-full/full states of the three SPIRE DPU FIFOs (it is a single
physical line that is multiplexed and managed by an FPGA). The adopted setting is to trigger the
interrupt at Half-FIFO-Full. This interrupt is managed by the irq0.s routine that raises the
IRQ0_Event that in turn triggers the HS task.

3.2.3 OBS Tasks

The OBS is divided into a set of VIRTUSOS tasks. The following table lists the task together with a
short description of their functions and the associated priorities (the lower is the number, the higher
is the priority:

Task Name Function Priority
INIT It performs the OBS and 1553 interface initialization. It is the first task

to start and dies upon completion.
4

TIME Keeps up-to-date the relationship between the internal DPU clock and
the S/C clock

4

TMTC It manages the TC and TM packet exchange with the CDMS 5
VM_1 This is the first of the Virtual Machines managed via the VIRTUOSO

Task_Sleep directive
5

VM_2 This is the second of the Virtual Machines managed via the
VIRTUOSO Task_Sleep directive

5

VM_3 This is the third of the Virtual Machines managed via the VIRTUOSO
Task_Sleep directive

5

VM_AFX Additional Virtual Machine managed via the VIRTUOSO Task_Sleep
directive, to be used for Autonomy recovery procedures.

5

HS Task responsible for reading the DPU FIFOs, check consistency of
science frames and pack them into standard TM packets

6

VM_SVC This task generates events, reports and other TM packets upon
command from VM code

7

LS It manages the dispatch of commands to the subsystems and the
reception of parameters to/from the subsystems.

7

CMD_SEQ Checks the header of the received TC packets, issues appropriate TC
verification reports and, upon positive verification, interprets and
executes them.

8

HK_ASK_0 First task that collects DPU and instrument parameters and generates
HK packets.

9

HK_ASK_1 Second task that collects DPU and instrument parameters and generates
HK packets.

9

HK_ASK_2 Third task that collects DPU and instrument parameters and generates
HK packets.

9

HK_ASK_3 Fourth task that collects DPU and instrument parameters and generates
HK packets.

9

HK_MONITOR It monitors the HK parameter and, in case of critical values, invokes 9

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 21 of 44

the appropriate Autonomy Function
AUTONOMY Task that handles Event Packet generation and recovery procedures

upon reception of anomaly messages received from HK_MONITOR
10

IDLE Performs TBD memory checks 11

Table 3-1 OBS Task list

 Control exchange between tasks is implemented using Events, Semaphores and
VIRTUOSO FIFO message Queues. These VIRTUOSO System Objects are described in some
detail below; here we also mention that they can be, and are, also used in the OBS to transfer data
between tasks.
 Whenever a parameter or a group of parameters computed by a task is to be made available
to other tasks, without the need to transfer control at the same time, we will use global variables.
This because parameters cannot be passed from one task to another just as one would do with
routine calls.

Figure 3-1 OBS Tasks Interconnection Diagram

3.2.3.1 Events

VM_SVC*INIT*

IDLE*

TIME

AUTONOMY

Soft_VM_i*

ISR_1553

ISR3_Handler
Hard_VM*

ISR0_Handler

ISR2_Handler

HK_MON*

HS
HK_ASK_i

LS*

TMTC*

CMD_SEQ

ACE_DPRAM*

S_S*

ACE_DPRAM*

S_S*

VIRTUOSO*

LS_Sema*

Subfr_Sync_Int

ISR_FIFO_Event*

asm_Jump*

ISR_1553_Event

Half_FIFO_Int

DPU_Timer_Int*

IRQ3_flag

HK_i_Sema*

HK_enable

HK_i_Event*

ISR_1553_Event

DPU_Timer_Int_En*

TCReady_Sema

LS_Sema*

Start_Stop_SVM*

Auto_Sema*

TS_Event

LS_Sema*

ISR_FIFO_Event*

VM_TM_Queue*

VM_Response*

LS_Sema*

Start_SVM*

LS_i_Event*

Cmd_Exec_Event*

Cmd_Exec_Event*

Abort_MDump_Event*

Auto_Sema*

Auto_Sema*

DPU_Timer_Int_En*

TM_MSG

TC_Packet

SS_Parameter*
LS_CMD

Event_TM*

DPU_HK_Data*

RT_info

Science_TM*

LS_CMD

TMTC_info

Science_Frames*

DPU_HK_Data*

SS_Parameter*

TC_PTD

Event_TM*

TC_MSG

HK_Data

HK_Data

SC_Time*

DPU_Time*

Delta_Time*

Mem_Check*

TMTC_info

Boot_TM_Pkt_Nber*

Packing_info*

TM_Red_info*

LS_CmdLP_Queue*

LS_CmdLP_Queue*

LS_CmdLP_Queue*

Anom_HP_Queue*

LS_CmdHP_Queue*

SS_Parameter*

Anom_LP_Queue*

Anom_LP_Queue*

TC_HP_Queue*
TC_LP_Queue*

Event_TM*

EV_TM_Queue*

EV_TM_Queue* EV_TM_Queue*

SD_TM_Queue*

HK_TM_Queue*

Event_TM*

EV_TM_Queue*

Event_TM*

EV_TM_Queue*

TM_PTC*

Input OutputOBS ProcessingInterrupt Processing

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 22 of 44

Events are the highest priority VIRTUOSO objects, after the Interrupts, to modify the schedule of
task execution. Tasks can be set on a wait state until a particular event defined in the VIRTUOSO
Project File is raised. At that point the tasks that are on wait, start to execute. The following events
are used in the SPIRE OBS:

Event Name Raised by: Triggers task:
ISR_1553_Event ISR2_Handler ISR_1553, TMTC
ISR_FIFO_Event ISR0_Handler HS
TS_Event ISR_1553 TIME
HK_i_Event LS HK_ASK_i
LS_i_Event LS Soft_VM (i+AFX)
Cmd_Exec_Event LS, HS CMD_SEQ

Table 3-2 List of VIRTUOSO Events used in the OBS

VIRTUOSO overhead to signal an event should be less than 15 µsec (RD9, §A.12).

3.2.3.2 Semaphores

While events only have two possible states, semaphores are counters. They are used when a
condition for triggering a certain task can be set by multiple sources, or can be set many times
before the waiting task starts execution; each time the waiting task serves the semaphore its counter
is decreased by 1, until it gets down to 0. An example is the semaphore that signals that a new
Telecommand has been received from the CDMS; if the OBS is busy executing some process, the
TCs can be buffered and the related semaphore is signalled a correspondent number of times; the
TC interpreter that is waiting on that semaphore will serve it until the semaphore counter is
decreased to 0.
 Another occurrence when the use of semaphores is to be preferred is in conjunction with
cyclic operations. VIRTUOSO provides a number of system timers that can be configured to
automatically signal semaphores. A typical example for semaphores usage is the periodic HK
packet collection.
 The semaphores used in the OBS are:

Semaphore Name Function Raised by Triggers:
HK_i_Sema Starts the periodic HK packet

collection
VIRTUOSO timers HK_ASK_i

LS_Sema Signals LS that a command has to
be sent to the SubSystems

CMD_SEQ,
HK_ASK_i,
Soft_VM_i,

LS

TCReady_Sema Signals that a new TC has been
downloaded from the CDMS and
is ready to be verified and
executed

TMTC CMD_SEQ

Auto_Sema Signals an anomaly or an out-of-
limit conditions in the HK
parameters

HK_MON, LS, HS,
VM_SVC, HK_ASK_i

AUTONOMY

Table 3-3 List of VIRTUOSO Semaphores used in the OBS

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 23 of 44

VIRTUOSO overhead to signal a semaphore to another task that is on a wait state on that
semaphore is of the order 50 µsec (RD9, §A.12)

