

SUBJECT: Operating the SPIRE Instrument

PREPARED BY: Sunil Sidher

DOCUMENT No: SPIRE-RAL-DOC-000768

ISSUE: 0.5 (DRAFT) **Date:** 31st May 2003

APPROVED BY:

Instrument Scientist (RAL) Bruce Swinyard	
DPU Engineer (IFSI) Riccardo Cerulli-Irelli	
DRCU Engineer (CEA) Christophe Cara	
MCU Engineer (LAM) Didier Ferrand	
ICC Development Manager (RAL) Ken King	
Instrument Development Manager (RAL) Eric Sawyer	

Distribution

Jean-Louis Auguerres	CEA, Saclay	
Christophe Cara	CEA, Saclay	
Riccardo Cerulli-Irelli	IFSI	
Didier Ferrand	LAM	
Hans-Gustav Floren	SO	
Anna Di Giorgio	IFSI	
Douglas Griffin	RAL	
Peter Hargrave	Cardiff	
Matt Griffin	Cardiff	
Ken King	RAL	
Tanya Lim	RAL	
Sergio Molinari	IFSI	
Goran Olofsson	SO	
Renato Orfei	IFSI	
David Smith	RAL	
Bruce Swinyard	RAL	

Change Record

ISSUE DATE

31st May 2003 0.5

Building Block sections split into two categories:

- Basic operating modes
- Observatory functions
Added definitions of basic operating modes

Updated definitions of the Photometer and Spectrometer Standby modes.

Table of Contents

1.	INTRODUCTION	
1.	INTRODUCTION	7
1.1	SCOPE	7
1.2	ASSUMPTIONS	
2.	DOCUMENTS	8
2.1	APPLICABLE DOCUMENTS	8
2.2	REFERENCE DOCUMENTS	8
3.	OBSERVATORY FUNCTIONS	9
3.1	Nomenclature	
3.2	STRUCTURE OF AN OBSERVATORY FUNCTION	10
3	.2.1 SUB-INST_STBY mode	10
3	.2.2 Building Block Definitions	
3	.2.3 SUB-INST_STBY	11
3	.2.4 Other Tasks	11
4.	MODE TRANSITIONS	
5.	PHOTOMETER OPERATIONS	
5.1	POF1: CHOP WITHOUT JIGGLING	13
5.2	POF2: SEVEN-POINT JIGGLE MAP	
5.3	POF3: N-POINT JIGGLE MAP	
5.4	POF4: RASTER MAP	
5.5	POF5: SCAN MAP WITHOUT CHOPPING	
5.6	POF6: SCAN MAP WITH CHOPPING	
5.7	POF7: PHOTOMETER PEAK-UP	
5.8	POF8: Photometer Calibrate	
6.	SPECTROMETER OPERATIONS	
6.1	SOF1: SPECTRUM OF POINT SOURCE (CONTINUOUS SCAN)	
6.2	SOF2: FULLY SAMPLED SPECTRAL MAP (CONTINUOUS SCAN)	
6.3		
6.4	SOF4: FULLY SAMPLED SPECTRAL MAP (STEP-AND-INTEGRATE)	
7.	BUILDING BLOCKS FOR THE SPIRE OPERATING MODES	
7.1	DPU_ON: SWITCH ON DPU (OFF TO INIT)	
	.1.1 Interface	
	.1.2 Implementation	
7.2	-	
	2.1 Interface	
	.2.2 Implementation	
7.3		
	3.1 Interface	
	.3.2 Implementation	
7.4	CREC_START: START COOLER RECYCLING (REDY TO CREC)	
	4.1 Interface	
	.4.2 Implementation CREC STOP: STOP COOLER RECYCLING (CREC TO REDY)	
7.5	_	
	.5.1 Interface	
7.6	PHOT STBY START: SWITCH FROM REDY TO PHOT STBY MODE	
	6.1 Interface	
/	.U.1 1111C1 1UCC	∠∪

