

HSO/PLANCK

SPIRE Instrument DetetotoArkayaySDPDR

July 30-31, 2001 JPL Bldg 233 Room 201A This Package Completes With ITTAR

This technical data is export controlled under U.S. law and is being transferred by JPL to PPARC pursuant to the NASA / PPARC Letter of Agreement which entered into force on December 2, 1999. This technical data is transferred to PPARC for use exclusively on the NASA/PPARC SPIRE on FIRST cooperative project, may not be used for any other purpose, and shall not be re-transferred or disclosed to any other party without the prior written approval of NASA

1.0 Introduction

Gerald Lilienthal

Charter

- Evaluate the readiness of the SPIRE Detector Subsystem to proceed into CQM fabrication, assembly and test
 - Previous concerns and deficiencies considered and resolved
 - Requirements flowdown from instrument
 - Requirements traceability and compliance matrix
 - Documentation of requirements and interfaces
 - Detailed design is adequate stable and well documented
 - Detailed design responds to requirements
 - Tradeoffs understood
 - Demonstration of technology
 - Configuration control
 - Implementation documentation is adequate (AIDS, Process Sheets, Travellers)
 - Manufacturing process design
 - GSE design and certification of test equipment
 - Integration and test plans
 - Reliability analysis and qualification plans
 - Delivery, handling and shipping plans
 - Product assurance plans are adequate
 - Risks understood and plans exist for managing them

Success Criteria

- Designs and processes meet requirements and are sufficiently defined and documented to proceed with development within the risk policy of the project
- Plans for resolving remaining problems are consistent with available resources and risk policy
- Test approach and test product status is thorough and acceptable with verifying compliance with the requirements
- Technology has been demonstrated by test and correlated to the analyses

Agenda July 30

Start	End	Dur.	Item	Presenter
8:00	8:10	10	1.0 Introduction and Objectives	Gerald Lilienthal
8:10	9:10	60	2.0 Overview	
			2.1 Scientific Goals	James Bock
			2.2 Instrument Design	James Bock
			2.3 Rec/Dels	James Bock
			2.4 Requirements	James Bock
			2.5 Interfaces	James Bock
9:10	9:20	10	2.6 SPIRE at NASA/Herschel Science Center	Ken Ganga
9:20	9:40	20	3.0 Management Overview	Gerald Lilienthal
9:40	10:00	20	4.0 Interfaces	Dustin Crumb
10:00	10:15	15	Break	
			5.0 BDA	
10:15	11:15	60	5.1 Mechanical Design & Analysis	Dustin Crumb
11:15	11:35	20	5.2 Feedhorn design and test	Jason Glenn
11:35	11:50	15	5.3 BDA thermal model and test results	Terry Cafferty
11:50	12:10	20	5.4 Detector Array Fabrication	Minhee Yun
12:10	1:10	60	Lunch	
1:10	1:30	20	5.5 Detector Development	Hien Nguyen
1:30	1:40	10	5.6 Load Resistor Fabrication	Anthony Turner
1:40	1:50	10	5.7 Kapton Cable Design and Status	Anthony Turner
1:50	2:10	20	5.8 BDA Manufacture and Assembly	Len Husted
			6.0 JFET Modules	
2:10	2:30	20	6.1 JFET Testing Status	James Bock
2:30	2:45	15	6.2 JFET Thermal Model	Terry Cafferty
2:45	3:00	15	6.3 JFET Membrane Fabrication	Anthony Turner
3:00	3:15	15	Break	
3:15	3:25	10	6.4 JFET and RF Module Mechanical Design	Dustin Crumb
3:25	3:40	15	6.5 JFET Module Assembly	Len Husted
3:40	4:05	25	7.0 Harness Definition and Test Procedures	Viktor Hristov
			Board Discussion	

Agenda July 31st

Start	End	Duration	Item	Presenter
8:00	8:20	20	8.0 Warm Electronics	Frederic Pinsard
8:20	8:50	30	9.0 Test program	Kalyani Sukhatme
			9.1 Overview	
			9.2 Verification Matrix	
			9.3 HRCR	
			9.4 Integration and Test Plan	
			9.5 EM Testing and Facilities	
8:50	9:05	15	10.0 Test facilities	Hien Nguyen
9:05	9:45	30	11.0 Mission Assurance	Gordon Barbay
9:45	10:00	15	12.0 Implementation Plan	Jerry
10:00	10:15	15	Break	
10:15	10:30	15	13.0 RFA Summary	James Bock
10:30	10:50	20	14.0 Summary/Objectives	Gerald Liliethal
10:50	11:50	60	Board Report	George Rieke

2.0 Instrument Overview Jamie Bock

HSO/Planck SPIRE Detector Arrays

Overview of SPIRE Bolometer Arrays

James J. Bock Jet Propulsion Laboratory

• SCIENTIFIC GOALS

- INSTRUMENT DESIGN
 - REC/DELS
- **REQUIREMENTS**
- INTERFACES

The SPIRE Consortium

- Caltech/Jet Propulsion Laboratory, Pasadena, USA
- Cardiff University, Cardiff, Wales, UK
- CEA Service d'Astrophysique, Saclay, France
- Institut d'Astrophysique Spatiale, Orsay, France
- Imperial College, London, UK
- Instituto de Astrofisica de Canarias, Tenerife, Spain
- Istituto di Fisica dello Spazio Interplanetario, Rome, Italy
- Laboratoire d'Astronomie Spatiale, Marseille, France
- Mullard Space Science Laboratory, Surrey, UK
- NASA Goddard Space Flight Center, Maryland, USA
- Observatoire de Paris, Meudon, Paris
- UK Astronomy Technology Centre, Edinburgh, UK
- Rutherford Appleton Laboratory, Oxfordshire, UK
- Stockholm Observatory, Sweden
- Università di Padova, Italy
- University of Saskatchewan, Canada

Gordon Barbay Peter Barrett James Bock Karsten Browning **Terry Cafferty Dustin Crumb Charles Davis** Steven Elliott **Ed Erginsoy Jason Glenn** Viktor Hristov Len Husted **Eric Jones** Michael Knopp **Andrew Lange Timothy Larson** Karan L'Heureux **Gerald Lillienthal Donna Markley Hien Nguyen** Harvey Moseley Judi Podosek **Brooks Rownd** Kalyani Sukhatme **Anthony Turner** Minhee Yun

