

FIRST/SPIRE

Comparative assessment of different architectures for warm electronics

 Reference:
 SAp-SPIRE-FLo-017-99 / SPIRE-SAP-DOC-000764

 Issue: 2
 Date: 04/10/99

Custodian

	Function	Name	Date	Visa
Prepared by	Product Assurance	F.LOUBERE		
Prepared by				
Verified by				
Approved by				

DOCUMENT STATUS and CHANGE RECORD

Date	Issue	Affected pages
12/08/1999	1	Premières évaluations – création du document
04/10/99	2	All : Translation in English

Comparative assessment of different architectures for warm electronics

TABLE OF CONTENTS

1. PURPOSE OF THE STUDY	4
1.1. Context and limitations of the study	4
1.2. Hypothesis	4
2. RELIABILITY ASSESSMENTS	4
2.1. Method	4
2.2. Simulations performed	5
2.3. Functional blocs reliability assessment	5
3. RESULTS SUMMARY	6
4. CONCLUSIONS	6
ANNEXE 1. INPUTS	7
Annexe 1.1. General synopsis	7
Annexe 1.2. Focal Plane Unit (FPU)	
Annexe 1.3. Buffer Amplifier Unit (BAU)	8
Annexe 1.4. DRCU	8
ANNEXE 2. PHOTOMETER - RELIABILITY ASSESSMENT DRCU DIGITAL PART	10
Annexe 2.1. Cold redundancy	
Annexe 2.2. Partial cross strapping	
Annexe 2.3. Full cross strapping	10
Annexe 2.4. Simulation results	10
ANNEXE 3. SPECTROMETER - RELIABILITY ASSESSMENT DRCU DIGITAL PART	11
Annexe 3.1. Cold redundancy	11
Annexe 3.2. Partial cross strapping	11
Annexe 3.3. Full cross strapping	11
Annexe 3.4. Simulation results	11
ANNEXE 4. RELIABILITY ASSESSMENT DRCU DIGITAL PART /DPU	12
Annexe 4.1. Interface electric architecture hypothesis :	12
Annexe 4.2. Failure modes of cold redundancy architecture	12
Annexe 4.3. Failure modes of cross strapped architecture	13
Annexe 4.4. Simulation results	13
Annexe 4.5. Conclusion	14
ANNEXE 5. PHOTOMETER : DETECTION AND ANALOGIC PROCESSING CHAIN	
RELIABILITY	15
Annexe 5.1. Hypothesis	15
Annexe 5.2. Simulation results	15
Annexe 5.3. Conclusions	19
ANNEXE 6. SPECTROMETER : DETECTION AND ANALOGIC PROCESSING CHAIN	
RELIABILITY	20
Annexe 6.1. Hypothesis	20
Annexe 6.2. Simulation results	20
Annexe 6.3. Conclusions	23

1. Purpose of the study

The aim of the study is to :

- get an assessment on the reliability of the warm electronic of SPIRE instrument, in order to achieve the architecture with the best reliability/complexity compromise solution,
- Evaluate the opportunity to cross strap or not DRCU and DPU.

<u>1.1.</u> Context and limitations of the study

For the moment, no allocations of reliability and availability have been given to the warm electronic from for the whole instrument. Therefore, the study is limited to the comparison of different options on the architecture.

The DPU is common with 2 others instruments. It is defined to be full hard redundant. As no details on the internal architecture are available, study will be limited to the interface with the DRCU

Some reliability simulations are performed on analogic chains, only on CEA detectors option.

This document shows the first trend of the results. Additional simulations and detailed studies will be performed later, based upon :

- Additional information changing hypothesis of the present simulations,
- Results of detectors selection and associated electronic,
- Progress of design and knowledge about different items.

