

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 1 of 31

CNR
IFSI

SPIRE

On Board Software

Software Specification Document

Document No: SPIRE-IFS-PRJ-001036

Issue: 1.0

Prepared by: Sergio Molinari
 Riccardo Cerulli-Irelli

Approved by: Renato Orfei
 Ken J. King
 Bruce M. Swinyard

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 2 of 31

1 Introduction.. 3
1.1 Purpose of the Document ... 3
1.2 Acronyms ... 3
1.3 References .. 4

1.3.1 Applicable Documents ... 4
1.3.2 Reference Documents .. 4

1.4 Document Change Record ... 5
2 The DPU/VIRTUOSO/OBS System ... 6

2.1 The TIMER Interrupt... 6
2.2 The 1553 Interrupt ... 6
2.3 The FIFO Interrupt... 6

3 OBS Architecture ... 7
3.1 Data Memory Management On-Board .. 7

3.1.1 The SEG_DMDA Segment .. 7
3.1.2 The SEG_CHEAP Segment... 7

3.2 OBS Tasks.. 8
3.3 Inter-Task Communication.. 9

3.3.1 Events... 9
3.3.2 Semaphores .. 10
3.3.3 FIFO Queues.. 11

3.4 C Interrupt Service Routines.. 12
3.4.1 ISR_1553 ... 12
3.4.2 Hard_VM ... 13

3.5 Tasks Description... 14
3.5.1 INIT Task ... 14
3.5.2 TIME Task ... 14
3.5.3 TMTC task ... 14
3.5.4 CMD_SEQ Task .. 15
3.5.5 LS task.. 17
3.5.6 HK_ASK_i task ... 19
3.5.7 HS task ... 20
3.5.8 HK_MON task ... 22
3.5.9 AUTONOMY task ... 22
3.5.10 Soft_VM_i task .. 23
3.5.11 VM_SVC task .. 23
3.5.12 TABLER task... 23
3.5.13 IDLE task ... 24

4 User Requirements Traceability Matrix... 25
4.1 Switch-on Requirements.. 25
4.2 Telecommands Requirements.. 25
4.3 Telemetry Generation Requirements ... 27
4.4 Synchronization Requirements .. 29
4.5 Testing and Maintainance Requirements ... 29
4.6 Autonomy Function Requirements .. 30
4.7 Functional Requirements ... 31
4.8 Operating Modes Requirements... 31

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 3 of 31

1 Introduction

1.1 Purpose of the Document

This document describes the Architecture Design that led to the generation of the SPIRE On-Board
Software. The OBS runs under the VIRTUOSO Operating System, which is designed for Real-
Time DSP applications. We will first describe the main features of VIRTUOSO kernel services that
are used in the OBS: Tasks, Semaphores, FIFO Message Queues, Events and Memory Pools. We
will then describe the implementation of the on-board memory management. Finally, we will
describe the OBS applicative by a series of Architecture Diagrams where the OBS is broken down
into the individual tasks; each task is then decomposed into modules. Each diagram module maps
one, or a group, of modules in the OBS code. Blocks and modules will be described in detail,
enhancing the design features that implement the various requirements in the URD AD7.

The DPU Switch-on and Boot procedure is not implemented as part of the OBS, but it is
implemented as a separate entity stored on a PROM. See RD8 for details.

1.2 Acronyms

ACE 1553 Advance Computing Engine
AOT Astronomical Observation Template
APID Application Identifier
CASE Computer Aided Software Engineering
CDMS Command and Data Management System
CNR Consiglio Nazionale delle Ricerche
CPU Control Processing Unit
DPU Digital Processing Unit
DRCU Detector Readout and Control Unit
EEPROM Electrically Erasable Programmable Read Only Memory
FCU FPU Control Unit
HERSCHEL Far InfraRed and Submillimeter Telescope
FOV Field Of View
FPU Focal Plane Unit
FTS Fourier Transform Spectrometer
HIFI Heterodyne Instrument for HERSCHEL
HK HouseKeeping
HS High Speed
HW HardWare
ICC Instrument Control Centre
ICS Instrument Command Sequence
IFSI Istituto di Fisica dello Spazio Interplanetario
MCU Mechanical Control unit
MOC Mission Operations Centre
OBS On Board Software
OIRD Operations Interface Requirements Document

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 4 of 31

PACS Photoconductor Array Camera and Spectrometer
PROM Programmable Read Only Memory
RAM Random Access Memory
ROM Read Only Memory
SA 1553 DPRAM SubAddress
SPIRE Spectral and Photometric Imaging Receiver
SW SoftWare
TAI Temps Atomique International
TBC To Be Confirmed
TBD To Be Defined
TBW To Be Written
TC TeleCommand
TM TeleMetry
UR User Requirement
URD UR Document
WE Warm Electronics

1.3 References

1.3.1 Applicable Documents

Document
Reference

Name Number

AD1 FIRST/Planck Instrument Interface Document Part A PT-IIDA-04624
AD2 FIRST/Planck Instrument Interface Document Part B

Instrument “SPIRE”
SCI-PT-IIDB

AD3 FIRST/PLANCK Operations Interface Requirements
Document

SCI-PT-RS-07360

AD4 FIRST/PLANCK Packet Structure Interface Control
Document

SCI-PT-IF-07527

AD5 FIRST Instrument Commanding Concepts
AD6 Operating Modes for the SPIRE Instruments SPIRE-RAL-DOC-000320
AD7 SPIRE OBS User Requirement Document SPIRE-IFS-PRJ-000444
AD8 FIRST SPIRE Electrical Interface Control Document SAp-SPIRE-Cca-24-00
AD9 SPIRE Data ICD SPIRE-RAL-DOC-001078

1.3.2 Reference Documents

Document
Reference

Name Number

RD1 Guide to applying the ESA software engineering
standards to small software projects

BSSC(96)2

RD2 FIRST SPIRE DPU subsystem specification
document

RD3 FIRST SPIRE DPU-DRCU Interfaces SP-RCI-5.7.00

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 5 of 31

RD4 Telemetry and Telecommand Packet Utilisation
Standard

ECSS-E-70/41

RD5 Herschel/Planck Instrument Data Rates H-P-1-ASPI-TN-0204
RD6 SPIRE DPU Virtual Machine
RD7 SPIRE OBS User Manual
RD8 DPU Boot Software Architectural Design DPU-AD-CGS-001
RD9 VIRTUOSO User’s Guide for ADSP-21020

1.4 Document Change Record

Issue Revis ion Date Reason for Change

0 2 18/05/2001 First draft. The document consists of the Software
specifications that are common to the three
instruments.

0 9 17/04/2002 Added a quite general version of the OBS Logical
Model, mostly mutuated from HIFI. Also added a
first draft of a SPIRE-specific architecture design
and module description

1 0 18/05/2003 Complete rewrite. Logical Model and Software
specifications removed. Architecture design
description has been updated and greatly enhanced.

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 6 of 31

2 The DPU/VIRTUOSO/OBS System
The DPU OBS will run under VIRTUOSO, an operating system designed for use in DSP
environments, where speed of response to interrupts is usually critical. This environment allows the
implementation of a multitasking application: a VIRTUOSO task in the OBS is an independent
module consisting of one or more C routines, with its own thread of execution and set of system
resources. It performs a well-defined function or set of functions and communicates information to
other tasks. Tasks can be assigned priorities depending on their criticality: VIRTUOSO will assign
CPU resources accordingly.