7.7 SPEC_STBY_START: SWITCH FROM REDY TO SPEC_STBY MODE 23 7.7.1 Interface 23 7.7.2 Implementation 23 7.8 PHOT_DAQC: SET PHOTOMETER DATA ACQUISITION AND CONFIGURATION 25 7.8.1 Interface 25 7.8.2 Implementation 25 7.9 SPEC_DAQC: SET SPECTROMETER DATA ACQUISITION AND CONFIGURATION 27 7.9.1 Interface 27 7.9.2 Implementation 27 7.10 SCU: SCAL_OFF: SWITCH OFF SCAL 29 7.10.1 Interface 29 7.10.2 Implementation 29 7.11.1 PHOT_HDC RESET: RESET PHOTOMETER HARDWARE AND DATA CONFIGURATION 29 7.11.1 Interface 29 7.11.2 Implementation 29 7.12.1 Interface 29 7.12.2 Implementation 29 7.13 MCU: BSM_OFF: SWITCH OFF THE BSM 29 7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE M		7.6.2 Implementation	. 20
7.7.1 Interface 23 7.7.2 Implementation 23 7.8 PHOT DAQC: SET PHOTOMETER DATA ACQUISITION AND CONFIGURATION 25 7.8.1 Interface 25 7.8.2 Implementation 25 7.9 SPEC DAQC: SET SPECTROMETER DATA ACQUISITION AND CONFIGURATION 27 7.9.1 Interface 27 7.9.2 Implementation 27 7.10 SCU: SCAL OFF: SWITCH OFF SCAL 29 7.10.1 Interface 29 7.10.2 Implementation 29 7.11.1 PHOT_HDC_RESET: RESET PHOTOMETER HARDWARE AND DATA CONFIGURATION 29 7.11.1 Interface 29 7.11.2 Implementation 29 7.12.1 Interface 29 7.12.2 Implementation 29 7.13 MCU: BSM_OFF: SWITCH OFF THE BSM 29 7.13.1 Interface 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 8.1 BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP. CHOP THE BSM WHILE TAKING BDA DATA 30 8.1 Interface 31 8.2 PCAL: PHOTOMETER CALIBRATION WITH PCAL SOURCE 31 8.2.1 Implementation 32 8.4.2 Implementation			
7.7.2 Implementation			
7.8.1 Interface 25 7.8.2 Implementation 25 7.9 SPEC DAQC: SET SPECTROMETER DATA ACQUISITION AND CONFIGURATION 27 7.9.1 Interface 27 7.9.2 Implementation 27 7.10 SCU: SCAL OFF: SWITCH OFF SCAL 29 7.10.1 Interface 29 7.10.2 Implementation 29 7.11.1 PHOT HDC RESET: RESET PHOTOMETER HARDWARE AND DATA CONFIGURATION 29 7.11.1 Interface 29 7.11.2 Implementation 29 7.12.1 Interface 29 7.12.2 Inplementation 29 7.12.1 Interface 29 7.13.2 Implementation 29 7.13.1 MCU BSM OFF: SWITCH OFF THE BSM 29 7.13.2 Implementation 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 31 8.2.2 Implementation 30 8.2 PCAL: PLOTOMETER CALIBRATION WITH PCAL SOURCE 31		7.7.2 Implementation	. 23
7.8. 2 Implementation 25 7.9 SPEC_DAQC: SET SPECTROMETER DATA ACQUISITION AND CONFIGURATION 27 7.9.1 Interface 27 7.9.2 Implementation 27 7.10 SCU: SCAL_OFF: SWITCH OFF SCAL 29 7.10.1 Interface 29 7.10.2 Implementation 29 7.11.1 PHOT_HDC_RESET: RESET PHOTOMETER HARDWARE AND DATA CONFIGURATION 29 7.11.2 Implementation 29 7.11.2 Implementation 29 7.12.1 Interface 29 7.12.2 Implementation 29 7.13 MCU: BSM_OFF: SWITCH OFF THE BSM 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 7.15 SWITCH FROM SAFE TO ON MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 31 8.2.2 Implementation 30 8.2.2 Implementation 32 8.3.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 32 8.4.2 Implementation			
7.9 SPEC_DAQC: SET SPECTROMETER DATA ACQUISITION AND CONFIGURATION 27 7.9.1 Interface 27 7.9.2 Implementation 27 7.10 SCU: SCAL_OFF: SWITCH OFF SCAL 29 7.10.1 Interface 29 7.10.2 Implementation 29 7.11.1 Interface 29 7.11.1 Interface 29 7.11.2 Implementation 29 7.12.1 Interface 29 7.12.1 Interface 29 7.12.2 Implementation 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.13.1 Interface 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 31 8.2.1 Interface 31 8.2.2 Implementation 30 8.1.1 In		7.8.1 Interface	. 25
7.9.1 Implementation 27 7.9.2 Implementation 27 7.10.1 SCV SCAL OFF: SWITCH OFF SCAL 29 7.10.1 Interface 29 7.10.2 Implementation 29 7.11.1 Interface 29 7.11.2 Implementation 29 7.12.1 Interface 29 7.12.2 Implementation 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP. CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 31 8.1.2 Implementation 30 8.2.1 Interface 31 8.2.2 Implementation 31 8.3 PS		7.8.2 Implementation	. 25
7.9.2 Implementation 27 7.10 SCU: SCAL_OFF: SWITCH OFF SCAL 29 7.10.1 Interface 29 7.10.2 Implementation 29 7.11.1 Interface 29 7.11.2 Implementation 29 7.11.2 Implementation 29 7.12 SPEC HDC RESET: RESET SPECTROMETER HARDWARE AND DATA CONFIGURATION 29 7.12.1 Interface 29 7.12.2 Implementation 29 7.13 MCU: BSM_OFF: SWITCH OFF THE BSM 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 30 8.2.2 Implementation 30 8.2.1 Interface 31 8.2.1 Interface 31 8.2.2 Implementation 32 8.3 PSCAN: TAKE PHOTOMETE			
7.10 SCU: SCAL_OFF: SWITCH OFF SCAL			
7.10.1 Interface 29 7.10.2 Implementation 29 7.11 PHOT_HDC_RESET: RESET PHOTOMETER HARDWARE AND DATA CONFIGURATION 29 7.11.1 Interface 29 7.11.2 Implementation 29 7.12 SPEC_HDC_RESET: RESET SPECTROMETER HARDWARE AND DATA CONFIGURATION 29 7.12.1 Interface 29 7.12.2 Implementation 29 7.13 MCU: BSM_OFF: SWITCH OFF THE BSM 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 7.15 SWITCH FROM SAFE TO ON MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 30 8.1.2 Implementation 30 8.2 PCAL: PHOTOMETER CALIBRATION WITH PCAL SOURCE 31 8.2.1 Interface 31 8.3.2 Implementation 32 8.4.1 Interface 31 8.3.2 Implementation 32 8.4.1 Interface 31 8.5.2 Implementation 32 8.5.1 Interface 32 <td< td=""><td></td><td></td><td></td></td<>			
7.10.2 Implementation 29 7.11 PHOT HDC RESET: RESET PHOTOMETER HARDWARE AND DATA CONFIGURATION 29 7.11.1 Interface 29 7.12.2 SPEC HDC RESET: RESET SPECTROMETER HARDWARE AND DATA CONFIGURATION 29 7.12.1 Interface 29 7.12.2 Implementation 29 7.13 MCU: BSM_OFF: SWITCH OFF THE BSM 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 30 8.1.2 Implementation 30 8.2 PCAL: PHOTOMETER CALIBRATION WITH PCAL SOURCE 31 8.2.1 Interface 31 8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.5.2 Implementation 32 8.5.1 Interface 32 8.5.2 Implementation 32 8.5.1 Interface 32 8.5.2			
7.11 PHOT HDC RESET: RESET PHOTOMETER HARDWARE AND DATA CONFIGURATION 29 7.11.1 Interface 29 7.11.2 SPEC_HDC RESET: RESET SPECTROMETER HARDWARE AND DATA CONFIGURATION 29 7.12.1 Interface 29 7.12.2 Implementation 29 7.13 MCU: BSM_OFF: SWITCH OFF THE BSM 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 30 8.2.1 Implementation 36 8.2.2 Implementation 36 8.2.2 Implementation 31 8.3.1 Interface 31 8.3.2 Implementation 31 8.3.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.5.2 Implementation 32 8.5.1 Interface 32 8.5.2 Implementation 32 8.6 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32			
7.11.1 Interface 29 7.11.2 Implementation 29 7.12 SPEC_HDC_RESET: RESET SPECTROMETER HARDWARE AND DATA CONFIGURATION 29 7.12.1 Interface 29 7.12.2 Implementation 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 7.15 SWITCH FROM SAFE TO ON MODE 30 8. BULDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 30 8.1.2 Implementation 30 8.2 PCAL: PHOTOMETER CALIBRATION WITH PCAL SOURCE 31 8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 31 8.4.2 Implementation 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.2 Implementation 33 </td <td></td> <td>7.10.2 Implementation</td> <td>. 29</td>		7.10.2 Implementation	. 29
7.11.2 Implementation 29 7.12 SPEC HDC RESET: RESET SPECTROMETER HARDWARE AND DATA CONFIGURATION 29 7.12.1 Interface 29 7.13 MCU: BSM_OFF: SWITCH OFF THE BSM 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 7.15 SWITCH FROM SAFE TO ON MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 30 8.1.2 Implementation 30 8.2.1 Interface 31 8.2.1 Interface 31 8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 31 8.3.2 Implementation 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.4.1 Interface 32 8.4.2		-	
7.12 SPEC HDC_RESET: RESET SPECTROMETER HARDWARE AND DATA CONFIGURATION .29 7.12.1 Interface .29 7.13 MCU: BSM_OFF: SWITCH OFF THE BSM .29 7.13.1 Interface .29 7.13.2 Implementation .29 7.14 SWITCH FROM ANY MODE TO SAFE MODE .30 7.15 SWITCH FROM SAFE TO ON MODE .30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES .30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA .30 8.1.1 Interface .30 8.1.2 Implementation .30 8.2.1 Interface .31 8.2.2 Implementation .31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING .31 8.3.1 Interface .31 8.4.2 Implementation .32 8.4.3 Interface .32 8.4.1 Interface .32 8.4.2 Implementation .32 8.5.1 Interface .32 8.5.2 Implementation .32			
7.12.1 Interface 29 7.12.2 Implementation 29 7.13 MCU: BSM_OFF: SWITCH OFF THE BSM 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 7.15 SWITCH FROM SAFE TO ON MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 30 8.1.2 Implementation 30 8.2 PCAL: PHOTOMETER CALIBRATION WITH PCAL SOURCE 31 8.2.1 Interface 31 8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 31 8.3.2 Implementation 32 8.4 INGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.5.2 Implementation 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_SCAN: SCAN: THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 33 8.6.2 Implementation 33			
7.12.2 Implementation 29 7.13 MCU: BSM_OFF: SWITCH OFF THE BSM 29 7.13.1 Interface 29 7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 7.15 SWITCH FROM SAFE TO ON MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 30 8.1.2 Implementation 36 8.2 PCAL: PHOTOMETER CALIBRATION WITH PCAL SOURCE 31 8.2.1 Interface 31 8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 31 8.3.2 Implementation 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33			
7.13 MCU: BSM_OFF: SWITCH OFF THE BSM 29 7.13.1 Interface 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE. 30 7.15 SWITCH FROM SAFE TO ON MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA. 30 8.1.1 Interface 30 8.1.2 Implementation 30 8.2 PCAL: PHOTOMETER CALIBRATION WITH PCAL SOURCE 31 8.2.1 Interface 31 8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 31 8.3.2 Implementation 32 8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 33 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIR			
7.13.1 Interface 29 7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 7.15 SWITCH FROM SAFE TO ON MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 30 8.1.2 Implementation 30 8.2 PCAL: PHOTOMETER CALIBRATION WITH PCAL SOURCE 31 8.2.1 Interface 31 8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 31 8.3.2 Implementation 32 8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33 <td></td> <td></td> <td></td>			
7.13.2 Implementation 29 7.14 SWITCH FROM ANY MODE TO SAFE MODE 30 7.15 SWITCH FROM SAFE TO ON MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 36 8.1.2 Implementation 30 8.2 PCAL: PHOTOMETER CALIBRATION WITH PCAL SOURCE 31 8.2.1 Interface 31 8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 31 8.3.2 Implementation 32 8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33			
7.14 SWITCH FROM ANY MODE TO SAFE MODE. 30 7.15 SWITCH FROM SAFE TO ON MODE. 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES. 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA. 30 8.1.1 Interface. 30 8.1.2 Implementation. 30 8.2.1 Interface. 31 8.2.2 Implementation. 31 8.3.1 Interface. 31 8.3.2 Implementation. 31 8.3.1 Interface. 31 8.3.2 Implementation. 32 8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION. 32 8.4.1 Interface. 32 8.4.2 Implementation. 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA. 32 8.5.1 Interface. 33 8.5.2 Implementation. 33 8.6 SPEC_STEP: STEP THE FTS MIRROR. 33 8.6.1 Interface. 33 8.6.2 Implementation. 33 8.6.2 <td< td=""><td></td><td></td><td></td></td<>			
7.15 SWITCH FROM SAFE TO ON MODE 30 8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA 30 8.1.1 Interface 30 8.1.2 Implementation 30 8.2 PCAL: PHOTOMETER CALIBRATION WITH PCAL SOURCE 31 8.2.1 Interface 31 8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 31 8.3.2 Implementation 32 8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5.1 Interface 32 8.5.2 Implementation 32 8.5.2 Implementation 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 In		7.13.2 Implementation	. 29 30
8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES 30 8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA. 30 8.1.1 Interface			
8.1 CHOP: CHOP THE BSM WHILE TAKING BDA DATA. 30 8.1.1 Interface	8		
8.1.1 Interface 30 8.1.2 Implementation 30 8.2 PCAL: PHOTOMETER CALIBRATION WITH PCAL SOURCE 31 8.2.1 Interface 31 8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 31 8.3.2 Implementation 32 8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33	· ·		
8.1.2 Implementation 30 8.2 PCAL: PHOTOMETER CALIBRATION WITH PCAL SOURCE 31 8.2.1 Interface 31 8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 31 8.3.2 Implementation 32 8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL: FOR FTS 33 8.7.1 Interface 33			
8.2 PCAL: PHOTOMETER CALIBRATION WITH PCAL SOURCE 31 8.2.1 Interface 31 8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 31 8.3.2 Implementation 32 8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33			
8.2.1 Interface 31 8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 31 8.3.2 Implementation 32 8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33			
8.2.2 Implementation 31 8.3 PSCAN: TAKE PHOTOMETER DATA WHILE THE TELESCOPE IS SCANNING 31 8.3.1 Interface 31 8.3.2 Implementation 32 8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33			
8.3 PSCAN: Take Photometer data while the telescope is scanning 31 8.3.1 Interface 31 8.3.2 Implementation 32 8.4 JIGGLE: Move the BSM to a given Jiggle Position 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN the FTS while taking detector data 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: Step the FTS mirror 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL for FTS 33 8.7.1 Interface 33			
8.3.2 Implementation 32 8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33			
8.4 JIGGLE: MOVE THE BSM TO A GIVEN JIGGLE POSITION 32 8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33		8.3.1 Interface	. 31
8.4.1 Interface 32 8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33		8.3.2 Implementation	. 32
8.4.2 Implementation 32 8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33			
8.5 SPEC_SCAN: SCAN THE FTS WHILE TAKING DETECTOR DATA 32 8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33			
8.5.1 Interface 32 8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33			
8.5.2 Implementation 33 8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33		-	
8.6 SPEC_STEP: STEP THE FTS MIRROR 33 8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33		V	
8.6.1 Interface 33 8.6.2 Implementation 33 8.7 SPEC_PCAL: PCAL FOR FTS 33 8.7.1 Interface 33		1	
8.6.2 Implementation		-	
8.7 SPEC_PCAL: PCAL FOR FTS			
8.7.1 Interface		T	
· ·		-	
o./.2			
		o./.2 Implementation	. 54

Glossary

AOT Astronomical Observation Template

BSM Beam Steering Mirror DCU Detector Control Unit DPU Digital Processing Unit

DRCU Detector Readout and Control Unit

FCU Focal Control Unit

FTS Fourier Transform Spectrometer

HK Housekeeping
IF Instrument Function
MCU Mechanism Control Unit
MRS MagnetoResistive Sensor
OBS On-Board Software

PCAL Internal calibrator for the Photometer POF Photometer Observatory Function

S/C Spacecraft

SCAL Internal calibrator for the FTS SCU Sub-system Control Unit SMEC Spectrometer Mechanism

SOF Spectrometer Observatory Function

SPIRE Spectral and Photometric Imaging Receiver

1. Introduction

The document "Operating Modes for the SPIRE Instrument" [AD-1] describes the instrument operating modes required to implement the types of observations for realising the science objectives of SPIRE.

