
Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 1 of 35

IFSI
CNRNote on SPIRE-DPU architecture

SPIRE-IFS-NOT-001130

Note on SPIRE-DPU architecture

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 2 of 35

IFSI
CNRNote on SPIRE-DPU architecture

Prepared by: Riccardo Cerulli-Irelli

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 3 of 35

IFSI
CNRNote on SPIRE-DPU architecture

Distribution List :

K. King SPIRE

S.D. Sidher SPIRE

J.L. Auguères SPIRE

C. Cara SPIRE

D. Ferrand SPIRE

G. Olofsson SPIRE

L. Seno Audionica

M. Giordano Audionica

R. Orfei IFSI

A. Di Giorgio IFSI

S. Molinari IFSI

S. Pezzuto IFSI

S. Codella IFSI

S. J. Liu IFSI

Document Status Sheet:

Document Title:
Issue Revision Date Reason for Change

Draft 3 26/09/01 Added Tuning task.
Added generalized table uploading protocol

Draft 3.1 7/10/01 VM code updated
Added in Appendix an example on VM code

Draft 3.2 Chapter formatting
Chapter 3.1 expanded
Chapter 3.4 initiated
Chapter 3.4 – introduced minimum time between SS commands
Chapter 3.5 expanded
Appendix – Reason for a Virtual Machine

Draft 3.3 21/01/02 Chapter 3.4 Introduction of a VM optimising compiler and simulator.
Draft 3.4 23/01/02 Paragraph 3.4.1 Corrected VM code

Introduced paragraph 3.4.2 and3.4.3 for Compiler/Simulator

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 4 of 35

IFSI
CNRNote on SPIRE-DPU architecture

Reference documents

Document
Reference

Title

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 5 of 35

IFSI
CNRNote on SPIRE-DPU architecture

Acronyms

CDMS Central Data Management System
CNR Consiglio Nazionale delle Ricerche
CPU Control Processing Unit

DCU Detector Control Unit
DPU Digital Processing Unit
DRU Detector Readout Unit

FIFO First In First Out storage element
FIRST Far InfraRed and Submillimeter Telescope
HK HouseKeeping

HW HardWare

I/F Interface
IFSI Istituto di Fisica dello Spazio Interplanetario
ISR Interrupt Service Routine

LSB Least Significant Bit(s)

MCU Mechanism Control Unit
MSB Most Significant Bit(s)
mutex Mutual Exclusive flag
NA Not Applicable
OBS On-Board Software
OS Operating System
PC Program Counter
PDU Power Distribution Unit
S/C Spacecraft

SPIRE Spectral and Photometric Imaging REceiver
SS Subsystem

SW SoftWare
TBC To Be Confirmed
TBD To Be Defined
TBW To Be Written
TC Telecommand
TM Telemetry

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 6 of 35

IFSI
CNRNote on SPIRE-DPU architecture

VM Virtual Machine

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 7 of 35

IFSI
CNRNote on SPIRE-DPU architecture

Table of contents

REFERENCE DOCUMENTS ...4

TABLE OF CONTENTS..7

1 INTRODUCTION...8

2 SUBSYSTEM COMMANDING DESCRIPTION...8

2.1 CMD_SEQ_Task ...9
2.2 HK_REQ_Task ..9
2.3 LS_Task ...9
2.4 ISR_3_Task..10
2.5 HS_Task...11
2.6 TMTC_Task...12
2.7 IDLE_Task...12

3 DETAILED TASKS DESCRIPTION...13

3.1 CMD_SEQ_Task ...13
3.1.1 On Board Tables ..13
3.1.2 DPU Internal Commands...14

3.2 HK_REQ_Task ..15
3.3 LS_Task ...16
3.4 ISR_3_Task..17

3.4.1 Virtual Machine instructions..18
3.4.2 VM Compiler ...21
3.4.3 VM Simulator ..23

3.5 HS_Task...25
3.6 TMTC_Task...29
3.7 IDLE_Task...29

APPENDIX..30

Reason for a Virtual Machine ..30
Sample VM code..32

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 8 of 35

IFSI
CNRNote on SPIRE-DPU architecture

1 Introduction

This note tries to present in an informal format the status of SPIRE DPU OBS
architecture.
The note will eventually be translate in the right format and included in the SSD as the “DPU
Architecture Description”.