Chas Beichman Andrew Blain Sarah Church Ken Ganga Phil Maloney

Reliability	JPL
Reliablity	JPL
SPIRE co-I	JPL
Structural Analyst	Swales
Thermal Engineer	TC Tech.
Mechanical Engineer	Swales
Configuration Control	JPL
Cryogenic Technician	JPL
Parts Program	JPL
Feedhorn Design, SPIRE AS	U. Colorado
Electrical Engineer	Caltech
Electronic and Mechanical Assembly	JPL
Micro-fabrication Engineer	JPL
Materials & Processes Engineer	JPL
Senior Scientist	Caltech
Mission Assurance	JPL
Safety	JPL
Project Element Manager	JPL
Quality Assurance	JPL
Bolometer Testing, SPIRE AS	JPL
U.S. PI, SPIRE co-I	GSFC
Micro-fabrication Engineer	JPL
Feedhorn Testing	U. Colorado
Test Engineer	JPL
Micro-fabrication Consultant	Siwave
Micro-fabrication Engineer	JPL

SCIENCE ASSOCIATES

Stellar Disks FIR Galaxy Surveys Cluster Surveys Data Processing Interstellar Medium JPL Caltech Stanford IPAC U. Colorado

• 3-band imaging photometer

- 250, 350, 500 μm (simultaneous)
- $\lambda/\Delta\lambda \sim 3$
- 4 x 8 arcminute field of view
- Diffraction limited beams (17, 24, 35")

• Imaging FTS

- 200 400 μm (goal 200 670 μm)
- > 2 arcminute field of view
- $\Delta \sigma$ = 0.4 cm⁻¹ (goal 0.04 cm⁻¹) ($\lambda / \Delta \lambda \sim$ 20 - 100 (1000) at 250 µm)

Design features

- Sensitivity limited by thermal emission from the telescope (80 K; $\varepsilon = 4\%$)
- Feedhorn-coupled 'spider web' bolometers at 0.3 K
- Minimal use of mechanisms
- Simple observing modes

- Cold stage temp. < 280 mK
- Hold time > 46 hrs
- Cycle time < 2 hrs
- Average load on ⁴He tank < 3 mW
- Heat lift > 10 μ W \bullet
- Gas-gap heat switches (no moving parts)

Kevlar suspension

Gas-gap heat switch

Spider-web architecture provides

- low absorber heat capacity
- minimal suspended mass
- low-cosmic ray cross-section
- low thermal conductivity = high sensitivity

Sensitivities and heat capacities achieved:

NEP = $1.5 \times 10^{-17} \text{ W/}\sqrt{\text{Hz}}$ C = 1 pJ/K at 300 mK

NEP = 1.5 x 10⁻¹⁸ W/ $\sqrt{12}$ Hz C = 0.2 pJ/K at 100mK

Quantity	Measured Value	Target	Units
Dark < NEP _{bol} >	2.7 x 10 ⁻¹⁷	2.5 x 10 ⁻¹⁷	[W/\/Hz]
Dark <s<sub>e></s<sub>	$5.88 \ge 10^8 (\pm 6 \%)$		[V/W]
Yield	0.9	0.9	
<g<sub>0></g<sub>	54.8 ± 7.6	60	[pW/K]
<c<sub>0></c<sub>	0.96 ± 0.24	1.0	[pJ/K]
τ	11.7 ± 0.8	8 / 30	[ms]
η_{bol}	0.46 - 0.64	0.8	
1/f knee	~30	100	[mHz]
NEP _{bol} /NEP _{blip}	1.10 (+0.05, -0.15)	1.15	
DQE	0.38 - 0.53	0.60	

FWHM beams on the

sky don't overlap

 \cap

Full sampling of the image requires scanning or "jiggling" of the telescope pointing

Beam FWHM = λ /D

Beam separation = $2\lambda/D$

16 pointings needed for fully-sampled image

HSO/Planck SPIRE Detector Arrays

 $2f\lambda$ horn aperture

Feedhorns adjacent

in the focal plane

FWHM

Photometer Observing Modes

- Point source photometry:
 - Beam steering mirror chops 125" between overlapping sets of detectors
 - Seven-point jiggle can be done if desired
- Field mapping:
 - Beam steering mirror chops up to 4' and performs 64-point "jiggle"
 - Available fov = 4' x 4'
- Scan mapping:
 - Beam steering mirror not operated
 - Telescope drift scanning at up to 60"/second
 - Scan angle wrt array axis set to give full spatial sampling

Point Source Photometry

- Telescope pointing fixed
- Chopping in Y-direction between A and B (126")
- Simultaneous observation in the three bands with two sets of co-aligned detectors
- Chop without jiggling is OK if the pointing is accurate enough (~ 1.5")

- Chopping 126"
- 7-point jiggle pattern
- Angular step θ ~ 4 6 arcseconds
 (> pointing or positional error)
- Total flux and position can be fitted
- Compared to single accurately pointed observation, S/N for same total integration time is only degraded by

~ 20%	at	250 μm
~ 13%	at	350 μm
~ 6%	at	500 μ m

- Telescope pointing fixed or in raster mode
- Chopping up to 4 arcmin amplitude in Y direction
- 64-point "jiggle" pattern for full spatial sampling

- Telescope in line scanning mode
- Scan rate < 60"/sec.
- Map of large area is built up from overlapping parallel scans
- Most efficient mode for large-area surveys

High 1/f stability with NTD Germanium

- Mirror scan rate = 1 mm s⁻¹
- Signal frequency range 6 20 Hz
- Maximum scan length = 3.5 cm (14 cm OPD)
- $\Delta \sigma$ = 0.04 2 cm⁻¹ by adjusting scan length
- Calibrator in second port nulls telescope background

 $\begin{array}{c} \textbf{200-300} \ \mu \textbf{m} \\ \textbf{37 detectors} \end{array}$

300-670 μm 19 detectors

- Point source spectroscopy/spectrophotometry
 - Telescope pointing fixed
 - Background characterized by adjacent pixels
- Imaging spectroscopy
 - Beam steering mirror adjusts pointing between scans to acquire fully-sampled spectral image

Photometry (all bands)					
Flux density (mJy, 5-σ; 1 hr)					
Point source	4.0 (req.)	2.0 (goal)			
Map (4'x 4')	16 (req.)	8.0 (goal)			
FTS: Spectroscopy 200	0 - 400 μm Δσ	= 0.04 cm ⁻¹			
Line flux (W m ⁻² x 10 ⁻¹⁷ , s	<mark>5-</mark> σ; 1 hr)				
Point source	Point source 6.0 (req.) 3.0 (goal)				
Map	18 (req.)	9.0 (goal)			
FTS: Spectrophotometry 200 - 400 μ m $\Delta\sigma$ = 1 cm ⁻¹					
Flux density (mJy, 5-σ; 1 hr)					
Point source	200 (req.)	100 (goal)			
Map	600 (req.)	300 (goal)			
FTS sensitivity declines by factor of ~ 2 between 400 and 670 μm					

SPIRE Large-Area Survey Sensitivity

λ	FWHM	5 σ; 1hr	Confusion limit	Time to	Time to map 1
		limit (scan-	(1 source per 40	reach	sq. deg. to
		map mode)	beams)	confusion	confusion limit
				limit for one	
				field at 5- σ	
(µ m)	(arcsec.)	(mJy)	(mJy)	(min.)	(days)
250	18	7.3	19	9	1.3
350	25	7.4	20	8	1.2
500	36	7.4	15	14	2.1

