SPIRE-MSS-PRJ-001024

MULLARD SPACE SCIENCE LABORATORY UNIVERSITY COLLEGE LONDON Author: C BROCKLEY-BLATT

SPIRE – FMECA

Document Number: MSSL/SPIRE/PA005.1 29 November 2001

Distribution:			
Spire Project Office		B Winter	
ESA PX		A Heske	
		J Bruston	
		J Rautakoski	
		• Automosili	
RAL		B Swinyard	
		K King	
		J Delderfield	
		J Long (Project Office)	
Mullard Space Science	Laboratory	A Smith	
Munuru Spuce Science	Luboratory	J Coker	
		C Brockley-Blatt	
		A Dibbens	
ATC		C Cunningham	
		I Pain	
		T Paul	
Cardiff		M Griffin	
Curum		P Hargrave	
		1 Hargrave	
JPL		J Bock	
		J Lilienthal	
CEA		L Duband	
Herschel Project		Herschel.Planck@esa.int	
Author:	C Brockley-Blatt	Date:	
	S Droemey Dutt	Dutti	
Checked:	B Winter	Date:	
	T Dibbara		
Approved:	T Dibbens	Date:	

FMECA

Change Record

	ISSUE	DATE
0.1		September 2001
1.0		November 2001

SPIRE

New document Issued

\mathbf{A}		Project Document	Ref:	Mssl/spire/pa005.01
UCL	SPIRE		Issue:	1.0
		FMECA	Date:	November 2001
MSSL			Page:	Page 3 of 13

Table of Contents

- 1. Scope of Document
- 2. Documents
- 3. FMECA

\mathbb{A}	SPIRE	Project Document	Ref:	Mssl/spire/pa005.01
UCL			Issue:	1.0
		FMECA	Date:	November 2001
MSSL			Page:	Page 4 of 13

Glossary

All terms are listed in the CIDL.

1. Scope of Document

This document presents the results of the FMECA carried out on the SPIRE Structure.

2. Documents

All documents are listed in Figure 3.2 of the CIDL.

\mathbb{A}	SPIRE	Project Document	Ref:	Mssl/spire/pa005.01
UCL			Issue:	1.0
		FMECA	Date:	November 2001
MSSL			Page:	Page 5 of 13

3. FMECA

A failure mode effects and criticality analysis has been performed on all functional elements of the structure which can cause failure effects within the experimentor cause damage to or interfere with, the proper functioning of the SPIRE instrument or HERSCHEL spacecraft.

Most of the pheomena can be captured by structural failure which can be detected by qualification

Each failure effect identified has been given a criticality category according to the definition below:

- Category 1: The failure effect is not confined to the subsystem. When this failure also results in loss or degradation of the instrument's function, this shall be stated.
- Category 2: The failure results in loss or degradation of the subsystem's function but the effect is confined to the subsystem.
- Category 3: Minor internal subsystem failures.

The following attributes have been added to the criticality category as appropriate:

- "R", if the design contains a redundant item which can perform the same function
- "SH", if the failure effect causes a safety hazard
- "SPF", if the failure is caused by a single point failure

The following failure modes have been considered:

- Total
 - Premature operation
 - Failure to operate (at the prescribed time)
 - Failure to cease operation (at the prescribed time)
 - Failure during operation
 - Mechanical failure
- Intermittent
 - For failure at component level e.g. hardware interface
 - Short circuit
 - Open circuit
 - Incorrect function e.g. from single event upset ex:latch ups
 - Incorrect commands or sequence of commands
- Partial
 - Incorrect software functions
- Degradation
 - Degradation or out of tolerance operation

\mathbf{A}		Project Document	Ref:	Mssl/spire/pa005.01
UCL			Issue:	1.0
		FMECA	Date:	November 2001
MSSL			Page:	Page 6 of 13

Design specifications, descriptions, functional diagrams etc, used in the preparation of the FMECA shall be attached or referenced.