2 Subsystem commanding description
With reference to the following figure, here is a description of the identified tasks.

As far as this note is concerned, a task is an infinite repeating program scheduled by some
kind of signal, which suspends itself at the end. A new signal will re-schedule the task.

CMD-
SEQ_Task
Command
Sequencer

&
Controller

HK_REQ_Task
Periodic HK

request

ISR_3_Task
Timely

commands
(Virtual Machine) IRQ0

FIFO half
full

CMD-
SEQ_Task

Signal

1 sec
OS

event

Low
Speed

I/F
comman

Execute VM code:
Set next INT delay
Tx-Rx cmd
Enable/Disable
LS_Task]

Signal
LS_Tas

Signal
LS_Task or

LS_Task
Tx
suspend
Rx

LS_Task
Signal

HS_Task
Move data to
TM & HK
buffers

TM
science

IRQ3
Timer

A tasks is a program
scheduled by some kind
of signal, which suspend
itself at the end

TM
event/re

port

TM HK
buffer

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 9 of 35

IFSI
CNRNote on SPIRE-DPU architecture

2.1 CMD_SEQ_Task
This task is scheduled in the run queue by a semaphore set by the TMTC_Task,

signalling the presence of telecommands. When the task gets the CPU attention, the incoming
telecommands are controlled (a TC verification report is generated), exploded in elementary
commands and executed/stored. The task, after that, suspends itself until the next semaphore
signal.
At this stage there are two are main cathegories of commands:

• CPU internal commands.
• S/S commands.

The DPU internal commands are immediately executed inside the task.

S/S commands are stored in the Low Speed I/F command buffer, a semaphore signal is
generated in order to put in the run queue the LS_Task which is in charge of the actual
transmission.

Optionally a second highest priority Low Speed I/F command buffer2 can be added in order to
cope with immediate commands.

2.2 HK_REQ_Task
The HK_Req_Task handles the periodic HK request. The OS periodically schedules the

task in the running queue. This task just reads a table of SS elementary commands, writes the
commands on the Low Speed I/F command buffer and sends a signal (increments semaphore
counts) to the LS_Task .
The scheduling period of the task is set, enabled/disabled by DPU internal commands.
HK received from the SS on the low speed I/F together with those received via the high speed
I/F, are stored and packetized in a circular data buffer as shown for the HS_Task

2.3 LS_Task
The LS_Task (together with the ISR_3_Task) is in charge of transmitting and possibly

receiving commands/housekeeping to/from the subsystems. The actual timing of the

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 10 of 35

IFSI
CNRNote on SPIRE-DPU architecture

commands transmission with this task is not predicable due to the multitasking nature of the
OS; a jitter of few milliseconds must be taken in account.
The task, scheduled by HK_REQ_Task and CMD_SEQ_Task, checks the command against a
fixed table for special cases (flush FIFO/sync etc), checks for the availability (mutex lock) of
the low speed I/F port (might be used by ISR_3_Task) and if not available suspends itself
until the port is no more busy. The task then writes on the output port the SS command and
suspend itself for 1 ms (HIFI 2 ms if it’s an HK request) to allow the 100 us transmission time
and possibly the HK response word with allowed time-out. If an HK is expected/received, the
HK is stored in the TM HK buffer and formatted for TM transmission.

2.4 ISR_3_Task
This task allows the transmission of commands to the SS at a fixed time with a

maximum jitter of 10us (TBC). The task, interrupt driven, is started (and possibly terminated)
by an DPU internal command which enable/disable the highest priority interrupt (Irq 3) driven
by a 1 MHz clocked HW timer.

Timer
(32bit)

1 MHz

1553
SC I/F

TC - TM

Half Full FIFO # 3

DSP

Irq 0

Irq 2

Irq 3

Interrupt P
riority

High

not used)

Half Full FIFO # 1

Half Full FIFO # 2

Interrupt M
anager

Irq 1

Low

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 11 of 35

IFSI
CNRNote on SPIRE-DPU architecture

The tasks read from a preloaded table (exec_table) the time to the next command and the
command to transmit, it then set the timer and transmits the command to the SS.
In order to avoid collision on the low speed I/F with the LS_Task, a special (internal)
command is foreseen to lock/unlock (via a mutex) the low speed I/F. The locking command
will precede the SS commands of at least 100 us in order to allow the possible contemporary
(just started) transmission of a command via the LS_Task.