1.2. Hypothesis

The study has been performed on the following hypothesis :

- Length of mission = 5 years
- Calibrations sources and Beam Steering Mirror failure modes are not taken into account (no information available for the moment)
- Reliability of telescope considered = 1 during the whole mission (supposing it's mechanical item)
- Reliability of the cooler = 1 during the whole mission (no information available. A failure of the cooler leads to lose the mission)
- Photometer and spectrometer do not operate simultaneously. Mission is considered successful whether the photometer or the spectrometer is operating : simulations are performed separately on the photometer, then on the spectrometer, considering that each operates 100% of the time during the 5 years mission.

2. Reliability assessments

2.1. Method

- 1. Building reliability bloc diagrams of the different functional modules of the system,
- 2. Reliability assessment of each functional bloc (empirical from the estimated reliability value of the parts implementing the function),
- 3. Simulation of different architecture possible, by using a serial/parallel model (all simulations performed with tool Supercab).

2.2. Simulations performed

The system has been divided into 3 parts, for witch different possibilities of architecture have been evaluated :

- Digital processing chain
 - DRCU digital part
 - Cold redundancy,
 - Partial cross strapping
 - Full cross strapping
 - ♦ DPU
 - Simulations on the DRCU/DPU interface
 - Cold redundancy between DRCU and DPU,
 - Cross strapping between DRCU and DPU
- Detectors and analogic chain

2.3. Functional blocs reliability assessment

Module	fit
Detectors and analogic chain	
Detectors + BAU	120/line
ASP	140
Detectors power supply	50
Digital processing chain	
Photometer array controller analogic part (switch) (= Ph C A	100
Photometer array controller digital part (FPGA + RAM) (= Ph C B)	300
Spectrometer array controller analogic part(switch) (= SP C A)	100
Spectrometer array controller digital part (FPGA + RAM) (= Sp C B)	300
BSM controller	500
FTS controller	500
Cooler controller	500
DRCU Ctrl	1000
DRCU DC/DC	500
DRCU I/F	300
DPU	1000

3. **Results summary**

The following tables indicate the reliability assessments regarding different configurations. All the details can be found in annex.

Reliability of DRCU

Internal configuration of DRCU	Reliability	Reliability	
	Spectrometer chain	Photometer chain	
Cold redundancy	0,983	0,989	
Partial cross strapping	0,987	0,992	
Full cross strapping	0,989	0,994	

Reliability of DRCU and DPU

Configuration DRCU/DPU	Reliability	Reliability
	Spectrometer chain	Photometer chain
Cold redundancy DRCU/DPU	0,977	0,982
Cross strapping DRCU / DPU *	0,977	0,983

*A single point failure comes out with cross strapped configuration

Reliability of detectors and analogic chain

Analogic chain	Reliability	Reliability	
	Spectrometer chain	Photometer chain	
lost 4 rows no converter no array	0,971	0,784	
lost 4 rows OR 1 converter AND 1 array	0,991	0,824	
lost 4 rows OR 1 converter OR 1 array	0,995	0,832	

4. Conclusions

The digital part of DRCU and DPU is intrinsically reliable, whatever the redundancies are. (cold or cross strapped).

Cross strapping between DRCU and DPU does not improve significantly reliability, but introduces a single point failure. Therefore, that cross strapped architecture must not be chosen.

Internal cross strapping of DRCU does not seem to be interesting in a first approach. If this configuration is considered, more detailed investigation should be performed, taking into account effects of commutation on reliability.

Simulation results on detection and analogic chain are not significant, due to lack of information about what can be considered as a success for the mission. The hypothesis taken might not be very realistic from that point of view.

Nevertheless, a conclusion can be made :

- The reliability of the whole chain is fully dependant on the reliability of the analogic chain of the photometer,
- Precision must be obtained on mission profile in order to perform additional estimations :
 - \Rightarrow Share of operating time between photo and spectrometer,
 - \Rightarrow Success of mission ; how many rows is it acceptable to loose,
 - ⇒ ...

