

Flex Pivot Options Discussion

# **Flex Pivot Options**

## SPIRE BSM Discussion document - Ian Pain. 22.Aug.01

The Baseline flex pivot choice identified at DDR is technically acceptable but costs exceed the original budget estimate.

From Lucas TRW the baseline price for 18 pivots x two types, the total order cost would be ~£94.5k Adding in minimum spares (for a total buy of 20 of each type) would bring the total to £97k. This represents an over-run of £84k on the £13k budgeted for flex pivots. Because of other savings in the BSM programme, the available budget for flex pivots is however, now £30k i.e Costs above £30k will require savings elsewhere to stay within total cost.

Note that there is a complication between ability to run at higher power dissipation and motor choice. If MPIA/PACS/Zeiss select a Copper winding rather than the originally baselined Aluminium, the increase in dissipation is significant (about a factor of 5). Based on discussions with MPIA and UK motor winders, we should consider Copper the baseline until confirmed by Zeiss (late-mid'02). Thus motor availability constrains flex pivot choice.

## **Description of Options**

| Flex Pivot<br>Option |                                               | Description                                                                                       | Cost     | Power -<br>Aluminium<br>coil | Power -<br>Copper coil | Comments                                                                                                                                                                                                                                                                      |
|----------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|----------|------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.                   | Budget                                        | Original assumption.                                                                              | £13k     | 4m                           | IW                     | Assumption of £13k was optimistic.                                                                                                                                                                                                                                            |
| 2.                   | Baseline                                      | Inconel flex<br>pivots.<br>Two types (chop<br>and jiggle).                                        | £97k (*) | 1.3mW<br>(iv)                | 3.2mW<br>(iii)         | Based on Lucas TRW quote (ii).<br>VAT & import duty not included -<br>waiver would be required                                                                                                                                                                                |
| 3.                   | Joint<br>procurement<br>of baseline<br>design | As 2, but joint<br>procurement<br>with another<br>agency such as<br>SRON,                         | £53-63k  | 1.3mW<br>(iv)                | 3.2mW<br>(iii)         | <u>Unlikely</u><br>£17-22k saving per pivot type by<br>sharing tooling and material price<br>pro-rata. But SRON only interested<br>in jiggle type: maybe ask LAM to<br>procure back-ups too? (unlikely)                                                                       |
| 4.                   | 304 stainless                                 | As 2, but use<br>austenitic<br>stainless steel.                                                   | £91.7k   | 1.3mW<br>(iv)                | 3.2mW<br>(iii)         | Saves £1.4k per type of flex pivot.<br>Possible better fatigue life but<br>reduced strength (TBC). Not<br>favoured, as if having specials made<br>may as well get the best.                                                                                                   |
| 5.                   | 429 stainless                                 | Uses off the<br>shelf pivots but<br>need to upscreen,<br>and schedule<br>extra vibration<br>tests | £34.2k   | 1.3mW<br>(iv)                | 3.2mW<br>(iii)         | risk of failure on cold vibration<br>Assume upscreen by buying 4 x<br>requirements (20 pivots x 3 @ $\pm$ 70)<br>and doing 2 x extra warm vibration<br>tests (@ $\pm$ 2k); 2 x extra cold vibration<br>tests (@ $\pm$ 10k/test) with 20 extra days<br>work (@ $\pm$ 300/day). |
| 6.                   | Material<br>brokerage                         | As 2 but assume<br>we Could sell<br>material to a<br>third party<br>broker, the                   | £68.9k   | 1.3mW<br>(iv)                | 3.2mW<br>(iii)         | <u>Unlikely</u><br>£12.8k saving per pivot type. Sell on<br>of material may not work (or run into<br>tax and duty issues)                                                                                                                                                     |

Greyed out areas are not favoured/possible. Notes referenced in roman numerals.