2.5 HS_Task
This task collects science and HK data on the high speed I/F, format the data in “packet

transmission ready” and stores the data in the right buffer.
The data on the high speed I/F are temporary stored on four 8Kword deep FIFOs, the “half
FIFO full” signal associated to each FIFO generates an interrupt (IRQ 0) which in turn
schedules the HS_Task on the run queue.
The main point here is that, due to the asynchronous operation of the FIFOs, the actual timing
of the incoming data is lost, in other words no cause/effect between commands (on low speed
I/F) and received data (on high speed I/F) is possible, at least in a simple efficient and reliable
way.

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 12 of 35

IFSI
CNRNote on SPIRE-DPU architecture

2.6 TMTC_Task
This task checks on the 3 record descriptor buffers if any Event/Report, HK or science TM
packet (in this sequence) is ready for transmission, and transmit the packets at S/C generated
(64 per seconds) interrupts. The same task signals to the CMD_SEQ_Task the possible
presence of a TC.

2.7 IDLE_Task
This low priority task is executed when no other task is active. The time spent inside this task
is an indication of the load charge of the DPU/SPU.

IRQ2
Sub-frame
interrupt

TMTC_Task

Check TM buffers for ready to send
packets
Fill TC buffer, and signal CMD-
SEQ_Task (to command Seq,)

Signal
CMD-SEQ_Task

TC buffer

IDLE_Tas

HK monitoring
for autonomous
functions

TM
Event/repor

t buffer

TM
HK buffer

TM
Science
buffer

M
in

P

R
IO

R
IT

Y

 M

ax

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 13 of 35

IFSI
CNRNote on SPIRE-DPU architecture

3 Detailed tasks description

3.1 CMD_SEQ_Task
This task begins the execution on arrival of a TC packet signalled by the TMTC_Task. The
first operation is the TC verification (RD1 3.1) with the generation of the acceptance report
TM packet stored in the highest priority (Event/Report) buffer.
The received TC packets can be subdivided in 2 categories:

• DPU commands to update on board tables
• DPU internal commands

3.1.1 On Board Tables
The SPIRE instrument will be completely controlled by a set of preloaded and TC modifiable
32 bit words tables. The tables fully control the SS configuration and observation modes, and
are stored in data memory in contiguous locations in order to simplify a possible relocation.
A preliminary list of tables include:

• SS configuration tables
• VM programs

As a general rule, consecutive selected data (commands) from the configuration tables will be
sent to the SS via the LS_Task, VM programs will be transmitted/interpreted in a timely
ordered sequence by means of the ISR3_Task. The DPU uses observation parameters
internally.
A unified generalized protocol to update the various tables is foreseen.
Each updating block of data will contain a 4-byte header followed by the relevant data

Len Field Description
8 Table number (ID) Configuration, observation, VM prog….. etc
8 N. of data items which follows
4 Type of data 0=8 bit , 1=16, 2=24, 3=32 bit
12 Offset from beginning of the table 0=8 bit , 1=16, 2=24, 3=32 bit
8..32 Data 8,16,24 or 32 bit words as defined above

…
Data

If data type is 0 (8 bit items) an even number of data must follow.

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 14 of 35

IFSI
CNRNote on SPIRE-DPU architecture

Depending on the table number some different block header or implicit rule might be used, an
example is an implied 16 bit left shift for HK request commands (stored on DPU as 32 bit
words with the 16 LSB all ‘1’).

A type 8 “function management” is foreseen with one or more data blocks as above.

This generalized method has the advantage to permit whatever reconfiguration might be
needed from the ground, besides being extremely simple as OBS implementation. The TC
bandwidth should be reduced due to the possibility to upload only part of the relevant tables.

3.1.2 DPU Internal Commands
This set of commands, fixes the operating mode of the DPU and are in general responsible for
setting the SS configuration and executing the observation.
The internal commands may be divided in three categories:

• Instrument specific commands
• Observation parameters (# of data blocks to transmit etc)
• System commands

A preliminary set of DPU internal instrument specific commands follows:

Mnemonic Parameters Description
Run Addr Runs VM program beginning at address (index) Addr.