Annexe 1. Inputs

Annexe 1.1. General synopsis

General description of each functional module and their implementation (as seen for the moment)

Annexe 1.2. Focal Plane Unit (FPU)

Annexe 1.2.1. Detectors 2 bolometers arrays for the spectrometer 16 bolometers arrays for the photometer

1 row of matrix = 1 sampling line (corresponding to 16 pixels)

Annexe 1.2.2. Cold electronic

Operates at à 2K - analogic signals amplification and multiplexing

Annexe 1.3. Buffer Amplifier Unit (BAU)

For each line, amplification is implemented by :

- ♦ 2 operational amp.
- ♦ 5 R
- ♦ 16 solders

Annexe 1.4. DRCU

Annexe 1.4.1.

DRCU controller

Function of control and command of DRCU. Data acquisition

DRCU controller will be implemented with SPARC ERC 32 board

Annexe 1.4.2. DC/DC

Parts not yet defined

Annexe 1.4.3. I/F

- ♦ 1 FPGA
- ♦ 3 drivers (for HSL)
- 1 driver and 1 receiver (for LSL)

Annexe 1.4.4. Analogic signal processing (ASP)

256 + 32 = 288 lines to be converted

- for each line :
- ♦ 4 operational amp.
- 10 R and C
- 1 converter for 8 lines

Annexe 1.4.5. Photometer array controller (PhC)

Function of control and drive of the detectors. Analogic part (detectors side) non redundant, digital part (DRCU controller side) redundant

- ♦ 1 FPGA
- ♦ 1 memory
- 9 analogic switch

Annexe 1.4.6. Spectrometer array controller (Sp C)

Function of control and drive of the detectors. Analogic part (detectors side) non redundant, digital part (DRCU controller side) redundant

- ♦ 1 FPGA
- ♦ 1 memory
- 9 analogic switch

Annexe 1.4.7.FTS controller (FTS C)

Function of control command of the mechanism.

Redundancy scheme in the mechanism not available for the moment : 1 or 2 input lines from FTS mechanism ?

We suppose the implementation of function inside DRCU will require

- ♦ 1 FPGA
- ♦ 1 memory
- control command electronic (to be detailed)

Annexe 1.4.8. BSM controller (BSM C)

Function of control command of the mechanism.

We suppose the mechanism has a nominal and a redundant line as inputs on the BSM controller. We suppose the implementation of function inside DRCU will require

- 1 FPGA
- ♦ 1 memory
- control command electronic (to be detailed)

Annexe 1.4.9. Calibration source controller

Function of polarisation for 2 sources, one for the spectrometer and one for the photometer.

Function will be implemented by :

- ◆ 1 A/D C
- 1 operational amp.
- ♦ R

Annexe 1.4.10. Cooler controller

Function of control command of the mechanism, to be detailed.

Annexe 2. Photometer - Reliability assessment DRCU digital part

Annexe 2.1. Cold redundancy

Annexe 2.2. Partial cross strapping

Annexe 2.3. Full cross strapping

Annexe 2.4. Simulation results

Configuration	Reliability	
Cold redundancy	0,989069	
Partial cross strapping	0,992057	
Full cross strapping	0,993907	

Cross strapping between DRCU and DPU does not improve significantly reliability. This assessment does not include loss of reliability due to commutation system in cross strapped configuration.

Annexe 3. Spectrometer - Reliability assessment DRCU digital part

Annexe 3.3. Full cross strapping

Annexe 3.4. Simulation results

Configuration	Reliability
Cold redundancy	0,983226
Partial cross strapping	0,987628
Full cross strapping	0,989470

Cross strapping between DRCU and DPU does not improve significantly reliability. This assessment does not include loss of reliability due to commutation system in cross strapped configuration.

Annexe 4. Reliability assessment DRCU digital part /DPU

Commutation from main to redundant is based in implemented by switches (estimated reliability 50 fit).

