

DPU/ICU Switch-ON Procedure Ref.: CNR.IFSI.2001TR01 Issue: 1 Date: 12/10/2001

# HERSCHEL

# **DPU/ICU Switch-ON Procedure**

Document Ref.: CNR.IFSI.2001TR01

Issue: 1

Prepared by:

R.Orfei Riccardo Cerulli-Irelli Anna Maria Di Giorgio Date: 12/10/2001

DPU\_SwitchOn\_Proced\_Issue1.doc SPIRE-IFS-DOC-000994



### **Distribution List :**

| MPE  | O.Bauer           | N.Gradmann  |
|------|-------------------|-------------|
|      | PACS-PPO          |             |
| CSL  | E.Renotte         | J.M.Gillis  |
| IAC  | J.Herreros        |             |
| RAL  | K.King            |             |
| SRON | K.Wafelbakker     | L.Dubbeldam |
|      | D.Beintema        | P.Roelfsema |
| CGS  | A. Longoni        |             |
| IFSI | R. Cerulli Irelli | S. Molinari |
|      | C.Codella         |             |
|      | A. Di Giorgio     |             |
|      | S. Pezzuto        |             |



# **Document Status Sheet:**

| Document Title: Herschel DPU/ICU Switch-ON Procedure |          |                 |                                                              |  |
|------------------------------------------------------|----------|-----------------|--------------------------------------------------------------|--|
| Issue                                                | Revision | Date            | <b>Reason for Change</b>                                     |  |
| Draft 1                                              |          | 23 January 2001 | First Draft                                                  |  |
|                                                      |          |                 |                                                              |  |
| Draft2                                               |          | 30 January 2001 | 2 <sup>nd</sup> draft, containing comments from SPIRE        |  |
| Draft 3                                              |          | 16/03/2001      | 3 <sup>rd</sup> Draft, with comments from CDMS<br>WG and CGS |  |
| Issue1                                               |          | 12/10/2001      | Updating after PS-ICD updating                               |  |



# **Document Change Record :**

| Document Title: Herschel DPU/ICU Switch-ON Procedure |                                                                                             |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| Document Reference Number: CNR.IFSI.2001TR01         |                                                                                             |  |
| Document Issue/Revision Number: Issue 1              |                                                                                             |  |
| Section                                              | Reason For Change                                                                           |  |
| All                                                  | Draft 1                                                                                     |  |
| Sect. 2.1.1, 2.1.2                                   | SPIRE Comments taken into account                                                           |  |
| Sect. 2.1.1, 2.1.2                                   | CDMS WG and CGS comments taken into account                                                 |  |
|                                                      | Issue 1                                                                                     |  |
| Sect. 1.1                                            | Updated                                                                                     |  |
| Sect. 1.2.1                                          | Added acronym for ASW, CDMU, CGS, HIFI, PACS, TBD, TBW, TC, TM; corrected CDMS, removed HSO |  |
| Sect. 2                                              | Fig. 2.1 updated                                                                            |  |
| Sect. 2                                              | Last part of the section updated                                                            |  |
| Sect. 2.1.2:                                         | Changes due to new PS-ICD Issue                                                             |  |
| PROM-ON04.3                                          | updated                                                                                     |  |
| PROM-ON04.5                                          | updated                                                                                     |  |
| PROM-ON04.6                                          | updated                                                                                     |  |
| PROM-ON05                                            | updated                                                                                     |  |
| PROM-ON06.5                                          | updated                                                                                     |  |

| IFSI<br>CNR  | Herschel<br>DPU/ICU Switch-ON<br>Procedure | <b>Ref.:</b> CNR.IFSI.2001TR01<br><b>Issue:</b> 1<br><b>Date:</b> 12/10/2001 |
|--------------|--------------------------------------------|------------------------------------------------------------------------------|
| PROM-ON07    | updated                                    |                                                                              |
| PROM-ON08    | updated                                    |                                                                              |
| PROM-ON09    | updated                                    |                                                                              |
| PROM-ON09.4  | updated                                    |                                                                              |
| PROM-ON09.5  | updated                                    |                                                                              |
| PROM-ON010   | updated                                    |                                                                              |
| PROM-ON013.1 | updated                                    |                                                                              |
| PROM-ON014   | updated                                    |                                                                              |



| 1 | INTE  | RODUCTION                             | 7   |
|---|-------|---------------------------------------|-----|
|   | 1.1   | PURPOSE OF THE DOCUMENT               | 7   |
|   | 1.2   | ACRONYMS AND ABBREVIATIONS            | 7   |
|   | 1.2   | 1.1 Acronyms                          | 7   |
|   | 1.3   | REFERENCES                            | 9   |
|   | 1.3   | 2.1 Applicable Documents              | 9   |
|   | 1.3   | 2.2 Reference Documents               | 9   |
|   | 1.4   | INTRODUCTION                          | 10  |
| 2 | GEN   | ERAL DPU/ICU DESCRIPTION              | .10 |
|   | 2.1   | SWITCH-ON PROCEDURE                   | 10  |
|   | 2.1   | .1 Overall functional description     | .13 |
|   | 2.1.2 | PROM Software High Level Requirements | .15 |
|   |       |                                       |     |