The purpose of this document is to provide a description of the set of SPIRE instrument commands to be used in the Herschel ground segment and to be executed by the On-board Software (OBS) in order to carry out science observations. A typical science observation with SPIRE will consist of a number of Observatory Functions executed sequentially. An Observatory Function will itself consist of Instrument Functions, Data Configurations and S/C functions. Each component of an Observatory Function will be interpreted and expanded by the OBS into individual sub-system level commands before being sent to the appropriate DRCU sub-unit (viz. DCU, MCU and SCU).

This document also describes the types of science telemetry that needs to be generated in various operating modes. The actual structure and contents of the SPIRE telemetry packets are covered in [RD-4].

1.1 Scope

The current document only discusses those instrument commands required for implementation of the Observatory Functions as described in [AD-1]. Future versions will describe the complete set of instrument operations, such as cooler recycle, memory checking and the switching between other modes. It has been found that the implementation of these commands may place requirements on the DRCU-DPU interface and so this preliminary version of the document is issued in order to ensure that these requirements are considered.

In this document the elaboration of Observatory Functions [AD-1] is confined to just the Instrument Functions and Data Configurations. The Spacecraft Functions necessary for the definition and execution of these Observatory Functions are identified and named, but not discussed here and it is assumed that they will be implemented as described in the Annexe "FIRST Pointing Modes" of [AD-3].

1.2 Assumptions

- For photometry observations all chop-throws will be performed in the Y direction. We assume that it will not be possible to change the orientation of the S/C arbitrarily to allow observers to specify their own chop positions on the sky (e.g. in terms of RA and Dec).
- At present there are no anomaly actions defined for the failure of an Observatory Function.
- It is further assumed that the execution of OBS commands will be independent of spacecraft triggers.
- The ISO observing strategy led to internal calibration measurements being routinely performed during each individual observation. A similar approach is also available for SPIRE observations but the Observatory Functions are designed in such a way that these calibrations can be performed outside the context of an observation. Consequently separate Observatory Functions exist for calibration.

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT)

Date: 31st May 2003

Page: 8 of 34

2. DOCUMENTS

2.1 Applicable Documents

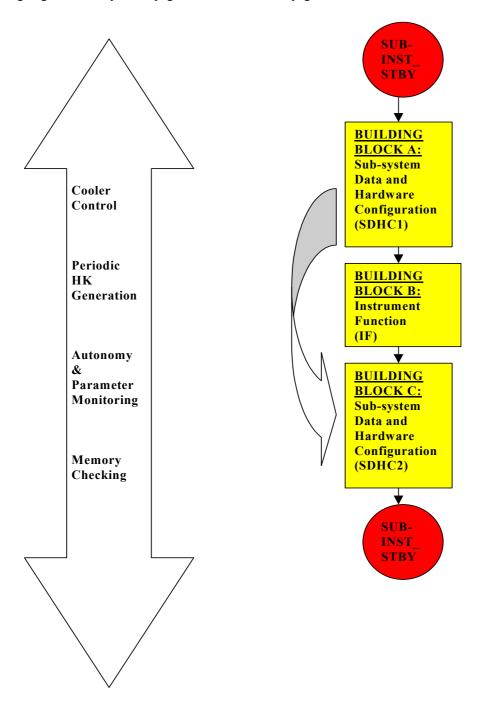
AD-1	Operating Modes for	SPIRE-RAL-	3.0	4 th January 2002
	the SPIRE	DOC-000320		
	instrument			
AD-2	Herschel/Planck	SCI-PT-ICD-	3 draft 6	24 th January 2003
	Packet Structure	07527		
	Interface Control			
	Document			
AD-3	Herschel/Planck	SCI-PT-IIDA-	2/0	31 st July 2001
	Instrument Interface	04624		
	Document (IID Part			
	A)			

2.2 Reference Documents

RD-1	DRCU/DPU	Sap-SPIRE-CCa-	1.0	14 th February 2003
	Interface Control	076-02		_
	Document			
RD-2	MCU/DCU [sic]	LAM/ELE/SPI/01	3.0	15 th January 2003
	Command List ICD	1011		
	and User Manual			
RD-3	SPIRE Design	SPIRE-RAL-PRJ-	0.1	1 st Sept 2000
	Description	000620		
RD-4	SPIRE Data	SPIRE-RAL-PRJ-	1.0	15 th Jan 2003
	Interface Control	001078	(Draft 2)	
	Document			
RD-5	Email from			28 th May 2003
	Christophe Cara on			
	DRCU switch-on			
RD-6	Subsystem reactions	SPIRE-RAL-	Issue 1	1 st April 2003
	for specification of	NOT-00???		
	the Instrument			
	Simulator			

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-


000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003

Page: 9 of 34

3. OBSERVATORY FUNCTIONS

The detailed structure of an Observatory Function is illustrated schematically in Figure 1, with the flow of execution going from the top of the page to the bottom of the page.

Figure 1: Structure of a SPIRE Observatory Function. The flow of execution is from top to bottom.

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003 **Page:** 10 of 34

3.1 Nomenclature

- SPIRE Observatory Functions are designed to have all the functionality needed to perform complete astronomical observations (viz. AOTs) with the Photometer or the Spectrometer, including internal calibration. These Observatory Functions will consist of a sequence of Building Blocks, which can in principle comprise of both S/C and instrument commands. A BB is the key component of an Observatory Function like Photometer chopping, FTS scanning or internal calibration. In the Herschel ground segment each Observatory Function will have an Observation Identifier (ObsId) associated it.
- Each rectangular block in the diagram represents a BB. In the ground segment each BB has a BB Identifier (BBId) associated with it which simplifies the task of relating the down-linked telemetry with up-linked telecommands.
- Separate Observatory Functions are also available for performing internal calibration outside the context of an astronomical observation.
- Each BB includes sending commands to the DRCU sub-units, i.e. DCU, MCU and SCU. The sub-unit commands listed here have been take from [RD-1] where possible. These commands are prefixed with the name of the intended recipient of the DRCU sub-unit, e.g. DCU: SetPhotoBiasFreq.
- Parameters which the DPU has to set up are prefixed with the letters 'DPU'. DPU:SampleCount, for example, could be used by the OBS to tag sample numbers to detector data as received from the DCU.
- The BBs referring to S/C functions such as nodding, raster mapping and line scanning could span one or more instrument building blocks or may even last the duration of an Observatory Function.

3.2 Structure of an Observatory Function

A brief explanation of all the constituent steps of an Observatory Function, as shown in Figure 1, is now given.

3.2.1 SUB-INST STBY mode

This is the assumed standby state of the instrument at the start of an Observatory Function. For observations with the Photometer SPIRE will start and end in the PHOT STBY mode whilst for Spectrometer observations it will start and end in the SPEC_STBY mode. The instrument will switch from REDY to either PHOT STBY or SPEC STBY before the start of an Observatory Function. In order to maximise observation efficiency and to minimise unnecessary switching of instrument states it is desirable to group together observations according to sub-instrument in use, i.e. Photometer or Spectrometer.

3.2.2 Building Block Definitions

As shown in Figure 1, and as explained below, each Observatory Function could potentially consist of three different types of Building Blocks for each type of instrument operation, i.e. BBs of types A, B and C. If an observation was to consist of a Photometer internal calibration called PCAL and Photometer chopping operation called CHOP then the Observatory Function could comprise the BBs shown in Figure 2.

PCAL A PCAL B PCAL C CHOP A CHOP B	СНОР С
------------------------------------	--------

Figure 2: An example Observatory Function showing the component Building Blocks

BBs of type B will always exist whereas types A and C will depend on the kind of operation to be performed with the instrument. All the SPIRE BB interface definitions and implementation commands are described in Section 7.

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

0.5 (DRAFT) **Issue:** 31st May 2003 Date: 11 of 34

Page:

3.2.2.1 Building Block A: Sub-system Data and Hardware Configuration (SDHC1)

This BB is designed to

- select the housekeeping parameters to be sampled and their sampling rates
- configure the sub-systems for the Instrument Function to be executed
- switch on power to the mechanisms or sub-systems needed for the execution of the Instrument Function

For example, we may need to set up the instrument for a Photometer internal calibration measurement or for chop operations.

3.2.2.2 Building Block B: Instrument Function (IF)

This BB covers the instrument operations that have to be performed to carry out the actual scientific measurement part of the Observatory Function, including any internal calibration. A Photometer Observatory Function may consist of PCAL for performing a Photometer internal calibration measurement and CHOP for Photometer chop operations.

3.2.2.3 Building Block C: Sub-system Data and Hardware Configuration (SDHC2)

Sets up the data and hardware configuration of the instrument prior to the switching off of some mechanisms. The sampling rates of the detectors and the position of a mechanism can be selected here. This BB involves configuring the instrument for the end of an Observatory Function. The switching-off of power to the appropriate mechanisms also happens here.

3.2.3 SUB-INST STBY

The instrument ends up in the sub-instrument STBY mode of the Observatory Function, i.e. PHOT STBY or SPEC STBY.

