SPIRE-ATC-DOC-000738

Herschel SPIRE Beam Steering Mirror PFM End Item Data Pack

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 1 of 102

Herschel SPIRE Beam Steering Mirror PFM End Item Data Pack

Document Prepared By:	Brenda Graham		
Document Approved By:	Gary Rae / Colin Cunningham	Signature and Date:	
Document Approved By:	Gillian Wright	Signature and Date:	
Document Released By:	Philip Parr-Burman	Signature and Date:	

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 2 of 102

Herschel SPIRE Beam Steering Mirror PFM End Item Data Pack

v 1.4

Distribution List:

SPIRE-Project	Eric Sawyer	
	Eric Clark	X
	Dave Kelsh	
UK ATC	Colin Cunningham	X
	Gillian Wright	
	Phil Parr-Burman	X
	Tom Baillie	
	Brian Stobie	
	David McNeill	
	Tom Paul	
	lan Laidlaw	
	Gary Rae	
	Derek Ives	
	Ian Bryson	
	*Vivienne Bon	
LAM	Dominique Pouliquen	

^{*} indicates master copy

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 3 of 102

Version Control

Date	Index	Remarks
19 Mar 04	1.0	Creation of the document

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 4 of 102

Contents

1. OVERVIEW	6
1.1 Introduction	6
1.2 Scope	6
1.3 Applicable documents	6
1.4 Reference documents	6
1.5 Glossary	7
1.6 ACCEPTANCE AND DELIVERY PROCESS	8
2. END ITEM DATA PACK CONTENTS	9
3. THE END ITEM DATA PACK	. 10
3.1 Shipping Documents	. 10
3.2 Procedures for Transport Handling & Installation	
3.3 Certificate of Conformance	. 12
3.4 Top Level Drawings incl. Family Tree	. 39
3.5 Functional Diagrams (Block Diagram)	
3.6 Electrical Circuit Diagrams	
3.7 As built configuration lists	. 47
3.8 Serialised Components List	. 52
3.9 List of Waivers	. 53
3.10 Copies of Waivers	. 54
3.11 Operation Manual	. 57
3.12 Historical Record	. 58
3.13 Logbook/Diary of Events	. 59
3.14 Operating Time/Cycle Record	. 62
3.15 Connector Mating Record	. 63
3.16 BLANK	. 69
3.17 Pressure Vessel Test Record	. 70
3.18 Calibration Data record	. 71
3.19 Temporary Installation Record	. 72
3.20 Open Work / Deferred Work / Open Tests	. 73
3.21 List of Non-Conformance reports (NCR's)	. 74
3.22 Copies of Non-Conformance reports (NCR's)	. 76
BACKGROUND	. 82
DESCRIPTION OF PROBLEM(S)	. 82
PROPOSED SOLUTION	
APPENDIX A	. 86
Notes on Test 1:	
Notes on Test 2:	
Appendix 1	
APPENDIX B	
APPENDIX C	ОЗ
3.23 BLANK	
3.24 Mass records / Power Budgets	
J. 24 IVI 033 1 500 1 US / FOWEL DUUYELS	. 33

v 1.4

Ref: SPI_BSM_DOC_0738 Date :25-Mar-04

Author: BG
Page 5 of 102

3.25 CLEANLINESS STATEMENT	. 10
3.26 Compliance Matrix	. 10 ⁻
3.27 Photographs	. 10

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 6 of 102

1. OVERVIEW

1.1 Introduction

The end goal of the ATC's PA plan is to

provide a level of traceability and assurance to the customer of overall quality levels,

provide a specific assurance that the product is fit for purpose in the space environment.

In addition to retained in-house records, the end deliverable of the PA plan is the End Item Data Package (EIDP) - *this document* - which accompanies the delivered hardware to the customer.

1.2 Scope

The Beam Steering Mirror Prototype Flight Model (PFM) is a deliverable model of flight standard suitable for use on the SPIRE Instrument.

1.3 Applicable documents

Applicable documents are project specific and may be assumed to apply fully to the BSM, unless stated otherwise

Ref	Title	Author	Reference	Ver	Date
AD 1	SPIRE Beam Steering Mirror Subsystem Specification	P. Parr-Burman	SPIRE-ATC-PRJ-000460	3.7	11 Sep 03
AD 2	SPIRE Beam Steering Mirror Subsystem Development plan	I Pain	SPIRE-ATC-PRJ-0466	5.1	30.Jan.02
AD 3	SPIRE Beam Steering Mirror Design Description	I Pain	SPIRE-ATC-PRJ-000466	4.1	20.Feb.02
AD 4	SPIRE BSM Product Assurance Plan	B. Graham	SPIRE-ATC-PRJ-000711	1.5	09 Jun 03

1.4 Reference documents

Reference documents are generic and may only apply in part to the project, or may be for information or reference only.

Ref	Title	Author	Reference	Ver	Date
RD 1	SPIRE AIV plan	B.Swinyard	SPIRE-RAL-DOC-000410	2.0	23.Feb.01
RD 2	Airborne particulate cleanliness classes in clean rooms and clean zones		FED-STD-209 E	-	
RD 3	SPIRE BSM Declared Process List	B. Graham	SPI-BSM-PRJ-0708	1.4	27/10/03
RD 4	SPIRE BSM Declared Components List	B. Graham	SPI-BSM-PRJ-0709	1.1	12/08/02
RD 5	SPIRE BSM Declared Materials List	B. Graham	SPI-BSM-PRJ-0710	1.3	21/10/02
RD 6	SPIRE BSM Interface Control Document	P. Parr-Burman	SPI-BSM-PRJ-0713	3.1	26/11/03
RD 7	Preparation and Torque Tightening of fasteners	I.Pain	SPI-BSM-NOT-0018	1.1	27/8/02
RD 8	Contamination and Cleanliness Control	ECSS	ESA-PSS-01-201	Issue 1	
RD 9	BSM Subsystem Test Plan	D. McNeil	SPIRE-ATC-PRJ-000736	4.0	10/11/03

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 7 of 102

1.5 Glossary

			•
AD	Applicable Document	MCU	Mechanism Control Unit
ADP	Acceptance Data Package	MIP	Mandatory Inspection Point
ARB	Acceptance Review Board	MGSE	Mechanical Ground Support Equipment
BSM	Beam Steering Mirror	MSSL	Mullard Space Science Laboratory
BSMe	Beam Steering Mirror electronics	NA	Not Applicable
CoG	Centre of Gravity	NCR	Non Conformance Report
CIL	Critical Items List	NCRP	Non Conformance Review Panel
CoC	Certificate of Conformance	OGSE	Optical Ground Support Equipment
CQM	Cryogenic Qualification Model	PA	Product Assurance
CTD	Change to Drawing/Document	PFM	Proto Flight Model
DCL	Declared Components List	PPARC	Particle Physics and Astronomy Research Council
DM	Development Model	PI	Principal Investigator
DML	Declared Materials List	QA	Quality Assurance
DPA	Destructive Physical Analysis	RAL	Rutherford Appleton Laboratory
DRB	Delivery Review Board	RAL SSD	RAL Space Science Department
ECSS	European Cooperation for Space Standardisation	RD	Reference Document
EGSE	Electrical Ground Support Equipment	SMEC	Spectrometer Mechanism
EIDP	End Item Data Pack	SPIRE	Spectral and Photometric Imaging REceiver
ESA	European Space Agency	STM	Structural & Thermal Model
FPU	Focal Plane Unit	TBC	To Be Confirmed
FSM	Flight Spare model	TBD	To Be Defined
GSE	Ground Support Equipment	TBW	To Be Written
HoS	Head of Specialism	UK ATC	United Kingdom Astronomy Technology Centre
Herschel	ESA Mission name (formerly FIRST)	UK SPO	UK SPIRE Project Office
IBDR	Instrument Baseline Design Review	WE	Warm Electronics
KIP	Key Inspection Point		
LAM	Laboratoire d'Astrophysique de Marseille		
LAT	Lot Acceptance Tests		

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 8 of 102

1.6 ACCEPTANCE AND DELIVERY PROCESS

Upon completion of final tests and inspection and before shipment of a deliverable item to LAM or RAL a review will be held covering all deliverable documentation, hardware and software items. The object of this Delivery Review is to establish that there is adequate documentary evidence to demonstrate that the product satisfies all the requirements applicable at that stage. The Delivery Review Board (DRB) shall comprise the following (or nominated representatives):

- ATC Project Manager, PA manager
- Representatives of the SPIRE project office
- · Additional staff as required.

The DRB shall cover the following points under the headings:

- End Item Data Pack
- Hardware, including GSE

Project Team - Contact List

Contact	Role	Details	
		Telephone nur 8xxx	nbers are 0131 668-
		Email a user@roe.ac.u	ddresses are k
Dr Gillian Wright	Local Co-I, Project Scientist	Tel ext:	248
		Email:	gsw
Philip Parr-Burman,	Project Manager, Lead/Mechanical	Tel ext:	431
	Engineer, Product Assurance Manager	Email:	ppb
Colin Cunningham,	Director, Technology Development,	Tel ext:	223
	SPIRE systems engineer, BSM consultant	Email:	crc
Brian Stobie,	Electronics & Controls engineer	Tel ext:	261
		Email:	bstobie
Tom Paul,	Mechanical Design Engineer	Tel ext:	259
		Email:	tap
Brenda Graham	Electronics Engineer	Tel ext:	266
		Email:	bg
Tom Baillie	Project Technicians	Tel ext:	209
		Email:	tecb
Vivienne Bon	Project Assistant, Documentation	Tel ext:	252
		Email:	vcb

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 9 of 102

2. END ITEM DATA PACK CONTENTS

EIDP Section	Contents	Req'd	Comments
3.1	Shipping Documents	Yes	
3.2	Procedures for Transport Handling & Installation	Yes	
3.3	Certificate of Conformance/Delivery Review board MOM AI Lists	Yes	
3.4	Qualification Status/Test Matrix	Yes	
3.5	Top Level Drawings incl. Family Tree	Yes	
3.6	Interface Drawings	Yes	
3.7	Functional Diagrams (Block Diagram)	No	
3.8	Electrical Circuit Diagrams	Yes	
3.9	As built configuration lists	Yes	Incl. drawing numbers & issues, mod sheets and manufacturing NCR's
3.10	Serialised Components List	Yes	Electronics parts & Mechanical per ATC serial number logbook
3.11	List of Waivers	Yes	
3.12	Copies of Waivers	Yes	
3.13	Operation Manual	Yes	Use of STM as alignment OGSE
3.14	Historical Record	Yes	Linear log of assembly & test activities
3.15	Logbook/Diary of Events	No	Not deliverable. Available as required, but not delivered
3.16	Operating Time/Cycle Record	N/A	See section of EIDP
3.17	Connector Mating Record	Yes	
3.18	Blank		Not used
3.19	Pressure Vessel Test Record	N/A	No pressure testing carried out
3.20	Calibration Data record	Yes	
3.21	Temporary Installation Record	Yes	Shipping locks, Red Tag (remove before use), Green Tag (insert before use) Items
3.22	Open Work / Deferred Work / Open Tests	Yes	
3.23	List of Non-Conformance reports (NCR's)	Yes	
3.24	Copies of Non-Conformance reports (NCR's)	Yes	Includes manuf. NCR's & fault logs
3.25	Test Reports	Yes	
3.26	Blank		Not used
3.27	Mass records / Power Budgets	Yes	
3.28	Cleanliness Statement	Yes	
3.29	Compliance Matrix	Yes	
3.30	Photographs	Yes	

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 10 of 102

3. THE END ITEM DATA PACK

3.1 Shipping Documents

Delivered Items

- Item 1 : The BSM PFM, packed in grey plastic transit case, contents
 - 1. The BSM PFM (Double bagged, Dry Nitrogen purged)
- Item 2: The End Item Data Pack.

Items Not included,

- Item 3: Photometer calibrator PFM (PCAL) UoC,W supply to RAL
- Item 4: Mounting bolts to optical bench, and location bushes MSSL supply
- Item 5: Thermistors Provision by RAL. Fitted at RAL

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 11 of 102

3.2 Procedures for Transport Handling & Installation

Handling,

The BSM PFM is a small unit with mass < 1kg. It has no sharp edges.

No lifting or handling equipment is required, other than :

- use of clean room gloves
- standard M4 allen keys (with torque readout) for attachment to alignment shoe
- standard UNC type allen keys for attachment to optical bench (MSSL supply)

Storage, Packaging, Transportation

The PFM has been clean room assembled and double bagged at ATC, in air-tight bags with dry Nitrogen gas purge of the bags. A desiccant and humidity indicators is placed between the inner and outer bags. The bagged unit will be despatched in a standard plastic tooling case, foam packed (standard commercial grey foam) via accompanied surface transport to RAL.

CAUTIONS!

- 1. "clean room grade contents" see instructions on unpacking
- 2. "exposed optical surface " do not touch mirror.
- 3. "magnets" fitted on internal components.

Take care in using magnetic tools inside the BSM baffle (eg inspection mirrors)

Do not expose BSM to areas contaminated with metal swarf or filings.

Upon receipt:

The case is combination locked - the code will be provided to RAL PA staff.

Remove from transit case outside full clean room .

Remove outer bag in 'grey' area of clean room.

Take PFM through to clean room. Remove inner bag.

The PFM must be handled with appropriate precautions taken to prevent contamination or damage, in particular to the mirror surface. (Refer to RD 8)

Marking and Labelling

The BMS and BSM components are generally marked with an etched serial. Sub-assemblies are not marked, to avoid multiple numbers appearing on components. Traceability for assemblies is via assembly logs.

v 1.4

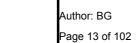
Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 12 of 102

3.3 Certificate of Conformance

The Beam Steering Mirror Prototype Flight Model complies with the requirements of the SPIRE Project, as outlined in the applicable documents, i.e.

- Beam Steering Mirror Subsystem Specification AD 1
- SPIRE BSM Product Assurance Plan AD4


Signed:	Philip Parr Burman: Project Manager, BSM
Date:	
Signed:	. Brenda Graham: Product Assurance Manager, BSM.
Date:	
Minutes of Delivery Review E	Board: Attachment
Waivers/Deviations	See section 3.11 of EIDP
Open NCRs	See section 3.23 of EIDP
Certificates of Conformance	
 Flex Pi 	ivots Attached
• Mirror	Attached
Motor	Coils Attached
 Magne 	t Attached

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04

Goodrich Co 104 Otis Stree Rome, NY 134	et	September 9, 2003
To	UK Astronomy Technology Centre	e
- <u></u>	Edinburgh, United Kingdom	
Certi	ficate of Compliance	
X	meet the quality assurance rec procedures provide for mainte terial used in fabrication of all able for review at any reasonal Equipment listed below has be	mponents and/or assemblies have been inspected and quirements of applicable specifications. Quality Control enance of adequate records for acceptance of raw maunits processed. These records are on file and available time. Deen 100% functionally tested and meets all requirements. These results are on file and available for review
Sales o	order no S030300000	Goodrich part no. 2479594
	se order no. <u>032515</u>	Description Flexural Pivots
	r noS03030000001	Quantity 6
1800.50	rder no074956	
ď	· / · /	

Quality Control Representative

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG

Page 14 of 102

04/24/02

C-FLEX BEARING CO., INC.

E-10 BeCU Pivot Performance Results

UK Astronomy Technology Centre

Results based upon actual testing of finished parts completed on April 23, 2002.

Spring/Sleeve/Quadrant Materials:

NGK 17200 BeCu Alloy

Chemical Composition:

1.85% BE

.25% Co

Balance Cu

Physical Properties: (age hardened at 600 deg. F for 2 hours)

Tensile Strength:

182,800 psi

Yield Strength:

162,400 psi

Modulus of Elasticity:

18.5 KSI

Fatigue Strength:

48.7 KSI

Hardness:

36 Rc

Frictionless Bearings -No Lubrication - Low Hysteresis - Easy Installation - Custom Design

THE BEARING SOLUTION

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 15 of 102

04/24/2002 C-FLEX BEARING CO., INC. E-10 BeCU Pivot Performance Results UK Astronomy Technology Centre Page 2

Load Testing:

Four parts out of the same batch as the 16 serialized units, were load tested to 5.2 lbs and reviewed for performance or geometry changes. There were no noted changes, therefore, the maximum load rating may be established at 5.2 lbs, well above the required 3.5 lb requirement.

Brazing:

Several pivots were destructively tested, and although some minor voids were noted on some parts, in no case did the voids exceed 10% of the potential contact area. This will result in a core/spring, and core/sleeve joint strength which will greatly exceed performance requirements.