### **1 INTRODUCTION**

#### **1.1 Purpose of the document**

The Istituto di Fisica per lo Spazio Interplanetario (IFSI) of the Italian Consiglio Nazionale delle Ricerche (CNR) is responsible for the design and manufacturing of the three Digital Processing/Instrument Control Unit for the three instruments to be flown on board of the ESA satellite Herschel: PACS, HIFI and SPIRE.

This specification defines the requirements for the performances, the design and the qualification of the PROM software, which is a CGS deliverable to IFSI.

#### **1.2 Acronyms and Abbreviations**

#### 1.2.1 Acronyms

| Architectural Design                                |
|-----------------------------------------------------|
| Application SW                                      |
| Acceptance Test Plan                                |
| Avionic Model                                       |
| Consiglio Nazionale delle Ricerche                  |
| Common Parts Procurement                            |
| Control Processing Unit                             |
| Central Data Management System                      |
| Central Data Management Unit                        |
| Carlo Gavazzi Space SpA                             |
| Cryogenic Qualification Model                       |
| Detailed Design Document                            |
| Data Memory                                         |
| Digital Processing Unit                             |
| Electrically Erasable Programmable Read Only Memory |
|                                                     |



### DPU/ICU Switch-ON Procedure

Ref.: CNR.IFSI.2001TR01 Issue: 1 Date: 12/10/2001

| ESA                                                                                             | European Space Agency                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HIFI                                                                                            | Heterodyne Instrument for FIRST                                                                                                                                                                                                                                                                                                                  |
| HK                                                                                              | HouseKeeping                                                                                                                                                                                                                                                                                                                                     |
| HW                                                                                              | HardWare                                                                                                                                                                                                                                                                                                                                         |
| IBDR                                                                                            | Instrument Baseline Design Review                                                                                                                                                                                                                                                                                                                |
| ICD                                                                                             | Interface Control Document                                                                                                                                                                                                                                                                                                                       |
| ICDR                                                                                            | Instrument Critical Design Review                                                                                                                                                                                                                                                                                                                |
| ICU                                                                                             | Instrument Control Unit                                                                                                                                                                                                                                                                                                                          |
| DPU                                                                                             | Digital Control Unit                                                                                                                                                                                                                                                                                                                             |
| IHDR                                                                                            | Instrument Hardware Design Review                                                                                                                                                                                                                                                                                                                |
| IFSI                                                                                            | Istituto di Fisica dello Spazio Interplanetario                                                                                                                                                                                                                                                                                                  |
| ISVR                                                                                            | Instrument Science Verification Review                                                                                                                                                                                                                                                                                                           |
| NA                                                                                              | Not Applicable                                                                                                                                                                                                                                                                                                                                   |
| OBS                                                                                             | On-Board Software                                                                                                                                                                                                                                                                                                                                |
