
Ref: SPIRE-RAL-NOT-
001011

Issue: Issue 1.0
Date: 12th November 2001
Page: 1 of 8

Technical Note

SPIRE Evaluation of the Command List Concept for
SPIRE commanding

K.J. King

1. INTRODUCTION

The SPIRE DPU communicates with the DRCU through two serial interfaces: the high speed interface,
used for collecting science telemetry data from the DRCU; and the low speed interface, used both for
commanding the DRCU subsystems and collecting housekeeping data. The On Board Software (OBS)
must implement a task which regularly uses the low speed interface to collect housekeeping for the
'periodic housekeeping' telemetry packets that are transmitted to the ground (once per second, TBC). In
addition to this task, the OBS must also provide for thermal control of the cooler and other commanding
of the instrument subsystems to implement instrument operations. To do this it is necessary to have a
mechanism that will allow commanding of the DRCU to be carried out in parallel with the routine
housekeeping collection, while maintaining the required timing accuracy for operations.

At a recent OBS meeting, held at RAL on the 31st July and 1st August 2001, IFSI proposed such a
mechanism that used the concept of a Command List, which would be interpreted by the OBS. The
language used in a Command List provided facilities for ensuring that commands could be sent to the
DRCU at the required times without disturbing the housekeeping task unduly.

This note provides an evaluation of that Command List concept and makes recommendations for its use
with SPIRE.

2. COMMAND HANDLING BY THE OBS
In order to pass commands to the DRCU, the OBS runs a task (LS_Task), which handles the interface
with the low speed serial line (issuing the command and waiting for, and reading, the response). This
task takes its input from a command buffer, which contains the commands to be sent to the DRCU and
issues them sequentially.

This command buffer is normally loaded regularly (once per second, TBC) by the periodic housekeeping
task, which copies a set of commands into the command buffer for handling by the low speed interface
task. These commands request the housekeeping information and there will be of the order of 200
commands placed in the command buffer each time.

In addition, commands received by the instrument, or control tasks being run by the OBS, may also
generate requests for commands to be sent to the DRCU. These will normally be appended to the
command buffer and sent when they reach the top of the buffer, but this may introduce a delay of up to
~200ms (approximately 1ms per command held in the command buffer) before the DRCU command is
actually issued. A problem arises for those instrument operations, which require the DRCU commands
to be issued with a higher timing accuracy than this.

Note: we can assume that, in general, OBS control tasks have such a long cycle time (of the order of a
few seconds, or longer) that the possible delay in issuing commands will have no significant effect.

A hardware mechanism to address this problem has been provided in the DPU in the form of a timer,
which can be arranged to interrupt the current operation of the OBS and allow a DRCU command to be
issued at a known time. In order for the OBS to use this it is necessary:
a) to stop the LS_Task processing the command buffer at least 1 ms before the required command

time in order to ensure that the last command has been dealt with completely before the required
command is sent

Ref: SPIRE-RAL-NOT-
001011

Issue: Issue 1.0
Date: 12th November 2001
Page: 2 of 8

Technical Note

SPIRE Evaluation of the Command List Concept for
SPIRE commanding

K.J. King

b) wait until the required time, issue the command and handle the response
c) restart the LS_task to continue processing the command buffer

All of this needs to be carried out in the interrupt routine attached to the timer. Though possible, it is
unlikely that two tasks will need to use this mechanism at the same time.
Question: Is it possible that two time critical commanding tasks will be running at the same
time?