(ISR_3_Task)
Stop Halt the current running VM program
TblLoad Tbl#, Addr, N Transmits to SS via the LS_Task the N 32 bit words

(commands) of table Tbl#, beginning at address (index)
Addr

TblDump Tbl#, Addr, N Transmits in TM the N 32 bit words of table Tbl#,
beginning at address (index) Addr

FifoFlush N Flushs FIFO number N [1 … 3]. If N=0 flush all
Sync Sends broadcast DPU time to SS
Exec P1,P2 … Pn Executes some specialized function/Task, which need an

“hard coded” function as for the tuning procedure.
(TUNING_Task)

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 15 of 35

IFSI
CNRNote on SPIRE-DPU architecture

The preliminary lists of DPU internal system commands follows:

• Time sync commands: The time received by the S/C is compared with the DPU
internal clock and a constant offset is generated. The deviation of ICT time from the
S/C time will be of the order of a ms.

• Housekeeping transmission rate: The rate sets the execution period of the
HK_REQ_Task

• HK enable/disable

3.2 HK_REQ_Task

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 16 of 35

IFSI
CNRNote on SPIRE-DPU architecture

3.3 LS_Task
This task sends commands and HK requests to the SS via the low speed serial I/F.
Commands and HK requests written to the out buffer (Tx) are sent to all the SS, the address
field of an HK request set the multiplexer (Mux) to the addressed SS in order to receive the
requested HK on the input buffer (Rx).

Clock
generator

Rx (32 bit)

Tx (32 bit)

Mux

D
P

U
 D

ata B
us

MCE

SCE

DRE

Rx

Tx

Clk

Rx

Tx

Clk

Rx

Tx

Clk

Address field

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 17 of 35

IFSI
CNRNote on SPIRE-DPU architecture

3.4 ISR_3_Task
The ISR_3_Task is actually a Virtual Machine executing one group of instructions (coded in
the Exec_table) per each INT3 request. The Exec_Table is actually a one column 32 bit word
vector containing commands to SS, timer setting (int3), mutex, loop and other Virtual
Machine “assembler” instruction, operating as an absolute program.
A number of baseline VM programs, with functionality for the foreseen observation modes,
will be stored on the DPU/DPU. These programs, stored in a fixed memory location, will be
modified/reloaded via TC, thus easing the need for OBS patching. A program can be as
simple as a loop calling a preloaded subroutine.

VM Program

Subroutine 100

……
Return103
…102
….101
Send_Command_Reg(addr,cod,reg)100
……

……
…4
Call_Subr(100)3
…2
Mutex(1)1
Set_Timer(1)0
InstructionsPC

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 18 of 35

IFSI
CNRNote on SPIRE-DPU architecture

For each INT3 request, the block of instructions from the current VM program counter (PC -
index vector value) up to (excluding) the next SS command or mutex or NOP instruction, are
executed. A set of VM internal registers R[32] TBC, are foreseen in order to execute loop, to
pass parameters with subroutine etc. Each register is a 32 bit unsigned integer.

3.4.1 Virtual Machine instructions
A preliminary set of “VM assembler” instructions follows:

16 ROR OR(reg, val32)4 R[reg] = R[reg] | val32 14

1 Assuming all commands can be divided in 3 fields. If this is not the case “code” disappears .
2 May be forced in the program, but the compiler insert automatically this instruction whenever is needed based
on the optimisation level.
3 This time is the interrupt period valid after the next instruction. The minimum interrupt period is the maximum
value between the time used by the I/F to transmit a command (100 us) and the actual duration of the ISR3. For
the time being let’s fix it to 1 ms. This period is the minimum period between two SS commands
4 These instructions are coded as two consecutive 32 bit words, the second containing the plain value of “val32”.

Instr.
code
(hex)

VM asm
Mnemonic Description

Code
type

(7) CMD Send_Command(addr, code, val)1 Send command code/val
to SS addr

0 RCMD Send_Command_Reg(addr, code, reg)1 Send command
code/R[reg] to SS addr

3

1 MTX Mutex(OnOff)2 Lock/Unlock low speed I/F port 1
2 NOP NOP() No operation 1

8 TIM Set_Timer(val)3 Set counter value (us) for next IRQ3 1
A READ Read_HK_Reg(reg) Store received HK in R[reg]
10 RINC Increment_Register(reg) R[reg] = R[reg] + 1 1
11 RDEC Decrement_Register(reg) R[reg] = R[reg] - 1 1
12 RSET Set_Register(reg, val32)4 R[reg] = val32 14