| PA                                                                                              | Product Assurance                                                                                                                                                                                                                                                                                                                                |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  |
| PACS                                                                                            | Photoconductor Array Camera and Spectrometer                                                                                                                                                                                                                                                                                                     |
| PACS<br>PROM                                                                                    | Photoconductor Array Camera and Spectrometer<br>Programmable Read Only Memory                                                                                                                                                                                                                                                                    |
| PACS<br>PROM<br>RAM                                                                             | Photoconductor Array Camera and Spectrometer<br>Programmable Read Only Memory<br>Random Access Memory                                                                                                                                                                                                                                            |
| PACS<br>PROM<br>RAM<br>SCC                                                                      | Photoconductor Array Camera and Spectrometer<br>Programmable Read Only Memory<br>Random Access Memory<br>SpaceCraft Components                                                                                                                                                                                                                   |
| PACS<br>PROM<br>RAM<br>SCC<br>SEU                                                               | Photoconductor Array Camera and Spectrometer<br>Programmable Read Only Memory<br>Random Access Memory<br>SpaceCraft Components<br>Single Event Upset                                                                                                                                                                                             |
| PACS<br>PROM<br>RAM<br>SCC<br>SEU<br>SPIRE                                                      | Photoconductor Array Camera and Spectrometer<br>Programmable Read Only Memory<br>Random Access Memory<br>SpaceCraft Components<br>Single Event Upset<br>Spectral and Photometric Imaging Receiver                                                                                                                                                |
| PACS<br>PROM<br>RAM<br>SCC<br>SEU<br>SPIRE<br>S/S                                               | Photoconductor Array Camera and Spectrometer<br>Programmable Read Only Memory<br>Random Access Memory<br>SpaceCraft Components<br>Single Event Upset<br>Spectral and Photometric Imaging Receiver<br>SubSystem                                                                                                                                   |
| PACS<br>PROM<br>RAM<br>SCC<br>SEU<br>SPIRE<br>S/S<br>SVM                                        | Photoconductor Array Camera and Spectrometer<br>Programmable Read Only Memory<br>Random Access Memory<br>SpaceCraft Components<br>Single Event Upset<br>Spectral and Photometric Imaging Receiver<br>SubSystem<br>Service Module                                                                                                                 |
| PACS<br>PROM<br>RAM<br>SCC<br>SEU<br>SPIRE<br>S/S<br>SVM<br>SW                                  | Photoconductor Array Camera and Spectrometer<br>Programmable Read Only Memory<br>Random Access Memory<br>SpaceCraft Components<br>Single Event Upset<br>Spectral and Photometric Imaging Receiver<br>SubSystem<br>Service Module<br>SoftWare                                                                                                     |
| PACS<br>PROM<br>RAM<br>SCC<br>SEU<br>SPIRE<br>S/S<br>SVM<br>SW<br>TBC                           | Photoconductor Array Camera and Spectrometer<br>Programmable Read Only Memory<br>Random Access Memory<br>SpaceCraft Components<br>Single Event Upset<br>Spectral and Photometric Imaging Receiver<br>SubSystem<br>Service Module<br>SoftWare<br>To Be Confirmed                                                                                  |
| PACS<br>PROM<br>RAM<br>SCC<br>SEU<br>SPIRE<br>S/S<br>SVM<br>SW<br>TBC<br>TBD                    | Photoconductor Array Camera and Spectrometer<br>Programmable Read Only Memory<br>Random Access Memory<br>SpaceCraft Components<br>Single Event Upset<br>Spectral and Photometric Imaging Receiver<br>SubSystem<br>Service Module<br>SoftWare<br>To Be Confirmed<br>To Be Defined                                                                 |
| PACS<br>PROM<br>RAM<br>SCC<br>SEU<br>SPIRE<br>S/S<br>SVM<br>SW<br>TBC<br>TBD<br>TBW             | Photoconductor Array Camera and Spectrometer<br>Programmable Read Only Memory<br>Random Access Memory<br>SpaceCraft Components<br>Single Event Upset<br>Spectral and Photometric Imaging Receiver<br>SubSystem<br>Service Module<br>SoftWare<br>To Be Confirmed<br>To Be Confirmed<br>To Be Defined<br>To Be Written                             |
| PACS<br>PROM<br>RAM<br>SCC<br>SEU<br>SPIRE<br>S/S<br>SVM<br>SW<br>TBC<br>TBD<br>TBW<br>TC       | Photoconductor Array Camera and Spectrometer<br>Programmable Read Only Memory<br>Random Access Memory<br>SpaceCraft Components<br>Single Event Upset<br>Spectral and Photometric Imaging Receiver<br>SubSystem<br>Service Module<br>SoftWare<br>To Be Confirmed<br>To Be Confirmed<br>To Be Defined<br>To Be Written<br>TeleCommand              |
| PACS<br>PROM<br>RAM<br>SCC<br>SEU<br>SPIRE<br>S/S<br>SVM<br>SW<br>TBC<br>TBD<br>TBW<br>TC<br>TM | Photoconductor Array Camera and Spectrometer<br>Programmable Read Only Memory<br>Random Access Memory<br>SpaceCraft Components<br>Single Event Upset<br>Spectral and Photometric Imaging Receiver<br>SubSystem<br>Service Module<br>SoftWare<br>To Be Confirmed<br>To Be Confirmed<br>To Be Defined<br>To Be Written<br>TeleCommand<br>TeleMetry |



### **1.3 REFERENCES**

## **1.3.1 Applicable Documents**

| Document  | Name                                                                 |
|-----------|----------------------------------------------------------------------|
| Reference |                                                                      |
| AD1       | FIRST/Planck Instrument Interface Document Part A                    |
| AD2       | FIRST/Planck Instrument Interface Document Part B Instrument "PACS"  |
| AD3       | FIRST/Planck Instrument Interface Document Part B Instrument "HIFI"  |
| AD4       | FIRST/Planck Instrument Interface Document Part B Instrument "SPIRE" |
| AD5       | PS-ICD                                                               |
| AD6       | DPU/ICU OBS PA Plan                                                  |
| AD6       | HIFI DPU/ICU OBS URD                                                 |
| AD6       | SPIRE DPU/ICU OBS URD                                                |
| AD6       | PACS DPU/ICU OBS URD                                                 |