3.2.4 Other Tasks

During the execution of an observatory function there will be a number of other tasks which will be active throughout. These are also shown in Figure 1 and include:

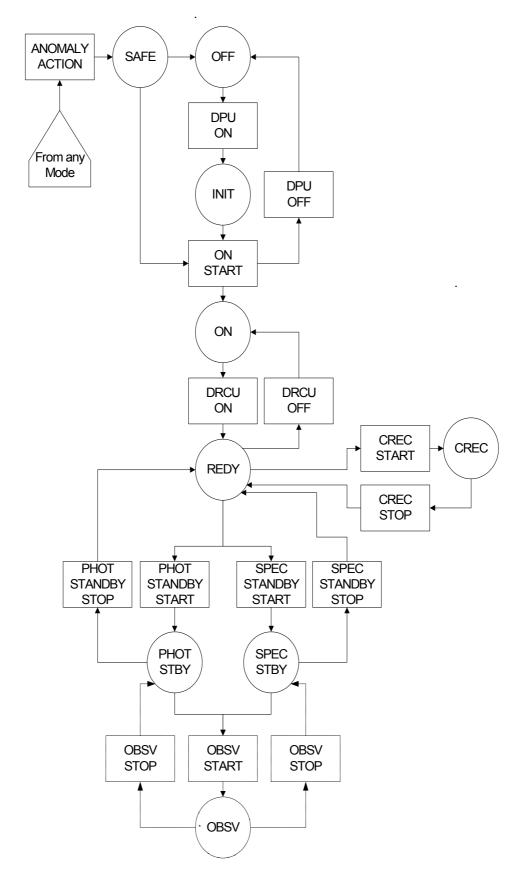
- Active cooler control
- Periodic HK generation
- Monitoring of parameters
- Memory checking

4. MODE TRANSITIONS

Figure 3 shows a diagram of the SPIRE operating modes (same as Figure 3-1 in [AD-1]) and the various procedures for switching between these modes. As stated earlier the instrument will switch from the Ready mode (REDY) to Photometer standby (PHOT STBY) or Spectrometer standby (SPEC STBY) mode before the execution of Observatory Functions. The generic Observe mode (OBSV) in this figure corresponds to any one of the Observatory Functions to be discussed in Sections 5 and 6.

SPIRE

Project Document


Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003

Page: 12 of 34

Figure 3: Logical transition flow between SPIRE operating modes. This diagram is taken from [AD-1].

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003 **Page:** 13 of 34

5. PHOTOMETER OPERATIONS

5.1 POF1: Chop Without Jiggling

This is the simplest of the Photometer Observatory Functions. Its structure is expected to become a key component of other POFs, to be discussed later in this document. The high level operations to be performed in POF1 are as follows:

- 1) **TPOINT:** Point the telescope at the astronomical source
- 2) **PHOT DAQC:** Set the Photometer Data Acquisition configuration
- 3) **PCAL:** Internally calibrate the Photometer *if necessary*
- 4) CHOP: Perform a series of chop cycles on the source while taking BDA data
- 5) **TNOD:** Nod the telescope and wait to settle
- 6) Repeat steps 4-5 as necessary
- 7) **PCAL:** Internally calibrate the Photometer *if necessary*
- 8) Repeat steps 4-7 as required
- 9) PHOT_SDHC_RESET: Reset the Photometer Data and Hardware Configuration

where **TPOINT**, **PHOT_DAQC**, **PCAL**, etc are the BBs in this POF. This scenario assumes that the BSM does not have to be switched off for PCAL operations (RD-3) and that Photometer calibration can be performed in the context of an astronomical observation.

- The OBS has to keep track of the number of chop cycles and the number of nod cycles.
- It is expected that the BDA data samples will be labelled with the sample number by the DCU.
- How do we select parameters to be sampled from SCU? Can they also be labelled with the sample number within the frame?

5.2 POF2: Seven-Point Jiggle Map

POF2 is intended for observing isolated compact sources with inaccurate co-ordinates or if the telescope pointing proves to be unreliable. In principle this POF should simply consist of POF1 being executed at each of the seven jiggle positions. It is envisaged that the jiggle sequence will be repeated a number of times to build up the required integration time. This is preferable to just performing a large number of chop cycles at each jiggle position and only visiting each jiggle position once. The order in which the jiggle positions are to be visited is TBD. (One possibility being discussed is that the BSM will return to the central jiggle position after visiting each of the other six jiggle positions). The parameters for the map will be read from a jiggle table stored in the OBS. The general sequence of steps is as follows:

- 1) **TPOINT:** Point the telescope at the astronomical source
- 2) **PHOT_DAQC:** Set the Photometer Data Acquisition configuration
- 3) **PCAL:** Internally calibrate the Photometer *if necessary*
- 4) Perform seven-point jiggle map
 - **JIGGLE:** Move the BSM to ith jiggle position (initially i=1)
 - **CHOP:** Perform a series of chop cycles on the source (as in POF1)
 - Increment jiggle position number
 - Repeat these steps in 4) for all seven jiggle positions
- 5) **PCAL:** Internally calibrate the Photometer *if necessary*
- 6) Repeat steps 4-5 as many times as the jiggle sequence is to be repeated
- 7) **TNOD:** Nod the telescope and wait to settle
- 8) **PCAL:** Internally calibrate the Photometer *if necessary*
- 9) Repeat steps 4-8 as many times as necessary
- 10) PHOT_SDHC_RESET: Reset the Photometer Data and Hardware Configuration
- It is assumed that the number of chop cycles will be the same at each jiggle position.
- The OBS has to keep track of the jiggle position number, the jiggle cycle sequence number, the chop cycle number (at each jiggle position) and the number of nod cycles (at each jiggle cycle sequence).

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

0.5 (DRAFT) Issue: 31st May 2003 Date: 14 of 34

Page:

It will probably not be necessary for the Photometer internal calibrator to be flashed for each jiggle position because [AD-1] states that the Observatory Function for PCAL (see POF8 below) will be executed at an interval of an hour or more. The above sequence allows the option of operating PCAL more flexibly if desired.

5.3 POF3: n-Point Jiggle Map

It is assumed that the sequence of steps in this POF is the same as for POF2.

- 1) **TPOINT:** Point the telescope at the astronomical source
- 2) **PHOT DAOC:** Set the Photometer Data Acquisition configuration
- 3) **PCAL:** Internally calibrate the Photometer *if necessary*
- 4) Perform n-point jiggle map
 - **JIGGLE:** Move the BSM to ith jiggle position (initially i=1)
 - **CHOP:** Perform a series of chop cycles on the source (as in POF1)
 - Increment jiggle position number
 - Repeat these steps in 4) for all n jiggle positions
- 5) **PCAL:** Internally calibrate the Photometer if necessary
- 6) Repeat steps 4-5 as many times as the jiggle sequence is to be repeated
- 7) **TNOD:** Nod the telescope and wait to settle
- 8) **PCAL:** Internally calibrate the Photometer if necessary
- 9) Repeat steps 4-8 as many times as necessary
- 10) **PHOT SDHC RESET:** Reset the Photometer Data and Hardware Configuration
 - We assume that the number of chop cycles will be the same at each jiggle position.
 - The OBS has to keep track of the jiggle position number, the jiggle cycle sequence number, the chop cycle number (at each jiggle position) and the number of nod cycles (at each jiggle cycle sequence).
 - It will probably not be necessary for the Photometer internal calibrator to be flashed for each jiggle position because [AD-1] states that the Observatory Function for PCAL (see POF8 below) will be executed at an interval of an hour or more. The above sequence allows the option of operating PCAL more flexibly if desired.

5.4 POF4: Raster Map

A raster map is simply a rectangular grid of several n-Point Jiggle Maps (POF3) interleaved with Photometer internal calibrator flashes. The scenario set out below assumes that each raster point in the map may be visited more than once by simply repeating TRASTER, the telescope raster BB as specified in [AD-3]. The BSM is used to chop in the Y direction, which may not necessarily be perpendicular to the lines in the raster map.

- 1) **PHOT DAQC:** Set the Photometer Data Acquisition configuration
- 2) TRASTER: Perform a raster map with the telescope
- 3) For each raster point in the map perform the following steps
 - **DPU: WAIT:** Wait for the telescope to reach raster point a)
 - b) **PCAL:** Internally calibrate the Photometer *if necessary*
 - **JIGGLE:** Move the BSM to ith jiggle position (initially i=1) c)
 - **CHOP:** Perform a series of chop cycles on the source (as in POF1) d)
 - Increment jiggle position number e)
 - f) Repeat steps c) to d) for all n jiggle positions
 - Repeat steps c) to f) as many times as the jiggle sequence is to be repeated at each raster point g)
 - **TNOD:** Nod the telescope and wait to settle h)
 - **PCAL:** Internally calibrate the Photometer if necessary i)
 - Repeat steps c) to g) at the nod position as necessary
- 4) Repeat steps 2) and 3) if necessary
- 5) **PCAL:** Internally calibrate the Photometer if necessary
- 6) PHOT SDHC RESET: Reset the Photometer Data and Hardware Configuration
- For each raster point the OBS has to keep track of the jiggle position number, the jiggle cycle sequence number, the chop cycle number (at each jiggle position) and the number of nod cycles (at each jiggle cycle sequence).

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003

Page: 15 of 34

5.5 POF5: Scan Map Without Chopping

A scan map without chopping is a continuous map of a region of the sky over a number of lines on the sky interleaved with Photometer internal calibrator flashes. No spacecraft Nodding is performed. In the following scenario it is assumed that scan map may be repeated a number of times.

- 1) **PHOT_DAQC:** Set the Photometer Data Acquisition configuration
- 2) TSCAN: Perform line scans on the sky using the telescope
- 3) **PCAL:** Internally calibrate the Photometer *if necessary*
- 4) **PSCAN:** Ask the DCU to collect science data while the telescope scans along a line on the sky
- 5) Increment line scan number after each line scan
- 6) **DPU: WAIT:** Wait for TBS time until the telescope is on the next line
- 7) Repeat steps 4-6 for all lines
- 8) **PCAL:** Internally calibrate the Photometer *if necessary*
- 9) Repeat steps 2-8 for as many times as necessary for the line scan map.
- 10) PHOT SDHC RESET: Reset the Photometer Data and Hardware Configuration
- The OBS has to keep track of the line scan count.
- The BSM may need to be commanded to the nominal "rest" position even for this POF because there needs to be active control over its position in case it starts to drift.
- It is assumed that the Photometer internal calibrator could be flashed at the start of the observation and then after the telescope has visited all the lines of the line scan at least once. [AD-1] states that POF8 will be executed at an interval of an hour or more.