13 RADD Add_To_Reg(reg, va32l)4 R[reg] = R[reg] + val32 14

14 RSUB Sub_To_Reg(reg, val32)4 R[reg] = R[reg] – val32 14

15 RAND And(reg, val32)4 R[reg] = R[reg] & val32 14

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 19 of 35

IFSI
CNRNote on SPIRE-DPU architecture

17 RREQ Reg_Equate(reg1,reg2) R[reg1] = R[reg2] 2
21 JMPR Jmp_Relative(vmAddr) PC = PC + vmAddr 1
23 RJPR Jmp_Relative_Reg(reg) PC = PC + R[reg] 1
25 JPNZ JumpNZ(reg, vmAddr) If (R[reg] !=0) PC = PC + vmAddr 2
26 RSZ Skip_Reg_Zero(reg) If (R[reg] ==0) PC = PC + 1 1
27 RSGT Skip_Reg_GT(reg1,reg2) If (R[reg1] > R[reg2]) PC = PC + 1 2
28 RSLT Skip_Reg_LT(reg1,reg2) If (R[reg1] < R[reg2]) PC = PC + 1 2
30 CALL Call_Subr(vmAddr) PC = vmAddr (remember the present PC) 1
31 RET Return() Return from subroutine 1
41 WRT Write(reg) Write R[reg] to ICU frame 1
50 END End End current VM program 1

DEF Set constants
ORG Address of code
_Label Label referred by loop/jmp
COM COM textstring Comment printed during the simulation

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 20 of 35

IFSI
CNRNote on SPIRE-DPU architecture

It has to be noted that in order to make the VM program as relocable as possible, all jump
instructions, with the exclusion of the Call Sub, are relative to the PC.

The table notation is:
Val 16 or 24 bit numeric constant possibly defined in a DEF statement.
Reg VM internal registers index. Numeric constant between 0 and 31 possibly defined

in a DEF statement.
VmAddr Signed 16 bit numeric constant indicating the relative address displacement in a

Jump instruction. It may be coded as a _label mnemonic, in this case the relative
address displacement is computed by the compiler.

The preliminary instruction coding is as follows:
1. First (MSB) bit=1 then it is a plain command to the SS, as the first bit (start bit) is

always set.
Here we assume that the data content of the command can be splitted in two fields
(code and value). The MSBit of addr field indicate cmd/hk request.

code value1

MSB

addr

31 28 16 0

2. First (MSB) bit=0 then it is a coded 32 bit instruction with:

MSB
31

MSB
024

Inst. Code Value0
Type 1

MSB
31

MSB
024

Inst. Code Value20 Value1
16

 Type 2
MSB
31

MSB
024

Inst. Code Value20 Value1
20

Value3
8

 Type 3

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 21 of 35

IFSI
CNRNote on SPIRE-DPU architecture

A VM assembler compiler/simulator program is provided in order to simplify the on ground
coding of the observation programs.

3.4.2 VM Compiler
The compiler resolve all the mnemonic labels and constant in a VM program and produce the
absolute VM code. The compiler optimiser try also to take care of the MTX instructions
which enable/disable the low speed I/F usage by the LS_Task.
The compiler run time arguments are:

Switch Description Default value
o0, o1, o2 Different levels of optimisation o0 = No optimisation
v0, v1, v2, v3 Verbose level for terminal display v0 = minimum display
prg filename VM program input file prg spire.vm
lst filename Compiler/Simulator output filename lst list.txt
t1 n Start time for the simulation display [us] t1 0
t2 n End time for the simulation display [us] t2 100000000
pc n Address (program counter) of the program entry

point
pc 0

The compiler optimisation level 1, check for a TIM instruction and, based on a threshold
value (10 ms), test/insert a correct MTX instruction using the following criteria:

If TIM > threshold and last MTX=1
Then check/insert MTX=0

If TIM < threshold and last MTX=0
Then check/insert MTX=1

The compiler optimisation level 2, add to the level 1 optimisation a check for any
“unprotected” (MTX=0) CMD/RCMD instruction, and protect the command with a double
TIM-MTX couple using the following criteria:

If exist a CMD/RCMD instruction while MTX=0 and TIM=oldtim
Then modify to:

TIM 2000 (1 ms is chosen as the minimum TIM value)
MTX 1
CMD/RCMD xxx (original instruction)