An overview of the commanding scheme is shown in Figure 2-1

CMD-SEQ_Task

Command
Sequencer

&
Controller

HK_REQ_Task

Periodic HK
request

ISR_3_Task

Synchronization
commands

IRQ0

FIFO half
full

CMD-SEQ_Task

Signal

1 sec
OS

event

Low Speed
I/F command

buffer

Set next INT
[Tx cmd]
[Disable LS_Task]
[Enable LS_Task]

Signal
LS_Task

Signal
LS_Task

LS_Task

Tx
suspend
Rx

LS_Task
Signal

HS_Task

Move data from
FIFO to TM buffer

TM buffers

IRQ3

Timer

Figure 2-1 OBS Commanding Tasks

2.1 'Command List' concept
The method of using the timer interrupt to issue DRCU commands at the correct times, described
above, could be used by any code being executed by the OBS, but IFSI have proposed that instrument
functions that need this facility should be coded using a 'language' that is interpreted by the OBS and
provides the facilities required for this function. The advantage of this is that the function can be
defined/changed without a change to the OBS and it is possible for the function to be entirely encoded
within the command packet sent to the instrument.

2.2 Command List Interpreter Virtual Machine
The language interpreter Virtual Machine, as described, has the following characteristics:

Ref: SPIRE-RAL-NOT-
001011

Issue: Issue 1.0
Date: 12th November 2001
Page: 3 of 8

Technical Note

SPIRE Evaluation of the Command List Concept for
SPIRE commanding

K.J. King

• A set of general purpose registers to hold data and allow calculations to be made with this data
• The response from each command issued is returned in a fixed VM register. This value is

overwritten each time a command is sent when the response to the previous command is read into
the register.
 Note: this removes the need to schedule a second interrupt in order to read the response to a
command. (necessary because the interrupt routine cannot wait for the response as this
would stop other OBS tasks from running at this time). It does, however, mean that an
additional opcode is required to read the response to the last command issued in a function.

2.3 Command List Opcodes
The language interpreter Virtual Machine, provides the following Operation Codes (opcodes).
Note: some language elements have been added since the meeting, in order to provide additional
functionality that has been identified (see below):

Opcode Description
Set(reg, value) Set a register to contain a constant value
Set(reg, reg') Copy contents of reg' to reg
Add(reg, const) Add a constant to reg
Add(reg, reg') Add the contents of reg' to reg
Sub(reg, const) Subtract a constant from reg
Sub(reg, reg') Subtract the contents of reg' from reg
Get(reg, table, reg') Fetch the value in a table (at the offset given by reg')

into reg
Send(response?, subsystem, command,
value)

Send a command to the subsystem with a parameter
value
Note: Error Checking of the response is TBD

Send(response?, subsystem, command,
reg)

Send a command to the subsystem with a parameter
value taken from reg
Note: Error Checking of the response is TBD

Read(reg) Fetch response to last command into reg
SetTimer(value) Set the interrupt timer count to the given value

Note:This will take effect in the interrupt routine
following the next interrupt routine

SetTimer(reg) Set the interrupt timer count from the content of reg
Note: This will take effect in the interrupt routine
following the next interrupt routine

Mutex(flag) Flag = set, release
Setting the mutex stops the LS_Task reading
commands from the command buffer. The low speed
interface is then guaranteed to be available after
500ms (TBC)

JumpNZ(reg, displacement) Jump by displacement to a new position in the
Command List, if reg contains non-zero value

Wait() Return from current interrupt routine
End() Stop timer interrupts

Ref: SPIRE-RAL-NOT-
001011

Issue: Issue 1.0
Date: 12th November 2001
Page: 4 of 8

Technical Note

SPIRE Evaluation of the Command List Concept for
SPIRE commanding

K.J. King

2.3.1 Additional Opcodes

2.3.1.1 Subroutines

It will probably be useful to provide for 'subroutines' to be defined for reusable parts of functions. This
will require the OBS to provide a Command List Area to contain these subroutines. Instrument
commands to load and update these will be provided (through the On-board Command Procedure
Service, TBC)

Call(reg, address) Jump to Command List address. The return address is
put into reg

Return(reg) Jump to Command List address held in reg

2.3.1.2 DPU Science Data Frames

It will be necessary to be able to send the current status of the function (step number etc) in a DPU
Science telemetry packet:

DPUFrame(reg, n) Add a DPU science frame (defined by the n registers
starting with reg) to the DPU telemetry packet buffer.
Time information will be automatically added at the
start of the science frame by the DPU.