There are three interrupt lines available on the SPIRE DPU. In ascending order of priority, they are
dedicated to the DPU FIFOs (where the science data on the fast data links from the subsystems are
received), the MIL-STD-1553B interface to the CDMS, and the DPU internal timer. The low-level
interaction of the interrupt lines with the VIRTUOSO kernel is done through small standard
assembler Interrupt Service Rout ines, called ISRi_Handler in the main OBS Architecture
Diagram. The only function of these assembler ISRs is to transfer control to a C module by raising a
VIRTUOSO Event; the target C module can either be directly associated to the interrupt via this
event (using the VIRTUOSO call KS_SetEventHandler) or it can be put in a wait state on the
VIRTUOSO Event. We briefly describe below the three interrupt lines available on the SPIRE
DPU; the tasks and modules mentioned are described in detail in the rest of the document.

2.1 The TIMER Interrupt

This is the highest priority interrupt. The DPU timer is used by the Virtual Machine Hard_VM task
to implement the SubSystem commanding at exact times with a less than 10 microseconds jitter.
The DPU timer is basically a down-counter starting from a programmable number (in
microseconds); when the down-counter reaches 0 it sends the Interrupt signal. This interrupt is
served by the irq3.s routine, which transfers directly, not via an event, but via a direct call to the
vm.c C routine, the control to the Hard_VM task.

2.2 The 1553 Interrupt

This is the second highest priority interrupt. This interrupt line is utilized by the MIL-STD-1553B
Advanced Computing Engine (ACE) chip that interfaces the DPU to the CDMS. The ACE is
software programmable to associate the interrupt line to any 1553B event (like reception of
messages on particular SAs, reception of Mode Codes, etc.). This interrupt line is served by the
irq2.s routine that raises the ISR_1553_Event; this event is associated to the ISR_1553 C module
which is configured as a VIRTUOSO Event Handler, that is the real Interrupt Service Routine for
this interrupt. Once the Event Handler has completed execution it can decide if the control has to
pass to other tasks waiting on that same event.

2.3 The FIFO Interrupt

This is the lowest priority interrupt. This interrupt is dedicated to the FIFOs on which the science
data coming on the fast data links from the SubSystems are received. This interrupt line can be
programmed to any of the empty/half- full/full states of the three SPIRE DPU FIFOs (it is a single

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 7 of 31

physical line that is multiplexed and managed by an FPGA). The adopted setting is to trigger the
interrupt at Half-FIFO-Full. This interrupt is managed by the irq0.s routine that raises the
IRQ0_Event that in turn triggers the HS task.

3 OBS Architecture

3.1 Data Memory Management On-Board

The DPU memory is structured according to the DPU Memory Architecture File that will be
delivered together with the OBS code. In particular the Data Memory consists of 512 kW (32-bits
words) is divided into two main blocks.

3.1.1 The SEG_DMDA Segment

This segment size is ~200 kW, and hosts the static variables used by the OBS. The biggest chunk of
SEG_DMDA, called tabellone, is used to hold all the tables that are manageable from the ground
via standard TeleCommands; examples are the HouseKeeping packets definition tables, Jiggle
tables, Virtual Machine Codes, etc. The size of tabellone is 128 kW (32-bits words).

A table is characterised by an ID number, a starting memory location, a length and a series of flags
indicating their usage status. Critical tables (HK definition tables, VM code) can be locked while
they are being used; this prevents access by other tasks that could modify the table contents while
the table is being used by another task. As an example, a table containing an HK packet definition
that is currently being used to collect HK parameters cannot be modified/deleted. The set of
parameters that characterize each table are stored and constantly kept up-to-date in a master table
called the MOAT (Mother Of All Tables), which is also contained in tabellone.

The exact position and size of all tables (but the MOAT) within tabellone is not fixed to allow full
flexibility in the table management (create/modify/delete). When a new table with the required ID
number is to be created, the OBS looks into the MOAT to identify the location of a free contiguous
block of the required size within tabellone. The corresponding entry in the MOAT is updated
accordingly. Thanks to the MOAT, the tables in tabellone do not need to be created in order of
Table ID; i.e., the start address of table 46 may be higher than the start address of table 117. This
quite flexible table management scheme will lead to a certain degree of fragmentation in tabellone
(holes are left when tables are deleted), that can be removed either via a dedicated TC or
automatically by the TABLER task (see §3.5.12).

There is another reserved area in SEG_DMDA segment, which is used by the TABLER task to
perform the defragmentation. This is called swappone and its size is 8 kW.

3.1.2 The SEG_CHEAP Segment

This segment is used by VIRTUOSO to hold the Memory Pools. Memory Pools are sections of
memory where blocks of required size can be allocated by VIRTUOSO upon request by the OBS.
When the OBS has finished using the block, it commands VIRTUOSO to release the block back
into the Pool. The allocation/deallocation of blocks in the Memory Pools is entirely managed by

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 8 of 31

VIRTUOSO. Each pool is specified with the maximum number of blocks that can be allocated, and
by the size of each block. The different Memory Pools defined in the SPIRE OBS are defined in the
VIRTUOSO Project File (delivered together with the OBS code) as follows:

Pool Name Usage # of Blocks Block Size (bytes)
TC_POOL Telecommand Packets 8 512
EV_POOL Event Telemetry Packets 28 512
RP_POOL TC Verification/Execution TM Packets 32 2048
HK_POOL HouseKeeping TM Packets 32 2048
SD_POOL Science Data TM Packets 128 2048

Table 3-1 List of VIRTUOSO Memory Pools used in the OBS

3.2 OBS Tasks

The OBS is divided into a series of tasks with certain priorities (the lower is the number, the higher
is the priority:

Task Name Function Priority
INIT It performs the OBS and 1553 interface initialization. It is the first task

to start and dies upon completion.
4

TIME Keep up-to-date the relationship between the internal DPU clock and
the S/C clock

4

TMTC It manages the TC and TM packet exchange with the CDMS 5
VM_1 This is the first of the Virtual Machines managed via the VIRTUOSO

Task_Sleep directive
5

VM_2 This is the second of the Virtual Machines managed via the
VIRTUOSO Task_Sleep directive

5

VM_3 This is the third of the Virtual Machines managed via the VIRTUOSO
Task_Sleep directive

5

AUTONOMY Task that handles Event Packet generation and recovery procedures
upon reception of anomaly messages

6

HS Task responsible for reading the DPU FIFOs, check consistency of
science frames and pack them into standard TM packets

6

VM_SVC This task generates events, reports and other TM packets upon
command from VM code

7

LS It manages the dispatch of commands to the subsystems and the
consequent reception of parameters

7

CMD_SEQ Checks the header of the received TC packets, issues appropriate TC
verification reports and, upon positive verification, interprets the
commands and executes them.

8

HK_ASK_0 First task that generates HK packets 9
HK_ASK_1 Second task that generates HK packets 9
HK_ASK_2 Third task that generates HK packets 9
HK_ASK_3 Fourth task that generates HK packets 9
HK_MONITOR It monitors the HK parameter and, in case of critical values, invokes

the appropriate Autonomy Function
9

TABLER It performs the SEG_DMDA defragmentation. 10

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 9 of 31

IDLE Performs TBD memory checks 11

Table 3-2 OBS Task list

3.3 Inter-Task Communication

Control exchange between tasks is implemented using Events, Semaphores and VIRTUOSO
FIFO message Queues. These VIRTUOSO System Objects are described in some detail below;
here we also mention that they can be, and are, also used in the OBS to transfer data between tasks.

Whenever a parameter or a group of parameters computed by a task is to be made available to other
tasks, without the need to transfer control at the same time, we will use global variables. This
because parameters cannot be passed from one task to another just as one would do with routine
calls.