Confusion limits are from the models of M. Rowan-Robinson (Ap. J., in press)

Assumptions

- Scan-map mode
- 90% observing efficiency
- 21 hrs observing/day
- 25% field overlap
- 75% detector yield

Solar system: giant planets, comets and solid bodies

Statistics and physics of galaxy formation in the early universe

Protostars and YSOs:

Spectral Coverage and Capabilities

- Unbiased surveys of nearby molecular clouds
- Complete census of protostellar condensations within ~ 1 kpc
- Temperature and density distributions
- Total luminosities
- Dust properties
- Star formation rate and efficiency
- Initial mass function

FIR Galaxy Surveys with SPIRE

- Unbiased survey of population of high-z dusty star-forming galaxies missed by current (and future) optical and near-IR surveys
- Large-scale structure in the highredshift universe
- Star-formation history in galaxies at z out to 5

After Guiderdoni *et al.* MNRAS 295, 877, 1998

Possible SPIRE Survey and Outcome

- 100 sq. deg.
- Confusion-limited
- 100 200 days

1,300 sources/sq. deg.660 sources/sq. deg.320 sources/sq. deg.

Assumptions

- Scan-map mode
- 90% observing efficiency
- 21 hrs observing/day
- 25% field overlap
- 75% detector yield

Structural Thermal Model:

verify the temperature distribution and instrument structure

Item	Del. By	Rec. By
P/LW EM BDA ¹	JPL	RAL
P/MW STM BDA ²	JPL	RAL
P/SW STM BDA ²	JPL	RAL
S/LW STM BDA ²	JPL	RAL
S/SW STM BDA ²	JPL	RAL
15 JFET STM modules	JPL	RAL
5 (TBC) RF modules for FPU	JPL	RAL
3 (TBC) RF modules for JFETs	JPL	RAL
3 (TBC) RF modules for JFETs	JPL	RAL
15 BDA-JFET Harnesses	JPL	RAL
Back Harnesses for JFET rack	JPL	RAL

¹Kevlar suspended ²Structural, thermal, & electrical equivalents

Cryogenic Qualification Model:

- Integration: Optical Alignment Mechanical & Electrical I/F Commanding and data transfer FPU and JFET bake out
- **Functional:** Thermal characterization and dissipation
- Performance: Interaction of subsystems Electronics, cabling, 3He cooler, FTS, BSM Optical focus & straylight Microphonics Scientific Performance (sensitivity, spectral response etc.)
- **Environmental:** Operation of FPU over thermal range EMC susceptibility
- Operational: Observing modes Operational modes

CQM Receivables and Deliverables

Cryogenic Qualification Model:

model of the instrument intended for qualification of cryogenic performance

Item	Del. By	Rec. By
P/LW CQM BDA ⁶	JPL	RAL
P/MW CQM BDA ⁷	JPL	RAL
P/SW CQM BDA ⁷	JPL	RAL
S/LW CQM BDA ⁶	JPL	RAL
S/SW CQM BDA ⁷	JPL	RAL
S/SW CQM BDA ⁸	JPL	RAL
3 JFET CQM modules ⁹	JPL	RAL
P/LW far-infrared filter	CARDIFF	JPL
S/LW far-infrared filter	CARDIFF	JPL
S/SW far-infrared filter	CARDIFF	JPL

⁶Fully functional, re-used for FS. Reduced performance acceptable for CQM, not FS.
⁷Kevlar suspended unit without detectors. Returned to JPL for FS delivery.
⁸Fully functional but delivered without testing. Returned to JPL for PFM delivery.
⁹Fully functional, re-used for FS. Reduced performance acceptable for CQM, not FS.

Proto Flight Model:

model of the instrument intended for launch and astronomical observations at L2

Item	Del. By	Rec. By
P/LW PFM BDA	JPL	RAL
P/MW PFM BDA	JPL	RAL
P/SW PFM BDA	JPL	RAL
S/LW PFM BDA	JPL	RAL
S/SW PFM BDA	JPL	RAL
8 JFET PFM modules	JPL	RAL
5 (TBC) RF modules for FPU	JPL	RAL
3 (TBC) RF modules for JFETs	JPL	RAL
15 BDA-JFET Harnesses	JPL	RAL
Back Harnesses for JFET rack	JPL	RAL
Temperature Control ¹¹	JPL	RAL
P/LW BDA far-infrared filter	CARDIFF	JPL
P/MW BDA far-infrared filter	CARDIFF	JPL
P/SW BDA far-infrared filter	CARDIFF	JPL
S/LW BDA far-infrared filter	CARDIFF	JPL
S/SW BDA far-infrared filter	CARDIFF	JPL

¹¹Control and monitor thermometers, heaters, fixtures, cable provided pending evaluation of CQM performance

FSM Receivables and Deliverables

Flight Spare Model:

duplicate model of the instrument in event of major failure of PFM instrument

Item	Del. By	Rec. By
P/MW FSM BDA	JPL	RAL
P/SW FSM BDA	JPL	RAL
S/SW FSM BDA	JPL	RAL
Temperature Control ¹¹	JPL	RAL
P/MW BDA far-infrared filter	CARDIFF	JPL
P/SW BDA far-infrared filter	CARDIFF	JPL
S/SW BDA far-infrared filter	CARDIFF	JPL

¹¹Control and monitor thermometers, heaters, fixtures, cable provided pending evaluation of CQM performance

The BDA-Sub-System Specification Document (BDA-SSSD) defines:

- Performance criteria are designed to maximize mapping speed
 - "Design values" based on ideal operation
 - "Minimum performance" based on the best current data with margin
 - No requirements on performance levels
- The instrument maintains a margin on resource design values. Resource discrepancies are to be resolved at instrument level
- Requirements on other subsystems to meet performance levels
 - operating temperature and stability
 - warm electronics performance
 - mechanical interface requirements
 - RF environment
 - EMI/EMC
- Environmental verification matrix

Detector Performance Criteria

Subsystem Performance Requirements

Specific requirements are placed on subsystems impacting detector performance

3He fridge	290 mK delivered to BDA interface 10 μK/√Hz temperature stability < 0.1 mK/hr temperature drift
Optics	Performance defined under specified loading
DRCU	7 nV/√Hz total readout noise EMC requirement TBD
Structure	 1.7 K delivered at BDA interface Interface plate provides ± 1 mm compensation > 1 kHz resonant frequency for cables Electrically isolated 4 K RF enclosure, 40 dB attenuation EMI requirement TBD

Requirement ID	Description	Reference	Subsystem
			Compliance
BDA-DRCU-01	The DRCU signal processing electronics shall have less than 7	JPL	TBD
	after digitzation. Noise is referred to		
	the input over the frequency range		
	must be accomplished with a bias		
	input signal to the DRCU of 10 mVrms AC 5 mV DC 1 V DC		
	common-mode offset, with an input load of 7 kOhms.		
BDA-DRCU-02	The input noise impedance shall be greater than 7 k Ω , post-	JPL	Requirement deleted
	demodulation, referred to the input		
	Hz.		
BDA-DRCU-03	Input capacitance to be less than 100	JPL	TBD
	DxMA connector pins without the		
	harness.		
BDA-DRCU-04	Input impedance to be larger than 1 M Ω from 50 – 300 Hz.	JPL	TBD
BDA-DRCU-05	The DRCU is to provide 5 BDA bias	JPL	TBD
	mV_{rms} , and 1 bias signal for		
	temperature readout, adjustable from		
	readout biases are to be divided from		
	a common oscillator. Each bias shall		
	The frequency of each bias shall be		
	adjustable between 50 and 300 Hz,		
	with a precision of 5 HZ.		

