Qualification Random Vibration Specification 01 October 2001.

Draft spec, for comments only. Is to be implemented in next issue of Mechanical-ICD.

The hereafter listed tables specify the qualification input levels for the subsystems. Flight levels are a factor 2.25 lower in PSD, which is a factor of 1.5 lower in g-rms. There are jumps of ∞ dB/oct, if your shaker can't handle that, try 24 dB/oct. Even it out over frequency range. to both sides of jump.

Duration of qualification run 120 seconds. Sorry about that, but it is specified by ESA.

S-Mec

Axis (S/C)	ramp up	plateau	ramp down	g-rms
X	+6 dB/oct 20-100 Hz	$0.2\mathrm{g^2/Hz}\ 100 - 300\mathrm{Hz}$	-6 dB/oct 300-2000 Hz	~10.2
Y	+6 dB/oct 20-100 Hz	$0.4 \mathrm{g}^2/\mathrm{Hz}100$ - 200 Hz	-6 dB/oct 400-2000 Hz	~11.3
		$0.1 \mathrm{g}^2/\mathrm{Hz}\ 200 - 400 \mathrm{Hz}$		
Z	+6 dB/oct 20-100 Hz	$0.3 \mathrm{g}^2/\mathrm{Hz}100$ - 200 Hz	-6 dB/oct 200-2000 Hz	~9.9

Mirrors

Axis (S/C)	ramp up	plateau	ramp down	g-rms
X/Y/Z	+6 dB/oct 20-100 Hz	$0.35 \text{ g}^2/\text{Hz} 100 - 400 \text{ Hz}$	-6 dB/oct 300-2000 Hz	~16

BSM as for S-Mec except

Axis (S/C)	ramp up	plateau	ramp down	g-rms
Y	+6 dB/oct 20-100 Hz	$0.7 \text{ g}^2/\text{Hz} 100 - 200 \text{ Hz}$ $0.1 \text{ g}^2/\text{Hz} 200 - 400 \text{ Hz}$	-6 dB/oct 400-2000 Hz	~11.3