Figure 3-1 OBS Tasks Interconnection Diagram

3.3.1 Events

Events are the highest priority VIRTUOSO objects, after the Interrupts, to modify the schedule of
task execution. Tasks can be set on a wait state until a particular event defined in the VIRTUOSO
Project File is raised. At that point the tasks that are on wait, start to execute. The following events
are used in the SPIRE OBS:

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 10 of 31

Event Name Raised by: Triggers:
ISR_1553_EVENT ISR2_Handler ISR_1553, TMTC
ISR_FIFO_EVENT ISR0_Handler HS
TS_EVENT ISR_1553 TIME
HK_i_EVENT LS HK_ASK_i

Table 3-3 List of VIRTUOSO Events used in the OBS

VIRTUOSO overhead to signal an event should be less than 15 µsec (RD9, §A.12).

3.3.2 Semaphores

While events only have two possible states, semaphores are counters. They are used when a
condition for triggering a certain task can be set by multiple sources, or can be set many times
before the waiting task starts execution; each time the waiting task serves the semaphore its counter
is decreased by 1, until it gets down to 0. An example is the semaphore that signals that a new
Telecommand has been received from the CDMS; if the OBS is busy executing some process, the
TCs can be buffered and the related semaphore is signalled a correspondent number of times; the
TC interpreter that is waiting on that semaphore will serve it until the semaphore counter is
decreased to 0.

Another occurrence when the use of semaphores is to be preferred is in conjunction with cyclic
operations. VIRTUOSO provides a number of system timers that can be configured to automatically
signal semaphores. A typical example for semaphores usage is the periodic HK packet collection.

The semaphores used in the OBS are:

Semaphore Name Function Raised by Triggers:
HK_i_SEMA Starts the periodic HK packet

collection
VIRTUOSO timers HK_ASK_i

LS_SEMA Signals LS that a command has to
be sent to the SubSystems

CMD_SEQ,
HK_ASK_i,
Soft_VM_i,

LS

TC_READY Signals that a new TC has been
downloaded from the CDMS and
is ready to be verified and
executed

TMTC CMD_SEQ

FRAG_SEMA Signals that tabellone needs to be
defragmented (see §3.1.1)

AUTONOMY TABLER

AUTO_SEMA Signals an anomaly or an out-of-
limit conditions in the HK
parameters

HK_MON, LS, HS,
VM_SVC, HK_ASK_i

AUTONOMY

Table 3-4 List of VIRTUOSO Semaphores used in the OBS

VIRTUOSO overhead to signal a semaphore to another task that is on a wait state on that
semaphore is of the order 50 µsec (RD9, §A.12)

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 11 of 31

3.3.3 FIFO Queues

VIRTUOSO FIFOs are system objects used to transfer control and data to other tasks. FIFOs (First-
In-First-Out) are queues entirely managed by VIRTUOSO. Tasks can be put on a wait state on the
reception of messages on FIFO queues. Contrary to events and semaphores, FIFO messages can
bring along parameters (max 10). The FIFO queues can be specified in the VIRTUOSO Project File
with the length of the associated message and the maximum number of messages that the queue can
handle. The FIFO queues in the OBS are:

FIFO Queue Function Sent by: Received by: #

MSG

Words

TC_HP_QUEUE Notifies that an
immediate command is
ready for execution

TMTC CMD_SEQ 8 10

TC_LP_QUEUE Notifies that a normal
command is ready for
execution

TMTC CMD_SEQ 8 10

EV_TM_QUEUE Notifies that a new
event TM packet is
ready on the
EV_POOL

AUTONOMY,
VM_SVC

TMTC 36 10

HK_TM_QUEUE Notifies that a new HK
TM packet is ready on
the HK_POOL

HK_ASK_i TMTC 16 10

SD_TM_QUEUE Notifies that a new
science TM packet is
ready on the SD_POOL

HS TMTC 128 10

LS_HP_QUEUE Notifies that a high-
priority command has
to be sent to the
SubSystem

Soft_VM_i LS 64 8

LS_LP_QUEUE Notifies tha t a low-
priority command has
to be sent to the
SubSystem

CMD_SEQ,
HK_ASK_i

LS 1024 8

VM_TM_QUEUE Notifies that an
event/report packet is
to be sent

Hard_VM,
Soft_VM_i

VM_SVC 64 6

ANOMALY_LP_
QUEUE

Notifies a low-priority
anomaly

 AUTONOMY 64 10

ANOMALY_HP_
QUEUE

Notifies a high-priority
anomaly

 AUTONOMY 64 10

Table 3-5 List of VIRTUOSO FIFO Queues used in the OBS

VIRTUOSO overhead involved in sending a FIFO message to a waiting task and reading it, is ~70
µsec (see RD9, §A.12)

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 12 of 31

3.4 C Interrupt Service Routines

3.4.1 ISR_1553

This is not a VIRTUOSO task, but it is the Interrupt Service Routine for the IRQ2 interrupt used by
the MIL-STD-1553B interface. Formally, ISR_1553 is a VIRTUOSO Event Handler. The routine
is immediately triggered on the event ISR_1553_Event, raised by the assembler routine isr2.s.
ISR_1553_main first updates the instrument status by writing in SA1T of the ACE DPRAM the
required information, and then parses the Mode Code to understand the type of interrupt. It then
passes control to another function Transfer_Handler. If the Mode Code is a synchronize
without data word command, it: i) resets to 0 the internal DPU SubFrame Counter, ii) raises the
TS_Event to wake-up the TIME_task. If it is a synchronize with data word command it: i)
increments the internal SubFrame counter, ii) decode the data word to understand the address of the
RT allowed for TM transfer in the current SubFrame.

Figure 3-2 ISR_1553 Module Functional Decomposition

After these interrupt-dependent actions, the Transfer_Handler function checks if a new TC packet
is available from the CDMS, by reading the TC Packet Transfer Descriptor (TC_PTD) from SA27R
on the ACE DPRAM and transfers this information to the TMTC task. It then checks if the
previously sent TM packet has been successfully received by the CDMS by checking the TM
Packet Transfer Confirmation (TM_PTC) from SA10R in the ACE DPRAM. Finally

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 13 of 31

Transfer_Handler checks if there are new TM packets waiting to be sent to the CDMS by
checking the status of the TM_PTR_Queue (that holds the list of TM Packet Transfer Requests for
pending TM packets) and, if the check is positive, transfers the PTR for the next available TM
packet on SA10T of the ACE DPRAM.

Once the ISR_1553 Event Handler has completed execution, its returned value tells VIRTUOSO if
the control should be passed or not to the other tasks (TMTC) waiting on ISR_1553_EVENT. A
TRUE returned value is used if the previous TM packet was downloaded and confirmed by the
CDMS. In this case the ISR_1553_EVENT is passed on to TMTC to load a new TM packet in to
the 1553 DPRAM. (see later).

3.4.2 Hard_VM

This is not properly a VIRTUOSO task, but rather an Interrupt Service Routine triggered by the
isr3.s assembler ISR which in turn is activated by the TIMER interrupt.

This task allows for the execution of operations (including commands to the Sub-Systems) at a
fixed time with a maximum jitter of 10 microseconds. The task, interrupt driven, is
started/terminated by a DPU internal command which enables/disables the DSP highest priority
interrupt (IRQ3) driven by a 1 MHz clocked HW timer. For each IRQ3 request, the task reads from
a preloaded table (the VM code) the commands to be executed/ transmitted. A VM code is actually
a one column 32 bit word vector containing commands to be sent to the Sub-Systems, timer setting
(IRQ3), mutex (i.e. Sub-system interface locking), loop and other Virtual Machine "assembler"
instruction, operating as an absolute program. See RD6 for a complete description.