BDA-DRCU-06	The DRCU will provide 15 commandable JFET source voltages with 256 levels. The range of Vss is from 0 V to -5 V.	JPL	TBD
BDA-DRCU-07	Vdd is to be adjustable from 1.5 to 4 V.	JPL	TBD
BDA-DRCU-08	Vdd and Vss lines individually must source 1 mA to 5 mA. Noise on Vss $< 1 \mu V/\sqrt{Hz}$, and noise on Vdd $< 0.3 \mu V/\sqrt{Hz}$ within modulated band (50 - 300 Hz), measured at the DRCU DxMA connector.	JPL	TBD
BDA-DRCU-09	Each of the 15 Vdd and Vss supplies must be commandable ON/OFF for spectrometer and photometer independently, without overshoot. Each Vdd and Vss pair are turned on and off together.	JPL	TBD
BDA-DRCU-10	The DRCU will provide 2 double- wired JFET heater lines with adjustable amplitude and duration. The supplies must be able to provide 5 V and 25 mA (photometer), 3 V and 10 mA (spectrometer). Each heater line is commandable ON/OFF, with a minimum duration of 10 s.	JPL	TBD
BDA-DRCU-11	The common-mode rejection is -60 dB (50 - 300 Hz).	JPL	TBD
BDA-DRCU-12	The DRCU shall provide a dynamic range at the ADC sufficient to maintain the noise performance of the detectors under maximal signal conditions. This is estimated to be 16 ADC telemetry bits (TBC).	JPL	TBD
BDA-DRCU-13	The signal bandwidth of the photometer channels shall be 0.03 Hz to 5 Hz. The 5 Hz cutoff should have a precision of 1 %.	JPL	TBD

Detailed DRCU Requirements (2)

BDA-DRCU-14	The signal bandwidth of the spectrometer channels shall be 0.03 Hz to 25 Hz. The 25 Hz cutoff should have a precision of 1 %.	JPL	TBD
BDA-DRCU-15	The sampling of the photometer channels shall be synchronised with the bias, at a rate selectable between $v_{\text{bias}}/2$ to $v_{\text{bias}}/256$.	JPL	TBD
BDA-DRCU-16	The sampling of the spectrometer channels shall be synchronised with the bias, at a rate selectable between $v_{\text{bias}}/2$ to $v_{\text{bias}}/256$.	JPL	TBD
BDA-DRCU-17	The DRCU shall provide 2 adjustable power supplies for temperature control using a heater located at the 300 mK stage. This supply must provide at least 300 mV and 50 uA.	JPL	TBD
BDA-DRCU-18	Noise performance BDA-DRCU-01 shall be maintained under bias range $50 - 300$ Hz.	JPL	TBD
BDA-DRCU-19	DRCU noise performance (BDA- DRCU-01) to be maintained under a warm electronics thermal drift of 1 K / hour (TBC).	JPL	TBD
BDA-DRCU-20	Thermal requirements on bias stability are implicit in BDA-DRCU- 01.	JPL	TBD
BDA-DRCU-21	Thermal requirement on JFET power is dV/V < 500 ppm / K for Vdd and Vss.	JPL	TBD

BDA-DRCU-22	The DRCU shall not saturate at an	JPL	TBD
	input voltage as large as 11 (TBC)		
	mV _{rms} at input (photometer), 17		
	(TBC) mV_{rms} at input (spectrometer).		
	DRCU channels shall remain		
	functional if one input signal goes to		
	Vbias.		
BDA-DRCU-23	Specification on isolation of power	JPL	TBD
	supplies, ripple, noise, EMC TBD.		
	Specifications to flow from keeping		
	the electrical interference and		
	dissipation at the bolometer below		
	fundamental noise as in Table 3-3-3.		
BDA-DRCU-24	Bias, JFET power, and readout	JPL	TBD
	electronics for the spectrometer and		
	photometer arrays are to run from		
	separate dedicated power supplies,		
	with independent, isolated grounds.		
BDA-DRCU-25	The electrical cross-talk between	JPL	TBD
	channels in the DRCU shall be less		
	than 0.05 % (TBC). The electrical		
	cross-talk shall be verified by		
	varying the input signal on one		
	channel and measuring the response		
	in other channels. The input signal		
	level to each channel must be		
	representative.		
BDA-DRCU-26	Each signal input to the LIA module	JPL	TBD
	must be connected to ground by a		
	diode. This provides both protection		
	and allows the JFETs to turn on		
	without the JFET heater.		

Resource Requirements

	Achieved	Design	Requirement	Margin
BDA mass		560 g	600 g	20 %
JFET mass		235 g	305 g	20 %
RF filter mass		130 g	TBD g	20 %
BDA conduction	< 2.5 μW	2 μW	2 μW	20 %
JFET dissipation	< 11 mW	5.5 mW	5.5 mW	50 %
RF dissipation		0	0	-
Harness Thermal	-	-	-	-
Conduction				
BDA repeatability	50(x,y)/150		125/625 μm	-
	(z) μm			

Interface	Hardware Aspect	Agreed Documentation
Mechanical	BDA interface requirements	BDA-SSSD
	BDA	ICD
	JFET modules	ICD
	RF module	ICD
Optical	BDA	ICD
Thermal	BDA conduction	BDA-SSSD
	JFET dissipation	BDA-SSSD
	thermal stability requirement	BDA-SSSD
Environmental	Vibration levels and temperature	Test Plan
	Bake-out temperature	Test Plan
	EMI/EMC	Test Plan
Harnesses	Cryoharness wiring	HDD
	Mechanical requirement	BDA-SSSD
	JFET-BDA harness routing	ICD
Electrical	Warm electronics requirement	BDA-SSSD

Warm Electronics Interface

- There is no <u>formal</u> interface to JPL hardware
 - warm electronics interface to the instrument
- CEA is responsible for performance and delivery

However, the interface requires our interaction in the following ways:

- JPL sets requirements for the warm electronics in the BDA-SSSD
- JPL and CEA jointly agree to the Harness Definition Document and Grounding Network
- JPL and CEA have a memorandum of understanding that
 - EM models are developed and tested jointly at JPL
 - JPL approves the design of the CQM, PFM, and FS models
 - JPL witnesses performance of the CQM, PFM, and FS models
 - Performance is verified with an interface test dewar from JPL

2.5 SPIRE Work at the NASA/Herschel Science Center Ken Ganga

NHSC Charter

- In its role as the NASA Herschel Science Center (NHSC), at IPAC will:
 - Provide the US community with science and observational support throughout all phases of the Herschel mission.
 - Serve as one of the advocates for the needs of the US-based observers.
 - Work to ensure the necessary resources and tools are available to take advantage of the scientific capabilities of the observatory.