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 16 of 102

04/24/2002 C-FLEX BEARING CO., INC. E-10 BeCU Pivot Performance Results UK Astronomy Technology Centre Page 3

INSPECTION RESULTS

		TSR					
Serial No.	Length(Inches)	Diameter(Inches)	Lb*In/De	gree			
	0.500+/-0.003	0.3125 +0/-0.0005	_cw	ccw			
1	.500	.3121	0.0033	0.0033			
2	.501	.3121	0.0033	0.0033			
3	.499	.3125	0.0033	0.0033			
4	.501	.3121	0.0034	0.0034			
5	.500	.3121	0.0033	0.0033			
6	.500	.3122	0.0033	0.0033			
7	.500	.3122	0.0033	0.0033			
8	.501	.3122	0.0033	0.0033			
9	.503	.3123	0.0033	0.0033			
10	.501	.3121	0.0035	0.0035			
11	.500	.3121	0.0033	0.0033			
12	.500	.3121	0.0034	0.0034			
13	.501	.3121	0.0034	0.0034			
14	.501	.3122	0.0034	0.0034			
15	.503	.3122	0.0033	0.0033			
16	.499	.3122	0.0033	0.0033			

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04

Author: BG

Page 17 of 102

NGK Metals Corporation

150 Tuckerton Road P.O. Box 13367 Reading, PA 19612-3367

610 921-5000 Fax 610 921-5358^{C#}

CERTIFICATE OF TESTS

CUSTOMER P.O. NUMBER

CUSTOMER ORDER DATE

SPECIFICATION(S)

P02-017B

02/05/02

ASTM B194-96

CFL100

C-FLEX BEARING CO 104 INDUSTRIAL DR

FRANKFORT

NY 13340

Robert W. Hagin

Manager, Servicenter Q(

02/07/02 913165-A1

NGK ORDER NUMBER

Fe

A1

Ni

CH

DESCRIPTION

UNIT UNITS SHIPPED

614547-A

FORM : STRIP

GAUGE: .02260(+.00100)(-.00100) 6.31200(+.06200)(-.06200) WIDTH :

TEMPER: ANNEAL TBOO ALLOY: C17200 BERYLCO 25

HEAT NO. : JE193 MSTR COIL: 1 Be 1.8350 .0120 Si Co .2450

.0240

.0260

.0040

Balance

MECHANICAL/PHYSICAL PROPERTIES

AS SHIPPED TENSILE STR. (PSI): 71,000 - 71,600 YIELD STR. (PSI): 29,100 - 29,300 (% ELONGATION 42 -): HARDNESS (DPH): 136 - 146

> AGE HARDENED PROPERTIES 3.00 HOURS AT 600 F

TENSILE STR. (PSI): 184,700 - 185,200 YIELD STR. (PSI): 152,000 - 154,200 4 – ELONGATION (%): HARDNESS (DPH): 385 - 389

VE CERTIFY THAT THE MATERIAL DESCRIBED ABOVE HAS BEEN PRODUCED, TESTED, AND INSPECTED IN ACCORDACE WITH THE REFERENCED P.O. AND SPECIFICATION REQUIREMENTS WIRING THE MANUFACTURING, TESTING, AND INSPECTION PROCESSES, THE SUPPLIES OFFERED HAVE NOT COME IN DIRECT CONTACT WITH MERCURY OR ANY CHEMICALLY OR THERMALLY INSTABLE MERCURY CONTAINING COMPOUND OR WITH ANY MERCURY CONTAINING DEVICES WHICH PROVIDE ONLY A SINGLE BARRIER SEAL AGAINST BREAKAGE, SPILLAGE AND RELEASE THE FIRE THE MEMORIAL MERCURY. THE INFORMATION RECORDED IN THIS DOCUMENT COULD AFFECT THE NATIONAL SECURITY OF THE UNITED STATES. IT IS FREE OF FALSE, FICTITIOUS, OR RAUDULENT INFORMATION WHICH COULD BE IN VIOLATION OF FEDERAL LAW, TITLE 16, CHAPTER 47 **DRM 101 AUG 97**

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG

Page 18 of 102

NGK Metals Corporation

150 Tuckerton Road P.O. Box 13367 Reading, PA 19612-3367 610 921-5000 Fax 610 921-5358

CERTIFICATE OF TESTS

CUSTOMER P.O. NUMBER

CUSTOMER ORDER DATE

SPECIFICATION(S)

202-025B

03/04/02

ASTM B196-95A

FL100

3-FLEX BEARING CO 104 INDUSTRIAL DR

FRANKFORT

NY 13340

Quality Engineer

03/06/02 -G

NGK ORDER NUMBER

DESCRIPTION

UNIT

UNITS SHIPPED

509073-A

FORM : ROD - ROUND .37500(+.00300)(-.00300)

LENGTH: 51.00000 - 63.43750

TEMPER: ANNEAL TBOO ALLOY: C17200 BERYLCO 25

IEAT NO. : LC827

MECHANICAL/PHYSICAL PROPERTIES

ie.	1.8400		AS	SHI	(PPED		
;i	-0100	TENSILE STR	. (PSI):	78,700		78,700
ò	-2400	YIELD STR.	(PSI) =	52,000	-	52,000
e	.0280	ELONGATION	(%):	40	T-17	40
11	-0210				9		
li	.0050	AG	E HARD	ENED	PROPERT	LIE	ES
ď	-0010		3.00	HOL	JRS AT	500	F
:u	Balance	TENSILE STR	. (PSI) =	187,400	-	189,400
		YIELD STR.	(PSI) =	169,500	-	169,500
		ELONGATION	(%):	10	500	10

E. gloeve Malgral

WE CERTIFY THAT THE MATERIAL DESCRIBED ABOVE HAS BEEN PRODUCED, TESTED, AND INSPECTED IN ACCORDACE WITH THE REFERENCED P.O. AND SPECIFICATION REQUIREMENTS DURING THE MANUFACTURING, TESTING, AND INSPECTION PROCESSES, THE SUPPLIES OFFERED HAVE NOT COME IN DIRECT CONTACT WITH MERCURY OR ANY CHEMICALLY OR THERMALL UNSTABLE MERCURY CONTAINING COMPOUND OR WITH ANY MERCURY CONTAINING DEVICES WHICH PROVIDE ONLY A SINGLE BARRIER SEAL AGAINST BREAKAGE, SPILLAGE AND RELEAS OF THE EMERCURY, THE INFORMATION RECORDED IN THIS DOCUMENT COULD AFFECT THE NATIONAL SECURITY OF THE UNITED STATES. IT IS FREE OF FALSE, FICTITIOUS, O FRAUDULENT INFORMATION WHICH COULD BE IN VIOLATION OF FEDERAL LAW, TITLE 18, CHAPTER 47 FORM 101 AUG 97

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG

Page 19 of 102

NGK Metals Corporation

150 Tuckerton Road P.O. Box 13367 Reading, PA 19612-3367 610 921-5000 Fax 610 921-5358 #

CERTIFICATE OF TESTS

SUSTOMER P.O. NUMBER

CUSTOMER ORDER DATE

SPECIFICATION(S)

P02-001

01/08/02

PS-1-001 REV 3

CFL100

C-FLEX BEARING CO 104 INDUSTRIAL DR

FRANKFORT

NY 13340

Robert W. Hagin Manager, Servicenter QC 01/14/02

913265-A

NGK ORDER NUMBER

DESCRIPTION

UNITS SHIPPED

614314-A

FORM : STRIP

GAUGE : .00370(+.00015)(-.00015) 8.18700(+.06000)(-.06000) WIDTH:

TEMPER: 1/4 H TDO1 ALLOY: C17200 BERYLCO 25

HEAT NO. : KFO61 MSTR COIL: 5

MECHANICAL/PHYSICAL PROPERTIES

Be 1.8670 .0140 Si .2410 Co .0230 Fe .0220 A1 .0040 Ni

Balance

AS SHIPPED TENSILE STR. (PSI): 80,700 - YIELD STR. (PSI): 70,400 -80,900 71,200 ELONGATION (% 12 -15): GRAIN SIZE (MM) .006 -.007):

> AGE HARDENED PROPERTIES 2.00 HOURS AT 600 F

TENSILE STR. (PSI): 182,800 - 185,100 YIELD STR. (PSI): 162,400 - 164,000 ELONGATION (%): 3 - 3 ELONGATION (%):

WE CERTIFY THAT THE MATERIAL DESCRIBED ABOVE HAS BEEN PRODUCED, TESTED, AND INSPECTED IN ACCORDACE WITH THE REFERENCED P.O. AND SPECIFICATION REQUIREMENT: DURING THE MANUFACTURING, TESTING, AND INSPECTION PROCESSES, THE SUPPLIES OFFERED HAVE NOT COME IN DIRECT CONTACT WITH MERCURY OR ANY CHEMICALLY OR THERMALL UNSTABLE MERCURY CONTAINING COMPOUND OR WITH ANY MERCURY CONTAINING DEVICES WHICH PROVIDE ONLY A SINGLE BARRIER SEAL AGAINST BREAKAGE, SPILLAGE AND RELEAS OF THE ELEMENTAL MERCURY, THE INFORMATION RECORDED IN THIS DOCUMENT COULD AFFECT THE NATIONAL SECURITY OF THE UNITED STATES. IT IS FREE OF FALSE, FICTITIOUS, O FRAUDULENT INFORMATION WHICH COULD BE IN VIOLATION OF FEDERAL LAW, TITLE 18, CHAPTER 47 450000

FORM 101 AUG 97

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 20 of 102

SYMONS MIRROR TECHNOLOGY LTD.

39 Wedgwood Way, Stevenage, Herts, SG1 4QT., U.K. Tel: +44 (0) 01438 745022 Fax: +44 (0) 01438 361646.

CERTIFICATE OF CONFORMITY

UK Astronomy Technology Centre Royal Observatory, Edinburgh Blackford Hill Edinburgh EH9 3HJ Scotland Our ref. No: 8525 Your ref. No: 032526 M.O.D Contract No: N/A

Date: September 22, 2003

Delivery Qty. Description or Specification

3483 3-Off Mirror to drawing No. 023-004-001
Rev. 3.

CONDITION OF MATERIALS AS DESPATCHED

DETAILED RECOMMENDATIONS FOR
SUBSEQUENT HEAT TREATMENT(S) WHERE
SUCH IS NOT STIPULATED IN THE RELEVANT SPECIFICATION

DEVIATIONS (E.G. MAJOR CONCESSIONS OR PRODUCTION PERMITS)

CERTIFIED THAT THE WHOLE OF THE SUPPLIES DETAILED HEREON HAVE BEEN
INSPECTED TESTED AND UNLESS OTHERWISE STATED ABOVE CONFORM IN ALL

FOR AND ON BEHALF OF SYMONS MIRROR TECHNOLOGY LTD.

RESPECTS WITH THE REQUIREMENTS OF THE CONTRACT OR ORDER.

SIGNED CAP FULLE POSITION Quality Manager

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 21 of 102

copy

Service-Center Oberkochen

Carl Zeiss 73446 Oberkochen

UK Astronomy Technology Centre Royal Observatory, Edinburgh Blackford Hill **EDINBURGH EH9 3HJ** GROSSBRITANNIEN

Delivery note

Please always indicate: Division/Number/Date 80/1030677385/30.07.2003

Contact Ulrich Hahn Phone / Fax 07364-202815 / 07364-202072 e-mail u.hahn@zeiss.de Customer No. 515044

Order confirmation: 80 / 1020609664 of 13.02.2003

Your order 030316 from 12.02.2003

Orderer: Elaine Robertson

Ian Pain Daniel Duff

Item.

PH Article-No. Quantity Description

000030 80 000000-0239-500 Coils for PACS-Project

Country of origin: Germany 10 PC

Commodity/code: 90019090

Serial No. 28,32,33,34,35,36,38,39,41,42

1 Dummy free of charge Serial No. 37

Terms of delivery: Dispatch route:

Ex works oberkochen (INCOTERMS 2000)

Standard terms

Carl Zeiss Carl-Zeiss-Strasse 22 Banken:

Deutsche Bank AG Heidenheim

Dresdner Bank Aalen

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04
Author: BG
Page 22 of 102

PACS-COIL

L 28

	F/Hz	T=295K 14μA < I < 33 μA L/mH R/Ω	T=77K 16μA < I < 85 μA L/mH R/ Ω	T=4,2K 16μA < I < 100 μA L/mH R/ Ω
Coil-Wire Alu	20	L=46,9 R=214	L=48,4 R=17,9	L=48,4 R=0,419
99,999% Ø d: 100 µm	50	L=64,9 R=211	L=48,6 R=17,9	L=48,4 R=0,438
Isolation Polyimid Ø D:110 µm	100	L=53,9 R=212	L=48,7 R=17,9	L=48,3 R=0,493
n: ca 1100 Core Cryoperm	500	L=48,9 R=214	L=48,6 R=18,6	L=48,2 R=1,13
	2 000	L=49,2 R=220	L=48,7 R=24,9	L=48,2 R=8,30

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04
Author: BG
Page 23 of 102

PACS-COIL

L 32

		T=295K	T=77K	T=4,2K
	F/Hz	14μΑ < Ι < 33 μΑ	16μΑ < Ι < 85 μΑ	16μΑ < Ι < 100 μΑ
		L/mH	L/mH	L/mH
		R/Ω	R/Ω	R/Ω
	20	L=48,2	L=48,3	L=48,2
Coil-Wire		R=208	R=17,9	R=0,425
Alu				
99,999%	50	L=50,0	L=48,5	L=48,1
Ø d: 100 µm	1	R=206	R=17,9	R=0,435
Isolation Polyimid	100	L=53,0	L=48,4	L=48,0
170		R=210	R=17,9	R=0,498
Ø D:110 µm				
n: ca 1100	500	L=48,4	L=48,3	L=47,9
		R=212	R=18,6	R=1,21
Core			72 72 7	
Cryoperm	2 000	L=49,1	L=48,5	L=48,8
o. Joponii		R=228	R=25,5	R=8,90
74				

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04
Author: BG
Page 24 of 102

PACS-COIL

L 33

		T=295K	T=77K	T=4,2K
	F/Hz	14μΑ < Ι < 33 μΑ	16μΑ < Ι < 85 μΑ	16μΑ < Ι < 100 μΑ
		L/mH	L/mH	L/mH
		R/Ω	R/Ω	R/Ω
	20	L=45,4	L=48,7	L=48,6
Coil-Wire		R=215	R=18,0	R=0,443
Alu 99,999%	50	L=55,8	L=49,0	L=48,4
Ø d: 100 µm		R=214	R=17,9	R=0,480
Isolation Polyimid	100	L=48,7	L=48,9	L=48,3
Ø D:110 µm		R=214	R=18,0	R=0,592
n: ca 1100	500	L=48,9	L=48,9	L=48,0
10-0		R=213	R=19,1	R=1,43
Core	2 000	L=49,5	L=48,9	L=48,1
Cryoperm		R=239	R=28,4	R=9,44

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04
Author: BG
Page 25 of 102

PACS-COIL

L 34

		T=295K	T=77K	T=4,2K
	F/Hz	14μΑ < Ι < 33 μΑ	16μΑ < I < 85 μΑ	16μΑ < Ι < 100 μΑ
		L/mH	L/mH .	L/mH
		R/Ω	R/Ω	R/Ω
	20	L=46,0	L=48,3	L=48,4
Coil-Wire		R=214	R=17,9	R=0,419
Alu 99,999%	50	L=48,0	L=48,6	L=48,4
Ø d: 100 µm	100 mg	R=215	R=17,9	R=0,440
Isolation Polyimid	100	L=48,5	L=48,6	L=48,3
Ø D:110 µm		R=210	R=17,9	R=0,498
n: ca 1100	500	L=48,5	L=48,5	L=48,2
		R=214	R=18,7	R=1,25
Core	2 000	L=49,3	L=48,7	L=48,2
Cryoperm		R=228	R=25,6	R=9,60
		l .	1	lj.

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04
Author: BG
Page 26 of 102

PACS-COIL

L 35

		T=295K	T=77K	T=4,2K
	F/Hz	14μΑ < I < 33 μΑ	16μΑ < Ι < 85 μΑ	16μΑ < Ι < 100 μΑ
	2	L/mH	L/mH	L/mH
		R/Ω	R/Ω	R/Ω
	20	L=43,4	L=47,7	L=47,6
Coil-Wire	12 12	R=212	R=17,7	R=0,420
Alu				
99,999%	50	L=35,0	L=47,9	L=47,6
Ø d: 100 µm		R=217	R=17,7	R=0,450
Isolation	100	L=47,0	L=47,9	L=47,5
Polyimid		R=206	R=17,8	R=0,510
Ø D:110 µm				
n: ca 1100	500	L=47,8	L=47,8	L=47,4
		R=210	R=18,8	R=1,25
Core	2 000	L=48,4	L=47,9	L=47,5
Cryoperm		R=225	R=26,3	R=9,20

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 27 of 102

PACS-COIL

L 36

	F/Hz	T=295K 14μA < I < 33 μA L/mH R/Ω	T=77K 16μA < I < 85 μA L/mH R/ Ω	T=4,2K 16μA < I < 100 μA L/mH R/ Ω
Coil-Wire	20	L=46,0 R=214	L=48,1 R=17,9	L=47,0 R=0,415
Alu 99,999% Ø d: 100 µm Isolation Polyimid Ø D:110 µm	100	L=47,0 R=214 L=44,0 R=214	L=48,3 R=17,9 L=48,3 R=17,9	L=47,9 R=0,470 L=47,8 R=0,560
n: ca 1100 Core Cryoperm	500	L=47,6 R=215	L=48,3 R=18,8	L=47,6 R=1,48
	2 000	L=49,1 R=230	L=48,3 R=27,5	L=47,6 R=9,90

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04
Author: BG
Page 28 of 102

PACS-COIL

L 38

		T=295K	T=77K	T=4,2K
	F/Hz	14μΑ < Ι < 33 μΑ	16μΑ < Ι < 85 μΑ	16μΑ < Ι < 100 μΑ
		L/mH	L/mH	L/mH
		R/Ω	R/Ω	R/Ω
	20	L=44,8	L=47,5	L=47,5
Coil-Wire		R=212	R=17,8	R=0,424
Alu 99,999%	50	L=46,7	L=47,9	L=47,4
Ø d: 100 µm		R=211	R=17,7	R=0,464
Isolation	100	L=47,4	L=47,8	L=47,3
Polyimid Ø D:110 µm		R=212	R=17,8	R=0,546
n: ca 1100	500	L=47,8	L=47,8	L=47,1
	8	R=213	R=18,7	R=1,10
Core	2 000	L=48,5	L=47,8	L=47,1
Cryoperm		R=226	R=27,8	R=9,00
0.,000		R=226	R=27,8	R=9,00

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04
Author: BG
Page 29 of 102

PACS-COIL

L 39

		T=295K	T=77K	T=4,2K
	F/Hz	14μΑ < Ι < 33 μΑ	16μΑ < I < 85 μΑ	16μΑ < Ι < 100 μΑ
		L/mH	L/mH	L/mH
58.0		R/Ω	R/Ω	R/Ω
	20	L=45,0	L=48,4	L=48,5
Coil-Wire		R=213	R=18,1	R=0,415
Alu 99,999%	50	L=48,7	L=48,7	L=48,4
Ø d: 100 µm	,	R=214	R=18,0	R=0,441
Isolation Polyimid	100	L=48,4	L=48,8	L=48,4
Ø D:110 µm		R=214	R=18,0	R=0,504
n: ca 1100	500	L=48,6	L=48,6	L=48,3
		R=215	R=19,4	R=1,25
Core	2 000	L=49,4	L=48,4	L=48,3
Cryoperm		R=231	R=31,2	R=9,70

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 30 of 102

Qualification Status/Test Matrix

Applicability Of PA Requirements To The PFM/OGSE

The BSM model philosophy is described in AD 2 and AD4. The PA requirements for PFM are:

PA REQUIREMENTS	PFM
PA Management	Α
Material and Process Selection and Approval	Α
EEE Parts Selection and Control	Α
Cleanliness and Contamination Control	Α
Reliability Assurance	Α
Safety	Α
Quality Assurance	
Procurement Control	Α
Manufacturing Control	Α
Integration and Test Control	Α
Handling, Storage, Packaging	Α
Non-conformance Control	Α
Alerts	N
Acceptance and Delivery	Α
Software PA	N

A = Applicable; P= Partially Applicable; N = Non-Applicable

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04

Author: BG Page 31 of 102

Verification requirements

The BSM Subsystem Specification Document (AD 1) contains more detail on the actual tests to be carried out on the BSM, including a verification matrix defining how each parameter is to be verified.