A number of baseline VM programs, with functionality for the foreseen observation modes, will be
stored on the DPU/DPU. These programs, stored in tabellone, will be modified/reloaded via TC,
thus easing the need for OBS patching. A program can be as simple as a loop calling a preloaded
subroutine.

In order to avoid collision on the low speed I/F with the LS task, a special (internal) command is
foreseen to lock/unlock (setting the IRQ3_flag) the low speed I/F. The locking command will
precede the SS commands of at least 2ms in order to allow for the possible contemporary (just
started) transmission of a command via the LS task. As a safety measure, the Hard_VM stores in a
back-up memory location the contents of the low-speed “receive” register in order to preserve the
integrity of the parameters requested by LS task; this is notified to the LS task using the
VM_Response task (see §3.5.5).

The VM task aborts itself when the END (end of program) opcode in the VM code is reached. VM
is a state machine running into the whole system in a quite autonomous way.

A VM compiler will be provided (see RD6) to resolve all the mnemonic labels and constant in a
VM program and produce the absolute VM code. A VM simulator will also be provided (see RD6):
it will be a modified version of the OBS VM section, to control any "unprotected" CMD/RCMD
instruction and output (on the out list file) a timeline of the SS commands.

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 14 of 31

Event TM packets can be generated during the execution of VM code by using specific opcodes
which cause the dispatch of FIFO messages (containing all relevant info) to the VM_TM_QUEUE.

A much more detailed description of the Virtual Machine is given in RD6.

3.5 Tasks Description

3.5.1 INIT Task

The INIT task has the highest priority and runs as soon as the PROM switch-on procedure is
completed and the control is passed to the OBS application. This task makes all the initializations
that aren't made automatically by the OS using the application configuration files. A most
important part of the INIT sequence is the configuration of the 1553 interface ACE.

The 1553 SubAddresses (SAs) will be configured according to specifications in AD4. The SAs
dedicated to reception of TM packets will be configured as circular buffers in order to be able to
enqueue TM packets with the necessary speed in case faster-than-nominal telemetry transfer rates
are needed. The ACE will be configured to issue an interrupt request upon reception of sync mode
codes.

The OBS will be started after completion of the PROM-resident Boot Software; since this software
generates Event TM packets to the CDMS, the OBS will have to check how many packets have
already been sent in order to avoid sending TM packets with the same sequence number in the “TM
Packet Transfer Request” (see AD4). This will be done by the INIT task by checking the 1553
DPRAM area corresponding to SubAddress 10 in reception (SA10R), before reconfiguring the 1553
Interface memory.

3.5.2 TIME Task

This task is activated each second after reception of the TS_EVENT from ISR_1553. It is
responsible for the time synchronization between the DPU and the Spacecraft. It i) checks that the
Spacecraft time fields (SA8R) have been updated by the CDMS and reads them, ii) reads the
VIRTUOSO time and it computes the difference ∆t. Each time the OBS is required to provide the
current DPU time (e.g., to put the time stamp on TM packets), the VIRTUOSO time will be read
and the ∆t computed by TIME_task will be added. ∆t will be also made available to HK_ASK_i
task to include it as a DPU HK parameter.

3.5.3 TMTC task

This task, together with the ISR_1553 interrupt service routine (see §3.4.1), handles the interface
with the spacecraft CDMS. It is enabled by the ISR_1553_EVENT raised by ISR_1553.

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 15 of 31

Figure 3-3 TMTC Task Functional Decomposition

If there are TM packets ready in the various memory pools (written there by a variety of other tasks
and signalled to TMTC using the FIFO Queues EV_TM_QUEUE, HK_TM_QUEUE and
SD_TM_QUEUE), and if there is space available on the transmission buffers SA11T-SA26T of the
ACE DPRAM, the function Tmtc_IF transfers control to the function Upload_Packet. This
function, using the information passed along with the FIFO Queue messages (see §3.3.3), copies the
TM packet from the relevant memory pool into the proper SAs on the ACE DPRAM, compiles the
appropriate TM PTR and writes it in the TM_PTR_Queue (where it will be read by ISR_1553, see
§3.4.1).

If Tmtc_IF is notified by ISR_1553 (with the TC_info data flow) that there is a new TC packet
sent by the CDMS, it calls the Download_Packet function. It reads the relevant SAs from the
ACE DPRAM, builds the TC packet directly in the TC_POOL memory pool, raises the
TC_READY semaphore to CMD_SEQ, and finally acknowledges TC reception to the CDMS by
copying the TC Packet Transfer Descriptor into the TC Packet Transfer Confirmation on SA27T.

3.5.4 CMD_SEQ Task

This is the main task of the OBS. It is in charge to check, interpret and execute all the received TCs.
CMD_SEQ is in a wait state until the “TC_Ready” semaphores is signaled from task TMTC,
notifying the availability of a new TC. When this happens, CMD_SEQ reads from the FIFO queues

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 16 of 31

TC_HP_QUEUE and TC_LP_QUEUE the message containing the pointer to the TC in the
TC_Pool. These actions are done in the cmd_seq_main function. All functions in this task (see
below) will act based on the contents of the TC; the only parameter passed among the various
functions is the pointer to the TC in the TC_POOL, and not the TC packet itself. This avoids
multiple copies of the TC packet flowing around between functions, maximizing speed of
execution. We will maintain on board a list of indexes to relevant TC fields for every TC packet
type and subtype; in this way there will always be only one copy of a TC packet for use by all
functions.

Figure 3-4 CMD_SEQ Task Functional Decomposition

The TC packet pointer is then passed to function tc_acceptance that performs the complete
sequence of TCs verification steps, down to their "executability" (i.e. the validity of the Application
data in the TCs). The acceptance information (TC accepted or refused) is then passed to the
report_generator function. This function is not properly a separated task, but rather a group of
routines compiling the appropriate report into standard TM packets, writing them into the
RP_POOL and signalling TMTC, via a message to the EV_TM_QUEUE FIFO queue, that a new
packet is ready to be transmitted to the CDMS.

The function command_parser parses the TC packet type/subtype combination and takes
appropriate actions. In case of TC (8,4) it also parses the Function_ID/Activity_ID combination.

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 17 of 31

Commands can be divided into two groups: atomic and complex. Atomic commands can consist
either of simple setting of a parameter stored in the DPU memory (like the OBSID), or in resetting
some DPU registers (like FIFO_Reset), sending a single command to the S/S (like the
Rest_DRCU_Counters) or starting/stopping the VMs. These atomic commands are executed in the
body of the command_parser function; the generation of the related execution reports (if
required) is also initiated in this function.

Complex commands are those that involve a series of actions; this is the case of HK collection
management (service 3), memory management (service 6) and many of the functions activity
(service 8).

The HK_Handler function manages the activation/deactivation of the four independent
housekeeping collection tasks HK_ASK_i. The relevant parameters (HK Packet definition tables,
sampling, etc.) are modified in this function only, and made available to HK_ASK_i as global
structures. The activation/deactivation is performed by starting/stopping the VIRTUOSO timers
that triggers the semaphores (see §3.3.2) on which the HK_ASK_i tasks are on a wait state.

The Table_Handler function manages the creation/modification/deletion of tables in tabellone
(see §3.1.1). This function uses the parameters passed from the ground via the TC to update the data
for the relevant table ID and modify accordingly the MOAT entries for that table ID. In case of
Table dump, the TM packets are created in this function and written into the SD_POOL and a
corresponding FIFO message is written to the SD_TM_QUEUE to signal TMTC that a new packet
is ready to be sent to the CDMS.

