UK Antranminy Technalagy Eenlire	SPIRE Project Document	ATC Ref: SPI-BSM-DOC-0006 RAL Ref: SPIRE-ATC-NOT-000843
	ns Discussion	Issue: 1.0
	Discussion	Page: 1 of 5

Flex Pivot Options

SPIRE BSM Discussion document - Ian Pain. 22.Aug. 01

The Baseline flex pivot choice identified at DDR is technically acceptable but costs exceed the original budget estimate.

From Lucas TRW the baseline price for 18 pivots x two types, the total order cost would be $\sim £ 94.5 \mathrm{k}$ Adding in minimum spares (for a total buy of 20 of each type) would bring the total to $£ 97 \mathrm{k}$. This represents an over-run of $£ 84 \mathrm{k}$ on the $£ 13 \mathrm{k}$ budgeted for flex pivots. Because of other savings in the BSM programme, the available budget for flex pivots is however, now $£ 30 \mathrm{k}$. i.e Costs above $£ 30 \mathrm{k}$ will require savings elsewhere to stay within total cost.

Note that there is a complication between ability to run at higher power dissipation and motor choice. If MPIA/PACS/Zeiss select a Copper winding rather than the originally baselined Aluminium, the increase in dissipation is significant (about a factor of 5). Based on discussions with MPIA and UK motor winders, we should consider Copper the baseline until confirmed by Zeiss (late-mid'02). Thus motor availability constrains flex pivot choice.

Description of Options

Greyed out areas are not favoured/possible. Notes referenced in roman numerals.

Flex Pivot Option	Description	Cost	Power - Aluminium coil	Power Copper coil	Comments
1. Budget	Original assumption.	£13k	4 mW		Assumption of $£ 13 \mathrm{k}$ was optimistic.
2. Baseline	Inconel flex pivots. Two types (chop and jiggle).	£97k (*)	1.3 mW (iv)	3.2 mW (iii)	Based on Lucas TRW quote (ii). VAT \& import duty not included waiver would be required
3. Joint procurement of baseline design	As 2, but joint procurement with another agency such as SRON,	£53-63k	1.3 mW (iv)	$\begin{gathered} 3.2 \mathrm{~mW} \\ \text { (iii) } \end{gathered}$	Unlikely $£ 17-22 \mathrm{k}$ saving per pivot type by sharing tooling and material price pro-rata. But SRON only interested in jiggle type: maybe ask LAM to procure back-ups too? (unlikely)
4. 304 stainless	As 2, but use austenitic stainless steel.	£91.7k	1.3 mW (iv)	$\begin{gathered} 3.2 \mathrm{~mW} \\ \text { (iii) } \end{gathered}$	Saves $£ 1.4 \mathrm{k}$ per type of flex pivot. Possible better fatigue life but reduced strength (TBC). Not favoured, as if having specials made may as well get the best.
5. 429 stainless	Uses off the shelf pivots but need to upscreen, and schedule extra vibration tests	£34.2k	1.3 mW (iv)	3.2 mW (iii)	risk of failure on cold vibration Assume upscreen by buying $4 x$ requirements (20 pivots x 3 @ £70) and doing 2 x extra warm vibration tests (@£2k); 2 x extra cold vibration tests (@£10k/test) with 20 extra days work (@£300/day).
6. Material brokerage	As 2 but assume we Could sell material to a third party broker, the	£68.9k	1.3 mW (iv)	$\begin{gathered} 3.2 \mathrm{~mW} \\ \text { (iii) } \end{gathered}$	Unlikely $£ 12.8 \mathrm{k}$ saving per pivot type. Sell on of material may not work (or run into tax and duty issues)

UK Antrampriy Technalagy Cenire	SPIRE Project Document	ATC Ref: SPI-BSM-DOC-0006
	Flex Pivot Options Discussion	RAL Ref: SPIRE-ATC-NOT-00084 Issue: 1.0 Date: 22-Aug-01