## **1.3.2 Reference Documents**

| <b>Document Reference</b> | Name |
|---------------------------|------|

| IFSI<br>CNR | Herschel<br>DPU/ICU Switch-ON<br>Procedure | <b>Ref.:</b> CNR.IFSI.2001TR01<br><b>Issue:</b> 1<br><b>Date:</b> 12/10/2001 |
|-------------|--------------------------------------------|------------------------------------------------------------------------------|
|             |                                            |                                                                              |

#### **1.4 Introduction**

The present document is intended to provide the requirements for the functions/routines to be implemented by the PROM, that is the part of the OBS that is executed at the DPU/ICU switch on and that could allow a recovery of the situation, should a permanent corruption of some RAM memory locations occur.

#### 2 General DPU/ICU description

In the following figure 2-1 the general block diagram of the DPU/ICU is shown together with the dimensions of the different memories, namely:

- PROM 32 Kbyte
- EEPROM 1 Mbyte
- Program Memory 3 Mbyte
- Data Memory 2 Mbyte.

The DSP 21020 has a "Harvard Architecture" so that Data Memory Bus and Program Memory Bus are completely separated, so allowing an increased instruction cycle speed.

It is also to be noted that:

- after the switch-ON the PROM is loaded via a state machine into the Program Memory;
- the EEPROM is mapped in Data Memory;
- the Data Memory word is 32 Bit wide while the Program Memory word is 48 Bit wide.

#### 2.1 Switch-ON Procedure

In Figure 2-2 the flow diagram of the DPU/ICU Switch-ON procedure is shown.



Page 11 of 22



Figure 2-2 Power-ON procedure flow chart diagram



#### **2.1.1 Overall functional description**

It is to be noted that the switch-ON procedure of an Herschel instrument can only take place when there is direct link between ground and satellite. If there is one of the failures described in the following, the DPU/ICU is unable to go in the instrument INIT mode, that is, the DPU/ICU is in Rescue Program Loader mode. The S/C CDMU is then expected only to upload a new program image; under these conditions no HK, but only Events can get out of the DPU/ICU.

When the DPU/ICU model is switched ON, that is the relevant 28 V lines dedicated to DPU/ICU are powered, the FPGA device loads the PROM content in the Program Memory while the DSP is kept in a RESET state and thus inactive (Reset is Asserted). At the end of the operation the DSP reset is released (Reset De-asserted) and the DSP starts program execution from the address 0x08: the Power-ON Procedure starts. The first following operation is the test of the Program Memory (of course not the part where the PROM program is located).

An example of the memory cells test sequence can be the following:

- WRITE in location N 0xA5A5A5A5A5A5
- READ and check the content of location N
- WRITE in location N 0x5A5A5A5A5A5A5A
- READ and check the content of location N
- N=N+1
- Repeat the above sequence.

If the test fails, then the procedure generates a Telemetry Event Packet (Error/Alarm report, see requirement list below) containing mainly the indication of the type of the on-board memory where the check failed, the total number of failures and the ID of the damaged segments. The Program Memory, and this applies also for the Data Memory, can be divided in segments (pages), as an indication 256 segments/pages, in order to avoid a large generation of events if the memory damage is serious.

This damage information could allow the on ground generation of a new software image to be loaded only on valid memory segments.

After the PM test, even if the test failed, the Data Memory test is started: for example the sequence can be the following:

- WRITE in location N 0xA5A5A5A5
- READ and check the content of location N
- WRITE in location N 0x5A5A5A5A
- READ and check the content of location N



- N=N+1
- Repeat the above sequence.

If the test of the DM fails, then the procedure generates a Telemetry Event Packet (Error/Alarm report, see requirement list below) with the same type of information indicated before.

After the DM test, the EEPROM content is checked, but in this case only the check sum(s) will be checked as the EEPROM can only be read (and written again, but this is not taken into account in this procedure). This test can be made by comparing the checksum of the EEPROM pages with the corresponding values reported in the header of each page (TBC).

If the test of the EEPROM fails, then the procedure generates a Telemetry Event Packet (Error/Alarm report, see requirement list below) with the same type of information indicated before.