The Memory_LoadandDump function manages the loading/dumping of DPU memory using
absolute memory addresses. In this case the TC packet contains all needed info to load/dump
memory without having to resolve addresses via the MOAT. In case of memory dump or memory
report, the relevant TM packets are created in this function and written into the SD_POOL and a
corresponding FIFO message is written to the SD_TM_QUEUE to signal TMTC that a new packet
is ready to be sent to the CDMS.

In all cases (e.g., configuring HK housekeeping, running VMs, etc.) where it is necessary to identify
the relevant on-board table stored in tabellone, its address is always resolved from the MOAT.

3.5.5 LS task

The LS Task is in charge of transmitting commands to the subsystems, although it can be used to
also retrieve certain DPU housekeeping parameters. The only exception is the Hard_VM task that
can send commands directly to the SubSystems by writing directly to the Low-Speed interface. The
task is triggered by the LS_SEMA semaphore (see §3.3.2); function LS_main checks the
LS_HP_QUEUE and LS_LP_QUEUE FIFO queues in this order and reads the FIFO message
which contains three parameters: the actual command to be sent to the subsystem, the address in the
DPU memory where to store the parameter returned in reply by the Sub-Systems, and an event
number that LS has to raise upon completion.

There are two types of commands that can be sent to LS: DPU commands and Sub-System
commands. DPU commands are a specific set of commands defined in RD7 that mimic the syntax

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 18 of 31

of the Sub-Systems commands. The HK packet defined in AD9 contains both DPU and Sub-System
parameters; since the HK packet definition table is organised as a series of 32-bit words containing
the command needed to get that particula r HK parameter, we find convenient to retrieve the needed
DPU parameters by means of Sub-Systems- like command syntax in order to have an homogeneous
HK packet definition table. Each DPU Command ID is associated with a unique DPU parameter
memory address.

Figure 3-5 LS Task Functional Decomposition

If the MSb of the command word is 0, then it a DPU command. The function DPU_Cmd parses the
command ID and put the corresponding parameter into the return address specified in the relevant
FIFO message (which in most cases will be within an HK packet).

If the MSb of the command word is 1, then it is a Sub-Systems command. The Send function
checks for the availability (IRQ3_flag set) of the low speed I/F (might be used by VM Task) and if
not available suspends itself for 2 msec until the port is no longer busy. The function then writes the
command word on the DPU register that maps the write port of the Sub-System interface and then
the LS task is put to sleep for 2 milliseconds. The reason for this particular wait time is the
following. In principle the Sub-Systems should respond within few hundreds of microseconds; in
reality the LS task could be interrupted by interrupts, events, semaphores and FIFO messages tha t
trigger tasks with priority higher than LS, so the wait time needs to be longer. Another aspect to be
taken into account is that when a task goes to sleep VIRTUOSO transfer control to other tasks; this

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 19 of 31

task switch has an overhead of about 100 microseconds so doing fast task switches is not very
efficient in terms of CPU usage. A wait time of 2 milliseconds is an acceptable compromise
between speed of response and CPU usage efficiency.

After the above mentioned wait time VIRTUOSO gives control back to LS. The Receive function
first checks if the Low-Speed port is being accessed by the Hard_VM task. As it will be explained
in §3.4.2, the Hard_VM task gets control when the highest priority IRQ3 interrupt is triggered; this
task is the only one to send Sub-Systems commands directly via the Low-Speed port without
passing via the LS task. In particular, it may take control after LS has sent a command, but before
LS has read the Sub-System response. To preserve the integrity of the Sub-System response to LS,
the Hard_VM task will read the DPU memory locations where the Sub-System interface “receive”
register is mapped, store its contents in a back-up memory location and raise the VM_Response
flag. The Receive function, based on the value of the VM_Response flag, will read the Sub-
System replied parameter from the “receive” register of the Low-Speed port, or from the back-up
location where the Hard_VM stored it task.

The Sub-Systems reply word to a command sent by the DPU contains ancillary information to
diagnose possible interface or command format errors. If the command was a set command (to
assign certain values to some Sub-System parameter) and was correctly interpreted and executed,
the Sub-Systems will echo the exact copy of the command word. If the command was a get
command (to read the current values of some Sub-System parameter – as it is the case for
HouseKeeping parameters) the Sub-Systems will return a 2-bits "Ack" field in place of the Sub-
System address bits, indicating the result of the command (OK, Interface Time-out, Command
Forbidden or Command unknown). If the "Ack" field will return OK then LS will assume the
returned parameter is a valid one; otherwise an Anomaly_Report message shall be sent on the
ANOMALY FIFO QUEUEs and the AUTO_SEMA semaphore shall be raised to signal the
AUTONOMY task.

Receive will put the read parameter in the memory location specified in the FIFO message (see
above) originally read by LS_main.

LS_main concludes its actions raising the event number specified in the FIFO message originally
read by LS_main; presently the only foreseen event is the one signalling HK_ASK_i that the HK
packet collection sequence is finished.

3.5.6 HK_ASK_i task

The OBS provides the ability to collect four independent HK packets at different sampling rates. In
all figures the reference is always made to the ith of these tasks. The tasks are enabled/disabled with
KS_TaskSuspend/Restart VIRTUOSO kernel calls (the HK_Enable control flow).

The periodic activation of this task is via the HK_i_SEMA semaphore that is raised by the
associated VIRTUOSO timer (one per HK_ASK_i task) in the CMD_SEQ task. The HK_i_main
function first resets the relevant VIRTUOSO timer to the sampling interval currently valid for that
HK_ASK_i task; this parameter, together with the other ones characterizing the HK sampling (see
AD9) are update and made available by CMD_SEQ task. Then HK_i_Main allocates a block in
HK_POOL and passes its address to the Cmd_Enqueue function, which starts parsing the relevant
HK Packet definition table (whose absolute address is resolved via the MOAT). In case a memory

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 20 of 31

block could not be allocated an Anomaly_Report message is enqueued on the AUTONOMY FIFO
QUEUEs and the AUTO_SEMA is raised to notify the AUTONOMY task.

For each command word read from this table, Cmd_Enqueue sends a message on the
LS_LP_QUEUE FIFO and raises the LS_SEMA semaphore to LS task. The FIFO message to LS
task contains the command word, the address where to store the parameter returned by the Sub-
System or the DPU, and an event to be raised by LS (see §3.5.5); this event is always 0 (i.e., no
event) except in case of the last HK collection FIFO message, for which the event ID is
HK_i_EVENT. As Cmd_Enqueue sends FIFO messages to LS, LS puts its replied parameter into
the proper location of the HK packet in HK_POOL.

When LS has finished processing the last Sub-System parameter request it will raise the
HK_i_EVENT, triggering the HK_Pkt_Build function. This function writes the header of the TM
HK packet in HK_POOL and sends a message containing the address of the packet in HK_POOL to
the TMTC task. At that point a copy of the full HK packet is made on the DPU memory; this will
be used by the HK_MON task to monitor the HK parameters.

Figure 3-6 HK_ASK_i Task Functional Decomposition

3.5.7 HS task

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 21 of 31

This task collects science data, organized in self-consistent frames, from the Sub-Systems via the
high speed I/F. The data on the high speed I/F are temporary stored on three 8Kwords (4Kwords in
the AVM) deep HW FIFOs: the "half FIFO full" signal of each FIFO generates a HW interrupt
(IRQ 0). This interrupt is served by the Interrupt_Handler_ISR0, that in turn raises the
ISR_FIFO_EVENT that activates the HS task operations. Due to the asynchronous operation of the
FIFOs, the actual timing of the incoming data is lost and no cause/effect between commands (on
low speed I/F) and received data (on high speed I/F) is possible, at least in a simple efficient and
reliable way.