Flex Pivot Option	Description	Cost	Power Aluminium coil	Power Copper coil	Comments
	original supplier or e.g. RAL				
7. ESA procurement?	Ask ESA procure the pivots for us	Nominal £13k	1.3 mW (iv)	$\begin{gathered} 3.2 \mathrm{~mW} \\ \text { (iii) } \end{gathered}$	Assumed impossible would be ideal if we could do it.
8. Common Jiggle Pivot	switch to a single pivot type, 7010600	£58.8k	11.8 mW (v)	55 mW (v)	Cannot use this as baseline as requires Al. Windings Saves $£ 35.7 \mathrm{k}$ on material \& tooling. Risetime may be compromised if motor saturates
9. Common Chop Pivot	switch to a single pivot type, 7010800	£73.8k	1.0 mW (vi)	1.7 mW (vi)	Requires major lightweight of jiggle frame or waiver on load (by $>65 \%$) Saves $£ 35 \mathrm{k}$ less say $£ 20 \mathrm{k}$ for reengineering \& increased manufacture costs
10. Hybrid soultion	Procure Inconel Jiggle pivot in common with SRON 7010-600. But use a stainless steel pivot for chop axis.	£41.5k	$\begin{gathered} \text { 1.1mW } \\ \text { (ix) } \end{gathered}$	$\begin{gathered} 2.0 \mathrm{~mW} \\ (\mathrm{ix}) \end{gathered}$	Risk of problems with stainless steel chop pivot. Late stage de-scope to option 11 Saves $£ 17 \mathrm{k}$ on shared material for inconel pivot. Cost of stainless is half of option 5 .
11. Baseline chop, shared procurement on jiggle	Procure Inconel Jiggle pivot in common with SRON 7010-600. Buy our own inconel chop pivot	£75-80k	1.1 mW (ix)	2.0 mW (ix)	Requires 85\% lightweight of jiggle frame Saves $£ 17-22 k$ on shared material
12. Common intermediate pivot	intermediate stiffness pivot to BSM specification compromise between the two. (eg Use SRON 7010-600 as example)	£72.8k	$\begin{gathered} 3.6 \mathrm{~mW} \\ \text { (vii) } \end{gathered}$	14.5 mW (vii)	Would make any light-weighting or power budget problems a trade-off. The 7010-600 needs a lightweighting of the jiggle frame of 85% (possible). Saves $\$ 35 \mathrm{k}$ less $£ 10 \mathrm{k}$ for engineering costs. Risetime may be compromised if motor saturates
13. BE Systems Pivot. 0.15 mm blade	identical to SMEC pivots or a slightly lighter flexure	£55k	$\begin{gathered} \hline 1.4 \mathrm{~mW} \\ \text { (viii) } \end{gathered}$	$\begin{gathered} \hline 3.9 \mathrm{~mW} \\ (\mathrm{viii}) \end{gathered}$	Cost approx. £1k per pivot x 40 . As unit is 2 mm bigger, need to reengineer chop \& jiggle stage, motor mounts and BSMs (say $£ 15 \mathrm{k}$ including redesign \& new prototype m / c).
14. Spark Eroded Pivot	Special pivot, maybe developed by Zeiss	?		?	Cost as option 13, plus 'Zeiss' factor

UKtranamy Technalogy Cenirre	SPIRE Project Document	ATC Ref: SPI-BSM-DOC-0006 RAL Ref: SPIRE-ATC-NOT-000843
	Flex Pivot Options Discussion	Issue: 1.0 Date: 22 -Aug-01 Page: 3 of 5

Flex Pivot Option	Description	Cost	Power - Aluminium coil	Power - Copper coil	Comments
15. Smiths Industries Pivots	Maraging Steel Pivot per Smiths Industries	$?$	$\sim 4 \mathrm{~mW}$	$\sim 2 \mathrm{~mW}$	Would be a aerospace rated part. Cost and power budget assumed same as 11 . Maraging should be OK cold (but is SCC ' C^{\prime} rated)

Comparison of favoured options

Ideal cost target is $£ \mathbf{3 0 k}$.

Flex Pivot Option	Description	Cost	Power - Aluminium coil	Power Copper coil	Risks
2. Baseline	Inconel flex pivots. Two types (chop and jiggle).	£97k (*)	1.3 mW	3.2 mW	- VAT \& import duty
11. Baseline chop, shared procurement on jiggle	Procure Inconel Jiggle pivot in common with SRON 7010600. Buy our own inconel chop pivot	£75-80k	1.1 mW	2.0 mW	- Requires 85% lightweight of jiggle frame - Saves $£ 17-22 \mathrm{k}$ on shared material
10. Hybrid soultion	Procure Inconel Jiggle pivot in common with SRON 7010600. But use a stainless steel pivot for chop axis.	£41-48k	1.1 mW	2.0 mW	- Risk of failure of stainless steel chop pivot. - Needs 85% lightweight of jiggle frame - Late stage de-scope to option 12
13. BE Systems Pivot. 0.15 mm blade	identical to SMEC pivots	£55k	1.4 mW	3.9 mW	- delay to re-engineer (1-2 months) - mass growth - BE systems QA - Not flown before - No margin on power
5. 429 stainless	Uses off the shelf pivots but need to upscreen, and schedule extra vibration tests	$\begin{gathered} £ 34.2 \mathrm{k} \\ (+80 \mathrm{k} \text { for } \\ \text { cold } \\ \text { vibration? } \end{gathered}$	1.3 mW	3.2 mW	- risk of failure on cold vibration - if need to re-qualify. - 3-6 months late - Need extra $£ 97 \mathrm{k}$ to buy inconel if fails - Need $£ 50 \mathrm{k}$? for catch-up costs - Assumes 2 extra cold vibrations @£10k (real cost £50k TBC??)
11. Common intermediate	intermediate stiffness pivot	£72.8k	3.6 mW	14.5 mW	- Needs 85% lightweighting of the jiggle frame (possible)