Top Level NHSC Requirements

- Educate and engage the US astronomical community regarding the scientific opportunities of the Herschel mission
- Support the U.S. based Science Users with
 - Proposal Preparation
 - Observation Planning
 - Data Analysis
- Using: Expertise, Documentation, Software

Who will IPAC Serve?

- Observers
 - Open Time observers
 - U.S.-Based Guaranteed Time Observers
 - U.S.-Based Key Project Team members
 - International Observers (when possible)
- Any tools or insight we develop will be available to all Herschel users.

Time-Line

Near-Term Efforts

- Near-Term Work focussed on detector testing at JPL
 - Will write software to help with detector characterization at JPL
 - Best way to start understanding the instrument
 - A real help to the US SPIRE team (we hope!)
 - Geographically sensible

- Maintain contact with consortium ("Liaison")
 - Bock has nominated Ganga as SPIRE associate
 - Involved in QLA definition
 - Via visits
 - Via e-mail, etc.
 - ISO and Planck connections are of real use here

Midterm Phase

- No real IPAC involvement in "Avionics Model"
 - We'll be busy anyway with detector characterization software
 - Different emphasis in SPIRE as compared to other instruments
- "Extended" European interaction beginning with "Cryogenic Qualification Model" testing.
 - Detector testing software may help form basis of instrument tests at RAL
 - Involvement in instrument-level tests desirable

Mid-Term Involvement

- Extended Involvement in the ICC begins
 - Software Development for Observation Planning
 - Understand science tools that will be available
 - Help define observation strategies that work for US observers
 - Focal Plane visualization
 - Background estimation
 - Interfaces with IRSA, NED, etc.

- Data Analysis Software
 - The legacy of the detector testing
 - Instrument test help
 - Data extraction
 - Visualization
 - glitch detection
 - Filtering
 - map-making
 - noise estimation
 - source detection
 - etc.

Long-Term Efforts

User Support

- ISO support model used as a loose base
 - "Service Oriented"
 - It's improved by more intimate instrument involvement here and in Europe
 - Developing Remote Support
 Makes it easier on us as well
 - With modifications to fit in with the HCSS concept

- IRAS / ISO / SIRTF / 2MASS / IRAS / Planck / IRSA / NED tools used where possible
 - All this data is at IPAC, and can be used synergistically
 - BOOMERanG experience will help as well
- Monitor Programs to see what's getting scheduled and what's working
 - Keep users continuously informed
- Detector/Instrument testing work helps form the flight "Quicklook"

Current Status

- Getting involved
 - General understanding with US
 SPIRE team on near-term work
 - Near-term work is best for both IPAC and US SPIRE team
 - Near-term work will aid SPIRE team and US
 - General understanding with SPIRE team on IPAC role in near-term
 - We work with them, but no "deliveries"

- Very good relations with SPIRE team
 - In US
 - world-wide
- SPIRE is one of the leanest Herschel teams
 - Our involvement can make a real difference.
- Personal interest is high
- IPAC SPIRE Liaison is oversubscribed

3.0 Programmatic Overview Gerald Lilienthal

Work Breakdown Structure (WBS)

Agreed-To Documentation Tree

File: SPIRE 6-12-01 HSO/Planck Project SPIRE Detector System 1999 2000 2001 2002 2003 2004 ID Task Name Q1 Q2 Q3 Q4 Q1 Prototype Design and Testing Phase 1 Design 2 Fabrication and Assembly 3 Testing and Data Reduction 4 5 Downselect Review en lay? 6 **Detail Design & EM Development Phase** 7 EM Design PDR 8 9 EM Fabrication 10 EM Assembly EM Testing & Data Reduction 11 CDR 12 7 days 1 day **CQM** Phase 13 CQM/PFM/Spare Fabrication 14 15 CQM Assembly 16 CQM Environmental Testing & Data Reduction 17 CQM Performance Testing & Data Reduction 18 CQM HRCR & Shipment 87 days 42 days 19 CQM Required Date (Business Agreement) 3 days 20 CQM Integration Support **PFM and Spare Phase** 21 87 days 22 PFM and Spare Assembly 87 days PFM and Spare Environmental Testing and D.R. 23 87 days PFM and Spare Performance Testing & D.R. 87 days 24 PFM and Spare HRCR and Shipment 87 days 25 PFM Required Date (Business Agreement) 26 27 PFM Integration Support 5 days 28 29 30 31 Page 1 of 23

Note: Budget information will be presented in detail at the project CDR in September

4.0 Interfaces

Dustin Crumb

SPIRE Subsystems

Dustin Crumb

Array Design Integration into the Instrument

JFET Box Enclosure (RAL)

ICD's

- 10209721- BDA
- 10209722-JFET Module
- 10209723-RF Filter
- 10209725-Wiring Schematic
- 10209726-Temperature Control
- 10209727-Cold Cabling