3.2.3.3 FIFO Queues

VIRTUOSO FIFOs are system objects used to transfer control and data to other tasks. FIFOs (First-
In-First-Out) are queues entirely managed by VIRTUOSO. Tasks can be put on a wait state on the
reception of messages on FIFO queues. Contrary to events and semaphores, FIFO messages can
bring along parameters (max 10). The FIFO queues can be specified in the VIRTUOSO Project File
with the length of the associated message and the maximum number of messages that the queue can
handle. The FIFO queues in the OBS are:

FIFO Queue Function Sent by: Received by: #

MSG

Words

TC_HP_Queue Notifies that an
immediate command is
ready for execution

TMTC CMD_SEQ 8 10

TC_LP_Queue Notifies that a normal
command is ready for
execution

TMTC CMD_SEQ 8 10

EV_TM_Queue Notifies that a new event
TM packet is ready on
the EV_POOL

AUTONOMY
, VM_SVC

TMTC 80 10

HK_TM_Queue Notifies that a new HK
TM packet is ready on
the HK_POOL

HK_ASK_i TMTC 32 10

SD_TM_Queue Notifies that a new
science TM packet is
ready on the SD_POOL

HS TMTC 128 10

LS_HP_Queue Notifies that a high-
priority command has to
be sent to the SubSystem

Soft_VM_i LS 64 5

LS_LP_Queue Notifies that a low-
priority command has to
be sent to the SubSystem

CMD_SEQ,
HK_ASK_i

LS 1024 5

VM_TM_Queue Notifies that an
event/report packet is to
be sent

Hard_VM,
Soft_VM_i

VM_SVC 64 3

Anom_LP_Queue Notifies a low-priority
anomaly

 AUTONOMY 512 10

Anom_HP_Queue Notifies a high-priority
anomaly

 AUTONOMY 512 10

Table 3-4 List of VIRTUOSO FIFO Queues used in the OBS

VIRTUOSO overhead involved in sending a FIFO message to a waiting task and reading it, is ~70
µsec (see RD9, §A.12)

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 24 of 44

3.2.4 Data Memory Management On-Board

The DPU memory is structured according to the DPU Memory Architecture File that will be
delivered together with the OBS code. In particular the Data Memory consists of 512 kW (32-bits
words) is divided into two blocks. The first one is SEG_DMDA and contains the static variables
used by the OBS; the two most important sections of this segment are those hosting the Tables and
the Memory Pools. These will be described below in detail. The second segment is SEG_CHEAP
and is used by VIRTUOSO to handle semaphores, events, FIFOs.

3.2.4.1 On-Board Table Management

Implementing a parametric approach in the SPIRE OBS requires that all variables governing the
code functionalities (e.g., packet structure definitions, VM codes, monitoring limits, etc.) are made
available in tables that can be easily loadable/updatable/downloadable via standard routes using the
services provided by AD4, without having to re-compile and re-load the entire image of the OBS
code. The SPIRE OBS implements a table management system where tables can be dynamically
allocated on-board and can be addressed simply using ID numbers that are internally resolved into
absolute addresses by the OBS. The memory area used to store the on-board tables, called
tabellone, resides in the SEG_DMDA block and its size is 128 kW.
 A table is characterised on-board by an ID number, a starting memory location, a length and
a series of flags indicating their usage status. Critical tables (HK definition tables, VM code) can be
locked while they are being used; this prevents access by other tasks that could modify the table
contents while the table is being used by another task. As an example, a table containing an HK
packet definition that is currently being used to collect HK parameters cannot be modified/deleted.
Similarly if a VM program is executing, its table ID will be locked as well as all the tables
containing VM code called from within the master program.
 The set of parameters that characterizes each table is stored and constantly kept up-to-date in
a master table called the MOAT (Mother Of All Tables), which is also contained in tabellone. The
exact position and size of all tables (but the MOAT) within tabellone is not fixed to allow full
flexibility in the table management (create/modify/delete). When a new table with the required ID
number is to be created, the OBS looks into the MOAT to identify the location of a free contiguous
block of the required size within tabellone. The corresponding entry in the MOAT is updated
accordingly. Thanks to the MOAT, the tables in tabellone do not need to be created in order of
Table ID; i.e., the start address of table 46 may be higher than the start address of table 117. This
quite flexible table management scheme will lead in time to a certain degree of fragmentation in
tabellone (holes are left when tables are deleted), that can be removed via a dedicated TC.
 The reallocation of tables to optimize memory on-board is only performed on tables that are
not currently locked and is accomplished through the following mechanism. The reception of a
dedicated TC triggers the Tabler_main function that calls the MOAT_Stack_Parser function; the
latter starts parsing the MOAT_Stack records in the MOAT_Stack table (that contains the list,
sorted by address, of occupied blocks in tabellone) until it finds a hole, i.e. when a table starts does
not start immediately after the end of the previous table. The MOAT itself cannot be used for this
purpose because the MOAT is sorted by Table ID and not by address.
 When MOAT_Parser finds a hole, it calls the Compact_Table function. This function first
checks the MOAT to see if the table is locked by another task (it could be in use for HK collection
or VM code execution); if the table is free, it locks it by raising the lock flag for that Table ID in the
MOAT; this prevents tasks that use that table to access it while it is being moved. It copies the table
from tabellone to swappone (which is an 8 kW reserved area used for swap in SEG_DMDA), and

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 25 of 44

deletes it from tabellone. Then it reads it back from swappone and writes into tabellone
immediately following the end address of the last table in the contiguous area of tabellone (i.e.,
where before there was the hole).
 Finally, it updates the start address for that Table ID in the MOAT and the block list in
MOAT_Stack, and unlocks the table. The control is passed back to function MOAT_Parser that
finds the next hole.

3.2.4.2 Memory Pools

Memory pools are DM areas where fixed-size 512W blocks of memory can be dynamically
allocated/deallocated to host TCs received or TM packets that are being built for dispatch to the
satellite. These areas are managed as circular buffers where read/write pointers are held and updated
in static structures that also keep track of usage status of each block (e.g. which task reserved a
particular block) and of the whole pool (number of used blocks); when the block usage is greater
than 80% an event TM packet is generated. Each pool is specified with the maximum number of
blocks that can be allocated, while the size of each block is fixed. The Memory Pools defined in the
SPIRE OBS are defined as follows:

Pool Name Usage # of Blocks Priority
TC_POOL Telecommand Packets 16
EV_POOL Event Telemetry Packets 64

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 26 of 44

HK_POOL HouseKeeping TM Packets 32
SD_POOL Science Data TM Packets 128

Table 3-5 List of Memory Pools used in the OBS

3.2.5 C Interrupt Service Routines

3.2.5.1 ISR_1553

This is not a VIRTUOSO task, but it is the Interrupt Service Routine for the IRQ2 interrupt used by
the MIL-STD-1553B interface. Formally, ISR_1553 is a VIRTUOSO Event Handler. The routine
is immediately triggered on the event ISR_1553_Event, raised by the assembler routine isr2.s.
ISR_1553_main first updates the instrument status by writing in SA1T of the ACE DPRAM the
required information, and then parses the Mode Code to understand the type of interrupt. It then
passes control to another function Transfer_Handler. If the Mode Code is a synchronize
without data word command, it: i) resets to 0 the internal DPU SubFrame Counter, ii) raises the
TS_Event to wake-up the TIME_task. If it is a synchronize with data word command it: i)
increments the internal SubFrame counter, ii) decode the data word to understand the address of the
RT allowed for TM transfer in the current SubFrame.