5.6 POF6: Scan Map With Chopping

A scan map with chopping (for high 1/f noise) is a continuous map of a region of the sky over a number of lines on the sky interleaved with Photometer internal calibrator flashes. This POF is similar to POF1. The BSM is used to chop in the Y direction, which may not necessarily be in a direction perpendicular to the lines in the scan map.

- 1) **PHOT DAQC:** Set the Photometer Data Acquisition configuration
- 2) TSCAN: Perform line scans on the sky using the telescope
- 3) **PCAL:** Internally calibrate the Photometer *if necessary*
- 4) **CHOP:** Perform a series of chop cycles on the source for the duration of scan along line l
- 5) Increment line scan number
- 6) **DPU: WAIT:** Wait for TBS time until the telescope is on the next line
- 7) Repeat steps 4-6 for all lines
- 8) **PCAL:** Internally calibrate the Photometer *if necessary*
- 9) Repeat steps 2-8 for as many times as necessary for the line scan map.
- 10) PHOT_SDHC_RESET: Reset the Photometer Data and Hardware Configuration
- The OBS has to keep track of the line scan count and the chop cycle count.
- It is assumed that the Photometer internal calibrator could be flashed at the start of the observation and then after the telescope has visited all the lines of the line scan at least once. [AD-1] states that POF8 will be executed at an interval of an hour or more.

5.7 POF7: Photometer Peak-Up

TBW

5.8 POF8: Photometer Calibrate

A Photometer calibration takes place with the power to the BSM switched on but with the BSM not operating (i.e. the BSM is not chopping or jiggling) so that the only modulation of the detectors is as a consequence of the Photometer Calibrator (PCAL). It is assumed that the instrument will already be in PHOT_STBY mode with the Photometer detector arrays switched on.

1) **PHOT_DAQC:** Set the Photometer Data Acquisition configuration

Operating the SPIRE Instrument

SPIRE-RAL-DOC-Ref:

000768

0.5 (DRAFT) **Issue: Date:** 31st May 2003 16 of 34

Page:

2) PCAL_ON: Switch on PCAL subsystem

- 3) **DPU: WAIT:** Wait some TBS time
- 4) Reset counter for PCAL sequence
- 5) PCAL: Perform PCAL excitation sequence
- 6) **DPU: WAIT:** Wait some TBS time
- 7) Increment counter for PCAL sequence
- 8) Repeat steps 5-7 as necessary
- 9) **PCAL OFF:** Switch off PCAL subsystem
- 10) **DPU: WAIT:** Wait TBS time before resuming operations
- 11) **PHOT SDHC RESET:** Reset the Photometer Data and Hardware Configuration

6. SPECTROMETER OPERATIONS

6.1 SOF1: Spectrum of Point Source (Continuous Scan)

It is assumed that the instrument will be in SPEC_STBY mode initially with the Spectrometer BDAs, SMEC and SCAL switched on.

- 1. **TPOINT:** Point the telescope at the astronomical source
- **DPU: WAIT:** Wait for some TBS time to allow the SMEC to stabilise.
- 3. **SPEC DAQC:** Set the Spectrometer Data Acquisition configuration (see Section 7.9)
- 4. SPEC_PCAL: Internally calibrate the Spectrometer using the PCAL source as necessary
- 5. Initialise FTS scan counter
- 6. **SPEC_SCAN:** Perform an FTS scan
- 7. Increment FTS scan counter
- 8. Repeat steps 6-7 as required
- 9. **SPEC PCAL:** Internally calibrate the Spectrometer using the PCAL source as necessary
- 10. **SPEC HDC RESET:** Reset the Spectrometer Data and Hardware Configuration

6.2 SOF2: Fully Sampled Spectral Map (Continuous Scan)

It is assumed that the instrument will be in SPEC STBY mode initially with the Spectrometer BDAs and SCAL switched on.

- 1. **TPOINT:** Point the telescope at the astronomical source
- 2. **DPU: WAIT:** Wait for some TBS time to allow the SMEC to stabilise.
- 3. **SPEC DAQC:** Set the Spectrometer Data Acquisition configuration (see Section 7.9)
- 4. **SPEC PCAL:** Internally calibrate the Spectrometer using the PCAL source *as necessary*
- 5. Make a fully sampled spectral map
 - Initialise the jiggle position counter a)
 - **JIGGLE:** Move the BSM to ith jiggle position (Initially i=1) b)
 - Initialise FTS scan counter c)
 - SPEC SCAN: Perform an FTS scan d)
 - Increment FTS scan counter e)
 - Repeat steps d) and e) as many times as required
 - Repeat steps b) to f) for the n jiggle positions
- 6. Repeat all the steps in 5) for as many jiggle cycles as necessary
- 7. **SPEC PCAL:** Internally calibrate the Spectrometer using the PCAL source *as necessary*
- 8. **SPEC HDC RESET:** Reset the Spectrometer Data and Hardware Configuration

6.3 SOF3: Spectrum of Point Source (Step-and-Integrate)

This Observatory Function is similar to SOF1, except that here the FTS mirror is stepped to a given position and the BSM used to perform a number of chop cycles between two positions on the sky. This process is repeated for all FTS mirror positions to build up a complete scan. The use of SCAL is not necessary for this Observatory Function.

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003

Page: 17 of 34

- 1) **TPOINT:** Point the telescope at the astronomical source
- 2) SPEC DAQC: Set the Spectrometer Data Acquisition configuration (see Section 7.9)
- 3) SPEC_PCAL: Internally calibrate the Spectrometer using the PCAL source as necessary
- 4) Perform a spectral scan in step-and-integrate mode:
 - a) Initialise FTS scan counter
 - b) **SPEC STEP:** Step the FTS mirror to required position
 - c) **CHOP:** Perform a series of chop cycles from given FTS mirror position
 - d) Repeat steps b) and c) until end of FTS scan is reached
 - e) Increment FTS scan counter
 - f) Repeat steps b) to e) for the required number of FTS scans
- 5) SPEC PCAL: Internally calibrate the Spectrometer using the PCAL source as necessary
- 6) SPEC HDC RESET: Reset the Spectrometer Data and Hardware Configuration

6.4 SOF4: Fully Sampled Spectral Map (Step-and-Integrate)

This Observatory Function is essentially SOF3 performed at each of the jiggle positions of an n-point jiggle map.

- 1) **TPOINT:** Point the telescope at the astronomical source
- 2) SPEC DAQC: Set the Spectrometer Data Acquisition configuration (see Section 7.9)
- 3) SPEC_PCAL: Internally calibrate the Spectrometer using the PCAL source as necessary
- 4) Perform a fully sampled spectral map in step-and-integrate mode:
 - a) Initialise jiggle position counter
 - b) **JIGGLE:** Move the BSM to the ith jiggle position (initially i=1)
 - c) Perform a spectral scan in step-and-integrate mode:
 - I) Initialise FTS scan counter
 - II) SPEC_STEP: Step the FTS mirror to required position
 - III) **CHOP:** Perform a series of chop cycles from given FTS mirror position
 - IV) Repeat above steps II) and III) until end of FTS scan is reached
 - V) Increment FTS scan counter
 - VI) Repeat steps II) to V) for required number of FTS scans at each jiggle position
 - VII) Repeat all steps in b) and c) for all n jiggle positions
- 5) Repeat all of the steps in 4) for the required number of jiggle cycles
- 6) SPEC PCAL: Internally calibrate the Spectrometer using the PCAL source as necessary
- 7) SPEC HDC RESET: Reset the Spectrometer Data and Hardware Configuration

7. BUILDING BLOCKS FOR THE SPIRE OPERATING MODES

7.1 DPU ON: Switch on DPU (OFF to INIT)

Switch on the DPU to go from OFF mode to INIT mode.

7.1.1 Interface

TBW

7.1.2 Implementation

Command	Description	
CDMS: DPU_SWITCH_ON	The CDMS switches on the DPU by powering the relevant 28V line	
Parameter	Description	Value

Command	Description
DPU: FORCE BOOT	Boot the DPU from the EEPROM

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768 0.5 (DRAFT)

Issue: 0.5 (DRAFT)

Date: 31st May 2003

Page: 18 of 34

Parameter	Description	Value
FUNCTION ID	Function Identifier	0x0070
ACTIVITY ID	Activity Identifier	0x0003

7.2 ON_START: Switch from INIT to ON mode

In this mode any RAM patches can be loaded into the DPU from the CDMS. This procedure could take several minutes.

7.2.1 Interface

TBW

7.2.2 Implementation

Command	Description		
DPU: LOAD_MEMORY	Load OBS using a series of such commands	Load OBS using a series of such commands	
Parameter	Description	Value	
MEMORY ID	Memory Identifier		
STARTADDR	Start Address		
NSAU	Number of single (16-bit) addressable units		
DATA	Contents of the NSAU memory locations		

7.3 DRCU_ON: Switch on the DRCU (ON to REDY)

Switches on the DRCU to go from ON to REDY mode.

7.3.1 Interface

TBW

7.3.2 Implementation

Command	Description	
CDMS: DRCU_SWITCH_ON	The CDMS switches on the DRCU by powering the	relevant 28V line
Parameter	Description	Value

Command	Description		
SCU: SetTempOnOff	Set standard FPU temperature prob	Set standard FPU temperature probes biases on/off	
Parameter	Description	Value	
TempOnOff	16 bits on/off word	TBD	

Command	Description	
SCU: SetSubKOnOff	Sets sub K temperature probe bias on/off	
Parameter	Description	Value
SubKOnOff	Bit 0: 1- bias on, 0- bias off	On (Bit 0=1)

Command	Description	
SCU: SetDrelOnOff	Switches on the MCU power relay	
Parameter	Description	Value
DrelOnOff	Set MCU power relay on (Bit 2 set)	0x0004

Command	Description

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003 **Page:** 19 of 34

MCU: SetDownLoadConf	Copy from MCU PROM to program RAM and wait 10 seconds	
Parameter	Description	Value

Command	Description	
MCU: SetBootRam	Reset the MCU DSP on RAM	
Parameter	Description	Value
on	Boot on RAM	on

Assumptions:

• Issue SCU commands to enable temperature measurements (as per RD-5).