There are several types of science packets foreseen for the SPIRE instrument; each of them is made
up of raw frames coming from the Sub-Systems (see AD9). The HS_main function allocates a
memory block for each possible Frame_ID and transfers the block address info to the function
Frame_Interpreter.

This function parses the interrupt registers in order to understand which FIFOs triggered the
half_full interrupt and starts reading the science frames from the relevant FIFO. The first word of
the frame is the frame_ID and the second is the frame length; the frame ID is converted into a SID
so that the Frame_Interpreter is able to channel each frame to the proper TM packet in SD_POOL.
The frame length allows to read the exact number of words for that frame; Frame_Interpreter
perform an XOR of the frame words and compares it to the checksum word provided by the Sub-
Systems at the end of that same frame. In case the frame is not self-consistent (wrong frame_ID,
incorrect checksum, etc.) an Anomaly_Report message will be enqueued on the AUTONOMY
FIFO QUEUEs and the AUTO_SEMA will be raised to signal the AUTONOMY task to take
appropriate measures. Once the frames have been read and checked they are written into the
relevant TM packet in SD_POOL. When the TM packet is ready, Frame_Interpreter sends a FIFO
message in the SD_TM_QUEUE FIFO to TMTC, with the pointer to the newly written TM packet.

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 22 of 31

Figure 3-7 HS Task Functional Decomposition

3.5.8 HK_MON task

This task implements a parameter-status conditional monitoring system. A predefined list of HK
parameters, modifiable via TCs, is monitored depending on the particular values of other HK
parameters. The check is done against soft and hard limits tables stored on-board. The monitoring
rate will not exceed the HK collection rate. In case of out-of- limits, an Anomaly_Report message
shall be enqueued on the AUTONOMY FIFO QUEUEs and the AUTO_SEMA will be raised to
signal the AUTONOMY task.

HK_MON will also monitor the fragmentation status of tabellone and issue the Defrag_Event to
the task TABLER to start defragmentation.

3.5.9 AUTONOMY task

This task is triggered by the AUTO_SEMA semaphore, which can be raised from several locations
in the OBS. The task will then read from the AUTONOMY_HP_QUEUE and
AUTONOMY_LP_QUEUE (in this order) the Anomaly_Report message and will take appropriate
actions.

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 23 of 31

The first action will be to generate an Event TM packet, by writing it into the EV_POOL and
notifying it to TMTC task via the EVENT_TM_QUEUE FIFO (identified as the Event_Ready
control flow in Figure 3-1). The generation of event TM packets will be done only at the transition
between nominal and anomaly conditions; no event packets will be generated as long as the
anomaly condition persists. Another event will be generated when the conditions go back to
nominal.

The second action will be to start a recovery procedure that will clearly be anomaly-dependent.
These procedures will be implemented as compiled pieces of code (in which case the task will be
able to, e.g., send commands to the Sub-systems via the LS task, and/or as VM codes to be run on
any of the Virtual Machines. The only recovery procedure currently present is the defragmentation
of tabellone. The VIRTUOSO Defrag_Event is raised by AUTONOMY task upon reception of the
proper Autonomy_Report on the AUTONOMY FIFO QUEUEs and the raising of the
AUTO_SEMA semaphore by task HK_MON.

3.5.10 Soft_VM_i task

In addition to the Hard_VM Virtual Machine, the OBS provides three mode VMs that, unlike the
Hard_VM Virtual Machine, are driven by VIRTUOSO timers. The only other distinction with
respect to Hard_VM is the management of command dispatch to the Sub-Systems; the Soft_VM_i
tasks send their commands via the LS_HP_QUEUE, which is the high-priority FIFO queue to LS.
These VMs will be used to implement the PID controls.

3.5.11 VM_SVC task

The task is on wait on the FIFO queue VM_TM_QUEUE (written by both Hard_VM and
Soft_VM_i tasks); when a message is received on that queue the task reads the info provided and
either generates the proper execution reports or it writes an Autonomy_Report on the AUTONOMY
FIFO QUEUEs and raises the AUTO_SEMA semaphore to signal the AUTONOMY task.

3.5.12 TABLER task

This task is responsible to maintain the Table management implementation for the SPIRE DPU, by
performing the defragmentation of tabellone in the SEG_DMDA memory segment (§3.1.1).

The Tabler_main function can be triggered either by a dedicated command by CMD_SEQ or
automatically by AUTONOMY when tabellone is more than xx% defragmented (as monitored by
HK_MON). The MOAT_Stack table contains the list, sorted by address, of occupied blocks in
tabellone. Function Tabler_main calls the MOAT_Stack_Parser function that starts parsing the
MOAT_Stack records until it finds a hole, i.e. when a table starts does not start immediately after
the end of the previous table. The MOAT itself cannot be used for this purpose because the MOAT
is sorted by Table ID and not by address.

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 24 of 31

Figure 3-8 TABLER Task Functional Decomposition

When MOAT_Parser finds a hole, it calls the Compact_Table function. This function first checks
the MOAT to see if the table is locked by another task (it could be in use for HK collection or VM
code execution); if the table is free, it locks it by raising the lock flag for that Table ID in the
MOAT; this prevents tasks that use that table to access it while it is being moved. It copies the table
from tabellone to swappone (which is a reserved area used for swap in SEG_DMDA), and deletes
it from tabellone. Then it reads it back from swappone and writes into tabellone immediately
following the end address of the last table in the contiguous area of tabellone (i.e., where before
there was the hole).

Finally, it updates the start address for that Table ID in the MOAT and the block list in
MOAT_Stack, and unlocks the table. The control is passed back to function MOAT_Parser that
finds the next hole.

3.5.13 IDLE task

This task is the lowest priority in the whole OBS. It is executed when nothing else is running. It
performs TBD checks on the DPU memory (like computing a checksum on portions of DPU
memory) and storing results in HK parameters made available to HK_ASK_i.

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 25 of 31

4 User Requirements Traceability Matrix

This table or requirements is taken directly from AD7. Next to each requirement we state how the
present OBS architecture design meets them.

4.1 Switch-on Requirements

Req. ID Verification
OBS-UR-ON1
OBS-UR-ON2

OBS-UR-ON3
OBS-UR-ON4
OBS-UR-ON5

The Switch-on procedure is implemented in the Boot Software, which is not
part of the OBS application. Requirements are verified in RD8

4.2 Telecommands Requirements

Req. ID Verification
OBS-UR-TC1 The Command_Parser routine in the CMD_SEQ task (§3.5.4) will decode

the [Type, Subtype, Function_ID, Activity_ID] combination using a series of
nested “switch” statements.

OBS-UR-TC2
OBS-UR-TC3 The Transfer Layer Protocol specified in AD4, used by the CDMS to send

TC packets, is implemented in the OBS by the combination of the ISR_1553
Interrupt Service Routine (§3.4.1) and the TMTC task (§3.5.3).

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 26 of 31

OBS-UR-TC4 TC reception and unpacking is immediate because ISR_1553 (§3.4.1) is
triggered by an event (§3.3.1) raised by and Interrupt Service Routine, and
the task TMTC (§3.5.3) has the highest priority (see table in §3.2) after the
INIT task (§3.5.1), which runs only at start-up, and TIME task (§3.5.2) that
runs only once per second. The read/write operations needed to implement
complete reception and unpacking of a maximum-size TC packet should not
take more than 0.3 msec to execute.