Spire BSM Verification Summary

Changes from SSSD v 3.7 highlighted in yellow

17th March 2004

SSSD Para	SSSD Reqt No	Title	Requirement	PFM	FS	Notes	Ref to Compliance	RFW / NCR
4.1.1	R1	Angular Travel - Chop Axis	Angular range +/- 2.53 deg	T	T			
4.1.1	R2	Angular Travel - Chop Axis	Min chop throw 0.1 deg	T	T			
4.1.1	R3	Angular Travel - Chop Axis	Chop to at least 132 arcsec	T	T			
4.1.2	R4	Angular Travel - Jiggle Axis	Angular range +/- 0.573 deg	T	T			
4.1.3	R5	Minimum Step Size	0.038 deg jiggle, 0.039 deg chop	T	T			
4.1.4	R6	Chop Frequency	Up to 2 Hz	T	T			
4.1.4	R7	Chop Frequency	Goal up to 5 Hz, with degraded power and settling time	X	X			
4.1.5	R8	Jiggle Frequency	Up to 0.5 Hz	T	T			
4.1.5	R9	Jiggle Frequency	Goal up to 1 Hz, with degraded power and settling time	X	X			
4.1.6	R10	Holding position	Any position to 0.004 deg rms for up to 4 hrs	Т	Т			
4.1.7	R11	Stability	0.2 arcsec sky (0.0038 deg) over 60 sec incl at 0.03 - 25 Hz	Т	Т			
4.1.8	R12	Position Measurement	Knowledge of mirror pos to 0.00049 deg	Т	Т			
4.1.9	R13	Settling Time	Both axes within 0.019 deg in less than 20 ms from chop demand	Т	T			

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04

Author: BG

Page 32 of 102

A 1 BARRY 181 (1 A	Changes from SSSD v 3.7	
Spire BSM Verification Summary	highlighted in yellow	17th March 2004
4 1 0 R14 Settling Time Roth ever within 0.010 deg in	a less than T T T	

4.1.9	R14	Settling Time	Both axes within 0.019 deg in less than 100 ms from jiggle demand	T	Т			
4.1.9	R15	Settling Time	Goal: Within 0.019 deg in less than 50 ms from jiggle demand	X	X			
4.1.10	R16	Chop repeatability	0.004 deg over 4 hrs	T	Т			
4.2.1	R17	Mechanical Dimensions	Within 130x130x30 mm exc mounting	A	A		SPIRE (Model Ref) Inspection Report Folder	
4.2.1	R18	Mechanical Dimensions	Within 132x95x120 inc mounting	A	A		SPIRE (Model Ref) Inspection Report Folder	
4.2.1	R19	Mechanical Dimensions	Ref ICD	M	M	From part inspection reports		
4.2.2	R20	Operating Temperature	4K (3.5 to 6)	T	T	By implication since performance parameters measured at this temperature		
4.2.2	R21	Operating Temperature	Capable of reduced perf at up to 300K	T	T	Check for basic function		
4.2.3	R22	Thermal Isolation	part vis to optical path < 1K above structure	A	A	Previous test on proto		
4.2.4	R23	Cold Power Dissipation	<4mW average	T	Т			
4.2.6	R24	Mirror Surface Dims (& Form)	Clear diam 32 mm	M	M	On part insp report	Mirror C of C	
4.2.6	R25	Mirror Surface Dims (& Form)	Central hole 2.8 +/- 0.1mm	M	M	On part insp report	Mirror C of C	
4.2.6	R26	Mirror Surface Dims (& Form)	Goal: central aperture up to 8mm	X	X	On part insp report	Mirror C of C	
4.2.6	R27	Mirror Surface Dims (& Form)	Ellipse 30 x 32 mm	M	M	On part insp report	Mirror C of C	
4.2.6	R28	Mirror Surface Dims (& Form)	Flat to < 1 um	T	T	Ref cold mirror test results	Mirror C of C	

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04

Author: BG Page 33 of 102

Changes from SSSD v 3.7

Out to DOM West Constitution On the constitution of the constituti			Changes from SSSD v 3.7					
	Spire BSM Verification Summary			highlighted in yellow			17th March 2004	
4.2.7	R29	Mirror Surface Finish	Surface roughness < 10nm rms	I/M	I/M	Component measurement	Mirror C of C	
4.2.7	R30	Mirror Surface Finish	Obscuration due to defects <0.1%	I/M	I/M	Component measurement	Mirror C of C	
4.2.8	R31	Mirror Surface Reflectivity	99% at 200-670 microns	A	A	Standard values for diamond turned aluminium		
4.2.9	R32	Mirror Surface Emissivity	<1% at 200-670 microns	X	X	Complement of 4.2.11 & 4.2.8		
4.2.10	R33	Baffle	Must pass 20% oversized beam with 0.5mm margin	M	M	Measurement will be against part drawings. Tests only performed on integration at RAL		
4.2.11	R34	Position of Rotation Axes	Establish to 0.5mm, 0.5 deg	A	A	Design tolerances		
4.2.11	R35	Position of Rotation Axes	Shoe m/c'g to allow integration to 0.25mm, 0.05 deg	A	A	Process of machining shoe		
4.2.11	R36	Position of Rotation Axes	Repositionable on bench to 0.05mm, 0.05 deg	A	A	Test procedure relies on it		
4.2.11	R37	Position of Rotation Axes	ATC Goal: lateral decentre < 10 um	X	X			
4.2.11	R38	Position of Rotation Axes	ATC Goal: Assy of mirror jiggle to < 0.5mm	X	X			
4.2.11	R39	Position of Rotation Axes	ATC Goal: Assy of mirror chop to < 0.3mm	X	X			
4.2.12	R40	Orthogonality of Rotation Axes	ATC Goal: Orthogonality to 0.15 deg	X	X			
4.2.13	R41	Fail Safe (No Drive Signal) Position	Pos with no drive to nominal 0 within 0.18 deg	Т	Т			
4.2.14	R42	Fail Safe (Mechanical Failure) Posn	If flex pivots fail mirror can be returned to nominal within +0.573 jiggle, -2.53 deg chop	A	A	Design restrains mirror to operating range	Design Description	
4.2.15	R43	Mass	BSMm and BSMs (exc PCAL) <	M	M			
								1

Spire BSM Verification Summary

Herschel SPIRE Beam Steering Mirror PFM End Item Data Pack

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04

Author: BG Page 34 of 102

17th March 2004

Changes from SSSD v 3.7 highlighted in yellow

Spire	DOINT A	vernication Summa	.	highlighted in yellow			17th March 2004	
			1100g					
4.2.16	R44	Cool-down time	Reach 4K within 15 hrs	A	A	Cooldown times will be dependent on cryostat configuration.		
4.2.17	R45	Reliability	Failure of a subsystem shall not lead to loss of instrument ops	A(h)	A(h)	(h) demonstrated by DM programme and by design/analysis		
4.2.17	R46	Reliability	Backup modes for nom observing modes	A(h)	A(h)	(h) demonstrated by DM programme and by design/analysis		
4.2.17	R47	Reliability	Cold redundant h/w shall be provided where practicable	A(h)	A(h)	(h) demonstrated by DM programme and by design/analysis		
4.2.18	R48	Failure Modes	Failure of subsystem shall not affect health of others subsysts, or the i/f	A(j)	A(j)	(j) demonstrated by DM programme and by design/analysis		
4.2.18	R49	Failure Modes	Failure of component shall not damage redundant or backup component designed to replace it	A(j)	A(j)	(j) demonstrated by DM programme and by design/analysis		
4.2.18	R50	Failure Modes	No elec sub unit shall affect inst ops until in a defined state	A(j)	A(j)	(j) demonstrated by DM programme and by design/analysis		
4.3.1	R51	Operational Safety	Shall operate safely	A	A	Demonstrated by analysis/design/risk assessment		

Ref: SPI_BSM_DOC_0738
Date :25-Mar-04

Author: BG

Page 35 of 102

17th March 2004

Spire BSM Verification Summary

Changes from SSSD v 3.7 highlighted in yellow

			·- J	11191111911	tou iii yo	11011	17 til 1 With Oll 200 i	
4.3.2	R52	Lifetime	Capable of operation for periods > 1/6th of normal mission lifetime	A(k)	A(k)	(k) demonstrated by DM programme and confirmation that the design is comparable		
4.3.2	R53	Lifetime	Will operate over 4.25 yrs	A(k)	A(k)	(k) demonstrated by DM programme and confirmation that the design is comparable		
4.3.2	R54	Lifetime	Lifetime tests will use 1.25x multiplier on orbit and 4x for ground test	A(k)	A(k)	(k) demonstrated by DM programme and confirmation that the design is comparable		
4.3.3	R55	Operating modes	Jiggle: small angular steps	A	A	By test of other parameters		
4.3.3	R56	Operating modes	Chopping	A	A	By test of other parameters		
4.3.3	R57	Operating modes	Scan mapping: combined jiggle and chop	A	A	By test of other parameters		
4.3.3	R58	Operating modes	Holding stare	A	A	By test of other parameters		
4.3.8	R59	Degraded modes	Capable of driving from DC up to freq limit	A	A	By implication from other tests		
4.3.8	R60	Degraded modes	Current demand algorithms devised to operate chop open loop	Т	Т	Report actual values		
4.3.8	R61	Degraded modes	Each axis must operate in absence of the other	Т	T	Basic function check		
4.3.9	R62	Combinations of Modes	Chop and jiggle Removal of x coupling during chop only or jiggle only	Т	Т	X coupling will be tested		
4.4.1	R63	Data Outputs	Chop axis posn	S	S			

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04

Author: BG Page 36 of 102

Changes from SSSD v 3.7

Spire BSM Verification Summary			Changes from SSSD v 3.7 highlighted in yellow			17th March 2004		
4.4.1	R64	Data Outputs	Jiggle axis posn	S	S			
4.4.1	R65	Data Outputs	Eng / trace data (eg motor volts / current)	S	S			
4.4.3	R66	Exported vibration	Torque reaction < 25 x10^-6 Nm average over chop rise	S	S	On integration to SPIRE at RAL		
4.4.3	R67	Exported vibration	Torque reaction < 20 x10^-6 Nm average over jiggle rise	S	S	On integration to SPIRE at RAL		
4.4.4	R68	Stray Magnetic fields	Not susceptible to spurious signal generation under field < 0.01mT	S	S	On integration to SPIRE at RAL		
4.4.5	R69	Electro-Magnetic Compatibility	Grounding, isolation, H field radiated emission, Narrow band elec fields	S	S	On integration to SPIRE at RAL		
4.4.6		ICD's (No ref. no.)	Must interface to the other subsystems as defined in the ICD	A	A			
4.6.2	R70	Electronics Card Format	On double eurocards	I	I	Inspection of LAM deliverables		
4.6.3.1	R71	Mirror Flatness	Surface shape error < 1 um	A	A	Cold measurement. See above		
4.6.3.2	R72	Mirror Reflectivity	> 80% at 633 nm by design	A	A	(n) X if STM has no mirror		
4.6.3.3	R73	Cleanliness	Particulate < 440 ppm general, < 125 ppm mirror	A	A	Compliance indicated in ADP		
			Molecular contamination < 1x10^-4 g/cm^2					
4.6.3.4	R74	Material selection	Structure 6082 Al. Mirror 6061 Al	A	A	Compliance indicated in ADP	SPI-BSM-PRJ- 0710 rev 1.3	
4.6.3.4	R75	Material selection	Fasteners cryo grade s/s	A	A	Compliance indicated in ADP	SPI-BSM-PRJ- 0710 rev 1.4	
4.6.3.5	R76	Storage	Up to 5 yrs in dry N without degradation	A	A	Compliance indicated in ADP		

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04

Author: BG Page 37 of 102

Changes from SSSD v 3.7

China	DCM \	Jarification Cumm	2 M) /			SSD v 3.7		
	Dire BSM Verification Summary 1.2 R77 Quasi Static Loads 25g x, 14g y, 14g z				ited in ye		17th March 2004	1
4.7.1.2	R77	Quasi Static Loads	25g x, 14g y, 14g z	A(o)	A(o)	(o) demonstrated by DM programme and confirmation that the design is comparable		
4.7.1.3	R78	Sine Vibration	25g x, 25g y,z	A(p)	A(p)	(p) demonstrated by DM programme and confirmation that the design is comparable		
4.7.1.4	R79	Random Vibration	0.185g^2/Hz x, 0.117 y,z	A(q)	A(q)	(q) demonstrated by DM programme and confirmation that the design is comparable		
4.7.1.5	R80	Vacuum Level	<10^-4 Pa	A	A	By implication from other tests		
4.7.1.6	R81	Vacuum Outgassing	Materials TML<1%, VCM < 0.1%	A	A	Demonstrated via materials selection and Compliance indicated in DML		
4.7.1.7	R82	Temperature	Within spec at operating, reduced perf at 300K	Т	T	Specific performance tests done at operating temp. No specific tests at 300K, since no performance specified, but set up process relies on operation at 300K		
4.7.1.9	R83	Survival Temperature	Up to 80 deg C	A	A	Demonstrated by bakeout of components at		