# SPIRE Project Document

Flex Pivot Options Discussion

ATC Ref: SPI-BSM-DOC-0006 RAL Ref: SPIRE-ATC-NOT-000843 Issue : 1.0 Date: 22-Aug-01 Page: 2 of 5

| Flex Pivot<br>Option                                                     | Description                                                                                                                             | Cost            | Power -<br>Aluminium<br>coil | Power -<br>Copper coil | Comments                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                          | original supplier<br>or e.g. RAL                                                                                                        |                 |                              |                        |                                                                                                                                                                                                                                                               |
| 7. ESA procurement                                                       | Ask ESA<br>procure the<br>pivots for us                                                                                                 | Nominal<br>£13k | 1.3mW<br>(iv)                | 3.2mW<br>(iii)         | Assumed impossible<br>would be ideal if we could do it.                                                                                                                                                                                                       |
| 8. Common<br>Jiggle Pivot                                                | switch to a single<br>pivot type, 7010-<br>600                                                                                          | £58.8k          | 11.8mW<br>(v)                | 55mW<br>(v)            | <u>Cannot use this as baseline as</u><br><u>requires Al. Windings</u><br>Saves £35.7k on material & tooling.<br>Risetime may be compromised if<br>motor saturates                                                                                             |
| 9. Common<br>Chop Pivot                                                  | switch to a single<br>pivot type, 7010-<br>800                                                                                          | £73.8k          | 1.0mW<br>(vi)                | 1.7mW<br>(vi)          | Requires major lightweight of jiggle<br>frame or waiver on load (by >65%)<br>Saves £35k less say £20k for re-<br>engineering & increased<br>manufacture costs                                                                                                 |
| 10. Hybrid<br>soultion                                                   | Procure Inconel<br>Jiggle pivot in<br>common with<br>SRON 7010-600.<br>But use a<br>stainless steel<br>pivot for chop<br>axis.          | £41.5k          | 1.1mW<br>(ix)                | 2.0mW<br>(ix)          | Risk of problems with stainless steel<br>chop pivot. Late stage de-scope to<br>option 11<br>Saves £17k on shared material for<br>inconel pivot. Cost of stainless is<br>half of option 5.                                                                     |
| 11. Baseline<br>chop, shared<br>procurement<br>on jiggle                 | Procure Inconel<br>Jiggle pivot in<br>common with<br>SRON 7010-600.<br>Buy our own<br>inconel chop<br>pivot                             | £75-80k         | 1.1mW<br>(ix)                | 2.0mW<br>(ix)          | <u>Requires 85% lightweight of jiggle</u><br><u>frame</u><br>Saves £17-22k on shared material                                                                                                                                                                 |
| 12. Common<br>intermediate<br>pivot                                      | intermediate<br>stiffness pivot to<br>BSM<br>specification<br>compromise<br>between the two.<br>(eg Use SRON<br>7010-600 as<br>example) | £72.8k          | 3.6mW<br>(vii)               | 14.5mW<br>(vii)        | Would make any light-weighting or<br>power budget problems a trade-off.<br>The 7010-600 needs a lightweighting<br>of the jiggle frame of 85%<br>(possible). Saves \$35k less £10k for<br>engineering costs. Risetime may be<br>compromised if motor saturates |
| <ul><li>13. BE Systems<br/>Pivot.</li><li>0.15mm</li><li>blade</li></ul> | identical to<br>SMEC pivots or<br>a slightly lighter<br>flexure                                                                         | £55k            | 1.4mW<br>(viii)              | 3.9mW<br>(viii)        | Cost approx. £1k per pivot x 40. As<br>unit is 2mm bigger, need to re-<br>engineer chop & jiggle stage, motor<br>mounts and BSMs (say £15k<br>including redesign & new prototype<br>m/c).                                                                     |
| 14. Spark Eroder<br>Pivot                                                | d Special pivot,<br>maybe<br>developed by<br>Zeiss                                                                                      | ?               |                              | ?                      | Cost as option 13, plus 'Zeiss' factor                                                                                                                                                                                                                        |