- In Check
- In Check
- In Check
- In Check
- Conceptual stage
- Awaiting input

HSO/Planck SPIRE Detector Arrays

HSO/Planck SPIRE Detector Arrays

HSO/Planck SPIRE Detector Arrays

HSO/Planck SPIRE Detector Arrays

Critical Design Review • 30,31 July 2001

Critical Design Review • 30,31 July 2001

	12 11	10 9	8 7 🔶	6 5	4 3 2 1	
]
н	1 SIGNAL 13A	1 SIGNAL 13A	1 VOLTAGE +	1 Vss	1 VOLTAGE +	нΙ
	2 SIGNAL 14A	2 SIGNAL 14A	2 VOLTAGE -	2 V+	2 VOLTAGE -	
	3 SIGNAL 15A	3 SIGNAL 15A	3 SIGNAL 24A	3 H+	3 SIGNAL 24A	
	4 SIGNAL 16A	4 SIGNAL 16A	4 SIGNAL 24B	4 V-	4 SIGNAL 24B	_
	5 SIGNAL 17A	5 SIGNAL 17A	5 SIGNAL 21A	5 V-	5 SIGNAL 21A	
	6 SIGNAL 18A	6 SIGNAL 18A	6 SIGNAL 21B	6 H+	6 SIGNAL 21B	
	7 SIGNAL 19A	7 SIGNAL 19A	7 SIGNAL 18A	7 V+	7 SIGNAL 18A	
G	8 SIGNAL 20A	8 SIGNAL 20A	8 SIGNAL 18B	8 Vss	8 SIGNAL 18B	G
	9 SIGNAL 21A	9 SIGNAL 21A	9 SIGNAL 15A	9 BIAS GND	9 SIGNAL 15A	
	10 SIGNAL 22A	10 SIGNAL 22A	10 SIGNAL 15B	10 Vdd	10 SIGNAL 15B	
Ц	11 SIGNAL 23A	11 SIGNAL 23A	11 SIGNAL 12A	11 H-	11 SIGNAL 12A	
	12 SIGNAL 24A	12 SIGNAL 24A	12 SIGNAL 12B	12	12 SIGNAL 12B	
	13 FPU GND	13 FPU GND	13 SIGNAL 6A	13 H-	13 SIGNAL 6A	
	14 SIGNAL 13B	14 SIGNAL 13B	14 SIGNAL 6B	14 Vdd	14 SIGNAL 6B	
F	15 SIGNAL 14B	15 SIGNAL 14B	15 SIGNAL 3A	15 BIAS GND	15 SIGNAL 3A	F
	16 SIGNAL 15B	16 SIGNAL 15B	16 SIGNAL 3B	INT IFFT SERVICE 2	16 SIGNAL 3B	
	17 SIGNAL 16B	17 SIGNAL 16B	17 SIGNAL 2A		17 SIGNAL 2A	
	18 SIGNAL 17B	18 SIGNAL 17B	18 SIGNAL 28	1 Vss	18 SIGNAL 2B	\vdash
	19 SIGNAL 18B	19 SIGNAL 188	19 BIAS UND	2 V+		
	20 SIGNAL 198			3 H+	20 SIGNAL 23A	
	22 SIGNAL 21B			4 V-		
E	23 SIGNAL 228			5 V-		E
				6 H+		
	25 SIGNAL 24B		25 SIGNAL 164	7 V+		
			26 SIGNAL 14A	8 Vss		
	J02 JFET DUTPUT 1, SIGNALS 13-14	J04 JFET DUTPUT 2, SIGNALS 13-14	27 SIGNAL 13A	9 BIAS GND	27 SIGNAL 13A	
	PIN # PIN PURPOSE	PIN # PIN PURPOSE	28 SIGNAL 11A	10 Vdd	28 SIGNAL 11A	
	1 SIGNAL 1A	1 SIGNAL 1A	29 SIGNAL 10A	11 H-	29 SIGNAL 10A	
D	2 SIGNAL 2A	2 SIGNAL 2A	30 SIGNAL 9A	12	30 SIGNAL 9A	D
	3 SIGNAL 3A	3 SIGNAL 3A	31 SIGNAL 8A	13 H-	31 SIGNAL 8A	
	4 SIGNAL 4A	4 SIGNAL 4A	32 SIGNAL 7A	14 Vdd	32 SIGNAL 7A	
	5 SIGNAL 5A	5 SIGNAL 5A	33 SIGNAL 5A	15 BIAS GND	33 SIGNAL 5A	
	6 SIGNAL 6A	6 SIGNAL 6A	34 SIGNAL 4A		34 SIGNAL 4A	
	7 SIGNAL 7A	7 SIGNAL 7A	35 SIGNAL 1A		35 SIGNAL 1A	20
	8 SIGNAL 8A	8 SIGNAL 8A	36 SIGNAL 23B		36 SIGNAL 23B	6
C	9 SIGNAL 9A	9 SIGNAL 9A	37 SIGNAL 22B		37 SIGNAL 22B	N
	10 SIGNAL 10A		38 SIGNAL 20B		38 SIGNAL 20B	
			39 SIGNAL 19B		39 SIGNAL 19B	H
Н			40 SIGNAL 17B		40 SIGNAL 17B	A
	14 SIGNAL 18		41 SIGNAL 16B		41 SIGNAL 16B	
	15 SIGNAL 2B	15 SIGNAL 2B	42 SIGNAL 14B		42 SIGNAL 14B	
B			43 SIGNAL 13B		43 SIGNAL 13B	
	17 SIGNAL 4B		44 SIGNAL 11B		44 SIGNAL 11B	
	18 SIGNAL 5B	18 SIGNAL 58	45 SIGNAL 10B		45 SIGNAL 10B	
	19 SIGNAL 6B	19 SIGNAL 6B	46 SIGNAL 98		46 SIGNAL 9B	
Ц	20 SIGNAL 7B	20 SIGNAL 7B	4/ SIGNAL 8B		4/ SIGNAL 8B	Н
	21 SIGNAL 8B	21 SIGNAL 8B	48 SIGNAL /B		48 SIGNAL /B	
	22 SIGNAL 9B	22 SIGNAL 9B	49 SIGNAL 3B		49 STONAL 28	
	23 SIGNAL 10B	23 SIGNAL 10B				ATEL
A	24 SIGNAL 11B	24 SIGNAL 11B		l		
	25 SIGNAL 12B	25 SIGNAL 12B	1		Ă1 23835 10209722	j 🖁
					SCALE NOME UNCLASSIFIED SHEETE OF 2	¶t [
	12 11	10 9	8 • • • • • •		4 3 1 REV 2/0	2