2
Transfer_Handler*

1
ISR_1553_Main*

ACE_DPRAM
ACE_DPRAM

TM_PTR_Queue*

TIME*

TMTC

ISR2_Handler*

ISR_1553_event

ISR_1553_Event

TS_event

RT_info

TC_PTD

TM_PTR

TM_PTR

Interrupt_type*

Interrupt_type*

Inst_Status*

TM_PTC*

TC_info*

Input OutputProcessing

Figure 3-2 ISR_1553 Module Functional Decomposition

 After these interrupt-dependent actions, the Transfer_Handler function checks if a new TC
packet is available from the CDMS, by reading the TC Packet Transfer Descriptor (TC_PTD) from
SA27R on the ACE DPRAM and transfers this information to the TMTC task. It then checks if the
previously sent TM packet has been successfully received by the CDMS by checking the TM
Packet Transfer Confirmation (TM_PTC) from SA10R in the ACE DPRAM. Finally

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 27 of 44

Transfer_Handler checks if there are new TM packets waiting to be sent to the CDMS by
checking the status of the TM_PTR_Queue (that holds the list of TM Packet Transfer Requests for
pending TM packets) and, if the check is positive, transfers the PTR for the next available TM
packet on SA10T of the ACE DPRAM.
 Once the ISR_1553 Event Handler has completed execution, its returned value tells
VIRTUOSO if the control should be passed or not to the other tasks (TMTC) waiting on
ISR_1553_EVENT. A TRUE returned value is used if the previous TM packet was downloaded
and confirmed by the CDMS. In this case the ISR_1553_EVENT is passed on to TMTC to load a
new TM packet in to the 1553 DPRAM. (see later).

3.2.5.2 Hard_VM

This is not properly a VIRTUOSO task, but rather an Interrupt Service Routine triggered by the
isr3.s assembler ISR which in turn is activated by the TIMER interrupt.
 This task allows for the execution of operations (including commands to the Sub-Systems)
at a fixed time with a maximum jitter of 10 microseconds. The task, interrupt driven, is
started/terminated by a DPU internal command which enables/disables the DSP highest priority
interrupt (IRQ3) driven by a 1 MHz clocked HW timer. For each IRQ3 request, the task reads from
a preloaded table (the VM code) the commands to be executed/ transmitted. A VM code is actually
a one column 32 bit word vector containing commands to be sent to the Sub-Systems, timer setting
(IRQ3), mutex (i.e. Sub-system interface locking), loop and other Virtual Machine "assembler"
instruction, operating as an absolute program. See RD6 for a complete description.
 A number of baseline VM programs, with functionality for the foreseen observation modes,
will be resident on the DPU. These programs, stored in tabellone, will be modified/reloaded via
TC, thus easing the need for OBS patching. A program can be as simple as a loop calling a
preloaded subroutine.
 In order to avoid collision on the low speed I/F with the LS task, a special (internal)
command is foreseen to lock/unlock (setting the IRQ3_flag) the low speed I/F. The locking
command will precede the SS commands of at least 2ms in order to allow for the possible
contemporary (just started) transmission of a command via the LS task. As a safety measure, the
Hard_VM stores in a back-up memory location the contents of the low-speed “receive” register in
order to preserve the integrity of the parameters requested by LS task; this is notified to the LS task
using the VM_Response task (see §3.2.6.5).
 The VM task aborts itself when the END (end of program) opcode in the VM code is
reached. VM is a state machine running into the whole system in a quite autonomous way.
 A VM compiler will be provided (see RD6) to resolve all the mnemonic labels and constant
in a VM program and produce the absolute VM code. A VM simulator will also be provided (see
RD6): it will be a modified version of the OBS VM section, to control any "unprotected"
CMD/RCMD instruction and output (on the out list file) a timeline of the SS commands.
 Event/Report TM packets can be generated during the execution of VM code by using
specific opcodes which cause the dispatch of FIFO messages (containing all relevant info) to the
VM_TM_QUEUE.
 A much more detailed description of the Virtual Machine is given in RD6.

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 28 of 44

3.2.6 Tasks Description

3.2.6.1 INIT Task

The INIT task has the highest priority and runs as soon as the PROM switch-on procedure is
completed and the control is passed to the OBS application. This task makes all the initializations
that aren't made automatically by the OS using the application configuration files. A most
important part of the INIT sequence is the configuration of the 1553 interface ACE.
 The 1553 SubAddresses (SAs) will be configured according to specifications in AD4. The
SAs dedicated to reception of TM packets will be configured as circular buffers in order to be able
to enqueue TM packets with the necessary speed in case faster-than-nominal telemetry transfer rates
are needed. The ACE will be configured to issue an interrupt request upon reception of sync mode
codes.
 The OBS will be started after completion of the PROM-resident Boot Software; since this
software generates Event TM packets to the CDMS, the OBS will have to check how many packets
have already been sent in order to avoid sending TM packets with the same sequence number in the
“TM Packet Transfer Request” (see AD4). This will be done by the INIT task by checking the 1553
DPRAM area corresponding to SubAddress 10 in reception (SA10R), before reconfiguring the 1553
Interface memory.

3.2.6.2 TIME Task

This task is activated each second after reception of the TS_EVENT from ISR_1553. It is
responsible for the time synchronization between the DPU and the Spacecraft. It i) checks that the
Spacecraft time fields (SA8R) have been updated by the CDMS and reads them, ii) reads the
VIRTUOSO time and it computes the difference ∆t. Each time the OBS is required to provide the
current DPU time (e.g., to put the time stamp on TM packets), the VIRTUOSO time will be read
and the ∆t computed by TIME_task will be added. ∆t will be also made available to HK_ASK_i
task to include it as a DPU HK parameter.

3.2.6.3 TMTC task

This task, together with the ISR_1553 interrupt service routine (see §3.2.5.1), handles the interface
with the spacecraft CDMS. It is enabled by the ISR_1553_EVENT raised by ISR_1553.

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 29 of 44

5
Tmtc_IF*

3
Upload_Packet*

2
Download_Packet*

EV_TM_Queue*

SD_TM_Queue*

HK_TM_Queue*

ACE_DPRAM

EV_POOL

HK_POOL

SD_POOL

TC_Pool

ACE_DPRAM

TM_PTR_Queue*

TC_LP_Queue*

TC_HP_Queue*

ISR_1553*

CMD_SEQ

ISR_1553_event

TCReady_Sema

HK_TM_FifoMsg*

SD_TM_FifoMsg*

Get_TC

Send_TM

EV_TM_FifoMsg*

Abort_MDump_Event*

TM_MSG

TC_MSG

TC_Packet

TM_Packet

TM_Packet

TM_Packet

TM_PTR

TC_info*

TC_PTC*

TC_HP_FifoMsg*

TC_LP_FifoMsg*

Input OutputProcessing

Figure 3-3 TMTC Task Functional Decomposition

If there are TM packets ready in the various memory pools (written there by a variety of other tasks
and signalled to TMTC using the FIFO Queues EV_TM_QUEUE, HK_TM_QUEUE and
SD_TM_QUEUE), and if there is space available on the transmission buffers SA11T-SA26T of the
ACE DPRAM, the function Tmtc_IF transfers control to the function Upload_Packet. This
function, using the information passed along with the FIFO Queue messages (see §3.2.3.3), copies
the TM packet from the relevant memory pool into the proper SAs on the ACE DPRAM, compiles
the appropriate TM PTR and writes it in the TM_PTR_Queue (where it will be read by ISR_1553,
see §3.2.5.1).
 If Tmtc_IF is notified by ISR_1553 (with the TC_info data flow) that there is a new TC
packet sent by the CDMS, it calls the Download_Packet function. It reads the relevant SAs from
the ACE DPRAM, builds the TC packet directly in the TC_POOL memory pool and writes the
pointer to the TC into the FIFO queues TC_HP_queue or TC_LP_queue depending on TC priority.
The high-priority TC are the so-called immediate commands that have to be executed as soon as
they are received; they are the “Abort VM” and “Abort Memory Dump” commands. All others are
low (standard) priority commands.
 Finally it raises the TC_READY semaphore to CMD_SEQ, and acknowledges TC reception
to the CDMS by copying the TC Packet Transfer Descriptor into the TC Packet Transfer
Confirmation on SA27T.