| <u> </u>                    | SPIRE Project Document        | ATC Ref: SPI-BSM-DOC-0006                                                                                                           |  |
|-----------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| Astronomy Technology Centre | Flex Pivot Options Discussion | RAL Ref:         SPIRE-ATC-NOT-000843           Issue:         1.0           Date:         22-Aug-01           Page:         3 of 5 |  |

| Flex Pivot<br>Option | Description      | Cost | Power -<br>Aluminium<br>coil | Power -<br>Copper coil | Comments                          |
|----------------------|------------------|------|------------------------------|------------------------|-----------------------------------|
| 15. Smiths           | Maraging Steel   | ?    | ~4mW                         | ~2mW                   | Would be a aerospace rated part.  |
| Industries           | Pivot per Smiths |      |                              |                        | Cost and power budget assumed     |
| Pivots               | Industries       |      |                              |                        | same as 11. Maraging should be OK |
|                      |                  |      |                              |                        | cold (but is SCC 'C' rated)       |

## Comparison of favoured options

Ideal cost target is £30k.

| Flex Pivot<br>Option                                     | Description                                                                                                                           | Cost                                       | Power -<br>Aluminium<br>coil | Power -<br>Copper coil | Risks                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Baseline                                              | Inconel flex<br>pivots.<br>Two types<br>(chop and<br>jiggle).                                                                         | £97k (*)                                   | 1.3mW                        | 3.2mW                  | VAT & import duty                                                                                                                                                                                                                                                                            |
| 11. Baseline<br>chop, shared<br>procurement<br>on jiggle | Procure<br>Inconel Jiggle<br>pivot in<br>common with<br>SRON 7010-<br>600. Buy our<br>own inconel<br>chop pivot                       | £75-80k                                    | 1.1mW                        | 2.0mW                  | <ul> <li>Requires 85% lightweight of jiggle frame</li> <li>Saves £17-22k on shared material</li> </ul>                                                                                                                                                                                       |
| 10. Hybrid<br>soultion                                   | Procure<br>Inconel Jiggle<br>pivot in<br>common with<br>SRON 7010-<br>600.<br>But use a<br>stainless steel<br>pivot for chop<br>axis. | £41-48k                                    | 1.1mW                        | 2.0mW                  | <ul> <li>Risk of failure of stainless steel<br/>chop pivot.</li> <li>Needs 85% lightweight of<br/>jiggle frame</li> <li>Late stage de-scope to option<br/>12</li> </ul>                                                                                                                      |
| 13. BE Systems<br>Pivot.<br>0.15mm<br>blade              | identical to<br>SMEC pivots                                                                                                           | £55k                                       | 1.4mW                        | 3.9mW                  | <ul> <li>delay to re-engineer (1-2 months)</li> <li>mass growth</li> <li>BE systems QA</li> <li>Not flown before</li> <li>No margin on power</li> </ul>                                                                                                                                      |
| 5. 429 stainless                                         | Uses off the<br>shelf pivots but<br>need to<br>upscreen,<br>and schedule<br>extra vibration<br>tests                                  | £34.2k<br>(+80k for<br>cold<br>vibration?) | 1.3mW                        | 3.2mW                  | <ul> <li>risk of failure on cold vibration</li> <li>if need to re-qualify.</li> <li>3-6 months late</li> <li>Need extra £97k to buy<br/>inconel if fails</li> <li>Need £50k? for catch-up<br/>costs</li> <li>Assumes 2 extra cold<br/>vibrations @£10k (real cost<br/>£50k TBC??)</li> </ul> |
| 11. Common<br>intermediate                               | intermediate<br>stiffness pivot                                                                                                       | £72.8k                                     | 3.6mW                        | 14.5mW                 | • Needs 85% lightweighting of the jiggle frame (possible)                                                                                                                                                                                                                                    |