v 1.4

Ref: SPI_BSM_DOC_0738

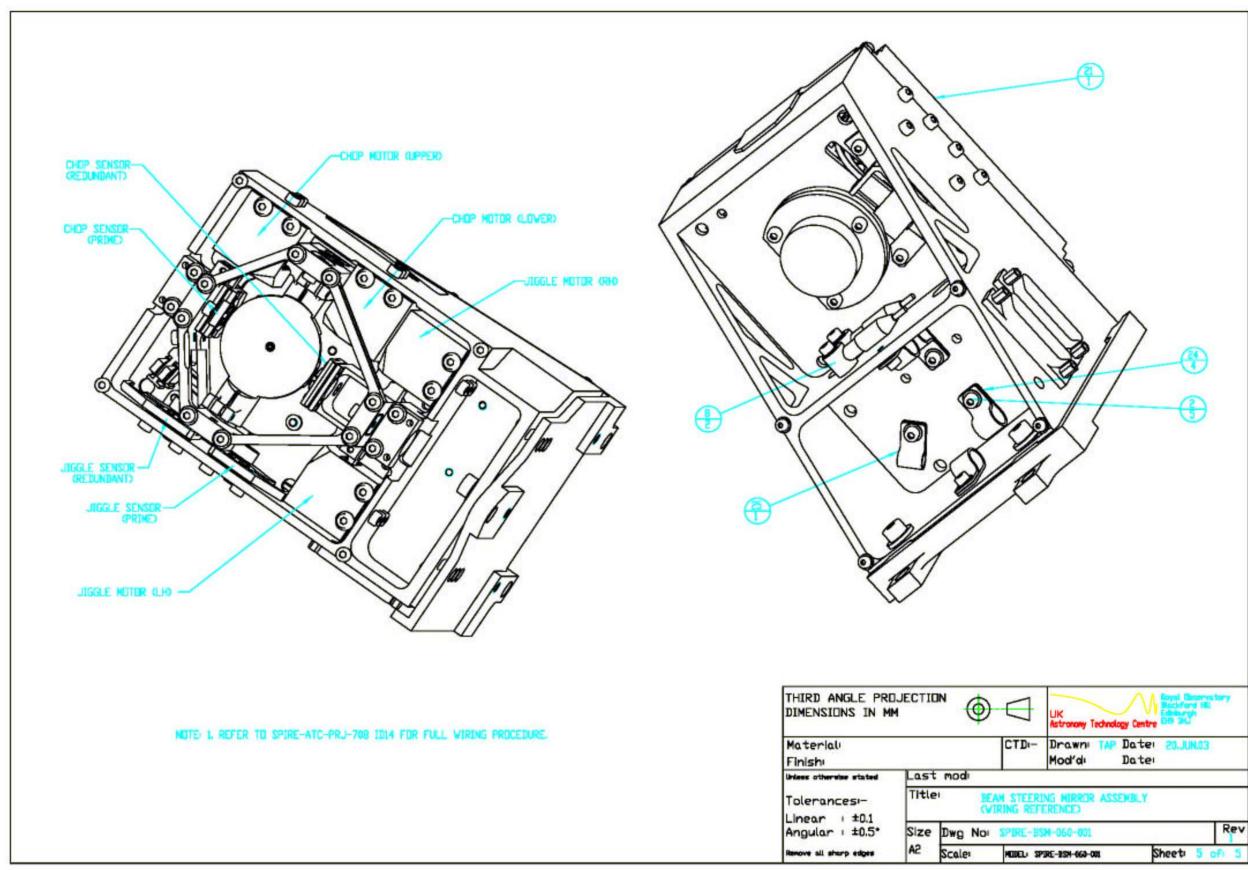
Date :25-Mar-04

Author: BG

Page 38 of 102

Changes from SSSD v 3.7

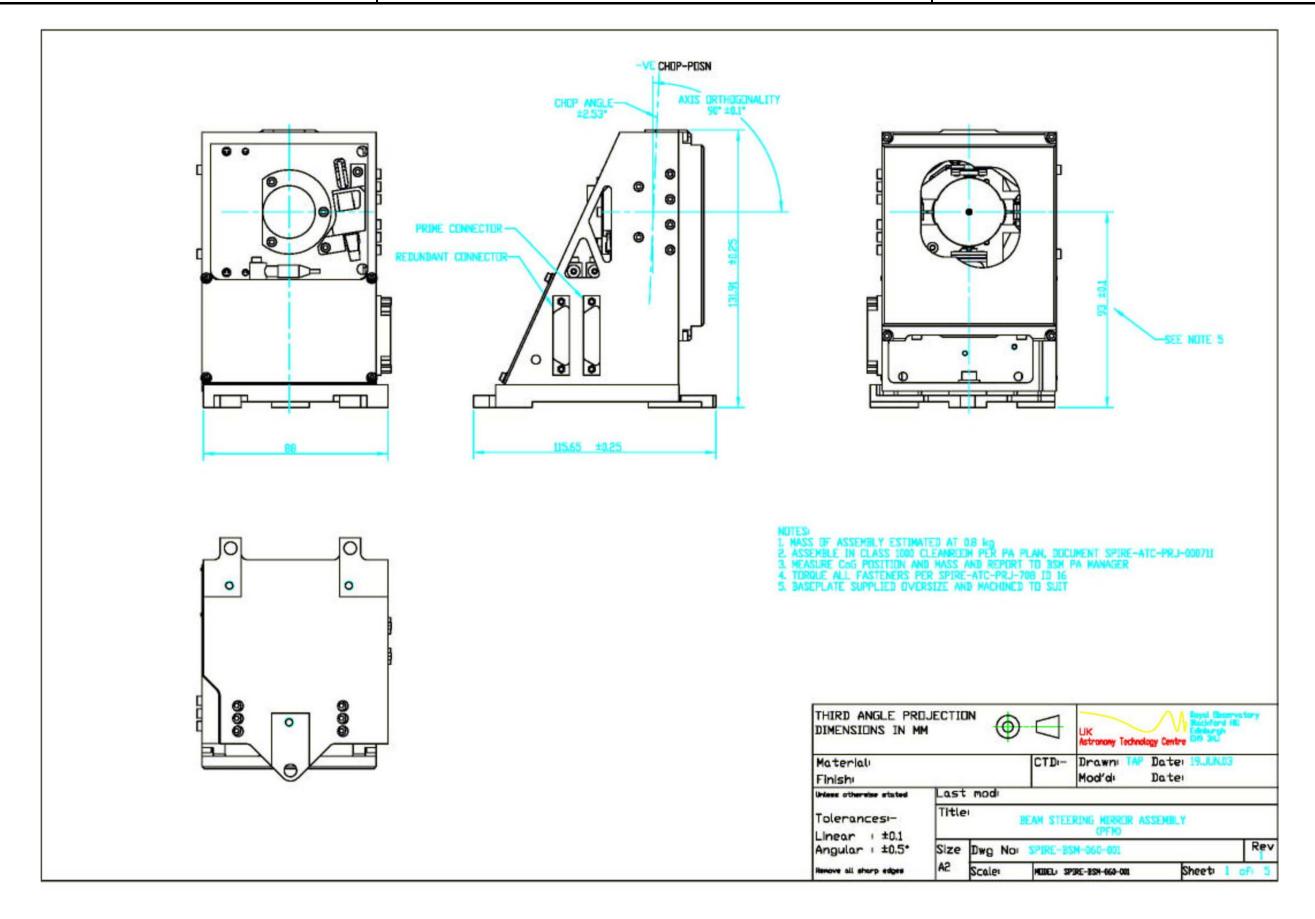
Spire E	BSM V	erification Summary	1	highlight		llow	17th March 2004	
						ATC in the course of assembly & test		
4.7.1.10	R84	Radiation environment	Integrated dose	A	A	By approval of DML	SPI-BSM-PRJ- 0710 rev 1.3	
4.7.1.10	R85	Radiation environment	Non ionizing energy	A	A	By approval of DML	SPI-BSM-PRJ- 0710 rev 1.4	
4.7.1.10	R86	Radiation environment	ionizing radiation	A	A	By approval of DML	SPI-BSM-PRJ- 0710 rev 1.5	



Ref: SPI_BSM_DOC_0738
Date :25-Mar-04

Author: BG Page 39 of 102

3.4 Top Level Drawings incl. Family Tree

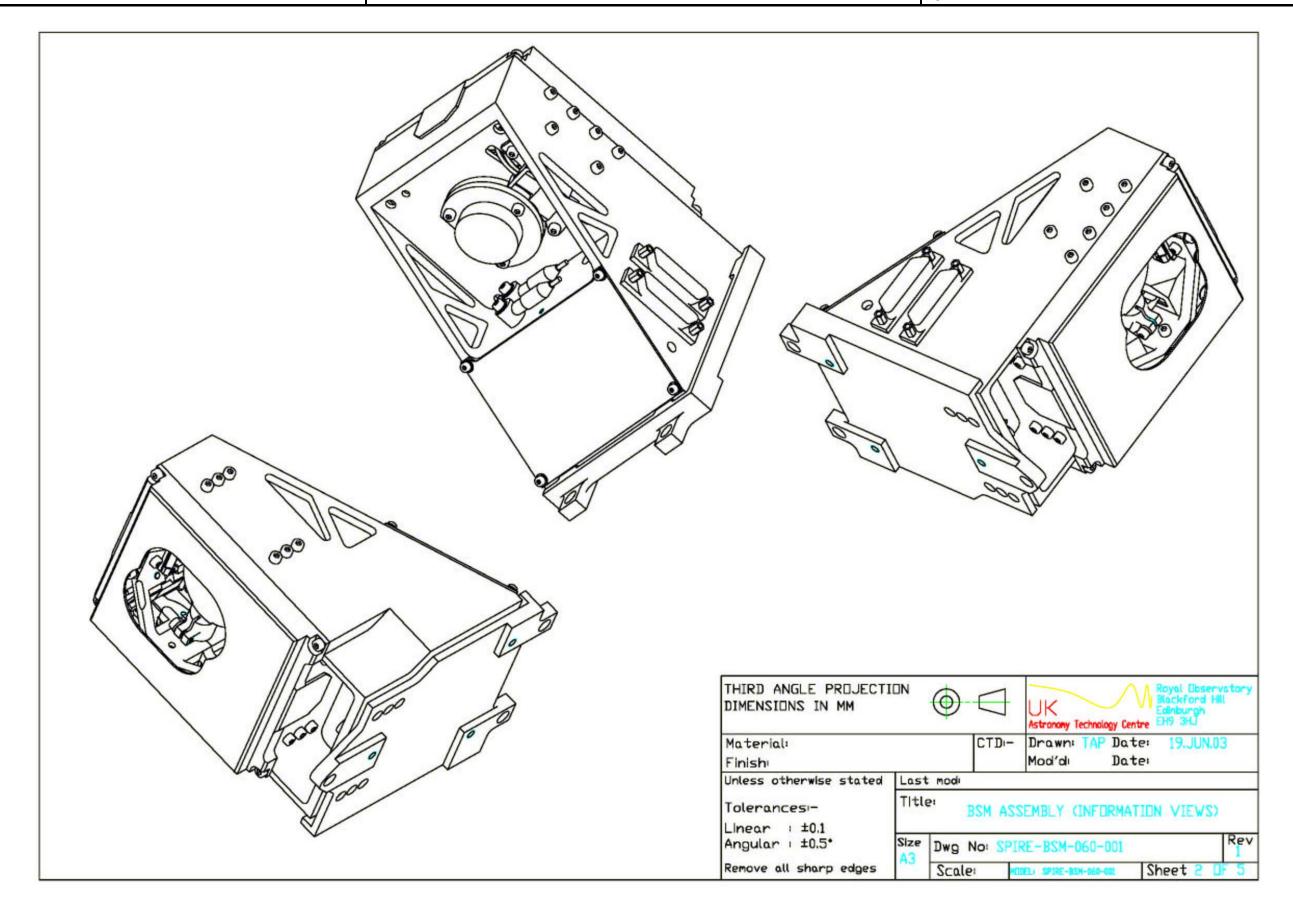

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04

Author: BG

Page 40 of 102

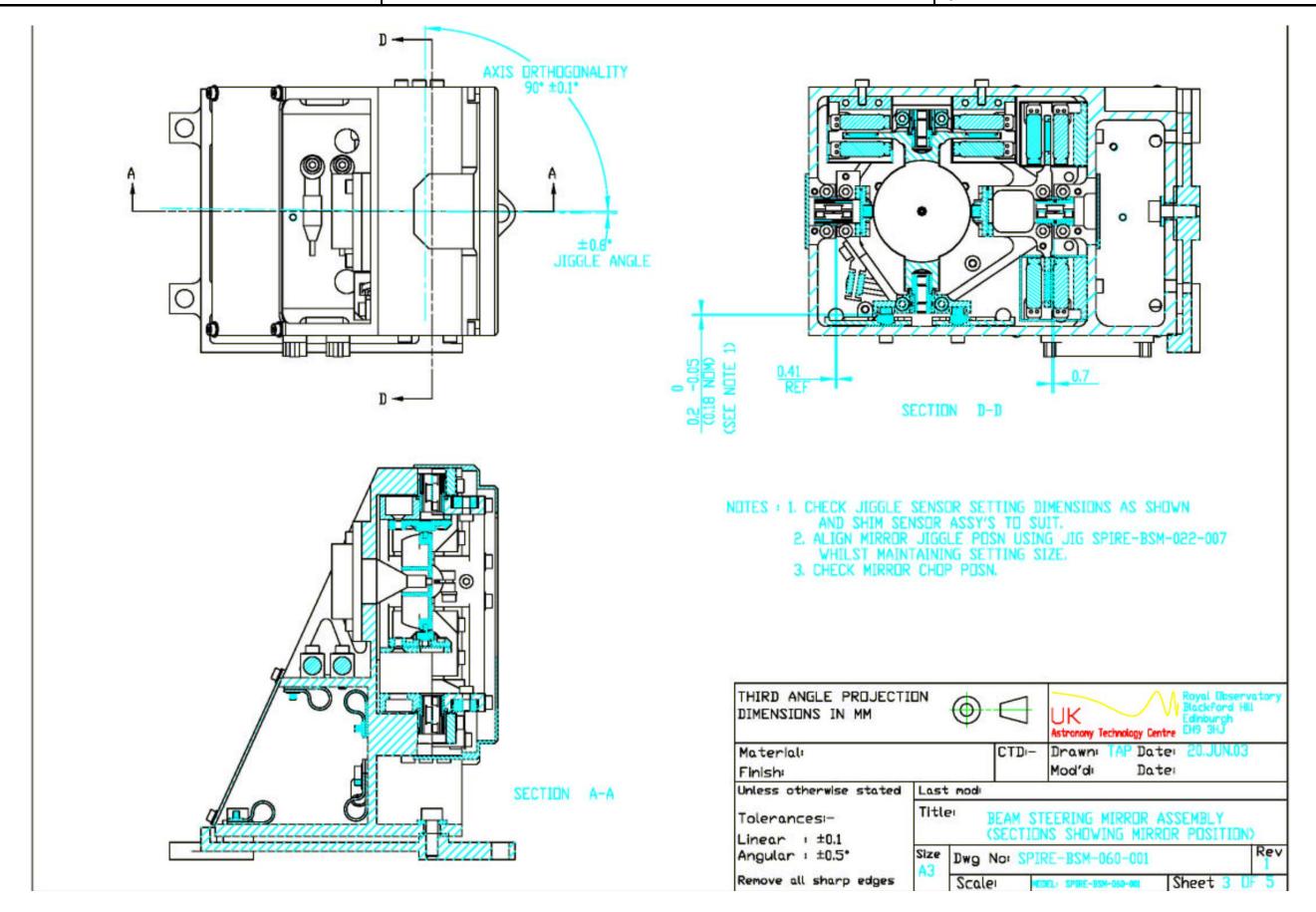


v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG

Page 41 of 102

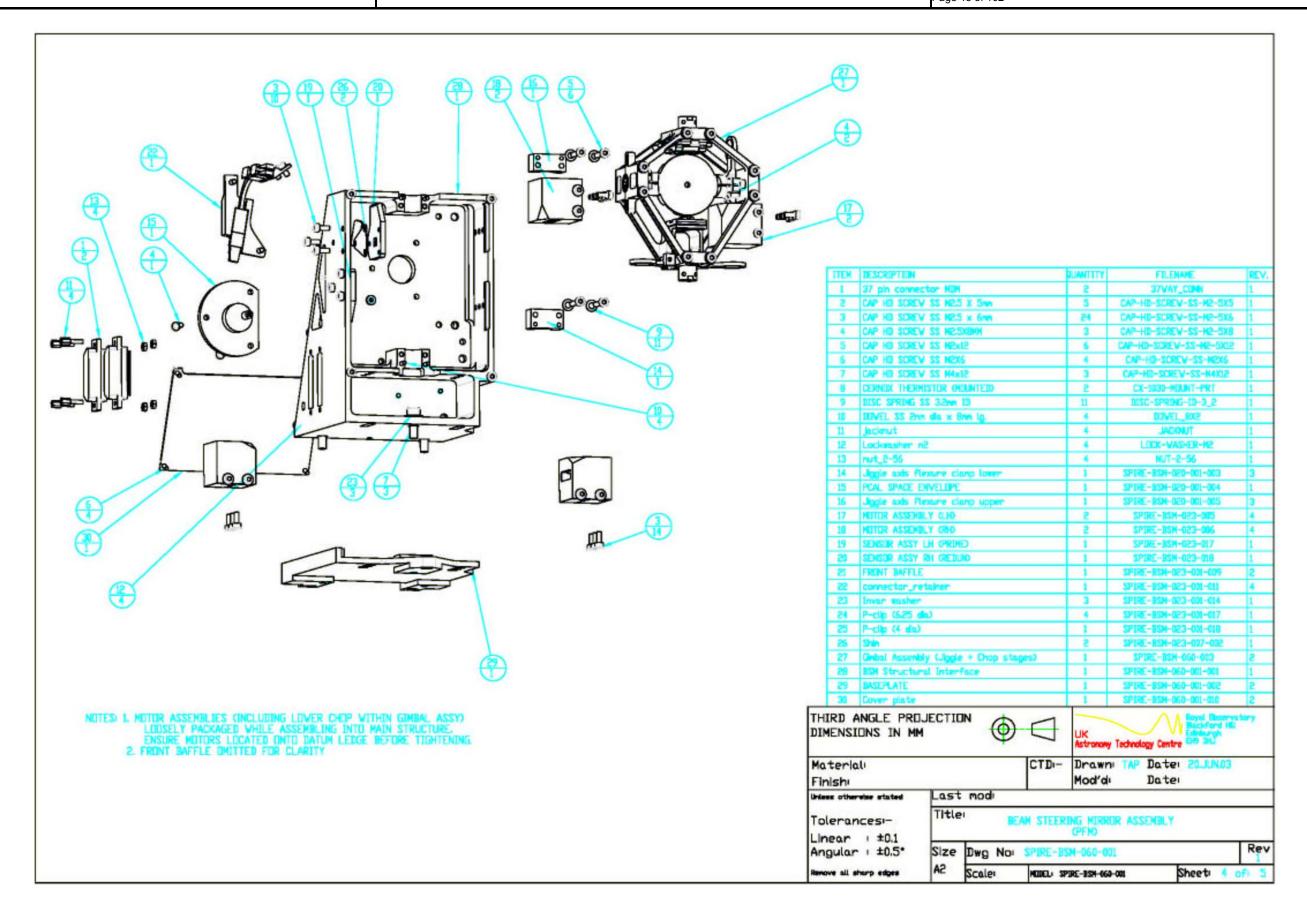

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04

Author: BG

Page 42 of 102



v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG

Page 43 of 102

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 44 of 102

Interface Drawings Ref ICD (RD 6)