At the end of the three tests, if just one of them failed, then the procedure starts waiting for a telecommand from ground. The TC can either force the power ON procedure to continue with the next step (load the application program from EEPROM to PM) or start a "Rescue Program Loader" procedure, capable to load the new code image from ground by using the Memory Management service (memory up-load TC). In this case the new executable is first loaded in DATA RAM and then copied from DM to PM in not corrupted/defective memory segments. This will be possible because the new executable will have the same structure as an EEPROM software image, which shall be organised in segments, each of which with its own header containing an indication of the PM address where the segment shall be mapped.

If the procedure of copying the new image from DM to PM fails, as well as in case of error in the reception of the memory load telecommand, the procedure generates an event and starts waiting for a new telecommand from ground.

The new loaded executable shall not be copied in EEPROM at this stage.

If all tests were OK, the next step in the procedure is to copy the OBS (application software) from EEPROM to PM. A new and final check is performed on the program copied in PM, again check sum(s). In case of successful check the program jumps directly to the OBS first location. If this final checksum test fails a new TM Event packet is generated and the procedure waits for a new telecommand from ground.

At the end of the procedure, the program jumps to the OBS first location.



## DPU/ICU Switch-ON Procedure

### 2.1.2 PROM Software High Level Requirements

In this section the list of high level requirements for the implementation of the PROM software is provided. This list is intended to be used as input for the definition of Software requirements and for the definition of the overall (functional and operational) design of the Software.

| Req. ID     | Description                                                               | Reference |
|-------------|---------------------------------------------------------------------------|-----------|
| PROM-ON01   | The PROM S/W shall be started at power-on of the DPU/ICU                  | IFSI      |
| PROM-ON02   | The PROM S/W shall perform the initialisation and checking of the         |           |
|             | health of the unit, including the following functions:                    |           |
|             | - Program Memory checking (test of all the memory area not                |           |
|             | occupied by the PROM software)                                            |           |
|             | - Data Memory Checking (test of all the memory area not occupied          |           |
|             | by the PROM software)                                                     |           |
|             | - EEPROM checking                                                         |           |
|             | - Configuration and Initialisation of the MIL-STD-1553B link to           |           |
|             | communicate with the CDMU                                                 |           |
| PROM-ON03   | For each one of the checks performed, in case of failure an Event         | IFSI      |
|             | Report shall be generated reporting the values specified as per req.      |           |
|             | PROM-ON04.6.                                                              |           |
| PROM-ON04   | The Event Report TM packet shall have a structure compatible with the     | IFSI      |
|             | description in AD5. In particular:                                        |           |
| PROM-ON04.1 | In the Packet Header the following values shall be set for the Packet ID  | IFSI      |
|             | fields (structured according to AD5 section 4.1.1.1):                     |           |
|             | Version Number: '000' (bin)                                               |           |
|             | Type: 0                                                                   |           |
|             | Data Field Header Flag: 1                                                 |           |
| PROM-ON04.2 | In the Packet Header - Packet ID the following instrument APIDs shall     | IFSI      |
|             | be inserted:                                                              |           |
|             | HIFI: APID= 1024 (400h) TBC                                               |           |
|             | PACS: APID=1152 (480h) TBC                                                |           |
|             | SPIRE: APID=1280 (500h)TBC                                                |           |
| PROM-ON04.3 | In the Packet Header - Packet Sequence Control fields (structured         | IFSI      |
|             | according to AD5 section 4.1.1.2) the following values shall be inserted: |           |
|             | Segmentation Flags: '11'(bin)                                             |           |
|             | Source Sequence Count (start=1): it is a counter of all the event packets |           |
|             | released with the same APID. The value of the counter shall be available  |           |