Annexe 4.1. Interface electric architecture hypothesis :

Simple (plain line)and cross strapped (doted line)

Annexe 4.2. Failure modes of cold redundancy architecture

Initial status : Switch 1 ON, Switch 2 ON, DRCU N ON, DPU N ON

Scenario 1 : failure on DRCU N Switch on whole R chain : Switch 1 and 2 OFF and Switch 3 and 4 ON

Scenario 2 : failure on DPU N Switch on whole R chain : Switch 1 and 2 OFF and Switch 3 and 4 ON

Failure propagation : in case of failure on DRCU I/F N (short circuit to GND) possible risk of propagation of failure to DPU N. In this case, **a whole functional chain is lost**. The risk can be reduced by design means.

Annexe 4.3. Failure modes of cross strapped architecture

This architecture introduces additional parts and links.

M and R power supplies must be active simultaneously.

Initial status : Switch 1 ON, Switch 2 ON, DRCU N ON, DPU N ON

Scenario 2 : failure on DPU N switch OFF 1, switch ON 3

Scenario 2 : failure on DPU N switch 2 OFF, switch ON 4

Single Point Failure : in case of failure on DRCU I/F N (short circuit to GND) possible risk of propagation of failure to DPU N and DPU R. In this case, there is a **risk to loose both chains**. The risk can be reduced by design means. Simulation includes a functional block : I/F PPU = 100 fit

- Cross strapped architecture between DRCU and DPU

Configuration	Spectrometer	Photometer
Cold redundancy DRCU/DPU	0,976461	0,982780
DRCU internal cold redundancy, DRCU / DPU cross	0,977560	0,983394
strapped		

Annexe 4.5. Conclusion

Cross strapping between DRCU and DPU does not improve significantly reliability, but introduces a single point failure.

Annexe 5. Photometer : detection and analogic processing chain reliability

Annexe 5.1. Hypothesis

- Each array is 16 sampling lines ; one sampling line is 16 pixels
- 16 arrays : 16 x 16= 256 sampling line
- power supply of each line is independent
- 1 converter for 8 lines (= 32 converters for 256 lines), each converter dedicated to 8 consecutive lines
- Estimated failure rates :
- 1 sampling line = 120 fit
- 1 converter (and passives) = 140 fit
- 1 array = 50 fit (power supply failure)

Annexe 5.2. Simulation results

Simulations are performed regarding 'acceptable' losses during the mission. These simulations would be updated with additional information on accepted losses (when available)

 1^{st} simulation : allowed loss of : sampling lines – no converter – no array

Туре	Det + BAU	ASP	Power supply	Total
loss of 0 sampling lines	0,260	0,821	0,965	0,206
loss of 1 sampling line	0,611	0,821	0,965	0,485
loss of 2 sampling lines	0,847	0,821	0,965	0,672
loss of 3 sampling lines	0,953	0,821	0,965	0,756
loss of 4 sampling lines	0,988	0,821	0,965	0,784

Comments :

- In the case of a few lines lost, reliability of the chain is dependant to the one of the detectors.
- In the case of a more numerous lost of lines, reliability of the chain is dependent to the one of the converter

 2^{nd} simulation : allowed loss of : sampling lines – one converter – no array

Description of different configurations by a Markov diagram

Case 1 : lost of 1 line OR 1 converter AND 0 array

System status :

- 1 System OK
- 2 lost of one line
- 3 lost of one converter (8 lines lost)
- 4 system lost

Status diagram :

Result :

P(t=5years) = 0,571

Case 2 : lost of 1 line AND 1 converter AND 0 array

System status :

- System OK 1
- 2 lost of one line
- 3 lost of one converter (8 lines lost)
- lost of 1 line + 1 converter 4
- 5 system lost

Status diagram :

Results

P(t=5ans) = 0,580

Case 3 : lost of 2 lines OR 1 converter AND 0 array

System status :

- 1 System OK
- 2 lost of one line
- 3 lost of 2 lines
- 4 lost of one converter (8 lines lost)
- 5 system lost

Status diagram :