\mathbb{A}		Project Document	Ref:	Mssl/spire/pa005.01
UCL	SPIRE		Issue:	0.1
		FMECA	Date:	September 2001
MSSL			Page:	Page 7 of 13

ID	Item	Function	Failure Mode	Failure Cause	Failure Effect	Severity	Detection	Provisions	Actions
1			Collapses or breaks	Launch	Loss of instrument	1SPF	Thermal performance	Sufficient design margin	
				Another instrument hitting SPIRE	Thermal short, misalignment	1SPF	Thermal performance	Sufficient design margin, non contact constraint	
				Pre-flight handling and integration	Thermal short, misalignment		Thermal performance	Visual check before launch	
			Plastic deformation	Launch	Loss of instrument	1	Alignment	Sufficient design margin	
				Another instrument hitting SPIRE	Thermal short, misalignment	1	Thermal performance	Sufficient design margin, non contact constraint	
				Pre-flight handling and integration	Thermal short, misalignment		Alignment, using the optical cube	Replace suspension	

\mathbb{A}		Project Document	Ref:	Mssl/spire/pa005.01
UCL			Issue:	0.1
		FMECA	Date:	September 2001
MSSL			Page:	Page 8 of 13

ID	Item	Function	Failure Mode	Failure Cause	Failure Effect	Severity	Detection	Provisions	Actions
2	2Cover panels	Stiffness and stray light and RF shielding	Stray light or RF leak	Dent	Minor misalignment of instrument internally		ldentify a misalignment or thermal short	Visual inspection before launch	
	Spire Optical Bench	Stiffness and mounting provision for all other subsystems	Distortion	Prestress due to mishandling	Misalignment	2	Misalignment	Prelaunch check	Training in integration procedure
4	Thermal Straps	Provide conduction path	Breaks	Fatigue	Loss of thermal conductance		Thermal performance, instrument performance		Design for non fatigue critical
			Deformation	Mishandling	Thermal short		Thermal performance, instrument performance	Visual inspection before launch	
			Degradation of contact	Thermal or mechanical cycling	Loss of thermal conductance		Thermal performance, instrument performance		Qualification testing with regard to fatigue

\mathbb{A}	SPIRE	Project Document	Ref:	Mssl/spire/pa005.01
UCL			Issue:	0.1
		FMECA	Date:	September 2001
MSSL			Page:	Page 9 of 13

ID	Item	Function	Failure Mode	Failure Cause	Failure Effect	Severity	Detection	Provisions	Actions
5	Thermal busbar	Provide 0.3K thermal path to detectors	Loss of suspension	Mechanical overload	Loss of one detector		Thermal performance, detector performance	Sufficient design margin	Engineering tests
					Loss of all detectors		Thermal performance, detector performance	Sufficient design margin	Engineering tests
			Work hardening	Repeated integrations	Degradation of performance		Thermal performance, detector performance	Sufficient design margin	Engineering tests, CQM and FM Tests
			Breaking	Repeated integrations or mechanical loading	Loss of one detector		Thermal performance, detector performance	Sufficient design margin	Engineering tests, CQM and FM Tests
					Loss of all detectors		Thermal performance, detector performance	Sufficient design margin	Engineering tests

\mathbb{A}	Project Document	Ref:	Mssl/spire/pa005.01
UCL		Issue:	0.1
	FMECA	Date:	September 2001
MSSL		Page:	Page 10 of 13

				Failure	Failure				
ID	Item	Function	Failure Mode	Cause	Effect	Severity	Detection	Provisions	Actions
6	6 Mirror Mounts	Supports mirrors	Misalignment	Mishandling during integration	Misalignment		Instrument performance	Alignment verification	
			Break	Launch	Loss of alignment - common mirror		Instrument failure	Sufficient design margin	Q-Test
					Loss of alignment -a mirror in spectrometer or photometer		Instrument performance	Sufficient design margin	Qualification testing
7	Photometer 2K Detector box and 7supports	Supports photometer detectors, stray light	Breakage	Launch	Loss of instrument		Measuring thermal performance	Sufficient design margin	Qualification testing
				Pre-flight handling or integration	Thermal short or misalignment		Measuring thermal performance	Sufficient design margin	Visual inspection and Protoflight testing
			Plastic deformation	Launch	Misalignment		Instrument performance	Sufficient design margin	Qualification testing
				Pre-flight handling or integration	Thermal short or misalignment	1	Alignment	Sufficient design margin	Visual inspection and Protoflight testing