|             | in a dedicated memory location in RAM, in order to be used by the           |      |
|-------------|-----------------------------------------------------------------------------|------|
|             | ASW.                                                                        |      |
| PROM-ON04.4 | In the Packet Header - Packet Length field (structured according to         | IFSI |
|             | AD5 section 4.1.1.3) the number N of bytes contained in the Packet          |      |
|             | Data Field shall be written as an unsigned integer.                         |      |
|             | N = (number of bytes in packet data field) - 1.                             |      |
| PROM-ON04.5 | In the Packet Data Field – Data Field header (structured according to       | IFSI |
|             | AD5 section 4.1.2.1) all the fields shall be filled in with the following   |      |
|             | values:                                                                     |      |
|             | Spare: 0                                                                    |      |
|             | TM PUS version number: 0                                                    |      |
|             | Spare: 0                                                                    |      |
|             | Packet Type: 5                                                              |      |
|             | Packet Subtype: 4                                                           |      |
|             | Spare: 0                                                                    |      |
|             | Time: MSB=1 meaning not yet synchronised                                    |      |
| PROM-ON04.6 | In the Packet Data Field – Source Data (structured according to AD5         | IFSI |
|             | section 5.5.2) the following values shall be reported:                      |      |
|             | EVENT ID: (TBD)                                                             |      |
|             | SID: (TBD)                                                                  |      |
|             | Parameters:                                                                 |      |
|             | 1 <sup>st</sup>                                                             |      |
|             | Memory checked (2 MS bits): 01 (PM)                                         |      |
|             | 02 (DM)                                                                     |      |
|             | 03 (EEPROM)                                                                 |      |
|             | Number of failures (8 LS bits): number of memory pages with failure         |      |
|             | detected.                                                                   |      |
|             | $2^{nd}$ and up to 21 parameters                                            |      |
|             | Pages Ids: identifier of the corrupted memory page (8 bits per              |      |
|             | identifier). Up to a maximum of 40 Ids can be sent within one Event         |      |
|             | report. In case of a number of failures greater than 40, more than one      |      |
|             | reports shall be issued, containing all the same info apart from the packet |      |
|             | length and the Segment Ids.                                                 |      |
| PROM-ON04.7 | In the Packet Data Field – Packet Error Control Field (structured           | IFSI |
|             | according to AD5 section 4.1.2.3) the checksum value of the packet          |      |
|             | shall be included. The value shall be provided in accordance to a           |      |
|             | standard error detection encoding/decoding procedure described in           |      |
|             | AD5, Appendix 4)                                                            |      |



| PROM-ON05   | In case of one or more failure detection, the Power On procedure shall     | IFSI |
|-------------|----------------------------------------------------------------------------|------|
|             | be able to load via TC a new software image from ground. The TC            |      |
|             | service to be used for these purposes is the Service Type 6 (Memory        |      |
|             | Management), subtype 2 (load memory using absolute addresses).             |      |
| PROM-ON06   | The Power on procedure shall be able to acquire and execute the            | IFSI |
|             | Memory Load telecommands structured according to the specifications        |      |
|             | in AD5 sections 3.1 and 5.6.1. In particular:                              |      |
| PROM-ON06.1 | The TC Packet Header-Packet ID fields shall contain the following          | IFSI |
|             | values (AD5 section 3.1.1):                                                |      |
|             | Version Number: '000' (bin)                                                |      |
|             | Type: 1                                                                    |      |
|             | Data Field Header Flag: 1                                                  |      |
|             | APID :                                                                     |      |
|             | - HIFI: 1024 (400h) TBC                                                    |      |
|             | - PACS: 1152 (480h) TBC                                                    |      |
|             | - SPIRE: 1280 (500h)TBC                                                    |      |
| PROM-ON06.2 | The TC Packet Header - Packet Sequence Control fields (structured          | IFSI |
|             | according to AD5 section 3.1.1.2) shall contain the following values:      |      |
|             | Sequence Flags (2bits): '11'(bin)                                          |      |
|             | Sequence Count (14 bits) divided in :                                      |      |
|             | - source part (3 most significant bits) = 000                              |      |
|             | - sequence part (remaining 11bits) = it is a counter of all the            |      |
|             | TC packets released with the same APID. (no check on the                   |      |
|             | counter consistency shall be performed for the acceptance                  |      |
|             | of the TC)                                                                 |      |
| PROM-ON06.3 | The TC Packet Header - Packet Length field (structured according to        | IFSI |
|             | AD5 section 3.1.1.3) shall contain the number N of bytes contained in      |      |
|             | the Packet Data Field.                                                     |      |
|             | N = (number of bytes in packet data field) - 1.                            |      |
| PROM-ON06.4 | In the TC Packet Data Field – Data Field header (structured according      | IFSI |
|             | to AD5 section 3.1.2.1) all the fields shall contain the following values: |      |
|             | CCSDS Secondary header Flag (1bit): 0                                      |      |
|             | TM PUS version number: 0                                                   |      |
|             | Ack: 0 (TBC – see requirement PROM-ON08                                    |      |
|             | Packet Type: 6                                                             |      |
|             | Packet Subtype: 2                                                          |      |
|             | Spare: 0                                                                   |      |
| PROM-ON06.5 | The TC Packet Data Field – Application Data field (structured              | IFSI |