2.3.1.3 Additional PUS Packet types

It will be necessary to have the capability to issue other PUS packet types:

2.3.1.3.1 Command Execution Status

These comprise the following service types :
Command Execution Start Report (1,3)
Command Execution Progress Progress Report (1,5)
Command Execution Completed Report (1,7)
Command Execution Failure Report (1,8)

CVPkt(type,reg,n) Issue a Command Execution Status Packet of given
type, with parameters given in the n registers starting
with reg
It is assumed that reg n onwards contain the
Telecommand Packet ID and the Packet Sequence
Control words of the telecommand being executed

2.3.1.3.2 Events

These comprise the following service types:
Event Report (5,1)
Exception Report (5,2)

Ref: SPIRE-RAL-NOT-
001011

Issue: Issue 1.0
Date: 12th November 2001
Page: 5 of 8

Technical Note

SPIRE Evaluation of the Command List Concept for
SPIRE commanding

K.J. King

Error/Alarm Report (5,4)

EventPkt(type,reg,n) Issue an event packet of given type, with parameters
given in the n registers starting with reg

3. EXAMPLE FUNCTIONS

The following typical function has been discussed:

3.1 Chopping
A possible chopping scenario is as follows:

Function:

CHOP(y0, y1, Nchops, Pchop, Nchpframes, Pchpframes, Nbdaframes, Pbdaframes, Tbda)

Where:
y0,y1 = on/off position of BSM chop axis
Nchops = number of chop cycles to be completed
Pchop = period of the chop cycle (default = 500ms)
Nchpframes = number of chop science frames collected per half chop cycle
Pchpframes = time between collected chop science frames
Nbdaframes = number of BDA science frames collected per half chop cycle
Pbdaframes = time between collected BDA science frames
Tbda = time delay from half chop cycle start to first collected BDA science frame

Algorithm

Set chop number = 0
Send 'Command Execution Started' message
For Nchops cycles:
 Set chop position to y0
 Send DPU science frame giving chop number
 Increment chop number
 Wait until Tbda has passed
 Collect Nbdaframes at Pbdaframes Period
 Wait until Pchop/2 has passed
 Set chop position to y1
 Wait until Tbda has passed
 Collect Nbdaframes at Pbdaframes Period
 Wait until Pchop
Send 'Command Execution Completed' message

Implementation
Assumptions:
Assume that on receipt of the telecommand packet holding the CHOP command, the command

Ref: SPIRE-RAL-NOT-
001011

Issue: Issue 1.0
Date: 12th November 2001
Page: 6 of 8

Technical Note

SPIRE Evaluation of the Command List Concept for
SPIRE commanding

K.J. King

processor enables interrupts for 1 ms intervals and sets the start address for the Command List
Interpreter to the start of the Command List.

Assume the BSM is already powered on and ready to chop

Each block of opcodes are executes during one timer interrupt

Delta
Time

Commands Comments

1ms Set(R00, y0)
Set(R01, y1)
Set(R02, Nchops)
Set(R03, Pchop)
Set(R04, Nchpframes)
Set(R05, Pchpframes)
Set(R06, Nbdaframes)
Set(R07, Pbdaframes)
Set(R08, Tbda)

Set(R56, 0)
Set(R57, 0)
Sub(R03, R08)
Sub(R03, 2)
Sub(R08,1)

CVPck(Execution Start,R56)
Mutex(set)
Wait()

Copy arguments to registers

Initialise registers
Chop Cycle
Chop Flag
R03 = Pchop-Tbda-2

R08 = Tbda-1

1ms Send(Y, MCU, Set_chop_frame_period, R05)
Wait()

Set Chop Science Frame
period

1ms Send(Y, DCU, Set_bda_frame_period, R07)
Wait()

Set BDA Science Frame
period

1ms Send(Y, MCU, Move_chop, R00)
Issue(R56, 2)
Add(R56, 1)
Set(R57, 1)
SetTimer(R08ms)
Wait()