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 22 of 35

IFSI
CNRNote on SPIRE-DPU architecture

TIM oldtim
MTX 0

The TIM-MTX instructions inserted by the optimiser are prefixed by A_

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 23 of 35

IFSI
CNRNote on SPIRE-DPU architecture

Example:
No optimisation Optimisation level 1 Optimisation level 2
MTX 0 MTX 0 MTX 0
… … …
TIM 1000 TIM 1000 TIM 1000
CMD aaa A_MTX 1 A_MTX 1
CMD bbb CMD aaa CMD aaa
CMD ccc CMD bbb CMD bbb
TIM 100000 CMD ccc CMD ccc
TIM 1000 TIM 100000 TIM 100000
CMD ddd A_MTX 0 A_MTX 0
… TIM 1000 TIM 1000
… A_MTX 1 A_MTX 1
… CMD ddd CMD ddd
… … …
MTX 1 MTX 1 MTX 1
… … …
TIM 110000 TIM 110000 TIM 110000
CMD xxx A_MTX 0 A_MTX 0
TIM 1000 CMD xxx A_TIM 2000
CMD aaa TIM 1000 A_MTX 1
CMD bbb A_MTX 1 CMD xxx
… A_TIM 110000

A_MTX 0
TIM 1000
MTX 1

3.4.3 VM Simulator
The simulator section of the compiler program, is a modified version of the OBS VM section,
the simulator control any “unprotected” CMD/RCMD instruction and output (on the out list
file) a timeline of the SS commands. Comment instructions:

COM comment string

inserted in the input program, are listed by the simulator as:

COM comment string [addr,n]

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 24 of 35

IFSI
CNRNote on SPIRE-DPU architecture

with addr = address of the next istruction
n = auto incrementing number counting # of comment occurrence.

In the appendix a test program compilation/simulation is provided.

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 25 of 35

IFSI
CNRNote on SPIRE-DPU architecture

3.5 HS_Task
This task collect science and HK data on the high speed I/F, format the data in “packet
transmission ready” and store the data on the right buffer.
In order to allow asynchronous collection of science, the 16 bit data words on the high speed
I/F are temporary stored on four 8Kword deep FIFOs, at a rate of 16 us per word.
The “half FIFO full” signal associated to each FIFO generate an interrupt (IRQ 0) which in
turn schedule the HS_Task (through a Virtuoso event) on the run queue.

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 26 of 35

IFSI
CNRNote on SPIRE-DPU architecture

D
P

U
 D

ata B
us

DRE Gate

Data

Clock

Rx (16 bit)

8 K
FIFO

MCE Gate

Data

Clock

Rx (16 bit)

8 K
FIFO

SCE Gate

Data

Clock

Rx (16 bit)

8 K
FIFO

Interrupt controller

F
IF

O
 half full

F
IF

O
 half full

F
IF

O
 half full

Data coming from FIFOs must be organized in frames, each frame consisting of a header
(stripped before transmission) followed by data.
The header must contains at least the number of words which follows and the ID of the frame.
Each frame is stored in a separate circular buffer depending on the frame ID.

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 27 of 35

IFSI
CNRNote on SPIRE-DPU architecture

Some frames might contain HK data, the HK will overwrite the appropriate locations of the
SPIRE common HK current buffer.

Data

…

Data

Data

Frame ID n

N words
Telemetry data

Data

…

Data

Data

Frame ID1

N words

Telemetry HK buffer

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 28 of 35

IFSI
CNRNote on SPIRE-DPU architecture

The presence of a TM data packet ready for transmission is signalled by a new entry (of type
RecDesStru) in the science record descriptor buffer.

Record descriptor buffer

Telemetry data buffers

CircBfStru

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 29 of 35

IFSI
CNRNote on SPIRE-DPU architecture

3.6 TMTC_Task

3.7 IDLE_Task

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 30 of 35

IFSI
CNRNote on SPIRE-DPU architecture

Appendix

Reason for a Virtual Machine
The driving requirement for the VM is the time sequence constraint between SS commands
during an observation. The time sequence jitter on the SS commands (LS I/F) goes from
seconds down to 10us.
Consider the following example:

Cmd1 @ T

Cmd2 @ T + t1 +-5ms = T2

Cmd3 @ T2 + t2 +- 100ms = T3

Cmd4 @ T3 + t3 +- 5us = T4

It is clear that, in a multi-task OS as Virtuoso, the only way to achieve the 10us and probably
the 10 ms constraint is via an Interrupt Serviced Routine (with a high priority interrupt). It is
also evident that once it has been decided to implement the interrupt environment, every
command in the sequence should be sent via interrupt, so that all the commands will have the
same (10 us) jitter in the time sequence.
The HW problem to generate the sequence of different period interrupts, is solved by using
the DPU programmable 32 bit (1 MHz clock) down counter. This down counter starts
decrementing its content from the last preset initial value, and generates an interrupt on zero
value. Then the counter restarts again the cycle, beginning from the last preset initial value
loaded before the zero count.
Now we have a mechanism, which forces the execution of a routine (ISR_3) at pre-defined
time intervals. Entering the routine, the relevant SS command must be sent. In order to
preserve the time jitter constraint, this command must be already prepared (in a table).
After the command is sent (written in the low speed serial output I/F), we might want to
change the down counter initial count for the next interrupt, the only time constraint now is to
exit from the ISR before the present terminal count. This new “initial count” value will be
stored in some table, let’s say we store this value in the same table with the command
sequence.
We can build a table as a sequence of two words: command and initial count, and perform
always the same two operations inside the ISR:

• Increment the table pointer and send the command stored at the current table location

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 31 of 35

IFSI
CNRNote on SPIRE-DPU architecture

• Increment the table pointer and preset the initial count stored at the current table
location

This scheme is not the most efficient in the case when a series of commands can be equally
spaced in time and use the same initial count with no need to rewrite it. Moreover we have to
disable/enable the LS_Task, depending on the interval time between the SS observation
commands (HK are collected via LS_Task), as an example we might decide that every time
the delay between two commands is grater than 10ms we want to enable LS_Task. So we
have to build a table that is interpreted inside the ISR: every time an interrupt occurs a number
of actions (table instructions beginning at the current pointer) is performed, the first one (time
critical) being a command to SS and the following being some type of DPU internal
commands.
Now we have come to a long table containing all the SS and DPU observation commands
already somehow interpreted by an OBS routine (ISR_3). The first thing to note is that the
commands are repeated in block as in a computer loop, so why not to add an DPU internal
loop command to the table? Well to do so we must also define some local variable (register
R[32]), then we could add other simple features like subroutine etc.
Ok we have come to a Virtual Machine implemented inside the ISR_3 routine.

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 32 of 35

IFSI
CNRNote on SPIRE-DPU architecture

Sample VM code
The following VM program (file name spire.vm) has been compiled with the command:

compiler o2 v1

;------------------------------------
; Case insensitive
; Comments begin with a ;
; Labels begin with a _ and are alone in a line
;------------------------------------

def timF 2000 ; Fast command sequence (2 ms)
def timS 100000 ; Slow command sequence (100 ms)
def CmdDCU 4 ; Address for DCU commands
def CmdMCU 5 ; Address for MCU commands
def CmdSCU 6 ; Address for SCU commands
def CmdBRC 7 ; Address for Broadcast commands
def HkDCU 0 ; Address for DCU commands
def HkMCU 1 ; Address for MCU commands
def HkSCU 2 ; Address for SCU commands

def r0val 0xa ; constants in dec or hex

TIM timS ; the optimiser 01 switch insert a MXT
RSET 0,r0val ; R[0]=0xa

; here the optimiser o2 switch take care of
; the TIM/MTX for the next two commands

rcmd 4,0xfff,0 ; command to addr 0 (MSbit of addr is cmd/hk)
cmd 5,0x55,0xffff ; command to addr 1 (MSbit of addr is cmd/hk)
RSET 0,5
RSET 1, 10
TIM timF
COM Calling _hksum with R[0]=5 and R[1]=10 ; comment line for the

simulator
call _hksub ; in the sub loop 6 times
RSET 0, 15
COM Calling _hksum with R[0]=15 and R[1]=10
call _hksub ; in the sub loop 10 times (R[1] limit

reached)
END

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 33 of 35

IFSI
CNRNote on SPIRE-DPU architecture

;--
; This loop is executed until the received hk (in the simulator
; is equal to R[31]) is greater than R[0], up to a maximum of R[1]
; times. The received hk in the simulator is R[31], this value is
; simply incremented.
; Local variable R[3] and R[2]
;--