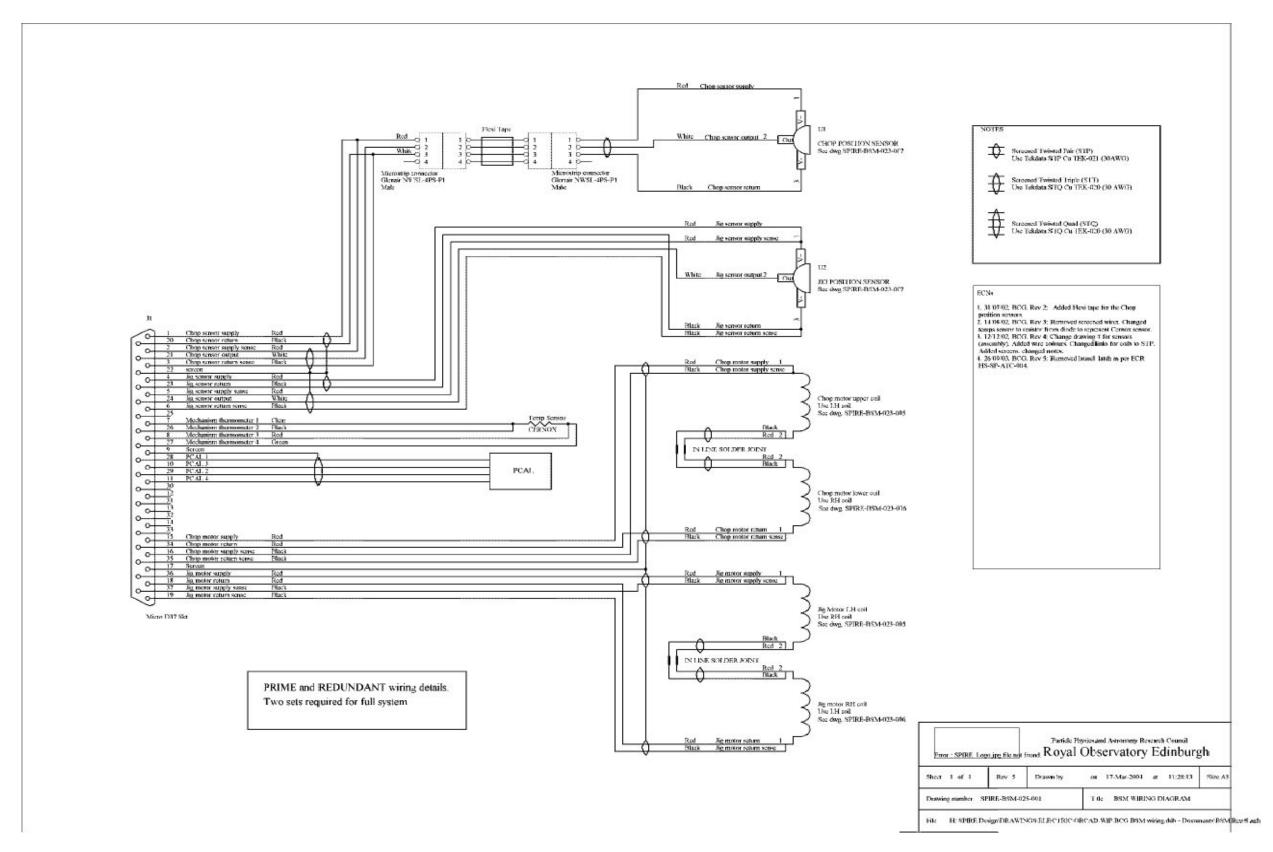
v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 45 of 102

3.5 Functional Diagrams (Block Diagram)

This section blank


v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG

Page 46 of 102

3.6 Electrical Circuit Diagrams

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 47 of 102

3.7 As built configuration lists

As	ssembly	Sub Assy	Drawing/Model Name	Type Name	Description*	Revision	Version	Call Out Quantity	Serial no	Notes
						4	4.4	4	(4)	
	c-brg-flex-001 cas flex pivot 5010-600	-	atc-brg-flex-001.asm	Assembly	Lucas flex pivot 5010-600	1	14	1	(Assy)	5
	cas liex pivot 30 10-000	-	atc-brg-flex-001-001.prt	Part	Sleeve	1	8	2		Batch Traceable
		-	atc-brg-flex-001-002.prt	Part	Core	1	8	1	N/A	Batch Traceable
		-	atc-brg-flex-001-003.prt	Part	Outer flexure	1	9	2	N/A	Batch Traceable
		-	atc-brg-flex-001-005.prt	Part	Core	1	/	1	N/A	Batch Traceable
		_	atc_brg_flex-001-004.prt	Part	centre flexure	1	8	1	N/A	Batch Traceable
	c-brg-flex-003	-	atc-brg-flex-003.asm	Assembly	C-Flex pivot E-10	1	3	1	(Assy)	
C-F	Flex pivot E-10	-	atc-brg-flex-003-001.prt	Part	Sleeve	1	3	2		Batch Traceable
		-	atc-brg-flex-003-002.prt	Part	Core	1	3	1	N/A	Batch Traceable
		_	atc-brg-flex-003-003.prt	Part	Outer flexure	1	3	2	N/A	Batch Traceable
		_	atc-brg-flex-003-004.prt	Part	centre flexure	1	3	1	N/A	Batch Traceable
		_	atc-brg-flex-003-005.prt	Part	Core	1	3	1	N/A	Batch Traceable
	ire-bsm-020-008 Shielded flexure assy	_	atc-brg-flex-001.asm	Assembly	Lucas flex pivot 5010-600	1	14	1	(Assy)	
(jig	ggle top)	_	spire-bsm-020-008.asm	Assembly	Shielded flexure assy (jiggle top)	2	1	1	(Assy)	
		_	atc-brg-flex-001-001.prt	Part	Sleeve	1	8	2	N/A	Batch Traceable
		_	atc-brg-flex-001-002.prt	Part	Core	1	8	1	N/A	Batch Traceable
		_	atc-brg-flex-001-003.prt	Part	Outer flexure	1	9	2	N/A	Batch Traceable
		_	atc-brg-flex-001-005.prt	Part	Core	1	7	1	N/A	Batch Traceable
		_	atc_brg_flex-001-004.prt	Part	centre flexure	1	8	1	N/A	Batch Traceable
			spire-bsm-020-008-001.prt	Part	Flex Pivot Protective Shield	1	8	1	0077	
spi	ire-bsm-020-012 Shielded flexure assy	-	atc-brg-flex-001.asm	Assembly	Lucas flex pivot 5010-600	1	14	1	(Assy)	
	ggle bot)	_	spire-bsm-020-012.asm	Assembly	Shielded flexure assy (jiggle bot)	2	1	1	(Assy)	
		-	atc-brg-flex-001-001.prt	Part	Sleeve	1	8	2	· · · · · · · · · · · · · · · · · · ·	Batch Traceable
		-	atc-brg-flex-001-002.prt	Part	Core	1	8	1	N/A	Batch Traceable
		-	atc-brg-flex-001-003.prt	Part	Outer flexure	1	9	2		Batch Traceable
		-	atc-brg-flex-001-005.prt	Part	Core	1	7	1	N/A	Batch Traceable
		-	atc_brg_flex-001-004.prt	Part	centre flexure	1	8	1	N/A	Batch Traceable
		_	spire-bsm-020-008-001.prt	Part	Flex Pivot Protective Shield	1	8	1	0078	Baton Traccasi
eni	ire-bsm-023-004	-	atc-brg-flex-003.asm	Assembly	C-Flex pivot E-10	1	3	2	(Assy)	
	SM chop axis assembly	_	spire-bsm-023-004.asm	Assembly	BSM chop axis assembly	1	8	1	(Assy)	
	, ,	_	spire-bsm-023-015.asm	Assembly	Shielded flexure assy (chop LH)	1	3	1	(Assy)	
		-	·		Shielded flexure assy (chop RH)	2	1	1	(Assy)	
		-	spire-bsm-023-016.asm	Assembly	<u> </u>	1	3	4		Datab Trassable
		-	atc-brg-flex-003-001.prt	Part	Sleeve	1	3		N/A	Batch Traceable
			atc-brg-flex-003-002.prt	Part	Core	1	3	2		Batch Traceable
			atc-brg-flex-003-003.prt	Part	Outer flexure	1	3	4	N/A	Batch Traceable
			atc-brg-flex-003-004.prt	Part	centre flexure	1	3	2	N/A	Batch Traceable

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG

Page 48 of 102

p vel	Assembly	Sub Assy	Drawing/Model Name	Type Name	Description*	Revision	Version	Call Out Quantity	Serial no	Notes
	7	•	atc-brg-flex-003-005.prt	Part	Core	1	3	2	N/A	Batch Traceable
			cap-hd-screw-ss-m2-5x8.prt	Part	CAP HD SCREW SS M2.5X8MM	1	3	2	N/A	Batch Traceable
			spire-bsm-020-003-003.prt	Part	PACS slim magnet	1	10	2	N/A	Batch Traceable
			spire-bsm-020-004-004.prt	Part	sensor actuator	2	3	2	0146 0147	
			spire-bsm-020-008-001.prt	Part	Flex Pivot Protective Shield	1	8	2	0079 0080	
			spire-bsm-023-004-001.prt	Part	Chop Stage	3	2	1	0089	
			spire-bsm-023-004-003.prt	Part	Balance spacer	1	1	2	0148 0149	
	spire-bsm-023-005		spire-bsm-023-005.asm	Assembly	MOTOR ASSEMBLY (LH)	4	1	1	(Assy)	
	MOTOR ASSEMBLY (LH)		cap-hd-screw-ss-m2-5x8.prt	Part	CAP HD SCREW SS M2.5X8MM	1	3	2	N/A	Batch Traceable
			disc-spring-id-3_2.prt	Part	DISC SPRING SS 3.2mm ID	1	4	2	N/A	Batch Traceable
			spire-bsm-023-005-001.prt	Part	COIL BRACKET (LH)	3	1	2	0100 0101	
			spire-bsm-023-005-002.prt	Part	COIL RETAINER (LH)	3	1	2	0102 0103	
			spire-bsm-023-005-003.prt	Part	COIL	1	4	2	N/A	Batch Traceable
			spire-bsm-023-005-005.prt	Part	HEAT SHIELD (LH)	1	5	2	01270128	
	spire-bsm-023-006		spire-bsm-023-006.asm	Assembly	MOTOR ASSEMBLY (RH)	4	1	1	(Assy)	
	MOTOR ASSEMBLY (RH)		cap-hd-screw-ss-m2-5x8.prt	Part	CAP HD SCREW SS M2.5X8MM	1	3	2	N/A	Batch Traceable
			disc-spring-id-3_2.prt	Part	DISC SPRING SS 3.2mm ID	1	4	2	N/A	Batch Traceable
			spire-bsm-023-005-003.prt	Part	COIL	1	4	2	N/A	Batch Traceable
			spire-bsm-023-006-001.prt	Part	COIL BRACKET (RH)	3	1	2	0104 0105	
			spire-bsm-023-006-002.prt	Part	COIL RETAINER (RH)	3	1	2	0107 0108	
			spire-bsm-023-006-005.prt	Part	HEAT SHIELD (RH)	1	4	2	0125 0126	
	spire-bsm-023-007		spire-bsm-023-007.asm	Assembly	SENSOR ASSY CHOP TOP (PRIME)	2	3	1	(Assy)	
	SENSOR ASSY CHOP TOP (PRIME)		spire-bsm-020-006-002.prt	Part	SENSOR	1	1	1	N/A	Batch Traceable
			spire-bsm-023-007-001.prt	Part	SENSOR HOUSING	2	0	1	0118	
	spire-bsm-060-007		spire-bsm-060-007.asm	Assembly	SENSOR ASSY CHOP BOT (REDUN)	1	2	1	(Assy)	
	SENSOR ASSY CHOP BOT (REDUN)		spire-bsm-020-006-002.prt	Part	SENSOR	1	1	1	N/A	Batch Traceable
			spire-bsm-060-007-001.prt	Part	SENSOR HOUSING	2	0	1	0115	
	spire-bsm-023-015		atc-brg-flex-003.asm	Assembly	C-Flex pivot E-10	1	3	1	(Assy)	
	Shielded flexure assy (chop LH)		spire-bsm-023-015.asm	Assembly	Shielded flexure assy (chop LH)	1	3	1	(Assy)	
			atc-brg-flex-003-001.prt	Part	Sleeve	1	3	2	N/A	Batch Traceable
			atc-brg-flex-003-002.prt	Part	Core	1	3	1	N/A	Batch Traceable
			atc-brg-flex-003-003.prt	Part	Outer flexure	1	3	2	N/A	Batch Traceable

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG

Page 49 of 102

Top Level	Assembly	Sub Assy	Drawing/Model Name	Type Name	Description*	Revision	Version	Call Out Quantity	Serial no	Notes
	7		atc-brg-flex-003-004.prt	Part	centre flexure	1	3	1	N/A	Batch Traceable
			atc-brg-flex-003-005.prt	Part	Core	1	3	1	N/A	Batch Traceable
			spire-bsm-020-008-001.prt	Part	Flex Pivot Protective Shield	1	8	1	0079	
	spire-bsm-023-016		atc-brg-flex-003.asm	Assembly	C-Flex pivot E-10	1	3	1	(Assy)	
	Shielded flexure assy (chop RH)		spire-bsm-023-016.asm	Assembly	Shielded flexure assy (chop RH)	2	1	1	(Assy)	
			atc-brg-flex-003-001.prt	Part	Sleeve	1	3	2	N/A	Batch Traceable
			atc-brg-flex-003-002.prt	Part	Core	1	3	1	N/A	Batch Traceable
			atc-brg-flex-003-003.prt	Part	Outer flexure	1	3	2	N/A	Batch Traceable
			atc-brg-flex-003-004.prt	Part	centre flexure	1	3	1	N/A	Batch Traceable
			atc-brg-flex-003-005.prt	Part	Core	1	3	1	N/A	Batch Traceable
			spire-bsm-020-008-001.prt	Part	Flex Pivot Protective Shield	1	8	1	0800	
	spire-bsm-023-017		spire-bsm-023-017.asm	Assembly	SENSOR ASSY LH (PRIME)	1	2	1	(Assy)	
	SENSOR ASSY LH (PRIME)		spire-bsm-020-006-002.prt	Part	SENSOR	1	1	1	N/A	Batch Traceable
			spire-bsm-023-017-001.prt	Part	SENSOR HOUSING	1	2	1	0113	
	spire-bsm-023-018		spire-bsm-023-018.asm	Assembly	SENSOR ASSY RH (REDUN)	1	2	1	(Assy)	
	SENSOR ASSY RH (REDUN)		spire-bsm-020-006-002.prt	Part	SENSOR	1	1	1	N/A	Batch Traceable
			spire-bsm-023-018-001.prt	Part	SENSOR HOUSING	1	2	1	0111	
	spire-bsm-060-003		atc-brg-flex-001.asm	Assembly	Lucas flex pivot 5010-600	1	14	2	(Assy)	
	Gimbal Assembly (Jiggle + Chop stages)		atc-brg-flex-003.asm	Assembly	C-Flex pivot E-10	1	3	2	(Assy)	
			spire-bsm-020-008.asm	Assembly	Shielded flexure assy (jiggle top)	2	1	1	(Assy)	
			spire-bsm-020-012.asm	Assembly	Shielded flexure assy (jiggle bot)	2	1	1	(Assy)	
			spire-bsm-023-004.asm	Assembly	BSM chop axis assembly	1	8	1	(Assy)	
			spire-bsm-023-007.asm	Assembly	SENSOR ASSY CHOP TOP (PRIME)	2	3	1	(Assy)	
			spire-bsm-023-015.asm	Assembly	Shielded flexure assy (chop LH)	1	3	1	(Assy)	
			spire-bsm-023-016.asm	Assembly	Shielded flexure assy (chop RH)	2	1	1	(Assy)	
			spire-bsm-060-003.asm	Assembly	Gimbal Assembly (Jiggle + Chop stages)	2	0	1	(Assy)	
			spire-bsm-060-007.asm	Assembly	SENSOR ASSY CHOP BOT (REDUN)	1	2	1	(Assy)	
			atc-brg-flex-001-001.prt	Part	Sleeve	1	8	4	N/A	Batch Traceable
			atc-brg-flex-001-002.prt	Part	Core	1	8	2	N/A	Batch Traceable
			atc-brg-flex-001-003.prt	Part	Outer flexure	1	9		N/A	Batch Traceable
			atc-brg-flex-001-005.prt	Part	Core	1	7	2	N/A	Batch Traceable
			atc-brg-flex-003-001.prt	Part	Sleeve	1	3	4	N/A	Batch Traceable
			atc-brg-flex-003-002.prt	Part	Core	1	3	2	N/A	Batch Traceable
			atc-brg-flex-003-003.prt	Part	Outer flexure	1	3	4	N/A	Batch Traceable
			atc-brg-flex-003-004.prt	Part	centre flexure	1	3	2	N/A	Batch Traceable
			atc-brg-flex-003-005.prt	Part	Core	1	3	2	N/A	Batch Traceable
			atc_brg_flex-001-004.prt	Part	centre flexure	1	8		N/A	Batch Traceable
			cap-hd-screw-ss-m2-5x25.prt	Part	CAP HD SCREW SS M2.5x25mm	1	0	8	N/A	Batch Traceable
			cap-hd-screw-ss-m2-5x5.prt	Part	CAP HD SCREW SS M2.5 X 5mm	1	3		N/A	Batch Traceable