3.2.6.4 CMD_SEQ Task

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 30 of 44

This is the main task of the OBS. It is in charge to check, interpret and execute all the received TCs.
CMD_SEQ is in a wait state until the “TC_Ready” semaphore is signaled from task TMTC,
notifying the availability of a new TC. When this happens, CMD_SEQ reads in succession from the
FIFO queues TC_HP_QUEUE and TC_LP_QUEUE the message containing the pointer to the TC
in the TC_Pool. These actions are done in the cmd_seq_main function. All functions in this task
(see below) will act based on the contents of the TC; the only parameter passed among the various
functions is the pointer to the TC in the TC_POOL, and not the TC packet itself. This avoids
multiple copies of the TC packet flowing around between functions, optimizing memory usage and
maximizing speed of execution. We will maintain on board a list of indexes to relevant TC fields
for every TC packet type and subtype; in this way there will always be only one copy of a TC
packet for use by all functions.

8
Table_Handler* 7

HK_Handler*

6
Memory_LoadandDump*

5
Command_Parser*

4
Report_generator

3
TC_acceptance*

1
Cmd_seq_main*

SD_TM_Queue*

EV_TM_Queue*

SD_POOL

LS_CmdLP_Queue*

TC_Pool

MOAT*

EV_POOL

DPU_Memory

DPU_Memory

TC_LP_Queue*

TC_HP_Queue*

HS*

LS

TMTC

Hard_VM*

HK_ASK_i*

Soft_VM_i*

HS*

ISR3_Handler*

LS

TCReady_Sema

DPU_Timer_Int_En*

HK_Enable_Disable*

Start_Stop_SVM*

Set_DPU_Registers*

SD_TM_FifoMsg*

EV_TM_FifoMsg*
Abort_MDump_Event*

SD_TM_FifoMsg*

LS_Sema*

Cmd_Exec_Event*

Cmd_Exec_Event*

ISR_FIFO_Event*

Event_TM*

Acc_Report*

TC_Packet_Ptr*

TC_Packet_Ptr*

Exec_Report*
LS_CMD

TC_Packet_Ptr*

VM_Table_Addr*

VM_Table_Addr*

VM_Table_Addr*

HK_Def_Table_Addr*

HK_Sampl_Par*

Data*

TC_Packet

TC_Packet

Data*

Table_Def*

DPU_Parameter*

Science_TM*

Science_TM*

Packing_info*

TM_Red_info*

TC_HP_FifoMsg*

TC_LP_FifoMsg*

Input OutputProcessing

Figure 3-4 CMD_SEQ Task Functional Decomposition

The TC packet pointer is then passed to function tc_acceptance that performs the complete
sequence of TCs verification steps, down to their "executability" (i.e. the validity of the Application
data in the TCs). The acceptance information (TC accepted or refused) is then passed to the
report_generator function. This function is not properly a separated task, but rather a group of
routines compiling the appropriate report into standard TM packets, writing them into the
EV_POOL and signalling TMTC, via a message to the EV_TM_QUEUE FIFO queue, that a new
packet is ready to be transmitted to the CDMS.

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 31 of 44

 The function command_parser parses the TC packet type/subtype combination and takes
appropriate actions. In case of TC (8,4) it also parses the Function_ID/Activity_ID combination.
 Commands can be divided into two groups: atomic and complex. Atomic commands can
consist either of simple setting of a parameter stored in the DPU memory (like the OBSID), or in
resetting some DPU registers (like FIFO_Reset), sending a single command to the S/S (like the
Reset_DRCU_Counters) or starting/stopping the VMs. These atomic commands are executed in the
body of the command_parser function; the generation of the related execution reports (if
required) is also initiated in this function.
 Complex commands are those that involve a series of actions; this is the case of HK
collection management (service 3), memory management (service 6) and many of the functions
activity (service 8).
 The HK_Handler function manages the activation/deactivation of the four independent
housekeeping collection tasks HK_ASK_i. The relevant parameters (HK Packet definition tables,
sampling, etc.) are modified in this function only, and made available to HK_ASK_i as global
structures. The activation/deactivation is performed by starting/stopping the VIRTUOSO timers
that triggers the HK_i_Sema semaphores (see §3.2.3.2) on which the HK_ASK_i tasks are on a
wait state.
 The Table_Handler function manages the creation/modification/deletion of tables in
tabellone (see §3.2.4.1). This function uses the parameters passed from the ground via the TC to
update the data for the relevant table ID and modify accordingly the MOAT entries for that table
ID. In case of Table dump, the TM packets are created in this function and written into the
SD_POOL and a corresponding FIFO message is written to the SD_TM_QUEUE to signal TMTC
that a new packet is ready to be sent to the CDMS.
 The Memory_LoadandDump function manages the loading/dumping of DPU memory
using absolute memory addresses. In this case the TC packet contains all needed info to load/dump
memory without having to resolve addresses via the MOAT. In case of memory dump or memory
report, the relevant TM packets are created in this function and written into the SD_POOL and a
corresponding FIFO message is written to the SD_TM_QUEUE to signal TMTC that a new packet
is ready to be sent to the CDMS.
 In all cases (e.g., configuring HK housekeeping, running VMs, etc.) where it is necessary to
identify the relevant on-board table stored in tabellone, its address is always resolved from the
MOAT.

3.2.6.5 LS task

The LS Task is in charge of transmitting commands to the subsystems, although it can be used to
also retrieve certain DPU housekeeping parameters. The only exception is the Hard_VM task that
can send commands directly to the SubSystems by writing directly to the Low-Speed interface. The
task is triggered by the LS_Sema semaphore (see §3.2.3.2); function LS_main checks the
LS_HP_Queue and LS_LP_Queue FIFO queues in this order and reads the FIFO message which
contains three parameters: the actual command to be sent to the subsystem, the address in the DPU
memory where to store the parameter returned in reply by the Sub-Systems, and an event number
that LS has to raise upon completion.
 There are two types of commands that can be sent to LS: DPU commands and Sub-System
commands. DPU commands are a specific set of commands defined in RD7 that mimic the syntax
of the Sub-Systems commands. The HK packet defined in AD9 contains both DPU and Sub-System
parameters; since the HK packet definition table is organised as a series of 32-bit words containing
the command needed to get that particular HK parameter, we find convenient to retrieve the needed

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 32 of 44

DPU parameters by means of Sub-Systems-like command syntax in order to have an homogeneous
HK packet definition table. Each DPU Command ID is associated with a unique DPU parameter
memory address.