Move BSM to y0
Create Science Frame

Chop flag = 1

1ms Send(Y, MCU, Start_multiple_chop_frames,
R04)
SetTimer(1ms)
Mutex(release)
Wait()

Start Chop Sampling

Tbda-1 ms SetTimer(R03ms)
Mutex(Set)
Wait()

Ref: SPIRE-RAL-NOT-
001011

Issue: Issue 1.0
Date: 12th November 2001
Page: 7 of 8

Technical Note

SPIRE Evaluation of the Command List Concept for
SPIRE commanding

K.J. King

1ms Send(Y, DCU, Start_multiple_frames, R06)
SetTimer(1ms)
Mutex(release)
Wait()

Start Detector Sampling

Pchop-
Tbda-2ms

Mutex(Set)
Wait()

1ms Send(Y, MCU, Move_chop, R01)
Issue(R56, 2)
Set(R57,0)
SetTimer(R08ms)
Wait()

Move to y1

Chop flag = 0

1ms Send(Y, MCU, Start_multiple_chop_frames,
R04)
SetTimer(1ms)
Mutex(release)
Wait()

Start Chop Sampling

Tbda-1 ms SetTimer(R03ms)
Mutex(Set)
Wait()

1ms Send(DCU, Start_multiple_frames, R06)
SetTimer(1ms)
Mutex(release)
Wait()

Start Detector Sampling

Pchop-
Tbda-2 ms

Mutex(set)
Decr(R02,1)
JumpNZ(R02, -37)
Wait()

Repeat for Nchops cycles

1ms Send(Y, MCU, Move_chop, R00)
Mutex(release)
CVpkt(Execution Completed,R56)
End()

Move BSM to y0

ANALYSIS OF IMPLEMENTATION

It is apparent that the length of the Command List for the CHOP function (64 opcodes) may well be
larger than can be contained in one telecommand packet (250 bytes). The length may be reduced by
more efficient language design: the proposed implementation uses 8 bytes for each language statement.
These could be encoded in 4 bytes (Note: all commands to the DRCU have the most significant bit set
to 1). However, it should be noted that other functions could be much more complicated than CHOP
and hence would be longer.

The command interpreter could copy all parameters received with the command into a fixed set of VM
registers before executing the Command List. This would save many commands used to set up registers
before execution begins.

Ref: SPIRE-RAL-NOT-
001011

Issue: Issue 1.0
Date: 12th November 2001
Page: 8 of 8

Technical Note

SPIRE Evaluation of the Command List Concept for
SPIRE commanding

K.J. King

The use of subroutines may reduce the length of Command Lists. For example, most of the CHOP
function is used within the POINTSRC and FIELDMAP commands. A block of memory would be set
aside to contain Command Lists and these could be called from any function. This does mean that we
need to provide instrument commands to Create and Update Command List subroutines. We would use
the On-Board Control Procedure service to provide these (TBC).

This implementation includes no error checking. This will increase the size of the Command List and
require additional opcode(s) to issue event packets.

4. SUMMARY

• The proposed method of sending issuing DRCU commands is adequate for implementation of the
instrument functionality and timing for observing modes. However, there are constraints on other
tasks that may be running at the same time (only one function may be run at a time and control
tasks must have a long cycle time). The acceptability of this needs to be studied.

• The Command List concept provides flexibility for defining commands, which allows their
redefinition without patching the OBS. It is recommended that this method be adopted.

• With additional opcodes, the proposed Command List language can provide the functionality to
implement observing modes of the instrument. A proposal for the full language definition
should be made as soon as possible and studied to ensure a) that is provides all the
functionality needed and b) that it can be used in the CUS.

• The language needs to be made more efficient. It is recommended that the Command List
language be designed to be more efficient in size than the proposed implementation
(maximum 4 bytes per opcode).

• It is not possible to always include the full Command List in a telecommand (due to the limit on
telecommand length), therefore subroutines will have to be stored on board and called from the
Command List. An additional commanding service (On-Board Control Procedures, TBC)
should be implemented in the OBS.