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG

Page 50 of 102

Top Level	Assembly	Sub Assy	Drawing/Model Name	Type Name	Description*	Revision	Version	Call Out Quantity	Serial no	Notes
	1	'	cap-hd-screw-ss-m2-5x6.prt	Part	CAP HD SCREW SS M2.5 x 6mm	1	1	4	N/A	Batch Traceable
			cap-hd-screw-ss-m2-5x8.prt	Part	CAP HD SCREW SS M2.5X8MM	1	3	2	N/A	Batch Traceable
			csk-hd-screw-ss-m2-5x5.prt	Part	CSK HD SCREW SS M2.5X5	1	1	6	N/A	Batch Traceable
			disc-spring-id-3_2.prt	Part	DISC SPRING SS 3.2mm ID	1	4	8	N/A	Batch Traceable
			dowel_8x2.prt	Part	DOWEL SS 2mm dia x 8mm lg.	1	2	2	N/A	Batch Traceable
			microstrip_conn.prt	Part	microstrip_connector	1	5	4	N/A	Batch Traceable
			microstrip_flex.prt	Part	flexible_cable_outer	1	0	1	N/A	Batch Traceable
			microstrip_flex_b.prt	Part	flexible_cable_inner	1	0	1	N/A	Batch Traceable
			spire-bsm-020-003-003.prt	Part	PACS slim magnet	1	10	4	N/A	Batch Traceable
			spire-bsm-020-004-004.prt	Part	sensor actuator	2	3	4	0146 0147 0150 0151	
			spire-bsm-020-006-002.prt	Part	SENSOR	1	1	2	N/A	Batch Traceable
			spire-bsm-020-008-001.prt	Part	Flex Pivot Protective Shield	1	8	4	0077 0078 0079 0080	
			spire-bsm-023-001-012.prt	Part	microstrip_brkt_bot	1	4	1	0061	
			spire-bsm-023-001-013.prt	Part	microstrip_brkt_top	1	4	1	0059	
			spire-bsm-023-003-003.prt	Part	Balance (side)	2	1	2	0152 0153	
			spire-bsm-023-003-004.prt	Part	Balance (top)	3	1	2	0154 0155	
			spire-bsm-023-004-003.prt	Part	Balance spacer	1	1	2	0148 0149	
			spire-bsm-023-007-001.prt	Part	SENSOR HOUSING	2	0	1	0118	
			spire-bsm-023-007-002.prt	Part	Shim	1	2	2	TBA	
			spire-bsm-060-003-001.prt	Part	Jiggle Frame Bottom	2	0	1	0094	
			spire-bsm-060-003-002.prt	Part	Jiggle Frame Top	2	0	1	0093	
			spire-bsm-060-007-001.prt	Part	SENSOR HOUSING	2	0	1	0115	
			spire-bsm-023-004-001		Mirror	3		1	0089	
			spire-bsm-060-011		Structure	1		1	0096	
			spire-bsm-020-001-005		Clamp upper	3		1	0121	
			spire-bsm-020-001-003		Clamp lower	3		1	0122	
			spire-bsm-023-001-009		Front baffle	2		1	0098	
			spire-bsm-023-018-001		Sensor holder	1		4	0111 0113 0115 0118	
			spire-bsm-023-001-009		Front Baffle	2		1	0098	

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 51 of 102

Top Level	Assembly	Sub Assy	Drawing/Model Name	Type Name	Description*	Revision	Version	Call Out Quantity		Notes
	1	·	spire-bsm-060-001-002		Base	2		1	0143	
			spire-bsm-023-001-012		micro strip bracket bottom	1		2	0059 0061	
			spire-bsm-023-001-011		Connector Retainer	4		1	0109	

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 52 of 102

3.8 Serialised Components List

As above

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 53 of 102

3.9 List of Waivers

Waiver Number ATC doc number Title

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 54 of 102

3.10 Copies of Waivers

PROJECT: Herschel SPIRE		Request for Waiver/Deviation					
[1] Title (Max 25 Spaces):				RFW	/-Nr.SPIRE-A	TC-BSM_NOT_0028	
Angular travel – jiggle axis.				Issue	e/Rev.:		
				Date	:19/03/04 Pa	ge 54 of 1	
				Rela	ted NCR (if a	ny)	
[2] End Item(s) affected (hardw	are, software):						
Name:		CI-Number				Model(s)	
BSMm		060		PFM			
[3] Requirement/Interface Docu	ments affected:		-				
Specification/Drawing Title	Date	Appl. Paragr.					
SSSD	SPIRE-ATC-PRJ-	000460	3.7		11/09/03	4.1.2	
[4] Description of Deviation/Dis	crepancy/Non-Confo	ormance:	l .			<u> </u>	
Angular Travel – Jiggle Axis.							
See following page							
[5] Other Items or Requirement	s (potentially) Affect	ed					
None							
[6] Need for RFW and Rational	e for Acceptance:						
With increased current supply	the specification is	s close to bei	ng me	et			
[7] Originator:	Sign:			Attac	chments: Des	cription of test	
P. Parr-Burman	Date:						
[8] Approvals:							
	Engineering	Product Ass	urance	Э		CCB Chairman	
	Name/Date	Name/Date				Name/Date	
Prin. Investigator	[] Appr	[] Appr		[]	Appr	[] Appr	
	[] Rej	[] Rej		[]	Rej	[] Rej	
Co-Investigator	[] Appr	[] Appr		[]	Appr	[] Appr	
	[] Rej	[] Rej		[]	Rej	[] Rej	
	[] Appr	[] Appr		[]	Appr	[] Appr	
	[] Rej	[] Rej		[]	Rej	[] Rej	
Prime Contractor	[] Appr	[] Appr		[] Appr[[] Appr	
	[] Rej	[] Rej		[] Rej		[] Rej	
ESA Project Office	[] Appr	[] Appr		[]	Appr	[] Appr	
	[] Rej	[] Rej		[]	Rej	[] Rej	

Axis Chop Jiggle
Spec +/- 2.53 deg +/- 0.573 deg

Travel at 50 mA Travel at 60 mA

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 55 of 102

PROJECT: Herschel SPIRE		Request for Waiver/Deviation					
[1] Title (Max 25 Spaces):				RFW-Nr.			
Angular travel – jiggle axis.				Issue/Rev.:			
				Date:19/03/04 F			
				Related NCR (if	fany)		
[2] End Item(s) affected (hards	ware, software):	LOLN			Law tages		
Name:		CI-Number			Model(s)		
BSMm [3] Requirement/Interface Docu	imanta affactadi	060			PFIVI		
Specification/Drawing Title	Number		Issue	e Date	Date Appl. Paragr.		
SSSD SSSD	SPIRE-ATC-PRJ-	000460	3.7	11/09/03	4.1.2		
GOOD	OF IRE 7010 1 100	000400	0.7	11/03/00	7.1.2		
[4] Description of Deviation/Di	screpancy/Non-Confo	ormance:		I			
Angular Travel – Jiggle Axis.							
See following page							
[5] Other Items or Requiremen	nts (potentially) Affect	ed					
None							
[6] Need for RFW and Rationa	ale for Acceptance:						
With increased current supply t	he specification is clo	se to being m	et				
[7] Originator:	Sign:			Attachments: D	escription of test		
P. Parr-Burman Date	e:						
[8] Approvals:							
	Lever	l Book of Acco			00000		
	Engineering Name/Date	Product Ass Name/Date	urance	9	CCB Chairman Name/Date		
Prin. Investigator				[] Appr			
i iii. iiivesiigalul	[] Appr [] Rej	[] Appr [] Rej		[] Appr [] Rej	[] Appr [] Rej		
Co-Investigator	[] Appr	[] Appr		[] Appr	[] Appr		
55 mmodagator	[] Rej	[] Rej		[] Rej	[] Rej		
	[] Appr	[] Appr		[] Appr	[] Appr		
	[] Rej	[] Rej		[] Rej	[] Rej		
Prime Contractor	[] Appr	[] Appr		[] Appr[[] Appr		
	[] Rej	[] Rej		[] Rej	[] Rej		
ESA Project Office	[] Appr	[] Appr		[] Appr	[] Appr		
	[] Rej	[] Rej		[] Rej	[] Rej		
Axis	Chop			Jiggle			
Spec	+/- 2.53 deg			+/- 0.573 deg			
Travel at 50 mA							
Travel at 60 mA							

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 56 of 102

PROJECT: Herschel SPIRE		Request for Waiver/Deviation						
[1] Title (Max 25 Spaces):				RFW	/-Nr.			
Fail Safe Position.				Issu	e/Rev.:			
				Date	:19/03/04 Pa	ge 56 of 1		
			Related NCR (if any)					
[2] End Item(s) affected (hardw	are, software):							
Name:		CI-Number			Model(s)			
BSMm		060				PFM		
[3] Requirement/Interface Docui	ments affected:							
Specification/Drawing Title	Number		Issue Date			Appl. Paragr.		
SSSD	SPIRE-ATC-PRJ-	000460	3.7		11/09/03	4.2.13		
[4] Description of Deviation/Dis	crepancy/Non-Confo	rmance:				•		
Fail Safe Position. In chop the	mirror is at 0.246	deg from the	nomi	nal (i.	e. electrical	zero) compared to		
spec of 0.18 deg.								
(In jiggle the mirror is at 0.083 deg from nominal. Therefore within spec.)								
[5] Other Items or Requirements (potentially) Affected								
None	s (potentially) Affect	eu						
None								
[6] Need for RFW and Rational	e for Acceptance:							
RFW needed to allow testing t	•	tify the discre	epanc	y by a	adjustment o	of the mirror at the		
unit directly would involve risk			•	, ,	•			
Propose that the difference is	taken out by adjus	tment of the	orient	ation	on the Spire	Optical Bench.		
[7] Originator:	Sign:			Atta	chments: Des	scription of test		
P. Parr-Burman	Date:							
[8] Approvals:								
	Engineering	Product Ass	urance	9		CCB Chairman		
	Name/Date	Name/Date				Name/Date		
Prin. Investigator	[] Appr	[] Appr		[]	Appr	[] Appr		
	[] Rej	[] Rej		[]	Rej	[] Rej		
Co-Investigator	[] Appr	[] Appr		[]	Appr	[] Appr		
	[] Rej	[] Rej		[]	Rej	[] Rej		
	[] Appr	[] Appr		[]	Appr	[] Appr		
	[] Rej	[] Rej		[]	Rej	[] Rej		
Prime Contractor	[] Appr	[] Appr		[] Appr[[] A		[] Appr		
	[] Rej	[] Rej		[] Rej		[] Rej		
ESA Project Office	[] Appr	[] Appr		[]	Appr	[] Appr		
	[] Rej	[] Rej		[]	Rej	[] Rej		

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 57 of 102

3.11 Operation Manual

A Manual is not supplied.

The unit is to be fitted to the Spire optical bench in accordance with procedures defined and controlled by RAL.

Operation is via the Mechanism Control Unit, supplied separately to RAL, the interfaces for which are defined in the Interface Control Document (RD6).

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 58 of 102

3.12 Historical Record

Historical Record (Logbook)

The equipment logbooks are established for all operations and tests starting with the final inspection of the hardware after the manufacturing / assembly phase. They include:

- historical record sheets (an index to the diary of events); with:
 - dates of operation / test / transport
 - name of operation / test / transport from / to
 - applicable procedure and / or report
 - responsible organisation and signature for entry
 - remarks e.g. on NCR's or unplanned events
- Diary (ATC lab book)
 - chronological logbook for recording the details and progress or otherwise of all activities.
 - Note that for Prototype/DM/STM a single lab book is in place.
 - When future action is required a note of the action shall be made in the diary and flagged for easy identification and raised in the Fault logging system.
- Connector Mate / Demate Log
 - Every mate or demate of a flight or flight spare connector shall be logged. operating time/cycle record for limited life items, age sensitive items, temporary installations

The log sheets shall accompany the hardware whenever it is placed under the custody of another organisation and this organisation shall update and maintain these records.

The instrument log book is retained at the UK ATC.

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 59 of 102

3.13 Logbook/Diary of Events

To be updated just before issue

DESCRIPTION OF ACTIVITY / EVENT	REMARKS/ REF.	OPERATING	DATE	SIGNATURE
	DOC.	TIME		
Shielded flexure assembly built in clean room (PFM)			25/9/03	
BSM Chop assembly built in clean room			25/9/03	
Gimbal assembly built in clean room			30/9/03	
Microstrip bonded to brackets in clean room			24/10/03	
Motor assemblies built in clean room			24/10/03	
Wires attached to motor assemblies – clean room			29/10/03	
Wires potted and motor assemblies completed – clean			30/10/03	
room				
BSM assembled in clean room			12/11/03	
Wiring of BSM completed – clean room			01/12/03	
Covers fitted to BSM – clean room			11/12/03	
PFM transferred to vacuum oven in clean room and				
baked for one hour at 80°C				
Mass tests performed in clean room				
Install alignment mirror onto BSM PCal mount				
PFM installed into cryostat in clean room			12/12/03	
Warm test performed to verify correct motion - FAIL				
wiring error				
BMS wiring corrected				
PFM transferred to vacuum oven in clean room and			12/01/04	
baked for one hour at 80°C				
Mass test in clean room			13/01/04	
Install alignment mirror onto BSM PCal mount			13/01/04	
PFM installed into cryostat in clean room			13/01/04	
Tested warm for correct motion – PASS			13/01/04	
Pump down			14/01/04	

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 60 of 102

DESCRIPTION OF ACTIVITY / EVENT	REMARKS/ REF. DOC.	OPERATING TIME	DATE	SIGNATURE
Cooled from room temperature to 5.8K and performed			15/01/04	
quick, rough check of rest position alignment. From				
this check, BSM fails spec				
Cooled PFM from 113K to 7.2K. Performed "Fail Safe			16/01/04	
(no drive signal) position" Alignment test 4.2 : Failed				
spec. 0.23 deg instead of worst case 0.18 deg.				
Cooled PFM from room temp to 9.2K. Retake			19/01/04	
alignment test 4.2 to check for repeatability of mirror				
position on re-cool. Same position to within 10%				
Cooled from 150K to 5.9K. Tested maximum prime			20/01/04	
and redundant throw on both axes with 50mA. FAIL				
Kept PFM at 77K			21/01/04	
Cooled from 270K to 77K			22/01/04	
Heat PFM from 77K to 128K then cooled to 4K.			23/01/04	
Testing for maximum jiggle angles at same current				
(50mA) but different temperatures				
PFM at room temperature. PFM removed from cryostat			26/01/04	
and test performed to determine stiffness of jiggle				
pivots, lacing tape obstruction removed.				
PFM installed in cryostat and pumped down			28/01/04	
Cooled from room temperature to 5.9K. Test			29/01/04	
performed to determine maximum angles after lacing				
tape removed.				
Cooled to 4K to soak			03/02/04	
Cooled from 52K to 5.9K. Tested angular throw once			04/02/04	
soaked at under 10K for 3.5 hours			0 170270 1	
Cryostat on Vacuum pump.			09/02/04	
Cool to 5.8 K for basic Calibration and control tests.			10/02/04	
Cooled from 61K to 5.9K for control tests.			11/02/04	
Cooled from 80 to 5.9K for Control tests.			12/02/04	
Cooled from 53 to 5.9K for Control tests.			13/02/04	
Cooled from 292 to 78K.			16/02/04	

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 61 of 102

DESCRIPTION OF ACTIVITY / EVENT	REMARKS/ REF. DOC.	OPERATING TIME	DATE	SIGNATURE
Cooled from 77 to 5.9K for Control tests.			17/02/04	
Cooled from 44 to 5.9K for Control tests.			18/02/04	
Cryostat left to warm up from 40K			19/02/04	
Remove PFM from Cryostat and Make ready PFM for Transporting to RAL for shake.			26/02/04	
PFM shaken at RAL.			27/02/04	
Removed baffle and EMC cover for inspection.			01/03/04	
Removed P-clips from emc cavity for later replacement with better Heat-shrink protection.			02/03/04	
Install PFM in cryostat, test for functional wiring and begin to vacuum pump.			08/03/04	
Cool cryostat from room temperature.			09/03/04	
Testing Fail Safe (No Drive) Position (Test 4.2). 5.5 – 6.5 K.			10/03/04	
Testing for Angular Travel (Test 4.5). 5.5 – 6.5 K.			11/03/04 to 16/03/04	

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 62 of 102

3.14 Operating Time/Cycle Record

Testing of the BSM involves minimal cycling compared to the >>10⁶ cycles carried out for the cold life test (qualification test carried out on a separate model). For this reason a separate record has not been kept.