Overall VIRTUOSO overhead to pass control from TMTC to CMD_SEQ
(assuming no other task is interrupting) is of the order of 0.2 msec (including
semaphore, FIFO message, task context switch, TC_POOL memory pool
block allocation)

The TC execut ion is managed in task CMD_SEQ (§3.5.4). In order of
priority CMD_SEQ is preceeded by:
• Virtual Machines, which are low duty-cycle tasks (see §3.4.2 and RD6)
• HS, which runs only when science data is being received from the

DRCU. This occurrence will never happen when a TC is received
because TC dispatching by the CDMS is timed to the execution duration
of the TCs, meaning that no TCs will be sent to the instrument before the
previous one has been completed (ref ??); the only exception is the
“Abort” command, which is the only immediate command implemented
by the SPIRE OBS, and which only consists in stopping the Hard_VM
task (§3.4.2) by disabling IRQ3 interrupt.

• VM_SVC, which runs occasionally
• LS, which is mainly used by the HK_ASK_i which, on turn, have lower

priority than CMD_SEQ

Assuming a TC (6,1) “Memory Load” maximum-size TC as the sizing case,
most of the execution time is taken by CRC computations and read/write
operations; we estimate an execution time of 0.5 msec

The total required time to receive unpack and execute the TC is then ~
1msec. The goal of this requirement is to be able to receive, unpack and
process up to 25 TCs per second; this corresponds to 1 TC every 40 msec,
largely met by our design.

OBS-UR-TC5 Function Report_Generator in task CMD_SEQ (§3.5.4) generates the
required TC acceptance and execution reports. The function will execute
according to the “Ack bits” setting in the correspondent TC.

OBS-UR-TC6 Both “immediate” and “normal” commands are passed by TMTC to
CMD_SEQ via the TC_POOL memory pool. The only immediate command
is the “Abort Measurement” command; this will act to disable the IRQ3
interrupt which triggers the Hard_VM and will not interfere with other
previously processed TCs. Hence the foreseen architecture works equally
well for “immediate” and “normal” commands.

OBS-UR-TC7 The only immediate command is the “Abort Measurement” command.
Consisting of a single statement (disable IRQ3) its execution time largely
meets the requirement.

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 27 of 31

OBS-UR-TC8 Function TC_Acceptance in task CMD_SEQ (§3.5.4) will perform all
required validity checks (AD4).

OBS-UR-TC9
OBS-UR-TC10 Validity checks of the TC packet header and application data header are

performed in function TC_Acceptance of task CMD_SEQ (§3.5.4). If the
packet is found invalid, the reject report generation is immediately initiated
and the task CMD_SEQ exits.

OBS-UR-TC11 See above.
OBS-UR-TC12 The estimated time required for a TC packet reception, unpack and

processing is 0.5 msec in total (see OBS-UR-TC4 above).
The generation, packing and dispatch of TC verification report TM packets
take a similar amount of time. the requirement is easily met.

OBS-UR-TC13
OBS-UR-TC14 After execution of the TC_acceptance function, the task CMD_SEQ passes

control to the Command_Parser function .
OBS-UR-TC15 Function Command_Parser in CMD_SEQ uses the Report_Generator

function (in the same task) to generate report TM packets that reflect the
success/failure status in the TC execution.

Progress reports will be issued only during the execution of observing
procedures (execution speed makes this feature useless in all other cases).
Observing procedures are handled by VM codes run by Hard_VM task
(§3.4.2). This task will implement opcodes to generate proper FIFO
messages to trigger the VM_SVC task (§3.5.11) that, finally, will generate
the progress report TM packets.

OBS-UR-TC16 See above.
OBS-UR-TC17
OBS-UR-TC18 See OBS-UR-TC6 above.
OBS-UR-TC19 This requirement is met by the adopted DPU memory management scheme

(§3.1.1). table management is handled by the Table_Handler function in task
CMD_SEQ (§3.5.4).

OBS-UR-TC20 The transmission of TC verification packets is handled by the
Report_Generator function in task CMD_SEQ (§3.5.4) ; this function
executes accordingly to the “Ack bits” in the TC packet header.

OBS-UR-TC21 Function Transfer_Handler in ISR_1553 (§3.4.1) checks that the TC count in
the TC Packet Transfer Descriptor is different from the one of the previously
received TC packet. In case it is different by more than one unit (jump in TC
packet counter) the function will initiate the generation of an event

OBS-UR-TC22 The OBS shall be able to execute a peak-up
procedure, interacting with the spacecraft.

OBS-UR-TC23 The Hard_VM and Soft_VM_i tasks (3.4.2 and 3.5.10) allow the execution
of command lists stored on-board and loaded/modified via TCs.

4.3 Telemetry Generation Requirements

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 28 of 31

Req. ID Verification
OBS-UR-TM1 Tasks CMD_SEQ (§3.5.4), HK_ASK_i (§3.5.6), HS (§3.5.7), and

AUTONOMY (§3.5.9) generate all TM packets specified in AD9.
OBS-UR-TM2 The tasks responsible for the generation of all types of TM packets will

packetise data accordingly to AD4 and AD9.

The Transfer Layer Protocol specified in AD4, used by the OBS to send TM
packets, is implemented in the OBS by the combination of the ISR_1553
Interrupt Service Routine (§3.4.1) and the TMTC task (§3.5.3).

OBS-UR-TM3 The TM packet assembly will be started with the memory block allocation
and the compilation of the TM packet header, which includes the time info,
is done before the application data is written.

OBS-UR-TM4 All TM packets will contain at the beginning of the application data the
OBSID and the BBID.

OBS-UR-TM5 Science data memory pool size meets this requirement (§3.1.2).
OBS-UR-TM6 Module ISR_1553 (§3.4.1) implements a simplified TFL protocol that

neglects the PTR/PTC mechanisms and uploads a new TM packet based on
the RT_info parameter (read from the data word coming with the Subframe
Sync) which notifies the RTs which is the one allowed for TM transfer in the
current SubFrame.

OBS-UR-TM7 The Frame_Interpreter function in task HS (§3.5.7) can perform subarray
selection or data averaging based on configuration parameters stored on-
board and uploadable via TC. By default, it will fill the TM science packets
with raw science frames.

OBS-UR-TM8 COCA: The list of HK parameters to be monitored is modifiable via TCs in
task HK_MON (§3.5.8)

TRNS: see OBS-UR-TM7.

TEST: this is transparent to the OBS as the test frames are being generated
by the DRCU.

OBS-UR-TM9 Once enabled, tasks HK_ASK_i (§3.5.6) run in batch independently from the
instrument operating mode.

OBS-UR-TM10 Function DPU_Cmd in task LS (§3.5.5) implements a commanding scheme
similar to the one used to send commands to the DRCU, to read DPU H/W
and S/W parameters.

OBS-UR-TM11 Function HK_i_main in task HK_ASK_i (§3.5.6) stores as a DPU parameter
the time when the trigger HK_i_SEMA semaphore signal was received. In
the course of the HK packet building, the DPU_Cmd function in task LS
(§3.5.5) will write that parameter in the proper location of the HK packet in
HK_POOL.

OBS-UR-TM12 The content of HK packets are defined in on-board tables stored in tabellone
(§3.1.1), modifiable via TCs, used by the task HK_ASK_i (§3.5.6).

OBS-UR-TM13 The OBS shall provide only actual values of the HK parameters and not
changes (or delta values) since the last readout.

OBS-UR-TM14 Tasks HK_ASK_0 and HK_ASK_1 (§3.5.6) will be run by default at start-
up, providing the required HK packets at the required sampling using
predefined tables on-board.

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 29 of 31

OBS-UR-TM15 The OBS implements 4 independent HK_ASK_i tasks.
OBS-UR-TM16 The HK packet sampling period is read from a TC and made available by the

HK_Handler function of task CMD_SEQ (§3.5.4) to ask HK_ASK_i
(§3.5.6).