|             | according to AD5 section 5.6.1.2) will contain the following values:    |      |
|-------------|-------------------------------------------------------------------------|------|
|             | Memory ID (16 bits), destination memory block (DM). Memory ID =         |      |
|             | 255 indicates that the memory loading is concluded. No data field is    |      |
|             | foreseen in this case (TBC).                                            |      |
|             | Start Address (16 bits): relative start address in the destination      |      |
|             | memory block (DM). The actual start address is made up of 24 bits,      |      |
|             | where the MS 8 bits are sent as the LS 8 bits of the Memory ID. The     |      |
|             | address is in SAU (4 bytes for DRAM, 6 bytes for PRAM).                 |      |
|             | Length (16 bits): number of SAU to be loaded, MS 8 bits spare.          |      |
|             | Data: memory image to be loaded (one word after the other, where        |      |
|             | the word length in bytes depends on the destination memory block)       |      |
|             | Checksum: CRC checksum generated over the data block.                   |      |
|             | The Power ON procedure will analyse the checksum according to a         |      |
|             | standard error detection encoding/decoding procedure described in       |      |
|             | AD5, Appendix 4. In case of wrong checksum, the Power On                |      |
|             | procedure shall generate an Error/Alarm event Report and stop running   |      |
|             | the Emergency Program loader routine.                                   |      |
| PROM-ON06.6 | The Packet Data Field – Packet Error Control Field (structured          | IFSI |
|             | according to AD5 section 4.1.2.3) shall contain the checksum value of   |      |
|             | the whole TC packet. The Power ON procedure will analyse the            |      |
|             | checksum according to a standard error detection encoding/decoding      |      |
|             | procedure described in AD5, Appendix 4. In case of wrong checksum,      |      |
|             | the Power On procedure shall generate an Error/Alarm event Report,      |      |
|             | shall stop running the Emergency Program loader routine and start       |      |
|             | waiting for a new telecommand.                                          |      |
| PROM-ON07   | The Error/Alarm report shall be structured according to the requirement | IFSI |
|             | PROM-ON04 and all its sub-requirements. The only difference is in the   |      |
|             | Packet Data Field - Source Data in which the following values shall be  |      |
|             | reported:                                                               |      |
|             | Event ID: 16 bits TBD                                                   |      |
|             | SID (16 bits): TBD                                                      |      |
|             | Memory ID (16bits): the same as the one of the Memory load TC           |      |
|             | where the error was detected. See PROM-ON06.5                           |      |
|             | Start address (16bits): the same as the one of the Memory load TC       |      |
|             | where the error was detected. See PROM-ON06.5                           |      |
|             | Checksum ID (2 bits): type of checksum field where the error was        |      |
|             | detected (1 = data block checksum; 2 = packet checksum)                 |      |
|             | Checksum value read (16 bits): value of the checksum read in the TC     |      |



|             | Checksum value calculated (16 bits): value of the checksum                    |      |
|-------------|-------------------------------------------------------------------------------|------|
|             | calculated on board (TBC).                                                    |      |
| PROM-ON08   | The Power ON procedure will accept and execute the TC without any             | IFSI |
|             | TC acceptance protocol. This "emergency" procedure is the only case           |      |
|             | in which the TC acknowledge acceptance of the packet shall not be             |      |
|             | generated. (TBC).                                                             |      |
| PROM-ON09   | The Power on procedure shall be able to acquire and execute TC                | IFSI |
|             | messages of the type "Function Management - perform an activity of a          |      |
|             | function (8,4)" structured according to the specifications in AD5             |      |
|             | sections 5.8.1.4. This is used to command instrument actions. In              |      |
|             | particular:                                                                   |      |
| PROM-ON09.1 | The TC Packet Header-Packet ID fields shall contain the following             | IFSI |
|             | values (AD5 section 3.1.1):                                                   |      |
|             | Version Number: '000' (bin)                                                   |      |
|             | Type: 1                                                                       |      |
|             | Data Field Header Flag: 1                                                     |      |
|             | APID :                                                                        |      |
|             | - HIFI: 1024 (400h) TBC                                                       |      |
|             | - PACS: 1152 (480h) TBC                                                       |      |
|             | - SPIRE: 1280 (500h)TBC                                                       |      |
| PROM-ON09.2 | The TC Packet Header - Packet Sequence Control fields (structured             | IFSI |
|             | according to AD5 section 3.1.1.2) shall contain the following values:         |      |
|             | Sequence Flags (2bits): '11'(bin)                                             |      |
|             | Sequence Count (14 bits) divided in :                                         |      |
|             | - source part (3 most significant bits) = 000                                 |      |
|             | - sequence part (remaining 11bits) = it is a counter of all the               |      |
|             | TC packets released with the same APID. (no check on the                      |      |
|             | counter consistency shall be performed for the acceptance                     |      |
|             | of the TC)                                                                    |      |
| PROM-ON09.3 | The TC Packet Header - Packet Length field (structured according to           | IFSI |
|             | AD5 section 3.1.1.3) shall contain the number N of bytes contained in         |      |
|             | the Packet Data Field.                                                        |      |
|             | N = (number of bytes in packet data field) - 1.                               | TECT |
| PROM-ON09.4 | In the TC Packet Data Field – Data Field header (structured according         | IFSI |
|             | to AD5 section $3.1.2.1$ ) all the fields shall contain the following values: |      |
|             | CCSDS Secondary header Flag (1bit): 0                                         |      |
|             | TM PUS version number: 0                                                      |      |
|             | LAck: 0 (TBC – see requirement PROM-ON08                                      |      |