ORG 100
_hkSub

Com This is a comment for the simulator
RSET 31,0 ; Simulator specific
RREQ 3,1 ; save max loop count in local var R[3]

_hkloop
rcmd HkSCU,0x123,31 ; HK req to addr SCU

;(MSbit of addr is cmd/hk)
nop ; must wait at least 2 ms (timF)

; to have the hk reply
TIM timS ; the optimiser insert a MXT
rinc 31 ; increment R[31]: simulator specific
read 2 ; HK (R[31] in the simulator) in R[2]
TIM timF ; the optimiser insert a MXT
RDEC 3 ; check for max loop
JPNZ 3, 2 ; skip if R[3] !=0
RET
rsgt 2,0 ; loop untill hk (R[2]=R[31]) <= R[0]
jmpr _hkloop ; next loop
RET

Here follows the Compiler /Simulator output stored in the default list file “list.txt”.
Note the A_TIM and A_MTX instructions inserted by the optimizer.

VM program file spire.vm
Optimisation level= 2
Start address (PC)= 0

Addr opCode Instruction
---- -------- ---------------------
 0 def timF 2000
 0 def timS 100000
 0 def CmdDCU 4
 0 def CmdMCU 5
 0 def CmdSCU 6
 0 def CmdBRC 7
 0 def HkDCU 0
 0 def HkMCU 1
 0 def HkSCU 2
 0 def r0val 0xa

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 34 of 35

IFSI
CNRNote on SPIRE-DPU architecture

 0 80186a0 TIM timS
 1 12000000 RSET 0 r0val
 2 a r0val
 3 80007d0 A_TIM 2000
 4 1000001 A_MTX 1
 5 4fff00 rcmd 4 0xfff 0
 6 80186a0 A_TIM 100000
 7 1000000 A_MTX 0
 8 80007d0 A_TIM 2000
 9 1000001 A_MTX 1
 10 d055ffff cmd 5 0x55 0xffff
 11 80186a0 A_TIM 100000
 12 1000000 A_MTX 0
 13 12000000 RSET 0 5
 14 5 5
 15 12000001 RSET 1 10
 16 a 10
 17 80007d0 TIM timF
 18 1000001 A_MTX 1
 19 Calling _hksum with R[0]=5 and R[1]=10
 19 30000064 call _hksub
 20 12000000 RSET 0 15
 21 f 15
 22 Calling _hksum with R[0]=15 and R[1]=10
 22 30000064 call _hksub
 23 50000000 END
 100 ORG 100
 100 _hkSub
 100 This is a comment for the simulator
 100 1200001f RSET 31 0
 101 0 0
 102 17030001 RREQ 3 1
 103 _hkloop
 103 21231f rcmd HkSCU 0x123 31
 104 2000000 nop
 105 80186a0 TIM timS
 106 1000000 A_MTX 0
 107 1000001f rinc 31
 108 a000002 read 2
 109 80007d0 TIM timF
 110 1000001 A_MTX 1
 111 11000003 RDEC 3
 112 25030002 JPNZ 3 2
 113 31000000 RET
 114 27020000 rsgt 2 0
 115 21fffff4 jmpr _hkloop
 116 31000000 RET

Herschel
Ref.:

Issue:
Draft 3.4

Date:
23.01.2002

Page:
Page 35 of 35

IFSI
CNRNote on SPIRE-DPU architecture

Begin simulation from t1= 0 up to t2= 100000000

 Time PC Command
 2000 5 cfff000a
 106000 10 d055ffff
Calling _hksum with R[0]=5 and R[1]=10 [19, 1]
This is a comment for the simulator [100, 1]
 210000 103 a1230000
 316000 103 a1230001
 422000 103 a1230002
 528000 103 a1230003
 634000 103 a1230004
 740000 103 a1230005
Calling _hksum with R[0]=15 and R[1]=10 [22, 1]
This is a comment for the simulator [100, 2]
 846000 103 a1230000
 952000 103 a1230001
 1058000 103 a1230002
 1164000 103 a1230003
 1270000 103 a1230004
 1376000 103 a1230005
 1482000 103 a1230006
 1588000 103 a1230007
 1694000 103 a1230008
 1800000 103 a1230009
Found END. Normal end of execution

Simulation: total No of errors: 0