P(t=5ans) = 0,713

Case 4 : lost of 3 lines OR 1 converter AND 0 array

P(t=5ans) = 0,796

P(t=5ans) = 0,824

3^{rd} simulation : allowed loss of : sampling lines – one converter – one array

loss of 4 lines OR one converter OR one array

P(t=5ans) = 0,832

Annexe 5.3. Conclusions

Configuration	Reliability
lost : 4 lines – no converter – no array	0,784
lost : 4 lines OR 1 converter AND no array	0,824
lost : 4 lines OR 1 converter OR 1 array	0,832

Depending on the definition of the degraded modes, reliability can reach a level comparable to the one of the digital chain.

Annexe 6. Spectrometer : detection and analogic processing chain reliability

Annexe 6.1. Hypothesis

- Each array is 16 sampling lines ; one sampling line is 16 pixels
- 2 arrays : 2 x 16= 32 sampling line
- power supply of each line is independent
- 1 converter for 8 lines (= 4 converters for 32 lines), each converter dedicated to 8 consecutive lines
- Estimated failure rates :
- 1 sampling line = 120 fit
- 1 converter (and passives) = 140 fit
- 1 array = 50 fit (power supply failure)

Annexe 6.2. Simulation results

Simulations are performed regarding 'acceptable' losses during the mission. These simulations would be updated with additional information on accepted losses (when available)

1^{st} simulation : allowed loss of : sampling lines – no converter – no array

Туре	Det + BAU	ASP	Power supply	Total
loss of 0 sampling lines	0,8451915	0,97577037	0,99562958	0,821109
loss of 1 sampling line	0,9877202	0,97577037	0,99562958	0,959576
loss of 2 sampling lines	0,9993623	0,97577037	0,99562958	0,970886
loss of 3 sampling lines	0,9999759	0,97577037	0,99562958	0,971482
loss of 4 sampling lines	0,9999993	0,97577037	0,99562958	0,971505

 2^{nd} simulation : allowed loss of : sampling lines – one converter – no array

Description of different configurations by a Markov diagram

Case 1 : lost of 1 line OR 1 converter AND 0 array

System status :

- 1 System OK
- 2 lost of one line
- 3 lost of one converter (8 lines lost)
- 4 system lost

Status diagram :

P(t=5ans) = 0,9815

Case 2 : lost of 1 line AND 1 converter AND 0 array

System status :

- 1 System OK
- 2 lost of one line
- 5 lost of one converter (8 lines lost)
- 6 lost of 1 line + 1 converter
- 5 system lost

P(t=5ans) = 0,9831

Case 3 : lost of 2 lines OR 1 converter AND 0 array

System status :

- 1 System OK
- 4 lost of one line
- 5 lost of 2 lines
- 4 lost of one converter (8 lines lost)
- 5 system lost

	MAT :	1	2	3	4	5
Syst OK	1	-	32*Ldet		4*Lcod	2*Lalim
Perte d'une voie	2		-	31*Ldet		4*Lcod+2*Lalim
Perte 2 voies	3			-		30*Ldet+4*Lcod+2*Lalim
Perte 1 codeur	4				-	32*Ldet+3*Lcod+2*Lalim
Perte Système	5					-
						2
		1	0	0	0	0
	ETATE .	4	4	4	4	â
	EIAIS:	I		I		0

P(t=5ans) = 0,9916

Case 5 : lost of 4 lines OR 1 converter AND 0 array

P(t=5ans) = 0,9917

3^{rd} simulation : allowed loss of : sampling lines – one converter – one array

loss of 4 lines OR one converter OR one array

P(t=5ans) = 0,9953

Annexe 6.3. Conclusions

Configuration	Reliability			
lost : 4 lines – no converter – no array	0,9715			
lost : 4 lines OR 1 converter AND no array	0,9917			
lost : 4 lines OR 1 converter OR 1 array	0,9953			

Reliability is already acceptable in the 1st case (4 lines lost).