4
DPU_Cmd*

3
Receive*

2
Send*

1
LS_Main*

LS_CmdLP_Queue*

LS_CmdHP_Queue*

DPU_Cmd_Def*

DPU_Memory

HK_Pool

SS_Par_Bck*

EV_Pool

EV_TM_Queue*

Anom_LP_Queue*

Anom_HP_Queue*

AUTONOMY*

AUTONOMY*

HK_ASK_i*

Soft_VM_i*

CMD_SEQ

S_S*

S_S*

Soft_VM_i*

HK_ASK_i*

Hard_VM*

CMD_SEQ

LS_Sema*
HK_i_Event*

VM_Response*

IRQ3_Flag

LS_Sema*

LS_Sema*

LS_Sema*

EV_TM_FifoMsg*

Cmd_Exec_Event*

Auto_Sema*

LS_i_Event*

LS_CMD

LS_CMD

LS_CMD

LS_CMD

SS_Parameter*

LS_CMD

HK_Data

SS_Parameter*

DPU_CMD*

DPU_Cmd_Def*

DPU_HK_Data*

DPU_HK_Data*

SS_Parameter*

DPU_Time*

Event_TM*

Anom_FifoMsg*

Anom_FifoMsg*

Input OutputProcessing

Figure 3-5 LS Task Functional Decomposition

If the MSb of the command word is 0, then it a DPU command. The function DPU_Cmd parses the
command ID and put the corresponding parameter into the return address specified in the relevant
FIFO message (which in most cases will be within an HK packet).
 If the MSb of the command word is 1, then it is a Sub-Systems command. The Send
function checks for the availability (IRQ3_flag set) of the low speed I/F (it might be in use by VM
Task) and if not available suspends itself for 2 msec until the port is no longer busy. The function
then writes the command word on the DPU register that maps the write port of the Sub-System
interface and then the LS task is put to sleep for 2 milliseconds. The reason for this particular wait
time is the following. In principle the Sub-Systems should respond within few hundreds of
microseconds; in reality the LS task could be interrupted by interrupts, events, semaphores and
FIFO messages that trigger tasks with priority higher than LS, so the wait time needs to be longer.
Another aspect to be taken into account is that when a task goes to sleep VIRTUOSO transfer
control to other tasks; this task switch has an overhead of about 100 microseconds so doing fast task
switches is not very efficient in terms of CPU usage. A wait time of 2 milliseconds is an acceptable
compromise between speed of response and CPU usage efficiency.

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 33 of 44

 After the above mentioned wait time VIRTUOSO gives control back to LS. The Receive
function first checks if the Low-Speed port is being accessed by the Hard_VM task. As explained in
§3.2.5.2, the Hard_VM task gets control when the highest priority IRQ3 interrupt is triggered; this
task is the only one to send Sub-Systems commands directly via the Low-Speed port without
passing via the LS task. In particular, it may take control after LS has sent a command, but before
LS has read the Sub-System response. To preserve the integrity of the Sub-System response to LS,
the Hard_VM task reads the DPU memory locations where the Sub-System interface “receive”
register is mapped, stores its contents in a back-up memory location and raises the VM_Response
flag. The Receive function, based on the value of the VM_Response flag, will read the Sub-
System replied parameter from the “receive” register of the Low-Speed port, or from the back-up
location where the Hard_VM task stored it.
 The Sub-Systems reply word to a command sent by the DPU contains ancillary information
to diagnose possible interface or command format errors. If the command was correctly interpreted
and executed by the SubSystems, they will echo the exact copy of the command ID (see AD10). In
addition, the response word will also contain a 2-bits "Ack" field in place of the Sub-System
address bits, indicating the result of the command (OK, Interface Time-out, Command Forbidden or
Command unknown). If the "Ack" field will return OK then LS will assume the returned parameter
is a valid one; if the “Ack” fields report an error condition or the echo of the command ID is not
equal to the command ID sent, Event TM packets messages will be generated and sent to the
satellite (containing error codes that specifically identify the anomaly condition). Anomaly Reports
are also sent to the AUTONOMY task via the proper FIFO queues and the Auto_Sema semaphore
will be raised to trigger the appropriate recovery procedures.
 Receive will put the read parameter in the memory location specified in the FIFO message
(see above) originally read by LS_main.
 LS_main concludes its actions raising the event number specified in the FIFO message
originally read by LS_main; presently the only foreseen event is the one signalling HK_ASK_i
that the HK packet collection sequence is finished.

3.2.6.6 HK_ASK_i task

The OBS provides the ability to collect four independent HK packets at different sampling rates. In
all figures the reference is always made to the ith of these tasks. The tasks are enabled/disabled with
KS_TaskSuspend/Restart VIRTUOSO kernel calls (the HK_Enable control flow).
 The periodic activation of this task is via the HK_i_Sema semaphore that is raised by the
associated VIRTUOSO timer (one per HK_ASK_i task) in the CMD_SEQ task. The HK_i_main
function first resets the relevant VIRTUOSO timer to the sampling interval currently valid for that
HK_ASK_i task; this parameter, together with the other ones characterizing the HK sampling (see
AD9) are update and made available by CMD_SEQ task. Then HK_i_Main allocates a block in
HK_POOL and passes its address to the Cmd_Enqueue function, which starts parsing the relevant
HK Packet definition table (whose absolute address is resolved via the MOAT). In case a memory
block could not be allocated an anomaly report is enqueued on the Auton_LP_Queue FIFO and
Auto_Sema is raised to trigger the AUTONOMY task.
 For each command word read from this table, Cmd_Enqueue sends a message on the
LS_LP_Queue FIFO and raises the LS_Sema semaphore to LS task. The FIFO message to LS
task contains the command word, the address where to store the parameter returned by the Sub-
System or the DPU, and an event to be raised by LS (see §3.2.6.5); this event is always 0 (i.e., no
event) except in case of the last HK collection FIFO message, for which the event ID is

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 34 of 44

HK_i_Event. As Cmd_Enqueue sends FIFO messages to LS, LS puts its replied parameter into
the proper location of the HK packet in HK_POOL.
 When LS has finished processing the last Sub-System parameter request it will raise the
HK_i_Event, triggering the HK_Pkt_Build function. This function writes the header of the TM HK
packet in HK_POOL and enqueues a message in HK_TM_Queue containing the address of the
packet in HK_POOL. At that point a copy of the full HK packet is made on the DPU memory; this
will be used by the HK_MON task to monitor the HK parameters.

4
HK_Pkt_Build*

3
Cmd_enqueue*

1
HK_i_main*

HK_TM_Queue*

Anom_LP_Queue*

HK_POOL

HK_Pkt_Def*

Latest_HK

LS_CmdLP_Queue*

Anom_HP_Queue*

DPU_Memory

AUTONOMY*

CMD_SEQ

LS

VIRTUOSO*

LS

IDLE*

TIME*

HK_i_Event*

HK_enable

HK_TM_FifoMsg*

HK_i_sema*

HK_Block_Addr*

Auto_Sema*

LS_Sema*

SS_HK_Parameter

TM_Header

Get_HK_Command*

Get_SS_HK*

HK_Data

HK_Sampl_Par*

Anom_FifoMsg*

Anom_FifoMsg*

Get_DPU_HK*

DPU_HK_Parameter

Mem_Chk_Info*

Delta_Time*

Input OutputProcessing

Figure 3-6 HK_ASK_i Task Functional Decomposition

3.2.6.7 HS task

This task collects science data, organized in self-consistent frames, from the Sub-Systems via the
high speed I/F. The data on the high speed I/F are temporary stored on three 8Kwords (4Kwords in
the AVM) deep HW FIFOs: the "half FIFO full" signal of each FIFO generates a HW interrupt
(IRQ0). This interrupt is served by the ISR0_Handler, that in turn raises the ISR_FIFO_Event
that activates the HS task operations. Due to the asynchronous operation of the FIFOs, the actual
timing of the incoming data is lost and no cause/effect between commands (on low speed I/F) and
received data (on high speed I/F) is possible, at least in a simple efficient and reliable way.
 There are several types of science packets foreseen for the SPIRE instrument; each of them
is made up of raw frames coming from the Sub-Systems (see AD9). The HS_main function
allocates a memory block for each possible Frame_ID and transfers the block address info to the
function Frame_Interpreter.
 This function parses the interrupt registers in order to understand which FIFOs triggered the
half_full interrupt and starts reading the science frames from the relevant FIFO. The first word of