OBS-UR-TM17 This requirement is met with the possibility to generate, using VM code in
Hard_VM (§3.4.2) and Soft_VM_i (§3.5.10) tasks, packets containing HK
parameters sampled at whatever rate.

OBS-UR-TM18 Task HS (§3.5.7) will put into TM packets the maximum possible number of
raw science frames.

4.4 Synchronization Requirements

Req. ID Verification
OBS-UR-SY1 At each Frame Sync received from the CDMS the module ISR_1553 (§3.4.1)

will activate the highest-priority task TIME (§3.5.2), responsible for the
synchronization. The adopted design easily meets the requirement.

OBS-UR-SY2 Whenever the time has not yet been synchronised (e.g., after switch on or
reset), the OBS shall set to 1 the MSB of the time field in the header of TM
packets.

OBS-UR-SY3 The Send function in task LS (§3.5.5) will store in DPU memory the time at
which the “SyncDRCUCounters” command is being transmitted to the
DRCU. Considering that the LS task can be interrupted by the Hard_VM
task (§3.4.2) at any moment for no more than about 2 msec, the requirement
is easily met.

OBS-UR-SY4 The drift between the S/C clock and the DPU clock is updated every second
by the TIME task (§3.5.2) and made available as an HK parameter.

4.5 Testing and Maintainance Requirements

Req. ID Verification
OBS-UR-SM1 Entering the instruments Test Mode shall not require

disabling of fault management (autonomy) functions.
What’s this ?

OBS-UR-SM2 The IDLE task (§3.5.13) may be used to perform DPU memory checks.
OBS-UR-SM3 An OBS software verification facility (for PROM,

EEPROM, RAM code) shall be provided on board.
What’s this ?

OBS-UR-SM4 The OBS image is stored on EEPROM
OBS-UR-SM5 See §3.1
OBS-UR-SM6 The Memory_LoadandDump function of task CMD_SEQ (§3.5.4)

implements service 6 of AD4.

Writing into EEPROM is provided in the Command_Parser function of task
CMD_SEQ. Reading and checksum are performed by the Boot Software (see
RD8).

OBS-UR-SM7 Requirement met performed by the Boot Software (see RD8).

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 30 of 31

OBS-UR-SM8 Service 17 of AD4 is provided in the Command_Parser function of task
CMD_SEQ (§3.5.4).

OBS-UR-SM9 Tasks HK_ASK_i (§3.5.6), Soft_VM_i (§3.5.10), Hard_VM (§3.4.2) and
Tabler (§3.5.12) can be stopped/started by disabling/enabling timers and/or
interrupts.

OBS-UR-SM10 Procedures are implemented as VM codes stored in tables in tabellone
(§3.1.1).

OBS-UR-SM11 This requirement is not met. A waiver will be requested.

4.6 Autonomy Function Requirements

Req. ID Verification
OBS-UR-AF1 See task HK_MON (§3.5.8).
OBS-UR-AF2 Procedures are implemented as VM programs stored in tables in tabellone

(§3.1.1). Task HK_MON (§3.5.8, but see figure in §3.3) can start Hard_VM
with a predefined VM code to be executed.

OBS-UR-AF3 Task HK_MON (§3.5.8) will trigger the AUTONOMY task (§3.5.9) upon
detection of an anomaly.

OBS-UR-AF4 See OBS-UR-AF3
OBS-UR-AF5 Since autonomy functions are implemented as VM codes, this requirement is

met by the ability to generate events and TM packets from within task
Hard_VM (§3.4.2).

OBS-UR-AF6 The OBS shall provide all the event packets with a counter that permits the
unambiguous identification of missing packets.

OBS-UR-AF7 The AUTONOMY task (§3.5.9) will implement a “transition edge” sensing
mechanism for anomaly conditions.

OBS-UR-AF8 Control actions will be implemented as VM codes and, as such, handled by
task HK_MON (§3.5.8).

OBS-UR-AF9 Task HK_MON will maintain “activity flags” for VM autonomy procedures
in a configurable table in tabellone (§3.1.1)

OBS-UR-AF10 HK monitoring parameters used by task HK_MON are held in tables in
tabellone (§3.1.1), as well as autonomy function VM codes; as such thay
can be modified via TC.

OBS-UR-AF11 Operation/activities will be implemented as VM codes. Task Hard_VM
(§3.4.2) provides opcodes to generate progress reports.

OBS-UR-AF12 Observing mode initialization is performed in VM code and, as such,
completely configurable from the ground.

OBS-UR-AF13 This functionality is provided in the Command_Parser function of task
CMD_SEQ (§3.5.4).

OBS-UR-AF14 Critical subsystem commands will only be sent via TCs with service (8,4)
and not as part of a VM code. This requirement will be met using service 8,1
(AD4).

SPIRE OBS SSD Issue: 1.0

DPU OBS
Software Specifications Document

SPIRE CNR
IFSI

Ref: SPIRE-IFS-PRJ-001036
Rev: 1.0
Date 18/05/2003
Page 31 of 31

4.7 Functional Requirements

Req. ID Verification
OBS-SUR-FU1
OBS-SUR-FU2
OBS-SUR-FU3
OBS-SUR-FU4
OBS-SUR-FU5
OBS-SUR-FU6
OBS-SUR-FU7
OBS-SUR-FU8
OBS-SUR-FU9

These requirements are met by the possibility to execute these procedures
either as VM codes run in Hard_VM (§3.4.2) or Soft_VM_i (§3.5.10), or as
sequences of direct DRCU commands sent via TCs and managed by the
Command_Parser function of task CMD_SEQ (§3.5.4).

OBS-SUR-FU10 The design of tasks LS (§3.5.5) and HS (§3.5.7) meets the requirement.
OBS-SUR-FU11 Task HS (§3.5.7) is interrupt driven. Science Frame checksum control is

done on-the-fly while reading from the FIFOs and frames are directly written
into SD_POOL memory blocks, thus minimizing memory read/write
overhead.

4.8 Operating Modes Requirements

Req. ID Verification
OBS-SUR-GE1 Procedures implemented as VM codes. Beside the main procedure that can

be run from Hard_VM (§3.4.2), up to three parallel procedures can be run on
the three Soft_VM_i tasks (§3.5.10).

OBS-SUR-GE2 Requirement implemented by the Boot Software (RD8)
OBS-SUR-GE3 The task-oriented OBS architecture meets this requirement.
OBS-SUR-GE4
OBS-SUR-GE5
OBS-SUR-GE6

All instrument settings can be executed as VM code.

OBS-SUR-GE7 Anomalies recovery procedure are implemented as VM code and are
triggered by task HK_MON (§3.5.8). While task Hard_VM (§3.4.2) is
running, the HK_ASK_i task (§3.5.6) is also running.

OBS-SUR-GE8 All observing procedures are implemented as VM code.
OBS-SUR-GE9
OBS-SUR-GE10

The HS task design (§3.5.7) ensures that the OBS is fast enough to support
these data rates.

OBS-SUR-GE11 This requirement has to be met by the observing procedure, which is
implemented as VM code.

OBS-SUR-GE12 All instrument settings can be executed as VM code.
OBS-SUR-GE13 Most of the degraded operations can be handled in VM code.

Reduced telemetry rate by sub-array selection can be performed within task
HS (§3.5.7) by using the TM_Red_info data from CMD_SEQ.

OBS-SUR-GE14 Mode transitions procedures are implemented as VM code; task Hard_VM
(§3.4.2) can be run by TC from CMD_SEQ (§3.5.4).