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 63 of 102

3.15 Connector Mating Record

CONNECTOR MATE / DEMATE LOG															
PROJECT SE	PIRE			EXPER	RIMENT										
S / SYSTEM	BSM		UN	NIT P	FM		IDE	NT NO.	PRI	ME FLE	EXI FRAME				
ID		ID			ID	ID						ID			
Mate	Demate	Mate	e D	emate	Mate	Demate		Mate D		emate Ma		te Demate			
Date	Date	Date	D	ate	Date	Date		Date Da		te	e Dat		Date		
B.Wilson															
27/11/03															
AFTER 5 CYCLES CARRY OUT VISUAL INSPECTION (RECORD RESULT BELOW)															
CONNECT DEBRIS BENT PINS REMARKS PASS FAIL SIGNATUI												NATURE			
I/D	DEDINO	DEINT		1 1140	INCIVIA	17.0		_ ''		.,		OIC.	NATORE		
Mate	Demate	Mate	e D	emate	Mate	Demate		Mate	e Demate		Mate		Demate		
Date	Date	Date	e D	ate	Date	Date		Date	Da	te	Da	te	Date		
AFTER 10 CYC	LES VISU	AL IN	ISPEC	CTION W	ITH MAC	SNIFIC	OITA	N (REC	ORI	RESU	LTS	BE	LOW)		
CONNECT I/D	DEBRIS		ENT INS	PIN F	ITS	REMA	ARKS	PASS	S FAIL		SI		GNATURE		
NB: IN CASE O	OF FAILUF	RE AN	I NCR	IS REQU	JIRED, I	NFOR	M PA	Manage	er						

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 64 of 102

CONNECTOR MATE / DEMATE LOG															
PROJECT SF	PIRE		I	EXPER	IMENT										
S / SYSTEM	BSM		UNIT	ΓР	FM		IDEI	NT NO.	RE	DUNDANT FLEXI FRAME					
ID		ID			ID			ID			ID				
Mate	Demate	Mate	Der	mate	Mate	Demate		Mate	De	emate	Mat	е	Demate		
Date	Date	Date	Dat	e	Date	Date		Date	Da	ate	Date	е	Date		
B.Wilson															
27/11/03															
AFTED 5 OVOL	EC CARRY	(OUT)	/ICLIA	LINOT	DECTION.	LOCA	NODD.	DECLII	T D	EL OVA/V					
AFTER 5 CYCLES CARRY OUT VISUAL INSPECTION (RECORD RESULT BELOW)															
CONNECT DEBRIS BENT PINS REMARKS PASS FAIL SIGNAT												NATURE	_		
I/D															
Mate	Demate	Mate	Der	mate	Mate	Dem	ate	Mate	De	emate	Mate Dema		Demate		
Date	Date	Date	Dat	e	Date	Date		Date	Da	ate	Date		Date		
AFTER 10 CYC	LES VISU	AL INS	PECT	ION W	ITH MAC	SNIFIC	ATIO	N (REC	OR	D RESU	LTS	BE	LOW)		
CONNECT I/D	DEBRIS	BEN	JT	PIN F	ITS	REMA	RKS	PASS	<u> </u>	FAIL	1	SI	GNATURE		
	2251110	PIN				. _!VI/		','	•	, , , , L		J1	O. W. (1 OI (L		
														_	
NB: IN CASE C	F FAILUR	RE AN N	ICR IS	REQU	JIRED, I	NFOR	МРА	Manage	er		ı				

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 65 of 102

CONNECTOR MATE / DEMATE LOG													
PROJECT SF	SPIRE EXPERIMENT												
S / SYSTEM	BSM		UI	NIT P	FM		IDEI	NT NO.	RE	DUNDA	NT F	FLE	XI BASE
ID		ID			ID			ID			ID		
Mate	Demate	Mat	е С	Demate	Mate	Demate		Mate	De	emate	Ма	te	Demate
Date	Date	Date	е [С	Date	Date	Date		Date	Date		Da	te	Date
B.Wilson													
27/11/03													
AFTER 5 CYCLES CARRY OUT VISUAL INSPECTION (RECORD RESULT BELOW)													
CONNECT DEBRIS BENT PINS REMARKS PASS FAIL SIGNA											NATURE		
I/D	323.40		J,										
Mate	Demate	Mat	е [Demate	Mate	Dem	ate	Mate	De	emate	Ма	te	Demate
Date	Date	Date	е [С	Date	Date	Date		Date	Da	ate	Da	te	Date
AFTER 10 CYC	LES VISU	AL IN	ISPE	CTION W	TH MAC	SNIFIC	ATIO	N (REC	OR	D RESU	LTS	BE	LOW)
0011150715	555510			1 500.1	· T O	5514	DICO	15400				I 0:	ON A TURE
CONNECT I/D	DEBRIS		ENT INS	PIN F	IIS	REMA	RKS	PASS	S .	FAIL		SI	GNATURE
NB: IN CASE O	DF FAILUR	RE AN	NCF	R IS REQU	JIRED, I	NFOR	МРА	 Manage	er			1	

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 66 of 102

CONNECTOR MATE / DEMATE LOG														
PROJECT SF	PIRE			EXPER	RIMENT									
S / SYSTEM	BSM		UI	NIT F	FM		IDE	NT NO.	PR	IME FLE	EXIE	BAS	E	
ID		ID			ID			ID		ID)		
Mate	Demate	Mate	е С	Demate	Mate	Dem	ate	Mate	De	emate	Ма	te	Demate	
Date	Date	Date	e [Date	Date	Date		Date	Da	ate	Da	te	Date	
B.Wilson														
27/11/03														
AFTED 5 OVOL	EC CARRY	/ OLI	T \ // C	LIAL INICE	DECTION	LOCA	NODD.	DECLII	T D	EL OVA/V				
AFTER 5 CYCLES CARRY OUT VISUAL INSPECTION (RECORD RESULT BELOW)														
CONNECT DEBRIS BENT PINS REMARKS PASS FAIL SIGNA												NATURE		
I/D														
			1					1			,			
Mate	Demate	Mate	e C	Demate	Mate	Dem	ate	Mate	De	emate	Mate		Demate	
Date	Date	Date	e [Date	Date	Date		Date	Da	ate	Date		Date	
AFTER 10 CYC	LES VISU	AL IN	ISPE					N (REC	OR	D RESU	LTS		,	
CONNECT I/D	DEBRIS		ENT INS	PIN H	HTS	REMA	RKS	PASS	S	FAIL		SI	GNATURE	
			IINO									_		
NB: IN CASE (DF FAII LIF	EF AN	INCE	IS REO	JIRFD I	NFOR	МРА	 Manage	er.			<u> </u>		
	LOI	·- , ,, ,			<i>-</i> , i	511	, ,							

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 67 of 102

CONNECTOR MATE / DEMATE LOG															
PROJECT SF	PIRE			E	EXPER	IMENT									
S / SYSTEM	BSM		ι	JNIT	Р	FM		IDE	NT NO.	PR	IME	_			
ID		ID				ID	IC		ID	ID			ID		
Mate	Demate	Mat	е	Den	nate	Mate	Demate		Mate	De	emate	Mate		Demate	
Date	Date	Date	Date Da		е	Date	Date		Date	Date		Da	te	Date	
D.McN	D. McN	D. McN	D. D. I		/IcN	D. McN									
12/12/03	15/12/0 3	13 Jan 200			eb 4	8 Mar 2004									
AFTER 5 CYCLES CARRY OUT VISUAL INSPECTION (RECORD RESULT BELOW)															
CONNECT I/D	DEBRIS		BENT P		INS	S REMAI		KS PASS		FA	AIL		SIG	NATURE	
Mate	Demate	Mat	е	Den	nate	Mate	Dem	ate	Mate	De	emate	Mate		Demate	
Date	Date	Date	е	Date	е	Date	Date		Date	Da	ate	Da	te	Date	
AFTER 10 CYC									N (REC	OR		LTS	BE	LOW)	
CONNECT I/D	DEBRIS		ENT INS	,	PIN F	ITS	REMA	RKS	PASS	3	FAIL		SI	GNATURE	
NB: IN CASE O	OF FAILUR	RE AN	NC	RIS	REQU	JIRED, I	NFOR	M PA	Manage	er					
			_	_	-•-	, -			- 3						

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 68 of 102

CONNECTOR MATE / DEMATE LOG															
PROJECT SF	PIRE			E	EXPER	RIMENT									
S / SYSTEM	BSM			UNIT	. Р	FM		IDE	NT NO.	RE	DUNDA	NT			
ID		ID				ID			ID		ID		ס		
Mate	Demate	Ma	te	Den	nate	Mate	Dem	ate	Mate	De	Demate N		ate	Demate	
Date	Date	Dat	te	Dat	е	Date	Date		Date	Date		Da	te	Date	
D.McN	D. McN	D.			/IcN	D. McN									
12/12/03	15/12/0 3	13 Jar	McN 13 26 Jan 20 2004		Feb 4										
AFTER 5 CYCLES CARRY OUT VISUAL INSPECTION (RECORD RESULT BELOW)															
CONNECT I/D	DEBRIS		BENT P		INS	REMAR	RKS	KS PASS		F	AIL		SIG	NATURE	
Mate	Demate	Ma	te	Den	nate	Mate	Dem	ate	Mate	De	emate	Ма	ate	Demate	
Date	Date	Dat	te	Dat	е	Date	Date		Date	Da	ate	Da	te	Date	
AFTER 10 CYC	LES VISU	AL II	NSP	ECTI	ON W	ITH MAC	SNIFIC	ATIO	N (REC	OR	D RESU	LTS	BE	LOW)	
CONNECT I/D	DEBRIS		BENT PINS		PIN F	ITS	REMA	RKS	PASS	3	FAIL		SI	GNATURE	
NB: IN CASE (OF FAILUR	RE AI	N NC	CR IS	REQU	JIRED, I	NFOR	M PA	Manage	er					
IND. IN OAGE	JI I AILUN	, L /	4 140		, I.L.Q.	J.I. \∟D, I	111 011	1VI 1 /1	wanage	, i					

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 69 of 102

3.16 BLANK

This section not used (retained for compatibility of numbering sequence with RAL ADP)

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 70 of 102

3.17 Pressure Vessel Test Record

Not supplied

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 71 of 102

3.18 Calibration Data record

To come BS

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 72 of 102

3.19 Temporary Installation Record

Red Tag Items: (remove before integration)

1. BSM connector cover caps : 2 off. Remove before bake-out or before fitting mating connectors.

<u>Green Tag Items: (insert before integration)</u> None.

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 73 of 102

3.20 Open Work / Deferred Work / Open Tests

Additional tests

Additional staking of wiring To done after testing has been completed and before

shipping

Staking of tie wrap knots

To done after testing has been completed and before

shipping

Fitting of PCAL To be carried out at RAL Fitting of Thermistors To be carried out at RAL

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 74 of 102

3.21 List of Non-Conformance reports (NCR's)

No.	Non-Conformance Details	Status	Raised Date
SPI-BSM-NCR-000	PI-BSM-NCR-000 This is a blank NCR raised to commence a numbering scheme for the BSM.		25/09/2001
	SPI = SPIRE		
	BSM = Beam steering Mirror		
	NCR = Non Conformance Report		
	000 = unique number for NCR		
SPI-BSM-NCR-002	JIGGLE FRAME holes B tapped through, not tapped to depth	CLOSED	28/09/2001
	MANUFACTURE FOR 2 AXIS PROTOTYPE.		
	drg no. 01a05a.		
SPI-BSM-NCR-003	JIGGLE FRAME - tool dig on bore and one face	CLOSED	28/09/2001
	Drg No 01a05a		
SPI-BSM-NCR-005	INTERFACE PLATE DRG SPIRE-BSM-020-001-001 REV 2	CLOSED	25/04/2002
	M4 INSERTS FITTED AS NON-LOCKING TYPES NOT TO HAND		
SPI-BSM-NCR-006	BSM STRUCTURAL INTERFACE. Drg. No. SPIRE-BSM-020-001-001 issue 3	CLOSED	30/04/2002
	Jiggle axis bore is off centre by 0.3mm. Towards datum. (41.2mm)		
SPI-BSM-NCR-007	JIGGLE FRAME BOTTOM. Drg. No. SPIRE-BSM-020-003-001 issue 3	CLOSED	30/04/2002
	1. Pocket oversize.		
	2. Height in jiggle axis out of tolerance, should be 15.25mm, actual 15.0mm		
SPI-BSM-NCR-008	BSM ASSEMBLY MODEL. DM-1 Drg. No.SPIRE-BSM-020-001	CLOSED	30/04/2002
	See notes from inspection record.		
	Jiggle sensor helicoils stripping out & and protrude from base of G10 component.		
	3. Jiggle clamp bottom right bolt found to be <20 Ncm. May not have been torqued?		
	7. Chop pivot bore in the jiggle frame has witness marks from sleeve adhesive holes. May be that chop sleeve had some trace adhesive around holes.		
SPI-BSM-NCR-009	NON CONFIGURED DOCUMENTS BEING USED FOR MANUFACTURE.	CLOSED	09/05/2002
	Noted in the workshop that for the Jiggle frame (SPIRE-BSM-003-001 & -002) there are 3D views of the part being used for information during machining. These are not configuration controlled and are bad practice akin to handwritten auxiliary instructions.		
SPI-BSM-NCR-011	FRONT BAFFLE Drg No.SPIRE-BSM-020-001-009 version 1 #0002.	CLOSED	08/07/2002
	2 Holes added to front face of baffle. This was to allow clearence for jiggle frame bolts. Washers used for balance caused bolt heads to hit cover.		
SPI-BSM-NCR-012	DURING RE-ASSY OF DM-1 AS STM ONE OF THE JIGGLE FRAME CAP SCREWS FAILED WHEN BEING TORQUED TO THE SPECIFIED VALUE OF 920Nmm	PENDING	08/08/2002
SPI-BSM-NCR-015	Bolt positions on assembly drawing (SPIRE-BSM-020-003 sht.1&2 SPIRE-BSM-020-004) do not correspond with clearance holes on machining drawing (SPIRE-BSM-020-004-001)	CLOSED	02/09/2002

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 75 of 102

No.	Non-Conformance Details	Status	Raised Date
SPI-BSM-NCR-016	"E" Holes in Structural Interface (Drg. No. SPIRE-BSM-020-001-001) do not line up with "B" holes in BSM Base Plate (Drg. No. SPIRE-BSM-020-001-002). Due to machining allowance on base plate.	CLOSED	09/09/2002
SPI-BSM-NCR-019	STM: PCAL INTERFACE LACK TAPPED HOLES (DRG SPIRE-BSM-020-001-001 REV 3).	CLOSED	21/10/2002
SPI-BSM-NCR-022	DM2 motor cover serial no # 0041 foul on wires during assy.	CLOSED	01/11/2002
SPI-BSM-NCR-023	DM2 motor ser No. 0040 middle mounting helicoil has been replaced and first half turn is not supported by thread in al. alloy body.	CLOSED	08/11/2002
SPI-BSM-NCR-024	M2.5 nut used to hold launch latch on to structure is not traceable	CLOSED	04/12/2002
SPI-BSM-NCR-025	Solder joints not conforming to ECSS-Q-70-08A, excessive solder and solder spikes.	CLOSED	16/12/2002
SPI-BSM-NCR-026 baffle - spire-bsm-023-001-009 dos not have 5mmx45deg chamfer in 4 places.		CLOSED	31/01/2003
SPI-BSM-NCR-030	SPI-BSM-NCR-030 Screw removed from middle fixing hole on motor 0038 has damage at one point on the thread.		20/03/2003
SPI-BSM-NCR-031 DM-2 tayco flexi tape : clamp design does not fully retain the outer connector on thr BSM structure		CLOSED	03/04/2003
SPI-BSM-NCR-032	JIGGLE AXIS BORE MISALIGNMENT	CLOSED	10/10/2003
SPI-BSM-NCR-033	Wires for motor packages sitting slightly proud fowling on the motor cover	CLOSED	10/12/2003
SPI-BSM-NCR-034	Fail safe rest position (i.e. power off position of mirror) measured (16/01/04) at 0.23 deg chop (specification 0.18 deg). Note the value for jiggle is within spec. at 0.09 deg.	OPEN	19/01/2004
	The rest position was set within specification when warm (at 0.10 deg in jiggle, almost 0 in chop) but on cooldown has shifted.		
SPI-BSM-NCR-035	Heatshrink debris found after shake test. Heatshrink on P-clips torn.	PENDING	02/03/2004
SPI-BSM-NCR-036	Mirror does not give full range of movement.	OPEN	03/03/2004
SPI-BSM-NCR-038	Wiring of motor coils incorrect. Labels had fallen off before wiring completed and wires got swapped over.	CLOSED	12/03/2004

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 76 of 102

3.22 Copies of Non-Conformance reports (NCR's)

EXTERNAL AUDIT

Non-Confor	mance Details						
Number							
SPI-BSM-NCR-0	19						Printed on 19/03/2004
Source EXTERNAL AU	DIT	Project/Suppor	rt Area			Process	
Audit Title		3		Procedure		1 12	
Department / Su	pplier			Cause / Re			
MECHANICAL Raised By				DOCUMENTATION /INCORRECT			
SPIRE CUST				Severity MAJ		Date 21/10/2002	
Non-Conforman STM: PCAL INT	CE DETAILS PERFACE LACK TAPPI	ed holes (drg	SPIRE-BSM-C	020-001-001	REV 3).		
Product / Service SPIRE /SPIRE-ST				Fil enam e			
Corrective A	Action						
Target CA Date	Actual CA Date	Cost	Supporting A	Actions	Responsib	le for CA	
04/11/2002	07/11/2002			2	PAIN, IAN	6	
Preventive A	XTRA COST OF DIS/R	PASSEMRT A					
PA Required	Target PA Date	Actual	PA Date		Responsibl	e for PA	
No	Tangov Tit David	12004			The states		
Preventive Action	n						
Follow Up/V	erification ⁷						
Resolution REWORK				Responsible for Follow-up Action BAILLIE,, TOM			
Follow-Up / Veri- re-worked and ins	fication pected by TECB, require	d a <i>s</i> trip down to	ensure no swari	fingress. Re-	assemled afte	erwards.	
Status	Actual Close Date		Approver				1
CLOSED	07/11/2002		PAIN, IAN				

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 77 of 102

CONCESSION

Non-Conformance Details

Number			
SPI-BSM-NCR-032			Printed on 19
Source CONCESSION	Project/Support Area SPIRE		Process DESIGN AND DEVELOPMENT
Audit Title		Procedure	*
Department / Supplier MECHANICAL		Cause / Reason	
Raised By PAUL, TOM		Severity MAJ	Date 10/10/2003
Non-Conformance Details JIGGLE AXIS BORE MISALI	GNMENT		

Corrective Action

Target CA Date	Actual CA Date	Cost	Supporting Actions	Responsible for CA				
15/10/2003	11/12/2003		0	PAUL, TOM				
Corrective Action	d.	*	*					
A RECOVERY PROCEDURE WAS DEVISED IN THAT IF THE JIGGLE AXIS BORES WERE MACHINED OVERSIZE AT THE								
CORRECT ANGL:	CORRECT ANGLE THEN WE COULD SLEEVE THE FLEX-PIVOTS							
TO BRING BACK	TO BRING BACK TO THE NEW DIA. THIS NEW DIA WOULD BE THE SAME AS THE EXISTING							
FLEX PIVOT PROTECTION SLEEVE DIA. AS THIS PROCESS HAS ALREADY BEEN PROVEN AND								
THE TOLERANCE	THE TOLERANCES CALCULATED.							