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 35 of 44

the frame is the frame_ID and the second is the frame length; the frame ID is converted into a SID
so that the Frame_Interpreter is able to channel each frame to the proper TM packet in
SD_POOL. The frame length allows to read the exact number of words for that frame;
Frame_Interpreter perform an XOR of the frame words and compares it to the checksum word
provided by the Sub-Systems at the end of that same frame. In case the frame is not self-consistent
(wrong frame_ID, incorrect checksum, etc.) Event TM packets will be generated. An anomaly
message will be enqueued on the Auton_LP_Queue FIFO and Auto_Sema will be raised to
signal the AUTONOMY task to take appropriate measures. Once the frames have been read and
checked they are written into the relevant TM packet in SD_POOL. When the TM packet is ready,
Frame_Interpreter sends a FIFO message in the SD_TM_Queue FIFO to TMTC, with the
pointer to the newly written TM packet.

2
Frame_Interpreter*

1
HS_Main*

Anom_LP_Queue*

Anom_HP_Queue*

EV_TM_Queue*

EV_POOL

SD_POOL

SD_POOL

SD_TM_Queue*ISR0_Handler*

DCU

SCU

MCU

CMD_SEQ

AUTONOMY*

CMD_SEQ

ISR_FIFO_Event*

Half_FIFO_int

SD_TM_FifoMsg*

Alloc_Block*

EV_TM_FifoMsg*

Auto_Sema*

ISR_FIFO_Event*

Cmd_Exec_Event*

Science_TM*

Science_Frames*

Science_Frames*

Science_Frames*

SD_Block_Addr*

SD_Block_Addr*

TM_Red_info* Event_TM*

Anom_FifoMsg*

Anom_FifoMsg*

Packing_info*

OutputProcessingInput

Figure 3-7 HS Task Functional Decomposition

3.2.6.8 HK_MON task (N/A in OBS Version 1)

This task implements a parameter-status conditional monitoring system. A predefined list of HK
parameters, modifiable via TCs, is monitored depending on the particular values of other HK
parameters. The check is done against soft and hard limits tables stored on-board. The monitoring
rate will not exceed the HK collection rate. In case of out-of-limits, an anomaly message shall be
enqueued on the Auton_HP_Queue FIFO and the Auto_Sema will be raised to signal the
AUTONOMY task.

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 36 of 44

3.2.6.9 AUTONOMY task (N/A in OBS Version 1)

This task is triggered by the Auto_Sema semaphore, which can be raised from various locations
in the OBS. The task will then read from the Auton_HP_Queue and Auton_LP_Queue (in this
order) the anomaly message and will take appropriate actions.
 The first action will be to generate an Event_TM packet, by writing it into the EV_POOL
and notifying it to TMTC task via the EV_TM_Queue. The generation of event TM packets will
be done only at the transition between nominal and anomaly conditions; no event packets will be
generated as long as the anomaly condition persists. Another event will be generated when the
conditions go back to nominal.
 The second action will be to start a recovery procedure that will clearly be anomaly-
dependent. These procedures will be implemented as compiled pieces of code (in which case the
task will be able to, e.g., send commands to the Sub-systems via the LS task, and/or as VM codes to
be run on any of the Virtual Machines.

3.2.6.10 Soft_VM_i task

In addition to the Hard_VM Virtual Machine, the OBS provides three mode VMs that, unlike the
Hard_VM Virtual Machine, are driven by VIRTUOSO timers. The only other distinction with
respect to Hard_VM is the management of command dispatch to the Sub-Systems; the Soft_VM_i
tasks send their commands via the LS_HP_Queue, which is the high-priority FIFO queue to LS.
These VMs will be used to implement the PID controls.

3.2.6.11 VM_SVC task

The task is on wait on the FIFO queue VM_TM_Queue (written by both Hard_VM and
Soft_VM_i tasks); when a message is received on that queue the task reads the info provided and
generates the proper execution reports or event requested.

3.2.6.12 IDLE task (N/A in OBS Version 1)

This task is the lowest priority in the whole OBS. It is executed when nothing else is running. It
performs TBD checks on the DPU memory (like computing a checksum on portions of DPU
memory) and storing results in HK parameters made available to HK_ASK_i.

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 37 of 44

4 User Requirements Traceability Matrix

This table or requirements is taken directly from AD7. Next to each requirement we state how the
present OBS architecture design meets them.

4.1 Switch-on Requirements

Req. ID Verification Notes
OBS-UR-ON1
OBS-UR-ON2

OBS-UR-ON3
OBS-UR-ON4
OBS-UR-ON5

The Switch-on procedure is implemented in the Boot
Software, which is not part of the OBS application.
Requirements are verified in RD8

4.2 Telecommands Requirements

Req. ID Verification Notes
OBS-UR-TC1 The Command_Parser routine in the CMD_SEQ task

(§3.2.6.4) will decode the [Type, Subtype, Function_ID,
Activity_ID] combination using a series of nested “switch”
statements.

OBS-UR-TC2 Deleted
OBS-UR-TC3 The Transfer Layer Protocol specified in AD4, used by the

CDMS to send TC packets, is implemented in the OBS by
the combination of the ISR_1553 Interrupt Service Routine
(§3.2.5.1) and the TMTC task (§3.2.6.3).

OBS-UR-TC4 TC reception and unpacking is immediate because
ISR_1553 (§3.2.5.1) is triggered by an event (§3.2.3.1)
raised by an Interrupt Service Routine, and the task TMTC
(§3.2.6.3) has the highest priority (see table in §3.2.3) after
the INIT task (§3.2.6.1), which runs only at start-up, and
TIME task (§3.2.6.2) that runs only once per second. The
read/write operations needed to implement complete
reception and unpacking of a maximum-size TC packet
should not take more than 0.3 msec to execute.
Overall VIRTUOSO overhead to pass control from TMTC
to CMD_SEQ (assuming no other task is interrupting) is of
the order of 0.2 msec (including semaphore, FIFO message,
task context switch).
 The TC execution is managed in task CMD_SEQ
(§3.2.6.4). In order of priority CMD_SEQ is preceeded by:
• Virtual Machines, which are low duty-cycle tasks (see

§3.2.5.2 and RD6)
• HS, which runs only when science data is being received

from the DRCU. This occurrence is not expected to

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 38 of 44

happen when a TC is received because TC dispatching
by the CDMS is timed to the execution duration of the
TCs, meaning that no TCs will be sent to the instrument
before the previous one has been completed; the only
exception is the “Abort” command, which is the only
immediate command implemented by the SPIRE OBS,
and which only consists in stopping the Hard_VM task
(§3.2.5.2) by disabling IRQ3 interrupt.

• VM_SVC, which runs occasionally
• LS, which is mainly used by the HK_ASK_i which, on

turn, have lower priority than CMD_SEQ
Assuming a TC (6,1) “Memory Load” maximum-size TC as
the sizing case, most of the execution time is taken by CRC
computations and read/write operations; we estimate an
execution time of 0.5 msec
The total required time to receive unpack and execute the
TC is then ~ 1msec. The goal of this requirement is to be
able to receive, unpack and process up to 25 TCs per
second; this corresponds to 1 TC every 40 msec, largely met
by our design.

OBS-UR-TC5 Function Report_Generator in task CMD_SEQ (§3.2.6.4)
generates the required TC acceptance and execution reports.
The function will execute according to the “Ack bits” setting
in the correspondent TC.