|             | Packet Type: 8                                                                                                                          |      |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|------|
|             | Packet Subtype: 4                                                                                                                       |      |
|             | Spare: 0                                                                                                                                |      |
| PROM-ON09.5 | The TC Packet Data Field – Application Data field (structured                                                                           | IFSI |
|             | according to AD5 section 5.8.1.4) will contain the following values:<br>$E_{\rm eff}(t) = E_{\rm eff}(t)$                               |      |
|             | Function $ID$ (8 bits) = $IBD$ it identifies the command for the                                                                        |      |
|             | to PM.                                                                                                                                  |      |
|             | Activity ID (8 bits): TBD                                                                                                               |      |
| PROM-ON09.6 | The Packet Data Field – Packet Error Control Field (structured                                                                          | IFSI |
|             | according to AD5 section 4123) shall contain the checksum value of                                                                      |      |
|             | the whole TC packet The Power ON procedure will analyse the                                                                             |      |
|             | checksum according to a standard error detection encoding/decoding                                                                      |      |
|             | procedure described in AD5 Appendix 4 In case of wrong checksum                                                                         |      |
|             | the Power On procedure shall generate an $\text{Error}/\Delta$ arm event Report                                                         |      |
|             | and start waiting for a new telecommand                                                                                                 |      |
| PROM-ON10   | The <b>DPOM</b> Software shall communicate with the CDMS through a                                                                      | IFSI |
|             | MI STD 1553B link according to the protocols defined in appendix 9                                                                      |      |
|             | of the PS_ICD document [AD5]                                                                                                            |      |
|             | In particular, the PROM SW shall be able to send TM messages of the                                                                     |      |
|             | type "Event Reporting Error/Alarm report (5.4)" as specified in                                                                         |      |
|             | Section 5.5.2 of AD5 and to receive TC messages of the type Momerty                                                                     |      |
|             | Management I and Mamory using Absolute Address (6.2) as                                                                                 |      |
|             | Management – Load Memory using Absolute Address $(0,2)$ as                                                                              |      |
|             | specified in section 5.0.1.2 of AD5. The SW shall also be able to                                                                       |      |
|             | receive TC messages of the type Function Management – perform an $activity of a function (8.4)? as specified in section 5.8.1.4 of AD5$ |      |
| DDOM ON11   | activity of a function (8,4) as specified in section 5.8.1.4 of AD5.                                                                    | IECI |
| PROM-ONTI   | The Power ON procedure will perform all the PM and DM memory                                                                            | 151  |
|             | check procedures in a non destructive way. See section 2.1.1 for an                                                                     |      |
|             | indication of the sequence of operations to be performed for the test of                                                                |      |
|             | each memory cell.                                                                                                                       | TEGI |
| PROM-ON12   | The Power On procedure shall manage the EEPROM memory in                                                                                | IFSI |
|             | pages.                                                                                                                                  | -    |
| PROM-ON13   | The Power On procedure shall be able to copy the new loaded                                                                             | IFSI |
|             | software image from DM to PM, i.e. it shall be able to deal with a                                                                      |      |
|             | segmented software image, where each segment has is own header                                                                          |      |
|             | containing the PM destination address.                                                                                                  |      |
| PROM-ON13.1 | The Power On procedure shall be able to check if the copying                                                                            | IFSI |
|             | procedure (either from RAM to PM or from EEPROM to PM) was                                                                              |      |



|           | successful, i.e. it shall be able to perform a CRC checksum (according   |      |
|-----------|--------------------------------------------------------------------------|------|
|           | to the algorithm described in AD5, Appendix A.4) on each software        |      |
|           | image segment and to compare it with the value reported in the header    |      |
|           | of the segment.                                                          |      |
|           | Should the copying procedure fail an Event report (5,4) shall be issued. |      |
|           | See PROM-ON04 with a different Event ID and SID TBD.                     |      |
| PROM-ON14 | The Power On procedure shall be able to jump to the starting address     | IFSI |
|           | of the Application SoftWare. This address will be included in one        |      |
|           | header of the ASW.                                                       |      |





The image is not segmented: the memory blocks have been loaded one after the other in the order they have been received

Figure 2-3 Loaded Memory mapping on the Program memory.