7.4 CREC_START: Start Cooler Recycling (REDY to CREC)

Switch from REDY to CREC mode.

7.4.1 Interface

Building Block	Description	Description	
CREC_START	Start cooler recycling	Start cooler recycling	
Parameters	Description	Value	
EVHSHeatCur	Evaporator Heat Switch heater current	0x0800 (TBD mA)	
InitialSPHeaterCur	Initial setting for Sorption Pump Heater current	0x0708 (22 mA)	
HotSPHeaterCur	Setting for Sorption Pump Heater current once pump is hot (> 40K)	0x0287 (7.9 mA)	
ZeroSPHeaterCur	Zero setting for Sorption Pump Heater current	0x0000 (0.0 mA)	
SPHSHeatCur	Sorption Pump Heat Switch heater current	0x0800?	
ZeroEVHSHeatCur	Zero setting of Evaporator Heat Switch heater current	TBD (0 mA)	

7.4.2 Implementation

Command	Description	
SCU: SetEVHSHeatCur	Set current of Evaporator Heat Switch heater	
Parameter	Description	Value
EVHSHeatCur	Evaporator Heat Switch heater current (12 bits)	0x0800?

Command	Description	
SCU: SetSPHeaterCur	Set current of Sorption Pump Heater	
Parameter	Description	Value
SPHeaterCur	Sorption Pump Heater current (12 bits)	0x0708? (for a heater setting of 200mW, corresponding to 22mA)

Command	Description	Description Set current of Sorption Pump Heater once the pump gets hot (> 40K)	
SCU: SetSPHeaterCur	Set current of Sorption Pump Heater once the		
Parameter	Description	Value	
SPHeaterCur	Sorption Pump Heater current (12 bits)	0x0287? (for a heater setting of 25mW, corresponding to 7.9mA)	

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768 0.5 (DRAFT)

Issue: 0.5 (DRAFT) **Date:** 31st May 2003 **Page:** 20 of 34

Command	Description	
SCU: SetSPHeaterCur	Set current of Sorption Pump Heater to zero after some time	
Parameter	Description	Value
SPHeaterCur	Sorption Pump Heater current (12 bits)	0

Command	Description	
SCU: SetSPHSHeatCur	Set current of Sorption Pump Heat Switch heater	
Parameter	Description	Value
SPHSHeatCur	Sorption Pump Heat Switch heater current	0x0800?

Command	Description	
SCU: SetEVHSHeatCur	Set current of Evaporator Heat Switch heater to zero, thereby opening the switch to allow the evaporator temperature to fall as the ³ He is pumped.	
Parameter	Description Value	
EVHSHeatCur	Evaporator Heat Switch heater current (12 bits)	0x0000

7.5 CREC_STOP: Stop Cooler Recycling (CREC to REDY)

7.5.1 Interface

TBW

7.5.2 Implementation

TBW

7.6 PHOT_STBY_START: Switch from REDY to PHOT_STBY mode

7.6.1 Interface

TBW

7.6.2 Implementation

As already described in Section 3, for all Photometer operations the instrument is expected to be in the PHOT_STBY mode. A possible implementation for switching from the REDY mode to PHOT_STBY mode is as follows:

Command	Description	Description	
DCU: SetPhSWJfetPwr	Switch on PSW JFET drain voltage	Switch on PSW JFET drain voltage	
Parameter	Description	Value	
PSW_JFET_1	Bit 0 (0 – off, 1 –on)	1	
PSW_JFET_2	Bit 1 (0 – off, 1 –on)	1	
PSW_JFET_3	Bit 2 (0 – off, 1 –on)	1	
PSW_JFET_4	Bit 3 (0 – off, 1 –on)	1	
PSW_JFET_5	Bit 4 (0 – off, 1 –on)	1	
PSW JFET 6	Bit 5 (0 – off, 1 –on)	1	

Command	Description	
DCU: SetPhMLWJfetPwr	Switch on PMW and PLW JFET drain voltage	
Parameter	Description	Value
PMW_JFET_1	Bit 0 (0 – off, 1 –on)	1
PMW_JFET_2	Bit 1 (0 – off, 1 –on)	1

Operating the SPIRE Instrument

 Ref:
 SPIRE-RAL-DOC-000768

 Issue:
 0.5 (DRAFT)

Date: 31st May 2003 **Page:** 21 of 34

PMW JFET 3	Bit 2 (0 – off, 1 –on)	1
PMW_JFET_4	Bit 3 (0 – off, 1 –on)	1
PLW_JFET_1	Bit 4 (0 – off, 1 –on)	1
PLW_JFET_2	Bit 5 (0 – off, 1 –on)	1
TC JFET	Bit 6 $(0 - off, 1 - on)$	1

Command	Description		
DCU: SetPhotoBiasMode	Set the Photometer & TC bolometer sine bias mode	Set the Photometer & TC bolometer sine bias mode	
Parameter	Description Value		
PhotoBiasMode	00 - stop; $0x01$ to $0xfe - discrete values$; $ff - run$	0xef	

Command	Description	Description	
DCU: SetPhotoHeaterBias	Start the heating the JFET mode	Start the heating the JFET modules by setting the PhotoHeaterBias	
Parameter	Description Value		
PhotoHeaterBias	0 to 255	TBD	

Command	Description	
DCU: SetPhotoHeaterBias	Stop heating the JFET modules by setting the PhotoHeaterBias to 00	
Parameter	Description Value	
PhotoHeaterBias	00	00

Command	Description	
DCU: SetPhotoBiasFreq	Set the Photometer & T/C bolometer sine bias frequency division from the master clock	
Parameter	Description	Value
PhotoMclkDiv	Master clock divider setting (64 to 511)	TBD

Command	Description	
DCU: SetPhotoBiasAmplSW DCU: SetPhotoBiasAmplMW DCU: SetPhotoBiasAmplLW DCU: SetPhotoBiasAmplTC	These four commands set the sine bias amplitude for the Photometer arrays and T/C bolometers.	
Parameter	Description	Value
PhotoBiasAmplSW PhotoBiasAmplMW	Bias amplitude DAC setting parameter (0 to 255)	TBD
PhotoBiasAmplLW PhotoBiasAmplTC		

Command	Description	Description	
DCU: SetPhotoDemodSW DCU: SetPhotoDemodMW		These four commands set the demodulation phase shift for the Photometer	
DCU: SetPhotoDemodLW	arrays and 1/C bolometers.	arrays and T/C bolometers.	
DCU: SetPhotoDemodTC			
Parameter	Description	Value	
PhaseShiftSW	Phase Shift	0 to 255	
PhaseShiftMW			
PhaseShiftLW			
<i>PhaseShiftTC</i>			

Command	Description	
DCU: SetPhSWJfetVSS1 to SetPhSWJfetVSS6	Set the JFET source biasing voltages for PSW channels	
Parameter	Description	Value

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-000768 Issue: 0.5 (DRAFT) Date: 31st May 2003

Page: 22 of 34

PSW_VSS1 to	Voltage setting for each JFET unit	0 to 255
PSW_VSS6		

Command	Description	
DCU: SetPhMWJfetVSS1 to SetPhMWJfetVSS4	Set the JFET source biasing voltages for PMW channels	
Parameter	Description	Value
PMW_VSS1 to PMW_VSS4	Voltage setting for each JFET unit	0 to 255

Command	Description	
DCU: SetPhLWJfetVSS1 to SetPhLWJfetVSS2	Set the JFET source biasing voltages for PLW chann	nels
Parameter	Description	Value
PLW_VSS1 to PLW_VSS2	Voltage setting for each JFET unit	0 to 255

Command	Description		
DCU: SetTCJfetVSS1	Set the JFET source biasing voltages for TC	Set the JFET source biasing voltages for TC channels	
Parameter	Description	Value	
PSW_VSS1 to PSW_VSS6	Voltage setting for each JFET unit	0 to 255	

Command	Description	
MCU: SetChopLoopMode	Open the chop loop	
Parameter	Description	Value
ChopLoopMode	0 - chopper is not commanded.	0

Command	Description	
MCU: SetCSensorPwr	Power up the magnetoresistive sensor (MRS)	
Parameter	Description	Value
CSensorPwr	1 – sensor power on	1

Command	Description	
MCU: SetBSMMove	Set the chopper axis to move free run (default value)	
Parameter	Description	Value
BSMMove	Flag to indicate BSM movement to default chopper axis MRS position	0

Command	Description	
MCU: SetChopTargetPosition	Set the chopper axis to desired home position (determinable)	mined from a calibration
Parameter	Description	Value
ChopTargetPosition	MRS position	TBD

Command	Description	
MCU: SetChopLoopMode	Close the chop loop at desired position	
Parameter	Description Value	
ChopLoopMode	<i>1</i> - the chopper moves to home position	1

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003 **Page:** 23 of 34

7.7 SPEC_STBY_START: Switch from REDY to SPEC_STBY mode

7.7.1 Interface

TBW

7.7.2 Implementation

For all Spectrometer operations the instrument is expected to be in the SPEC_STBY mode. A possible scenario for switching from the instrument REDY mode to the SPEC_STBY mode is as follows.