OBS-UR-TC6 Both “immediate” and “normal” commands are passed by
TMTC to CMD_SEQ via the TC_POOL memory pool. The
only immediate command is the “Abort Measurement”
command; this will act to disable the IRQ3 interrupt which
triggers the Hard_VM and will not interfere with other
previously processed TCs. Hence the foreseen architecture
works equally well for “immediate” and “normal”
commands.

Partially
available in
OBS Version 1

OBS-UR-TC7 The only immediate command is the “Abort Measurement”
command. Consisting of a single statement (disable IRQ3)
its execution time largely meets the requirement.

OBS-UR-TC8 Function TC_Acceptance in task CMD_SEQ (§3.2.6.4) will
perform all required validity checks (AD4).

OBS-UR-TC9 Deleted
OBS-UR-TC10 Validity checks of the TC packet header and application data

header are performed in function TC_Acceptance of task
CMD_SEQ (§3.2.6.4). If the packet is found invalid, the
reject report generation is immediately initiated and the task
CMD_SEQ exits.

OBS-UR-TC11 See above.
OBS-UR-TC12 The estimated time required for a TC packet reception,

unpack and processing is 0.5 msec in total (see OBS-UR-
TC4 above).
The generation, packing and dispatch of TC verification

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 39 of 44

report TM packets take a similar amount of time. the
requirement is easily met.

OBS-UR-TC13 Deleted
OBS-UR-TC14 After execution of the TC_acceptance function, the task

CMD_SEQ passes control to the Command_Parser function
.

OBS-UR-TC15 Function Command_Parser in CMD_SEQ uses the
Report_Generator function (in the same task) to generate
report TM packets that reflect the success/failure status in
the TC execution.
Progress reports will be issued only during the execution of
observing procedures (execution speed makes this feature
useless in all other cases). Observing procedures are handled
by VM codes run by Hard_VM task (§3.2.5.2). This task
will implement opcodes to generate proper FIFO messages
to trigger the VM_SVC task (§3.2.6.11) that, finally, will
generate the progress report TM packets.

OBS-UR-TC16 See above.
OBS-UR-TC17 Deleted
OBS-UR-TC18 See OBS-UR-TC6 above.
OBS-UR-TC19 This requirement is met by the adopted DPU memory

management scheme (§3.2.4.1). table management is
handled by the Table_Handler function in task CMD_SEQ
(§3.2.6.4).

OBS-UR-TC20 The transmission of TC verification packets is handled by
the Report_Generator function in task CMD_SEQ
(§3.2.6.4); this function executes accordingly to the “Ack
bits” in the TC packet header.

OBS-UR-TC21 Function Transfer_Handler in ISR_1553 (§3.2.5.1) checks
that the TC count in the TC Packet Transfer Descriptor is
different from the one of the previously received TC packet.
In case it is different by more than one unit (jump in TC
packet counter) the function will initiate the generation of an
event

OBS-UR-TC22 The OBS shall be able to execute a peak-up procedure,
interacting with the spacecraft.

N/A in OBS
Version 1

OBS-UR-TC23 The Hard_VM and Soft_VM_i tasks (3.2.5.2 and 3.2.6.10)
allow the execution of command lists stored on-board and
loaded/modified via TCs.

4.3 Telemetry Generation Requirements

Req. ID Verification Notes
OBS-UR-TM1 Tasks CMD_SEQ (§3.2.6.4), HK_ASK_i (§3.2.6.6), LS,

(§3.2.6.5), HS (§3.2.6.7), and AUTONOMY (§3.2.6.9)

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 40 of 44

generate all TM packets specified in AD9.
OBS-UR-TM2 The tasks responsible for the generation of all types of TM

packets will packetise data accordingly to AD4 and AD9.
The Transfer Layer Protocol specified in AD4, used by the
OBS to send TM packets, is implemented in the OBS by the
combination of the ISR_1553 Interrupt Service Routine
(§3.2.5.1) and the TMTC task (§3.2.6.3).

OBS-UR-TM3 The TM packet assembly will be started with the memory
block allocation and the compilation of the TM packet
header, which includes the time info, is done before the
application data is written.

OBS-UR-TM4 All TM packets will contain at the beginning of the
application data the OBSID and the BBID.

OBS-UR-TM5 Science data memory pool size meets this requirement
(§3.2.4.2).

OBS-UR-TM6 Module ISR_1553 (§3.2.5.1) implements a simplified TFL
protocol that neglects the PTR/PTC mechanisms and
uploads a new TM packet based on the RT_info parameter
(read from the data word coming with the Subframe Sync)
which notifies the RTs which is the one allowed for TM
transfer in the current SubFrame.

OBS-UR-TM7 The Frame_Interpreter function in task HS (§3.2.6.7) can
perform subarray selection or data averaging based on
configuration parameters stored on-board and uploadable
via TC. By default, it will fill the TM science packets with
raw science frames.

OBS-UR-TM8 COCA: The list of HK parameters to be monitored is
modifiable via TCs in task HK_MON (§3.2.6.8)

TEST: this is transparent to the OBS as the test frames are
being generated by the DRCU.

TRNS: see OBS-UR-TM7.

N/A in OBS
Version 1

OBS-UR-TM9 Once enabled, tasks HK_ASK_i (§3.2.6.6) run in batch
independently from the instrument operating mode.

OBS-UR-TM10 Function DPU_Cmd in task LS (§3.2.6.5) implements a
commanding scheme similar to the one used to send
commands to the DRCU, to read DPU H/W and S/W
parameters.

OBS-UR-TM11 Function HK_i_main in task HK_ASK_i (§3.2.6.6) stores as
a DPU parameter the time when the trigger HK_i_SEMA
semaphore signal was received. In the course of the HK
packet building, the DPU_Cmd function in task LS
(§3.2.6.5) will write that parameter in the proper location of
the HK packet in HK_POOL.

OBS-UR-TM12 The content of HK packets are defined in on-board tables
stored in tabellone (§3.2.4.1), modifiable via TCs, used by
the task HK_ASK_i (§3.2.6.6).

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 41 of 44

OBS-UR-TM13 The OBS shall provide only actual values of the HK
parameters and not changes (or delta values) since the last
readout.

OBS-UR-TM14 Tasks HK_ASK_0 and HK_ASK_1 (§3.2.6.6) will be run by
default at start-up, providing the required HK packets at the
required sampling using predefined tables on-board.

OBS-UR-TM15 The OBS implements 4 independent HK_ASK_i tasks.
OBS-UR-TM16 The HK packet sampling period is read from a TC and made

available by the HK_Handler function of task CMD_SEQ
(§3.2.6.4) to ask HK_ASK_i (§3.2.6.6).

OBS-UR-TM17 This requirement is met with the possibility to generate,
using VM code in Hard_VM (§3.2.5.2) and Soft_VM_i
(§3.2.6.10) tasks, packets containing HK parameters
sampled at whatever rate.

N/A in OBS
Version 1

OBS-UR-TM18 Task HS (§3.2.6.7) will put into TM packets the maximum
possible number of raw science frames.

4.4 Synchronization Requirements

Req. ID Verification Notes
OBS-UR-SY1 At each Frame Sync received from the CDMS the module

ISR_1553 (§3.2.5.1) will activate the highest-priority task
TIME (§3.2.6.2), responsible for the synchronization. The
adopted design easily meets the requirement.

OBS-UR-SY2 Whenever the time has not yet been synchronised (e.g., after
switch on or reset), the OBS shall set to 1 the MSB of the
time field in the header of TM packets.