|                             | SPIRE Project Document        | ATC Ref: SPI-BSM-DOC-0006                                                      |
|-----------------------------|-------------------------------|--------------------------------------------------------------------------------|
| Astronomy Technology Centre | Flex Pivot Options Discussion | RAL Ref: SPIRE-ATC-NOT-000843<br>Issue: 1.0<br>Date: 22-Aug-01<br>Page: 4 of 5 |

| Flex Pivot<br>Option                                     | Description                                                                                                     | Cost     | Power -<br>Aluminium<br>coil | Power -<br>Copper coil | Risks                                                                                                  |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|------------------------------|------------------------|--------------------------------------------------------------------------------------------------------|
| 2. Baseline                                              | Inconel flex<br>pivots.<br>Two types<br>(chop and<br>jiggle).                                                   | £97k (*) | 1.3mW                        | 3.2mW                  | • VAT & import duty                                                                                    |
| 11. Baseline<br>chop, shared<br>procurement<br>on jiggle | Procure<br>Inconel Jiggle<br>pivot in<br>common with<br>SRON 7010-<br>600. Buy our<br>own inconel<br>chop pivot | £75-80k  | 1.1mW                        | 2.0mW                  | <ul> <li>Requires 85% lightweight of jiggle frame</li> <li>Saves £17-22k on shared material</li> </ul> |
| pivot                                                    | to BSM<br>specification<br>compromise<br>between the<br>two. (eg Use<br>SRON 7010-<br>600 as example)           |          |                              |                        | Copper motor coils don't meet<br>spec                                                                  |



### Notes

#### Costs:

- i. all costs based on \$1.40:£1.00, and 10.00FF:£1.00
- ii. The Lucas flex pivots includes \$28k of minimum material quantity charges and \$22k of tooling charges, per type of pivot (we have two types, hence \$100k). We get 18 of each type but buy enough material for 50. Assuming an exchange of 1.4 and that we do NOT pay import of VAT, this translates as ~£71k, for material and a unit cost of approx £640 per pivot

### Power budget calcs:

iii. baseline pivot, copper coil:

0.80mW sensor

0.84mW chop (2.4degrees, 2 Hz, 47 Nmm/rad. stiffness) 1.54mW jiggle (0.6 degrees, 0.5Hz, 367 Nmm/rad stiffness) total: 3.2 mW

iv. baseline pivot, aluminium coils

0.80mW sensor 0.17mW chop (2.4degrees, 2 Hz, 47 Nmm/rad. stiffness) 0.31mW jiggle (0.6 degrees, 0.5Hz, 367 Nmm/rad stiffness) total: 1.28 mW

v. using a baseline jiggle pivot in the chop and jiggle axis:

chop stiffness goes up by 7.94x. Chop power goes up by 63x. thus total power = 55mW (Cu); 11.8mW (Al),

vi. using a baseline chop pivot in the chop and jiggle axis:

jiggle stiffness goes down by 7.94x. Jiggle power goes down by 63x. thus total power = 1.7mW (Cu); 1.0mW (Al),

vii. Common intermediate SRON 7010-600 (187Nmm/rad) as example

chop stiffness goes up by 3.98x. Chop power goes up by 15.8x. jiggle stiffness goes down by 1.96x. Jiggle power goes down by 3.85x.

thus total power = 14.5mW (Cu); 3.6mW (Al),

viii. BE systems 0.15mm

0.15mm flexure for jiggle & chop

Stiffness: 89.1Nmm/Rad (dominique's note)

- jiggle stiffness down by 4.11x, power down by 16.89x

- chop stiffness up by 1.90x, power up by 3.6x

thus total power: 3.9mW (Cu) ; 1.4mW (Al)

ix. Hybrid solution

SRON 7010-600 pivot for jiggle. jiggle stiffness goes down by 1.96x. Jiggle power goes down by 3.85x. Baseline 5010-800 for chop.

Power: 2.0mW (Cu); 1.05mW (Al)