Command	Description		
DCU: SetSpSLWJfetPwr	Switch on Spectrometer JFET drain v	Switch on Spectrometer JFET drain voltages	
Parameter	Description	Value	
PSLW_JFET_1	Bit $0 (0 - off, 1 - on)$	1	
PSLW_JFET_2	Bit 1 (0 – off, 1 –on)	1	
PSLW JFET 3	Bit 2 (0 – off, 1 –on)	1	

Command	Description		
DCU: SetSpectroBiasMode	Set the Spectrometer bolometer sine bias mode	Set the Spectrometer bolometer sine bias mode	
Parameter	Description Value		
SpectroBiasMode	00 - stop; $0x01$ to $0xfe - discrete values$; $ff - run$	0xef	

Command	Description	
DCU: SetSpectroHeaterBias	Start the heating the JFET modules by setting the SpectroHeaterBias	
Parameter	Description	Value
SpectroHeaterBias	0 to 255	TBD

Command	Description	
DCU: SetSpectroHeaterBias	Stop heating the JFET modules by setting the SpectroHeaterBias to 00	
Parameter	Description	Value
SpectroHeaterBias	00	00

Command	Description		
DCU: SetSpectroBiasFreq	Set the Spectrometer sine bias frequency divisi	Set the Spectrometer sine bias frequency division from the master clock	
Parameter	Description	Value	
SpectroMclkDiv	Master clock divider setting (64 to 511)	TBD	

Command	Description	
DCU: SetSpectroBiasAmplSW DCU: SetSpectroBiasAmplLW	These two commands set the sine bias amplitude for the Spectrometer array bolometers.	
Parameter	Description	Value
SpectroBiasAmplSW SpectroBiasAmplLW	Bias amplitude DAC setting parameter (0 to 255)	TBD

Command	Description	
DCU: SetSpectroDemodSW	These two commands set the demodulation phase shift for the Spectrometer	
DCU: SetSpectroDemodLW	array bolometers.	
Parameter	Description	Value
PhaseShiftSW	Phase Shift	0 to 255
PhaseShiftLW		

Operating the SPIRE Instrument

 Ref:
 SPIRE-RAL-DOC-000768

 Issue:
 0.5 (DRAFT)

Date: 31st May 2003 **Page:** 24 of 34

Command	Description	
DCU: SetPhSWJfetVSS1 to SetPhSWJfetVSS2	Set the JFET source biasing voltages for SSW channels	
Parameter	Description	Value
SSW_VSS1 to SSW_VSS2	Voltage setting for each JFET unit	0 to 255

Command	Description		
DCU: SetPhLWJfetVSS	Set the JFET source biasing voltages for SL	Set the JFET source biasing voltages for SLW channels	
Parameter	Description	Value	
SLW VSS	Voltage setting for each JFET unit	0 to 255	

Command	Description	Description	
SCU: SetSCal4Bias	Set value of current applied to sti	Set value of current applied to stimulate SCAL 4% source	
Parameter	Description	Description Value	
SCal4CurSP	Current value	0x068f(2.25 mA)	

Command	Description	
SCU: SetSCal2Bias	Set value of current applied to stimulate SCAL 2% source	
Parameter	Description	Value
SCal2CurSP	Current value	0x068f(2.25mA)

Command	Description	
MCU: SetChopLoopMode	Open the chop loop	
Parameter	Description	Value
ChopLoopMode	0 - chopper is not commanded.	0

Command	Description		
MCU: SetCSensorPwr	Power up the magnetoresistive sensor	Power up the magnetoresistive sensor (MRS)	
Parameter	Description	Value	
CSensorPwr	1 – sensor power on	1	

Command	Description	Description	
MCU: SetBSMMove	Set the chopper axis to move free run (default value)	Set the chopper axis to move free run (default value)	
Parameter	Description	Value	
BSMMove	Flag to indicate BSM movement to default chopper	0	
	axis MRS position		

Command	Description	
MCU: SetChopTargetPosition	Set the chopper axis to desired home position (determined from a calibration table)	
Parameter	Description	Value
ChopTargetPosition	MRS position	TBD

Command	Description	
MCU: SetChopLoopMode	Close the chop loop at desired position	
Parameter	Description	Value
ChopLoopMode	<i>1</i> - the chopper moves to home position	1

Command	Description	
MCU: SetSLoopMode	Open the SMEC optical encoder loop	
Parameter	Description	Value

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003

Page: 25 of 34

SLoopMode	0 - SMEC is not commanded.	0
-----------	----------------------------	---

Command	Description	
MCU: SetEncoderPwr	Power up the optical encoder LED	
Parameter	Description	Value
EncoderPwr	1 – optical encoder LED power on	1

Command	Description	
MCU: SetSLVDTPwr	Power up the LVDT oscillator	
Parameter	Description	Value
SLVDTPwr	1 – LVDT power on	1

Command	Description	
MCU: SetSLoopMode	Close the SMEC optical encoder loop	
Parameter	Description	Value
SLoopMode	1 – SMEC optical encoder is in closed loop	1

Command	Description	
MCU: SetSTrajMode	Set the SMEC to home position	
Parameter	Description	Value
STrajMode	0x0004 – start the SMEC initialisation procedure Wait for 20 seconds for completion. The DPU must send a polling command every second to the MCU during this period to check if any errors are occurring.	0x0004

7.8 PHOT_DAQC: Set Photometer Data Acquisition and Configuration

7.8.1 Interface

TBW

7.8.2 Implementation

Command	Description	
DCU: SetPhotoBiasMode	Start the Photometer & TC bolometer sine bias generator mode	
Parameter	Description	Value
PhotoBiasMode	00 - stop; $0x01$ to $0xfe - discrete values$; $ff - run$	0xff
	Wait xx ms for the system to become stable	

Command	Description	
DCU: SetStartFrame	Stop frame generation	
Parameter	Description	Value
StartFrame	0 – Stop; 1 – Run	0

Command	Description	
DCU: SetPhotoMode	Set the LIA offsets for the Photometer & TC channels automatically	
Parameter	Description	Value

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-000768 Issue: 0.5 (DRAFT) Date: 31st May 2003 **Page:** 26 of 34

Mode	Indicates that the LIA offsets are selected	10
	automatically. Not clear what these mode	
	definitions mean.	

Command	Description	
MCU:	Set the sampling frequency for the BSM TM packet	
SetTelemetryPacket12SampFreq		_
Parameter	Description	Value
TelemetryPacket12SampFreq	BSM TM packet sampling frequency in units of	0x002c
	scheduler cycles (1 cycle= 360 μs). 44 cycles (≡	
	0x002c) correspond to a sampling frequency of 64	
	Hz	

Command	Description	
DCU: SetStartFrame	Start frame generation	
Parameter	Description	Value
StartFrame StartFrame	$0-Stop;\ 1-Run$	1
	Wait xx ms	

Command	Description	
DCU: SetStartFrame	Stop frame generation	
Parameter	Description	Value
StartFrame	$0-Stop;\ 1-Run$	0
	Wait xx ms	

Command	Description	
DCU: SetPhotoMode	Set the LIA offsets for the Photometer & TC channels automatically	
Parameter	Description	Value
Mode	Indicates that the LIA offsets are selected automatically. Not clear what these mode definitions mean.	18

Command	Description	
DCU: SetStartFrame	Start frame generation	
Parameter	Description	Value
StartFrame	0-Stop; 1-Run	1
	Wait xx ms for the offsets to be sent to the DPU	

Command	Description	
DCU: SetStartFrame	Stop frame generation	
Parameter	Description	Value
StartFrame	$0-Stop;\ 1-Run$	0
	Wait xx ms	

Command	Description	
DCU: SetDataMode	Set the DCU output data format between bolometer or 4-bit offset transmission and test pattern	
Parameter	Description	Value
DataMode	00000 – Full Photometer (all 5 bits set to 0)	00000

Command	Description
DCU: SetFramenber or	Set frames acquisition mode
SetFrameCount?	

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003 **Page:** 27 of 34

Parameter	Description	Value
FrameCount or frame?	0 – Continuous	0

Command	Description	
DCU: SetStartFrame	Start frame generation	
Parameter	Description	Value
StartFrame	0 – Stop; 1 – Run	1
	Wait xx ms	

• It is assumed here that the above sequence of acquisition and configuration commands can be executed before the DPU explicitly requests BDA data from the DCU. Until that happens there are no BDA data being generated.

7.9 SPEC_DAQC: Set Spectrometer Data Acquisition and Configuration

7.9.1 Interface

TBW

7.9.2 Implementation

Command	Description	
DCU: SetSpectroBiasMode	Start the Spectrometer sine bias generator mode	
Parameter	Description	Value
SpectroBiasMode	00 – stop; 0x01 to 0xfe – discrete values; ff – run Wait xx ms for the system to become stable	0xff

Command	Description	
MCU:	Set the sampling frequency for the SMEC TM packet	
SetTelemetryPacket10SampFreq		
Parameter	Description	Value
TelemetryPacket10SampFreq	SMEC TM packet sampling frequency in units of	0x002c
	scheduler cycles (1 cycle= 360 µs). 11 cycles (≡	
	0x000b) correspond to a sampling frequency of	
	240 Hz	

Command	Description	
DCU: SetStartFrame	Stop frame generation	
Parameter	Description	Value
StartFrame	0 – Stop; 1 – Run	0

Command	Description		
DCU: SetSpectroMode	Set the LIA offsets for the Spectrometer channel	Set the LIA offsets for the Spectrometer channels automatically	
Parameter	Description	Value	
Mode	Indicates that the LIA offsets are selected automatically. Not clear what these mode definitions mean.	14	

Command	Description	
DCU: SetStartFrame	Start frame generation	
Parameter	Description	Value

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003

Page: 28 of 34

StartFrame	$0-Stop;\ 1-Run$	1
	Wait xx ms	

Command	Description	
DCU: SetStartFrame	Stop frame generation	
Parameter	Description	Value
StartFrame	0 – Stop; 1 – Run	0
	Wait xx ms	

Command	Description	
DCU: SetSpectroMode	Set the LIA offsets for the Spectrometer channels automatically	
Parameter	Description	Value
Mode	Indicates that the LIA offsets are selected automatically. Not clear what these mode definitions mean.	1c

Command	Description		
DCU: SetStartFrame	Start frame generation	Start frame generation	
Parameter	Description	Value	
StartFrame	0 – Stop; 1 – Run	1	
	Wait xx ms for the offsets to be sent to the DPU		

Command	Description	Description	
DCU: SetStartFrame	Stop frame generation	Stop frame generation	
Parameter	Description	Value	
StartFrame	$0-Stop;\ 1-Run$	0	
	Wait xx ms		

Command	Description	
DCU: SetDataMode	Set the DCU output data format between bolometer or 4-bit offset	
	transmission and test pattern	
Parameter	Description	Value
DataMode	00100 – Full Spectrometer (bit #2 is set to 1)	00100

Command	Description	
DCU: SetFramenber or	Set frames acquisition mode	
SetFrameCount?		
Parameter	Description	Value
FrameCount or frame?	0 – Continuous	0

Command	Description	
DCU: SetStartFrame	Start frame generation	
Parameter	Description	Value
StartFrame	0 – Stop; 1 – Run	1
	Wait xx ms	

- It is assumed here that the above sequence of acquisition and configuration commands can be executed before the DPU explicitly requests BDA data from the DCU. Until that happens there are no BDA data being generated.
- How is the home position found?
- This BB may need to be modified for the step-and-integrate Observatory Functions SOF3 and SOF4.