	SPIRE Project Document	ATC Ref: SPI-BSM-DOC-0006 RAL Ref: SPIRE-ATC-NOT-000843 Issue: 1.0 Date: 22-Aug-01 Page: 4 of 5
	Flex Pivot Options Discussion	

Flex Pivot Option	Description	Cost	Power - Aluminium coil	Power - Copper coil	Risks
2. Baseline	Inconel flex pivots. Two types (chop and jiggle).	$£ 97 \mathrm{k}(*)$	1.3 mW	3.2 mW	\bullet VAT \& import duty
11. Baseline chop, shared procurement on jiggle	Procure Inconel Jiggle pivot in common with SRON 7010- 600. Buy our own inconel chop pivot	$£ 75-80 \mathrm{k}$	1.1 mW	2.0 mW	•Requires 85\% lightweight of jiggle frame Saves $£ 17-22 \mathrm{k}$ on shared material
pivot	to BSM specification compromise between the two. (eg Use SRON 7010- 600 as example)			•	

UK Antrananny Technalagy Cenlire	SPIRE Project Document	ATC Ref: SPI-BSM-DOC-0006 RAL Ref: SPIRE-ATC-NOT-000843 Issue: 1.0 Date: 22-Aug-01 Page: 5 of 5
	Flex Pivot Options Discussion	

Notes

Costs:

i. all costs based on $\$ 1.40: £ 1.00$, and $10.00 \mathrm{FF}: £ 1.00$
ii. The Lucas flex pivots includes $\$ 28 \mathrm{k}$ of minimum material quantity charges and $\$ 22 \mathrm{k}$ of tooling charges, per type of pivot (we have two types, hence $\$ 100 \mathrm{k}$). We get 18 of each type but buy enough material for 50 .
Assuming an exchange of 1.4 and that we do NOT pay import of VAT, this translates as $\sim £ 71 \mathrm{k}$, for material and a unit cost of approx $£ 640$ per pivot

Power budget calcs:

iii. baseline pivot, copper coil:
0.80 mW sensor
0.84 mW chop (2.4 degrees, $2 \mathrm{~Hz}, 47 \mathrm{Nmm} /$ rad. stiffness)
1.54 mW jiggle (0.6 degrees, $0.5 \mathrm{~Hz}, 367 \mathrm{Nmm} /$ rad stiffness)
total: 3.2 mW
iv. baseline pivot, aluminium coils
0.80 mW sensor
0.17 mW chop (2.4 degrees, $2 \mathrm{~Hz}, 47 \mathrm{Nmm} /$ rad. stiffness)
0.31 mW jiggle (0.6 degrees, $0.5 \mathrm{~Hz}, 367 \mathrm{Nmm} / \mathrm{rad}$ stiffness)
total: 1.28 mW
v. using a baseline jiggle pivot in the chop and jiggle axis:
chop stiffness goes up by 7.94 x . Chop power goes up by 63 x . thus total power $=55 \mathrm{~mW}(\mathrm{Cu}) ; 11.8 \mathrm{~mW}(\mathrm{Al})$,
vi. using a baseline chop pivot in the chop and jiggle axis:
jiggle stiffness goes down by $7.94 x$. Jiggle power goes down by 63 x . thus total power $=1.7 \mathrm{~mW}(\mathrm{Cu}) ; 1.0 \mathrm{~mW}(\mathrm{Al})$,
vii. Common intermediate SRON 7010-600 (187Nmm/rad) as example
chop stiffness goes up by 3.98 x . Chop power goes up by 15.8 x .
jiggle stiffness goes down by 1.96x. Jiggle power goes down by 3.85x.
thus total power $=14.5 \mathrm{~mW}(\mathrm{Cu}) ; 3.6 \mathrm{~mW}(\mathrm{Al})$,
viii. BE systems 0.15 mm
0.15 mm flexure for jiggle \& chop

Stiffness: $89.1 \mathrm{Nmm} /$ Rad (dominique's note)

- jiggle stiffness down by 4.11 x , power down by 16.89 x
- chop stiffness up by $1.90 x$, power up by $3.6 x$
thus total power: $3.9 \mathrm{~mW}(\mathrm{Cu}) ; 1.4 \mathrm{~mW}(\mathrm{Al})$
ix. Hybrid solution

SRON 7010-600 pivot for jiggle. jiggle stiffness goes down by 1.96x. Jiggle power goes down by 3.85x.
Baseline 5010-800 for chop.
Power: $2.0 \mathrm{~mW}(\mathrm{Cu}) ; 1.05 \mathrm{~mW}(\mathrm{Al})$