Critical Design Review • 30,31 July 2001

_	12 11	10	9	8		7 .	• •	5	5	4	4	3	2		1	
н																Н
		J01 RF OUTPUT 1		J02 RF C	UTPUT 2		J05 RF	NPUT 1		JUS RF I	NPUT 2					
		PIN #	PIN PURPOSE	PIN #		PIN PURPOSE	PIN #		PIN PURPOSE	PIN #		PIN PURPOSE				
		1 OUTPUT 1		1	OUTPUT 38		1	INPUT 1		1	INPUT 38					
		2 001P01 2		2	OUTPUT 39		2	INPUT 2		2	INPUT 39					
				3						5	INPUT 40					
G		5 OUTPUT 5		5	OUTPUT 42		5	INPUT 5		5	INPUT 42					G
		6 OUTPUT 6		6	OUTPUT 43		6	INPUT 6		6	INPUT 43		-			
		7 OUTPUT 7		7	OUTPUT 44		7	INPUT 7		7	INPUT 44		_			
_		8 OUTPUT B		8	OUTPUT 45		8	INPUT 8		8	INPUT 45					
		9 OUTPUT 9		9	OUTPUT 46		9	INPUT 9		9	INPUT 46					
		10 OUTPUT 10		10	OUTPUT 47		10	INPUT 10		10	INPUT 47					
F		11 OUTPUT 11		11	OUTPUT 48		11	INPUT 11		11	INPUT 48					
'		12 OUTPUT 12		12			12	INPUT 12		12	INPUT 49		_			'
				1.5			13	INPUT 15		1.5	INPUT 51					
		15 OUTPUT 15		15	OUTPUT 52		15	INPUT 15		15	INPUT 52					\mid
		16 OUTPUT 16		16	OUTPUT 53		16	INPUT 16		16	INPUT 53		_			
		17 OUTPUT 17		17	OUTPUT 54		17	INPUT 17		17	INPUT 54					
		18 OUTPUT 18		18	OUTPUT 55		18	INPUT 18		18	INPUT 55					
E		19 OUTPUT 19		19	OUTPUT 56		19	INPUT 19		19	INPUT 56					E
		28 OUTPUT 28		21	OUTPUT 57		20	INPUT 28		21	INPUT 57					
		21 OUTPUT 21		21	OUTPUT 58		21	INPUT 21		21	INPUT 58					
		22 OUTPUT 22		22	OUTPUT 59		22	INPUT 22		22	INPUT 59					◀
		23 00TPUT 23		23	OUTPUT 60		23	INPUT 23		23	INPUT 61					
		25 OUTPUT 25		24	OUTPUT 62		24	INPUT 25		24	INPUT 62		-			
		26 OUTPUT 26		26	OUTPUT 63		26	INPUT 26		26	INPUT 63					
וט		27 OUTPUT 27		27	OUTPUT 64		27	INPUT 27		27	INPUT 64					וט
		28 OUTPUT 28		28	OUTPUT 65		28	INPUT 28		28	INPUT 65					
		29 OUTPUT 29		29	OUTPUT 66		29	INPUT 29		29	INPUT 66					
		31 OUTPUT 31		30	OUTPUT 67		30	INPUT 30		30	INPUT 67					m
		31 OUTPUT 31		31	OUTPUT 68		31	INPUT 31		31	INPUT 68					Ň
		32 OUTPUT 32		32	OUTPUT 69		32	INPUT 32		32	INPUT 69		_			6
c		33 UUTPUT 33		33			33	INPUT 33		33	INPUT 71					20
		35 OUTPUT 35		35	OUTPUT 72		35	INPUT 35		35	INPUT 72					121
		36 OUTPUT 36		36	OUTPUT 73		36	INPUT 36		36	INPUT 73					H
_		37 OUTPUT 37		37	OUTPUT 74		37	INPUT 37		37	INPUT 74		_			A
B																В
																ATED
A																ENER
													Å1 23835	10209	9723 🖁	4 9 4
				-								_	SCALE NONE UN	CLASSIFIED	SHEETZE OFE	Autor
	12 11	10	9	8					5	4	1	3			1 REV 2/1	00

Wiring Schematic

Bolometer Detector Assembly (BDA)

Requirements

Specification	Description	Requirement	Compliant
ID		Reference	
BDA-TEC-01	The BDA shall accommodate a defined	IRD-DETS-R08	Yes
	mechanical interface to the 2 K	IRD-DETP-R14	
	structure.	IRD-STRP-R01	
BDA-TEC-02	The BDA shall provide an attachment	IRD-STRP-R01	Yes
	point and/or a thermal interconnect to a		
	300 mK thermal strap.		
BDA-TEC-03	The BDA mass will have a design value	IRD-SUBS-03	Yes
	of 600 g (TBC) average over 5 detector		
	arrays, including output connectors.		
BDA-TEC-04	The first resonant frequency of the BDA	IRD-DETP-R15	Yes
	will be > 200 Hz (TBC), with a goal of	IRD-DETS-R16	
	> 250 Hz.		
BDA-TEC-05	The mechanical envelope of the BDA	IRD-DETP-R12	Yes
	will be described by the ICD.	IRD-DETS-R13	
BDA-TEC-06	The total power dissipated onto the 300	IRD-DETP-R13	Minimum Value
	mK cooler will be $< 15 \mu$ W (minimum		not compliant.
	performance); $< 8 \mu W$ (design value).		
	Assumes the focal plane mount is held		Design Value is
	at 1.7 K.		compliant.

Array Design Mechanical Structure Heritage: Kevlar Supports

³He Refrigerator for the Infrared Telescope in Space

- suspended mass =350 g
- lowest resonant frequency = 280 Hz
- single-strand/pully/kapston design
- tensioned maintained by thermal contraction
- $< 1\mu W$ kevlar heat leak to 300mK
- successfully flown on IRTS

Array Design Mechanical Structure

Focal Plane

2K Structure

.3K Structure

Detector Design/Detector Assembly

Long Wave Spectrometer

Short Wave Spectrometer

HSO/Planck SPIRE Detector Arrays

Array Design: Fabrication of Mechanical Prototype Prototype finished January 2000

1st Natural Frequency is 208.6 Hz Experimental <u>Vibration test level:</u> 5 - 30 Hz: 2.1 mm displacement amplitude 30 - 400 Hz: 7.5 G acceleration amplitude 400 - 2000 Hz: 15 G acceleration amplitude

SPIRE FPU under vibration test

Engineering Models

Three units Built

- Thermal Characterization Model
- Vibration Model
- Spare Unit

Vibration Model

- •Metrology
- •Warm Shake
- •Metrology
- •Thermal Cycled to LN₂
- •Metrology
- •Warm Shake with force Transducers
- •Metrology
- •Cold Shake
- •Metrology

Need table of metrology results after each test

Mass Summary (grams)

	Previous Mass	Current Mass	Change
P/LW Detector	639	672	4.8%
P/MW Detector	574	615	6.6%
P/SW Detector	520	564	7.8%
S/LW Detector	494	482	2.6%
S/SW Detector	445	466	4.6%
	Current Average	560	4.2%
	Allocated	600	
	Margin	6.7%	

Mass may still come down depending on how feedhorns are manufactured.

		Materials		
Material - Temper	Alum 7075 - T7351	Invar 36	Kevlar 29	Vespel
Reference	MIL-HDBK-5H Table 3.7.4.0(b3)	Carpenter Technology Corp.	MatWeb	Dupont, Vespel Design Hdbk
Form	Plate	Cold Drawn Bar	3000 Denier	SP1 - M
Basis	A			
Ftu, ksi				
L	68	90	400	12.5
LT	69		400	12.0
Fty, ksi	1213			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
L_	57	70		
	57			
Ecy, ksi			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	56			
	59			
FSU, KSI Elamu Iuni	38	& 54		
r σru, κει (ο(D = 1.5)	102	#00		
(e/D = 1.5)	100	# 90		
(e/D = 2.0) Ehry kei	132			
(o/D = 1.5)	81	#70		
(e/D = 2.0)	97			
E 10 ³ ksi	10.3	2.05	9N	0.45
G 10 ³ ksi	39			
u	0.33	0.3		0.41
e. lb/in ³	0.101	0.291	0.051	0.052
α*, in/in/°F	9.14E-06	1.25E-06	-1.11E-06	1.69E-05

* NASA Tech Brief, "Thermal Expansion Properties of Aerospace Materials", Brief 69-10055, March 1969

[&] Taken as 60% of Ftu

* Fbru and Fbry are taken as Ftu and Fty respectively. This is conservative since bearing values are typically 1.5 times higher.