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003

Page: 29 of 34

7.10 SCU: SCAL OFF: Switch off SCAL

7.10.1 Interface

TBW

7.10.2 Implementation

There will be no specific command to switch the SCAL 2% and SCAL 4% on or off. Null SCAL current commands ($\equiv \pm 5 \,\mu A$ TBC) are equivalent to the off command.

7.11 PHOT_HDC_RESET: Reset Photometer Hardware and Data Configuration

Resets the hardware and data acquisition configuration at the end of an observation with the Photometer.

7.11.1 Interface

TBW

7.11.2 Implementation

TBW

7.12 SPEC_HDC_RESET: Reset Spectrometer Hardware and Data Configuration

Resets the hardware and data acquisition configuration at the end of an observation with the Spectrometer.

7.12.1 Interface

TBW

7.12.2 Implementation

TBW

7.13 MCU: BSM_OFF - Switch off the BSM

7.13.1 Interface

TBW

7.13.2 Implementation

Command	Description	
MCU: SetChopLoopMode	Open the chop loop and set the DAC to zero	
Parameter	Description	Value
ChopLoopMode	0 - the chopper MRS position set to zero	0

Command	Description	
MCU: SetCSensorPwr	Power off the MRS for the chopper axis	
Parameter	Description	Value

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT)

Date: 31st May 2003

Page: 30 of 34

CSensorPwr	0 – chopper sensor power off	0
------------	------------------------------	---

Command	Description	
MCU: SetJigLoopMode	Open the jiggle loop and set the DAC to zero	
Parameter	Description	Value
JigLoopMode	0 - the jiggle MRS position set to zero	0

Command	Description	
MCU: SetJSensorPwr	Power off the MRS for the jiggle axis	
Parameter	Description	Value
JSensorPwr	0 – jiggle sensor power off	0

7.14 Switch from any mode to SAFE mode

This operation is to be performed by the CDMS after direct request from the DPU. TBW

7.15 Switch from SAFE to ON mode

TBW

8. BUILDING BLOCKS FOR THE SPIRE OBSERVING MODES

8.1 CHOP: Chop the BSM while taking BDA Data

8.1.1 Interface

Building Block	ding Block Description	
СНОР	Chop the BSM while taking BDA data	
Parameters	Description	Value
Y_0	Initial BSM chop position (the "on source"	
***	position)	
Y_I	Final BSM chop position (the "off source" position)	
N_{chops}	Number of BSM chop cycles to be performed between y_0 and y_1	
P_{chop}	Period of BSM chop half-cycle, i.e. dwell time at y_0 (or y_1)	
N _{chopframes}	Number of BSM chop position frames per chop half-cycle	
$N_{BDAframes}$	Number of BDA frames per chop half-cycle	
P _{BDAframes}	Time period between the sampling of successive BDA frames	
T_{BDA}	Time delay between the issuing of the start chopping command and the sampling of BDA frames	

8.1.2 Implementation

Command	Description
C 01111111111	2 00011,0001

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003 **Page:** 31 of 34

MCU: SetChopTargetPosition	Set up the chopper target position y	
Parameter	Description	Value
ChopTargetPosition	Chopper MRS position (needs calibration table) ADC (16 bits)	

Command	Description	
MCU: SetBSMMove	Move the BSM synchronously in both the chopper and jiggle axes	
Parameter	Description	Value
BSMMove	Flag to indicate type of BSM movement	1
	1 – synchronous movement of both axes	

8.2 PCAL: Photometer Calibration with PCAL source

This BB includes all commands to the SCU for switching on the PCAL source, performing the Photometer calibration and then switching off the PCAL source. It is intended to monitor system gain or responsivity drifts.

8.2.1 Interface

Building Block	ling Block Description		
PCAL	Perform calibration measurement for	Perform calibration measurement for the Photometer with PCAL.	
Parameters	Description	Value	
N_{cycles}	Number of calibration cycles to be executed		
Mode	Type of waveform for calibration cycle		
Level	Initial level of PCAL before start of calibration cycles		
Amplitude	Amplitude of PCAL waveform		
N_{SCU}	Number of SCU frames		
P_{SCU}	Time interval between SCU frames		
N_{BDA}	Number of BDA frames		
P_{BDA}	Time interval between BDA frames		
T_{BDA}	Time delay for collecting BDA frames		

- It is expected that the detector data samples will be labelled with the sample number by the DCU.
- SCU parameters should also be labelled with the sample number within the frame.
- The OBS will have to keep track of the PCAL excitation number.

8.2.2 Implementation

There will be no specific command to switch the PCAL on or off. A null PCAL current command ($\equiv \pm 5~\mu A~TBC$) is equivalent to the off command.

8.3 PSCAN: Take Photometer data while the telescope is scanning

8.3.1 Interface

Building Block	Description	
PSCAN	Take Photometer BDA data while scanning the telescope	
Parameters	Description	Value
$N_{BDAframes}$	Number of BDA frames	

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768 0.5 (DRAFT)

Issue: 0.5 (DRAFT) **Date:** 31st May 2003 **Page:** 32 of 34

P _{BDAframes}	Time period between the sampling of successive BDA frames	
T_{BDA}	Time delay between the issuing of PSCAN command and the sampling of BDA frames	

8.3.2 Implementation

TBW

8.4 JIGGLE: Move the BSM to a given Jiggle Position

This is a very simple BB. Its function is to move the BSM to a jiggle position before other building blocks are executed (e.g. **CHOP**, **SPEC_SCAN**, etc). The jiggle position could be for any n-point jiggle table (n=7, 16, 25, 32 or 64).

8.4.1 Interface

Building Block	Description	Description	
JIGGLE	Move the BSM to a given jiggle position	Move the BSM to a given jiggle position	
Parameters	Description	Value	
Y	Y position of the BSM (Chop axis)	TBD	
Z	Z position of the BSM (Jiggle axis)	TBD	
$T_{Duration}$	Duration of the JIGGLE command - it is the time taken for the BSM to reach the given jiggle position and stabilise	TBD	

8.4.2 Implementation

Command	Description	
MCU: SetJigTargetPosition	Set up the jiggle target position z	
Parameter	Description	Value
JigTargetPosition	Jiggle MRS position (needs calibration table) ADC (16 bits)	

Description	Description	
Move the BSM synchronously in both the chopp	Move the BSM synchronously in both the chopper and jiggle axes	
Description	Value	
Flag to indicate type of BSM movement I – synchronous movement of both axes	1	
	Move the BSM synchronously in both the chopp Description	

8.5 SPEC_SCAN: Scan the FTS while taking detector data

8.5.1 Interface

Building Block	Description		
SPEC_SCAN	Scan the FTS while taking data	Scan the FTS while taking data	
Parameters	Description	Value	
N	Number of FTS scans to be performed		
N _{SMECframes}	Number of SMEC position frames per scan		
$N_{BDAframes}$	Number of BDA frames per scan		

Operating the SPIRE Instrument

Ref: SPIRE-RAL-DOC-

000768

Issue: 0.5 (DRAFT) **Date:** 31st May 2003 **Page:** 33 of 34

P _{BDAframes}	Time period between the sampling of successive BDA frames	
T_{BDA}	Time delay between the issuing of the start scanning command and the sampling of BDAs	

8.5.2 Implementation

TBW

8.6 SPEC_STEP: Step the FTS mirror

8.6.1 Interface

Building Block	Description		
SPEC_STEP	Step the FTS mirror to required position		
Parameters	Description	Value	
N	Number of steps the FTS mirror is to be moved	TBD	
	9.00		
Δx	Step size in SMEC units	TBD	
T_{SMEC}	Time delay between the issuing of the stepping command and its execution by the SMEC		

8.6.2 Implementation

TBW

8.7 SPEC_PCAL: PCAL for FTS

8.7.1 Interface

This BB is similar to the one used for internally calibrating the Photometer. The intention is to also use the PCAL source for monitoring the FTS responsivity or gain drifts.

NOTE: At present there is no calibration Observatory Function for the FTS in [AD-1].

Building Block	Description		
SPEC_PCAL	Perform PCAL type calibration meas source	Perform PCAL type calibration measurement for the FTS using the PCAL source	
Parameters	Description	Value	
N_{cycles}	Number of calibration cycles to be executed		
Mode	Type of waveform for calibration cycle		
Level	Initial level of PCAL before start of calibration cycles		
Amplitude	Amplitude of PCAL waveform		
N_{SCU}	Number of SCU frames		
P_{SCU}	Time interval between SCU frames		
N_{BDA}	Number of BDA frames		
P_{BDA}	Time interval between BDA frames		
T_{BDA}	Time delay for collecting BDA frames		

Operating the SPIRE Instrument

 Ref:
 SPIRE-RAL-DOC-000768

 Issue:
 0.5 (DRAFT)

 Date:
 31st May 2003

 Page:
 34 of 34

8.7.2 Implementation

TBW