OBS-UR-SY3 The Send function in task LS (§3.2.6.5) will store in DPU
memory the time at which the “SyncDRCUCounters”
command is being transmitted to the DRCU. Considering
that the LS task can be interrupted by the Hard_VM task
(§3.2.5.2) at any moment for no more than about 2 msec, the
requirement is easily met.

OBS-UR-SY4 The drift between the S/C clock and the DPU clock is
updated every second by the TIME task (§3.2.6.2) and made
available as an HK parameter.

4.5 Testing and Maintainance Requirements

Req. ID Verification Notes
OBS-UR-SM1 Entering the instruments Test Mode shall not require

disabling of fault management (autonomy) functions. TBD
N/A in OBS
Version 1

OBS-UR-SM2 The IDLE task (§3.2.6.12) may be used to perform DPU
memory checks.

OBS-UR-SM3 An OBS software verification facility (for PROM, N/A in OBS

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 42 of 44

EEPROM, RAM code) shall be provided on board. TBD Version 1
OBS-UR-SM4 The OBS image is stored on EEPROM
OBS-UR-SM5 See §3.2.2
OBS-UR-SM6 The Memory_LoadandDump function of task CMD_SEQ

(§3.2.6.4) implements service 6 of AD4.
Writing into EEPROM is provided in the Command_Parser
function of task CMD_SEQ. Reading and checksum are
performed by the Boot Software (see RD8).

OBS-UR-SM7 Requirement met performed by the Boot Software (see
RD8).

OBS-UR-SM8 Service 17 of AD4 is provided in the Command_Parser
function of task CMD_SEQ (§3.2.6.4).

OBS-UR-SM9 Tasks HK_ASK_i (§3.2.6.6), Soft_VM_i (§3.2.6.10) and
Hard_VM (§3.2.5.2) can be stopped/started by
disabling/enabling timers and/or interrupts.

OBS-UR-SM10 Procedures are implemented as VM codes stored in tables in
tabellone (§3.2.4.1).

OBS-UR-SM11 This requirement is not met. A waiver will be requested. N/A in OBS
Version 1

4.6 Autonomy Function Requirements

Req. ID Verification Notes
OBS-UR-AF1 See task HK_MON (§3.2.6.8). N/A in OBS

Version 1
OBS-UR-AF2 Procedures are implemented as VM programs stored in

tables in tabellone (§3.2.4.1). Task HK_MON (§3.2.6.8)
can start Hard_VM with a predefined VM code to be
executed.

N/A in OBS
Version 1

OBS-UR-AF3 Task HK_MON (§3.2.6.8) will trigger the AUTONOMY
task (§3.2.6.9) upon detection of an anomaly.

N/A in OBS
Version 1

OBS-UR-AF4 See OBS-UR-AF3 N/A in OBS
Version 1

OBS-UR-AF5 Since autonomy functions are implemented as VM codes,
this requirement is met by the ability to generate events and
TM packets from within task Hard_VM (§3.2.5.2).

N/A in OBS
Version 1

OBS-UR-AF6 The OBS shall provide all the event packets with a counter
that permits the unambiguous identification of missing
packets. TBD

N/A in OBS
Version 1

OBS-UR-AF7 The AUTONOMY task (§3.2.6.9), as well as anomaly
detection codes in the LS (§3.2.6.5) and HS (§3.2.6.7) tasks,
will implement a “transition edge” sensing mechanism for
anomaly conditions.

N/A in OBS
Version 1

OBS-UR-AF8 Control actions will be implemented as VM codes and, as
such, handled by task HK_MON (§3.2.6.8).

N/A in OBS
Version 1

OBS-UR-AF9 Autonomy functions will be implemented as VM codes and
,as such, a pointer to a table ID containing the appropriate

N/A in OBS
Version 1

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 43 of 44

program will be associated to any anomaly condition
detected: task HK_MON can be told to disable such
associations via TC.

OBS-UR-AF10 HK monitoring parameters used by task HK_MON are held
in tables in tabellone (§3.2.4.1), as well as autonomy
function VM codes; as such thay can be modified via TC.

N/A in OBS
Version 1

OBS-UR-AF11 Operation/activities will be implemented as VM codes. Task
Hard_VM (§3.2.5.2) provides opcodes to generate progress
reports.

N/A in OBS
Version 1

OBS-UR-AF12 Observing mode initialization is performed in VM code and,
as such, completely configurable from the ground.

N/A in OBS
Version 1

OBS-UR-AF13 This functionality is provided in the Command_Parser
function of task CMD_SEQ (§3.2.6.4).

N/A in OBS
Version 1

OBS-UR-AF14 Critical subsystem commands will only be sent via TCs with
service (8,4) and not as part of a VM code. This requirement
will be met using service 8,1 (AD4).

N/A in OBS
Version 1

4.7 Functional Requirements

Req. ID Verification Notes
OBS-SUR-FU1
OBS-SUR-FU2
OBS-SUR-FU3
OBS-SUR-FU4
OBS-SUR-FU5
OBS-SUR-FU6
OBS-SUR-FU7
OBS-SUR-FU8
OBS-SUR-FU9

These requirements are met by the possibility to execute
these procedures either as VM codes run in Hard_VM
(§3.2.5.2) or Soft_VM_i (§3.2.6.10), or as sequences of
direct DRCU commands sent via TCs and managed by the
Command_Parser function of task CMD_SEQ (§3.2.6.4).

OBS-SUR-FU10 The design of tasks LS (§3.2.6.5) and HS (§3.2.6.7) meets
the requirement.

OBS-SUR-FU11 Task HS (§3.2.6.7) is interrupt driven. Science Frame
checksum control is done on-the-fly while reading from the
FIFOs and frames are directly written into SD_POOL
memory blocks, thus minimizing memory read/write
overhead.

4.8 Operating Modes Requirements

Req. ID Verification Notes
OBS-SUR-GE1 Procedures implemented as VM codes. Beside the main

procedure that can be run from Hard_VM (§3.2.5.2), up to
three parallel procedures can be run on the three Soft_VM_i
tasks (§3.2.6.10).

OBS-SUR-GE2 Requirement implemented by the Boot Software (RD8)

Herschel - SPIRE On-Board Software Specification Document Issue: 1.1

SPIRE On-Board Software
Software Specifications Document

Herschel CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.1
Date 15/08/2004
Page 44 of 44

OBS-SUR-GE3 The task-oriented OBS architecture meets this requirement.
OBS-SUR-GE4
OBS-SUR-GE5
OBS-SUR-GE6

All instrument settings can be executed as VM code.

OBS-SUR-GE7 Anomalies recovery procedure are implemented as VM code
and are triggered by task HK_MON (§3.2.6.8). While task
Hard_VM (§3.2.5.2) is running, the HK_ASK_i task
(§3.2.6.6) is also running.

N/A in OBS
Version 1

OBS-SUR-GE8 All observing procedures are implemented as VM code.
OBS-SUR-GE9
OBS-SUR-GE10

The HS task design (§3.2.6.7) ensures that the OBS is fast
enough to support these data rates.

OBS-SUR-GE11 This requirement has to be met by the observing procedure,
which is implemented as VM code.

OBS-SUR-GE12 All instrument settings can be executed as VM code.
OBS-SUR-GE13 Most of the degraded operations can be handled in VM

code.
Reduced telemetry rate by sub-array selection can be
performed within task HS (§3.2.6.7) by using the
TM_Red_info data from CMD_SEQ.

OBS-SUR-GE14 Mode transitions procedures are implemented as VM code;
task Hard_VM (§3.2.5.2) can be run by TC from
CMD_SEQ (§3.2.6.4).

N/A in OBS
Version 1