- Analysis Requirements Used to Verify Structural Integrity
 - Qualification Random Vibration Levels (IID A)

Location	Axis	Freq Range	Density	RMS Value
Herschel Optical Bench	ALL	20 - 80 Hz 80 - 300 Hz 300 - 2000 Hz	+3 db/Oct .077 G ² /Hz -6 db/Hz	6.67 G

- Factors of Safety (ERD D-19155)
 - FS_{yld} = 1.25
 - FS_{ult} = 1.4
 - Unconventional Material FS_{ult} = 2.0 (e.g. Kevlar cable)
- Limit Loads (ERD D-19155)
 - 20 G Any Direction

- Load Cases (applied in three directions deemed most critical for stress)
 - Each load case consists of:
 - 82 G Quasi Static Equivalent Load
 - 1.5% damping (JPL Std.)
 - 3σ Value
 - Value above Limit Load requirement; wanted to assess capability
 - 50 lb. Kevlar cable preload
 - Thermal transition from 70°F to -460°F

- Constraints
 - Fixed at BDA-to-FPU Fastener Locations (4 Locations)
 - Appropriate DOFs constrained for guiding pins (2 pins)

Margin of Safety Summary for Structural Elements at Qualification Levels

Part	Load Case	Stress	F.S. (Yield)	F.S. (Ult.)	F _{yta}	Fult	Failure Mode	MS (Yield)	MS (Ult.)
Flexure Ring	82G(.707, 0., .707),P,T	27,871 psi	1.25	1.4	57,000 psi	68,000 psi	Von Mises	0.64	0.74
Top Ring	82G(.707, 0., .707),P,T	25,082 psi	1.25	1.4	70,000 psi	90,000 psi	Von Mises	1.23	1.56
Invar Rings	82G(707, 0., .707),P,T	21,878 psi	1.25	1.4	70,000 psi	90,000 psi	Von Mises	1.56	1.94
Light Can	82G(.707, 0., .707),P,T	3,990 psi	1.25	1.4	36,000 psi	42,000 psi	Von Mises	6.22	6.52
Spacers	82G(707, 0., .707),P,T	10,155 psi	1.25	1.4	70,000 psi	90,000 psi	Von Mises	4.51	5.33
Cover Plate (P/LW & S/LW)	82G(707, 0., .707),P,T	11,986 psi	1.25	1.4	70,000 psi	90,000 psi	Von Mises	3.67	4.36
Bottom Ring	82G (0., -1., 0.),P,T	38,396 psi	1.25	1.4	70,000 psi	90,000 psi	Von Mises	0.46	0.67
Kevlar Cable	82G(707, 0., .707),P,T	199,199 psi	N/A	2.0	N/A	400,000 psi	Tension	N/A	0.00

N/A = Not Applicable

Margin of Safety Summary for Fasteners at Qualification Levels

Location	Load Case	FSult	Failure Mode	M.S. (ult)
Circuit Board to Light Can	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	2.24
Light Can to Flexure Ring	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	1.83
Flexures to Invar Ring	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	1.55
Bottom Ring to Cover Plate	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	1.92
Spacer to Top Ring & Bottom Ring	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	1.41
Spacer to Top Ring (Horiz)	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	2.41
BDA to Detector	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	1.54
Spacer to Bottom Ring Pins	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	3.77
Flexure to Invar Ring Pins	82G RSS, P, T	1.4	Bolt Tension-Shear Interaction	3.68
Pulley Fastener (Bot Ring - 2.0 mm dia)	82G (0, -1., 0.), P, T	1.4	Bolt Tension-Shear Interaction	1.64

RSS = Root-Sum-Square

- Computer Model Validation Comparison to Test Data
 - Modal Frequencies
 - Tests were conducted with S/LW variant of detector

Mode #	Computer Model (S/LW)	Warm Test	Cold Test
	(Hz)	(Hz)	(Hz)
1	265	253	TBD
2	328	386	TBD
З	399	486	TBD

Table of damping values

Mode 1: 265 Hz

- Where Are We Now?
 - Input Spectrum at BDA interface as proposed by MSSL
 - Quasi Static Equivalent (3σ Value) = 278 G

Location	Axis	Freq Range	Density	RMS Value
Herschel Optical Bench	ALL	20 - 100 Hz 100 - 600 Hz 600 - 2000 Hz	+6 db/Oct .8 G ² /Hz -6 db/Hz	27.9 G

VS.

- Survivable Spectrum for Current Design (Machined Parts Only)
 - Quasi Static Equivalent (3σ Value) = 102 G

Location	Axis	Freq Range	Density	RMS Value
Herschel Optical Bench	ALL	20 - 100 Hz 100 - 600 Hz 600 - 2000 Hz	+6 db/Oct .17 G ² /Hz -6 db/Hz	12.74 G

Kevlar Testing

- Pulley diameter is not strongly tied to breaking strength for yarn.
- Clamping kevlar reduces ultimate strength by approximately 10%.
- Original EM capstan design provided under 30% of rated strength for yarn
- New larger capstan design now baseline for CQM provides better then 95% of rated strength for braided

Kevlar Preload

	Dynamic	Recommended	Max Dynamic	Needed
G^2/Hz	+/-	Preload	Load	Strength
0.077	16	26	42	84
0.170	25	35	60	120
0.800	50	60	110	220
~0.12*	20	30	50	100

- 100lbs is Max load demonstrated so far
- Value estimated from curve fit of a power series
- Assumes 1.5% damping

Time Dependent Properties of Kevlar

Graph from Characteristics and Uses of Kevlar 29 Aramid, company memo, Dupont, Wilmington, Deleware, USA.

Kevlar Issues

Yarn - Highest Strength, difficult to work with, hard to do it same way every time

Braided - Easiest to work with, fraction of strength of Yarn

Twisted - Need more information on

List of Materials in BDA

- AL 6061-T6
- AL 7075
- A 286 CRES
- INVAR 36
- 303 CRES
- Kapton
- Vespel
- Kevlar 29
- 2216 Epoxy
- HDPE

- •Silicon Nitride
- •Gold
- •Miller Stevens 903 Epoxy
- •CDA 172
- •Copper 99.999%
- Constantin
- •Indium
- •NTD Germanium
- •Buried Oxide Silicon Wafers
- •Nickel
- •Titanium
- •Ablestik 84-3 Epoxy (TBC)