A	Project Document	Ref:	Mssl/spire/pa005.01
UCL		Issue:	0.1
	FMECA	Date:	September 2001
MSSL		Page:	Page 11 of 13

				Failure	Failure				
ID	Item	Function	Failure Mode	Cause	Effect	Severity	Detection	Provisions	Actions
	Spectrometer 2K detector box and supports	Supports spectrometer detectors, stray light and RF baffle	Breakage	Launch	Loss of instrument		Measuring thermal performance	Sufficient design margin	Qualification testing
				Pre-flight handling or integration	Thermal short or misalignment		Measuring thermal performance	Sufficient design margin	Visual inspection and protoflight testing
			Plastic deformation	Launch	Misalignment	1SPF			
				Pre-flight handling or integration	Thermal short or misalignment	1	Alignment	Sufficient design margin	Visual inspection and protoflight testing
9	Stray light Baffles								
9a	General	Stray light shielding	Bent	Mishandling during integration	Increase in background noise for detectors		Instrument performance	Careful handling	Visual check
					Loss of field of view		Instrument performance	Careful handling	Visual check
					Obscures common beam		Instrument performance	Careful handling	Visual check

\mathbf{A}	Project Document	Ref:	Mssl/spire/pa005.01
UCL		Issue:	0.1
	FMECA	Date:	September 2001
MSSL		Page:	Page 12 of 13

			Failure	Failure					
ID	Item	Function		Cause	Failure Effect	Soverity	Detection	Provisions	Actions
	Feed thorough	Stray light shielding at thermal strap entry to different	4K- thermal	Misalignment	Degradation of thermal performance		Thermal		Visual check and measure
			2K- thermal short	Misalignment	Degradation of thermal performance		Thermal performance	Tolerance on alignment	Visual check and measure
	Non Mirror Optics mounts								
10a	Filters	Supports of the filters	Popping out its frame	Differential in pressure	Damage to filters	2		Ensure adequate venting/control pump down	
	Beam Spilitters/Dichroics	Supports the beam and splitters and dichroics		Asymmetric stressing	Misalignment	2	Instrument performance	Mounts design symmetrical - 3 point mount	
			Break	Launch	Loss of alignment - common mirror		Instrument failure		
					Loss of alignment -a mirror in spectrometer or photometer		Instrument performance	Sufficient design margin	Qualification testing
ID	Item	Function		Failure Cause	Failure Effect	Severity	Detection	Provisions	Actions

A		Project Document	Ref:	Mssl/spire/pa005.01
UCL	SPIRE		Issue:	0.1
	•••••	FMECA	Date:	September 2001
MSSL			Page:	Page 13 of 13

11	Alignment cubes	Tool for alignment of instrument	Misalignment		Delay in test schedule		??????	Careful handling	
12	Thermistors	Measure the temperature of a part	Failure to operate	Broken or disconnected	wrong temperature reading	3R	Thermal testing		
					no temperature	3R	Thermal testing		
13	Assembly jig	Support instrument during integration	Damage to instrument	Over constrained or lack of stiffness	misalignment	2	Visual	No hypostatic mounting (no more than 6 degrees of freedom)	Sound engineering practice
								no hypostatic mounting (no more than 6 degrees of freedom), adherence to integration alignment	
				Over constrained or				requirements (the way the	Sound engineering
			Misalignment	lack of stiffness	Misalignment	3	inspection	alignment)	practice

Page left intentionally blank