Preventive Action

PA Required No	Target PA Date	Actual PA Date	Responsible for PA	
Preventive Action	y .	· ·	4	

Follow Up/Verification

Resolution ACCEPT AS IS /WITHOUT WAIVER	Responsible for Follow-up Action PAUL, TOM		
Follow-Up / Verification			
CTD 03-11 RAISED			

Status	Actual Close Date	Approver
CLOSED	11/12/2003	PAUL, TOM

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 78 of 102

CONCESSION

Non-Conformance Details

Number			
SPI-BSM-NCR-034			Printed on 19/03/2004
Source CONCESSION	Project/Support Area SPIRE		Process DESIGN AND DEVELOPMENT
Audit Title		Procedure	å.
Department / Supplier PROJECT MANAGEMENT		Cause / Reason PROCESS /AMB	IGUOUS
Raised By		Severity MAJ	Date 19/01/2004
jiggle is within spec, at 0.09 deg.	ffposition of mirror) measured (16/01		(specification 0.18 deg). Note the value for
Product / Service SPIRE-SPIRE-PFM		Filename SPI-BSM-OTH-	0012

Corrective Action

Target CA Date	Actual CA Date	Cost	Supporting Actions	Responsible for CA
19/01/2004			0	MCNEILL, DAVID
0.00	•			o datum used by the servo will be made to hat on the Spire Optical Bench the BSM will be
aligned to this same	point using the shoe ar	nd/or other ali		M within spec. means a warm up, partial strip down

Preventive Action

PA Required No	Target PA Date	Actual PA Date	Responsible for PA	
Preventive Action	ľ	L		

Follow Up/Verification

	Resolution	Responsible for Follow-up Action			
	ACCEPT AS IS /WITH WAIVER				
Ì	Follow-Up / Verification				
	Spire project indicate acceptance likely provided an angular offset is made in only one axis. This will be the case since it is within spec in jiggle.				

Status	Actual Close Date	Approver
OPEN		PARR-BURMAN, PHIL

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 79 of 102

Corrective Action Target CA Date Actual CA Date Cost Supporting Actions Responsible for CA STOBIE, BRIAN Corrective Action For PFM: Leave unit as is. Raise RFW once the final values for range of movement with 50mA and with 60mA are known. For FSM: Fit alternative magnets with higher thermal resistance. PA Required Target PA Date Actual PA Date Responsible for PA Preventive Action Preventive Action Preventive Action Collow Up/Verification	Number								
Audit Tile Procedure	SPI-BSM-NCR-03	6					Printe	d on 19/03/2	
Cause / Reason WORKSHOP CAUSE UNKNOWN, NEEDS INVESTIGATION Raised By Severity MAJ Severity MAJ Sold-2004 Wen-Conformance Details Wirror does not give full range of movement. Filename Brian Robie Tech Note - number ??? OFFECTIVE ACTION Farget CA Date Actual CA Date Cost Supporting Actions For PEM: Leave unit as is: Raise RFW once the final values for range of movement with 50mA and with 60mA are known. For FSM: Fit alternative magnets with higher thermal resistance. Five Ventive Action Five Ventive Action For PA Responsible for PA Responsible for PA Responsible for Follow-up Action		,		ort Area			Process		
CAUSE UNKNOWN, NEEDS INVESTIGATION	Audit Title	1			Procedure				
Non-Conformance Details Wirror does not give full range of movement. Filename Spirit Spirit PFFM Product / Service Spirit Spi		plier							
Product / Service SPIRE-SPIRE-SPIRE SPIRE-SPIRE-SPIRE SPIRE-SPIRE-SPIRE OFFICE Action Farget CA Date Actual CA Date Cost Supporting Actions STOBIE, BRIAN Corrective Action For PFM: Leave unit as is. Raise RFW once the final values for range of movement with 50mA and with 60mA are known. For FSM: Fit alternative magnets with higher thermal resistance. PA Required Action PA Required Actual PA Date Responsible for PA OCITICATION Preventive Action Responsible for PA Responsible for PA Responsible for PA Responsible for Follow-up Action Responsible for Follow-up Action Responsible for Follow-up Action	Raised By				352				
PIRE-SPIRE-PFM OUT rective Action Farget CA Date Actual CA Date Cost Supporting Actions Responsible for CA STOBIE, BRIAN Corrective Action To PFM: Leave unit as is. Raise RFW once the final values for range of movement with 50mA and with 60mA are known. For PFM: Fit alternative magnets with higher thermal resistance. Preventive Action Target PA Date Actual PA Date Responsible for PA Preventive Action Responsible for Follow-up Action Responsible for Follow-up Act			nt.						
SPIRE-SPIRE-PFM OUTPECTIVE Action Farget CA Date	Product / Service				Filenam e				
Farget CA Date Actual CA Date Cost Supporting Actions Responsible for CA STOBIE, BRIAN Corrective Action For PFM: Leave unit as is. Raise RFW once the final values for range of movement with 50mA and with 60mA are known. For FSM: Fit alternative magnets with higher thermal resistance. Preventive Action PA Required Target PA Date Actual PA Date Responsible for PA Corrective Action Preventive Action Responsible for Follow-up Action Responsible for Follow-up Action	SPIRE-SPIRE-PFM					ie Tech Note	- number ???		
Corrective Action For PFM: Leave unit as is. Raise RFW once the final values for range of movement with 50mA and with 60mA are known. For FSM: Fit alternative magnets with higher thermal resistance. Preventive Action PA Required Target PA Date Actual PA Date Responsible for PA No Preventive Action Collow Up/Verification Resolution Responsible for Follow-up Action	orrective A	ction							
For PFM: Leave unit as is. Raise RFW once the final values for range of movement with 50mA and with 60mA are known. For PFM: Fit alternative magnets with higher thermal resistance. Freventive Action PA Required Target PA Date Actual PA Date Responsible for PA Freventive Action Freventive Action Resolution Responsible for Follow-up Action		7	Cost	Supporting A	Actions	Responsib	e for CA		
For PFM: Leave unit as is. Raise RFW once the final values for range of movement with 50mA and with 60mA are known. For FSM: Fit alternative magnets with higher thermal resistance. Freventive Action PA Required Target PA Date Actual PA Date Responsible for PA For eventive Action Freventive Action Responsible for Follow-up Action Responsible for Follow-up Action					0	STOBIE, E	RIAN		
PA Required No Responsible for PA No Preventive Action Collow Up/Verification Resolution Responsible for Follow-up Action Resolution	Construction of Construction	ar 4 • • • • • •							
Preventive Action Collow Up/Verification Resolution Responsible for Follow-up Action Follow-Up/Verification			Actual	PA Date		Responsibl	e for PA		
ollow Up/Verification Resolution Responsible for Follow-up Action Follow-Up / Verification						_			
Resolution Responsible for Follow-up Action Follow-Up / Verification	Preventive Action								
Follow-Up / Verification									
	ollow Up/Vo	erification							
		erification			Responsibl	e for Follow	up Action		
	Resolution Follow-Up / Verifi	cation	SPI-BSM-NOT-	0728	Responsibl	e for Follow	up Action		

OPEN

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 80 of 102

SPIRE Technical Note – Motor Magnets

Author:	Brian Stobie
Date:	23-Feb-04
Version:	1.0

Distribution LIST:

SPIRE-Project	Doug Griffin Eric Clark
UK ATC	Colin Cunningham
	Gillian Wright
	Phil Parr Burman
	Tom Baillie
	Brian Stobie
	Tom Paul
	lan Laidlaw
	Gary Rae
	Derek Ives
	Ian Bryson

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 81 of 102

Version Control

Date	Index	Remarks
23-Feb-04	1.0	New release

Table of Contents

1. BACKGROUND	82
1.1 DESCRIPTION OF PROBLEM(S)	82
1.2 PROPOSED SOLUTION	
2. APPENDIX A	86
2.1 Test 1	86
2.2 Test 2	86
2.3 Test 3	86
2.4 Notes on Test 1:	87
2.4.1 Observations:	87
2.4.2 Conclusion of Test 1.	87
2.5 Notes on Test 2:	88
2.5.1 Results:	89
2.5.2 Conclusion:	
2.6 Appendix 1	89
3. APPENDIX B	92
4 APPENDIX C	93

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 82 of 102

BACKGROUND

The SPIRE Beam-Steering Mirror (BSM) uses linear motors composed of two parallel coils and a disc magnet between them. The angular position of the BSM axis is dependant on the strength of axis flex joints, which act like rotational springs, and the motor force, which is in turn dependant on the product of the motor coil current and the magnetic field at the coil windings.

Each axis has 2 coil pairs and 2 magnets, with only 1 coil from each pair being used at a time. The other coils from the pairs are used as the 'Redundant' backup in the event of failure.

DESCRIPTION OF PROBLEM(S)

The motor coil design is fixed by the requirements of the PACS contract, as we just obtain PACS coils with no input to the design. However, the magnet material and shape is under our control (within mechanical constraints). To keep design heritage with the PACS motors, we decided to use the same magnet material type, Neodymium-Iron-Boron (NdFeB – specifically VACODYM 344) - however a UK-based magnet supplier (Magnetsales UK) was selected for reasons of price and delivery, i.e. they were cheaper and quicker than the PACS supplier, Vacuumschmeltze. As the PACS paper (1) also indicated a reduction of motor torque of only 2% between 300 and 4 degK, this magnet material seemed suitable for use.

The flex joint spring scale factor has been determined by the minimum required mechanical robustness to launch vibrations. Considerations of basic material properties predict increases in the spring scale factor of about 5% from 300 to 4 degK for the Jiggle axis, and 10% for the Chop axis.

The maximum coil current is limited by the BSM power dissipation requirements, the design of the power amplifier, and now system limitations imposed by the 'frozen' state of the design at this time, or rather the difficulty in changing requirements at this stage in the contract.

It was found that during development the balance between obtainable motor torque and required flex joint spring torque was resulting in a system that had a small design margin of approximately 10% in terms of available angle compared to specification requirements, therefore the maximum available current was requested to be increased from 40mA to 50mA.

Model DM2 had about 10% margin in maximum angles using currents of 50mA.

Due to shortages of motor coils from the manufacturer (Zeiss), previous models built (such as DM2) had solid iron cores in place of the Redundant, normally unused, coils.

The latest model built (the PFM model) is the first one to have all motor coils in place.

From considering the effects of moving magnets on conducting materials, it was considered that eddy currents would be produced in the dummy iron core, so that replacing the solid core with a laminated real core would result in better dynamic performance.

This dynamic performance has yet to be confirmed, but what has definitely been found on the PFM model is a further reduction in the available angles. It was postulated that the dummy core had been actually increasing the magnetic field at the coil, and this was confirmed during discussions with a magnetics consultant brought in to investigate the problem.

In addition, due to a wiring error, the PFM model had to be baked again to remove volatile compounds after re-potting, so another possible source of its poor performance could have been thermal effects on the magnets. The magnet material used had a specification maximum operating temperature of 80 degC, and the BSM was baked at 83 degC, but the thermostat in the oven could allow the temperature to rise to 85 degC for short periods.

To enable investigation of the problem, a Gaussmeter was purchased to measure magnet strength.

On testing using 6 spare magnets, the local magnetic field at a short distance from the magnet faces was found to decrease by 40% after baking for 30 minutes (Appendix A).

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 83 of 102

Further baking had little effect.

The magnet suppliers suggested that the 'form factor' (i.e. shape of the magnet with respect to the magnetic axis) was having an effect on the temperature capabilities.

Additionally, it had been clear from BSM testing that a reduction in maximum available angle occurred between 300 and 4 degK. Some causes were postulated to be:

- A reduction in magnet strength
- A reduction in available current
- An increase in flex joint spring scale factor
- Some unknown magnetic effect such as permeability change in the cores

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 84 of 102

some combination of the above

From angle tests using a basic power supply and meter, and combined with load resistance and measurements of voltage, item b) was discounted. In passing, these tests also indicated that an increase in the available current from 50mA to 60mA would enable the PFM to meet its angle specifications and get back to about 9% design margin.

After an internet search, a paper was found (2) that suggested a theoretical drop of about 14% due to temperature effects in NdFeB material, and the supporting graph (from another paper quoted in (2)) shows reductions of over 20% between 300 and 4 degK. Of particular interest to PFM test results (discussed later) is a rise in the graph of magnet strength peaking at around 150 degK from the value of 300 degK.

Note that in common with other materials and components; in general there is little information available about the cryogenic properties of magnets.

After some consideration, samples of higher operating temperature (120 degC) NdFeB magnets and also Samarium-Cobalt (SmCo) magnets were obtained from our UK supplier.

SmCo usually has lower room-temperature strength than NdFeB but higher operating temperature, and smaller low-temperature effects. The end result at 4 degK is very similar for typically available magnet grades. In passing it is noted that ISOPHOT and SMEC use SmCo magnets.

After applying exactly the same bakeout tests as had been done previously to the '80 degC' magnets, it was found that these magnet samples were essentially unaffected (Appendix B).

Tests on the PFM model (Appendix C) indicated that the Chop flex joint spring scale increase on cooling (300 to 4 degK) was about 3.9%, and the net change in the magnet strength was about -5.1% excluding the bakeout effect. The magnet strength increase noted in paper¹ was also confirmed, but this effect appears larger than the values suggested by the paper. However, it should be noted that some of the tests were done at basically unknown magnet temperatures due to the large thermal time constants between the magnets and the BSM base where the temperature sensors are. This might explain the disparity between these results and the paper² and previous tests on the Jiggle axis indicating an angle reduction due to temperature of about 17%.

As previously noted, the flex joint material properties suggest an increase of 10% for the Chop axis spring scale factor, so this test result is also inconsistent with theory, but in our favour for a change.

PROPOSED SOLUTION

Discussions with the magnetics consultant had also confirmed a belief that using thicker magnets would also produce a higher field at the coils, therefore the design solution proposed is to use slightly thicker magnets (2.5mm instead of 2.0mm) and use a higher-temperature NdFeB magnet grade.

Conceptually we should gain at least 40% on magnet strength by avoiding the bake-out problems we currently have.

There is a slight design risk from the reduced magnet-coil gap due to mechanical shifts, particularly with launch vibration, and perhaps thermal shrinkage.

¹ Group Arnold Technote TN 0302, 'Using Permanent Magnets at Low Temperatures', (Stanley Trout).

² Krause, Lemke, Grozinger, Bohm,Baumeister and Rohloff, 'A Cold Focal Plane Chopper for the PACS Instrument of the FIRST satellite – Tests of an Advanced Prototype'

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 85 of 102

Additionally, NdFeB magnets are to be obtained from Vacuumschmelze as a backup in case the Magnetsales products prove unsuitable after testing. A 7-day bake-out needs to be performed to replicate the system level bake-out that RAL will perform at a later stage in the program.

The plan is to 'upgrade' the Flight Spare to the stronger, thicker magnets and ask RAL for the 60mA as well, thus allowing the PFM to be tested and delivered without having to replace its magnets. At some later date, the Flight Spare would become the launch item.

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 86 of 102

APPENDIX A

SPIRE BSM LAB TESTS LOG SHEET.

Date: 10 / 2 / 04 SPIRE Model: Magnets for Flight Models Tester: D. McNeill

Test 1

Testing the rest of the batch of magnets (24 off) that the ones in the PFM model are from. Testing for Spread of strength- variability between magnets in same batch. See '090204 Magnets testing Method.doc' for test of apparatus and method.

Test 2

PFM was baked twice at 80 deg C, the second time the temperature rose to 85 degrees C. Hence, to see the effect of this, bake 6 magnets (from same batch as that of test 1) at 80 deg C, baking once; then bake three of them again. Take note of magnet strengths at each point, before and after baking. Baking time is 30 minutes in normal oven (not vacuum oven).

First bake, have temperature reach 86 deg C since the PFM was baked out at a peak of 85: Hence we can see the effect of that temperature on the magnets.

Nb. During the second bake in test 2, where 3 magnets are being baked for the second time, include another 2 fresh, non-baked magnets, and bake this time to a peak of 80 degrees and no higher, so we can see any difference in effect of baking at 80 degrees than at 86 (specification temperature limit of these magnets is 80 deg C).

Since the Flight models, and their magnets will be baked out a number of times at 80 deg C, bake some again at 80 C, testing for changes in strength after repeated bakes. Test these again at 90 to investigate changes in strength at higher temperatures.

Test 3

Cool magnets to 77K and test for strength as they warm up to room temperature.

Apparatus used:

GM04 Gaussmeter Ser. No: GM1166

With Transverse probe S/N: PT3373

Magnets MSS Part No. NIDC 01177/N

Batch No. 33/02

Small Oven: Genlab Model N6C Ser. No 93D004

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 87 of 102

Notes on Test 1:

Testing 2mm magnets in white tub- rest of PFM batch for variability.

Magnet #	Magnet Strength +ve side (mT)	Magnet Strength –ve side (mT)
1	178.5	-189.7
2	180.2	-189.7
3	174.3	-191.2
4	180.7	-181.5
5	191.6	-173.8
6	187.7	-184.5
7	173.5	-189.9
8	192.4	-174.7
9	179.8	-164.3
10	187.2	-186.3
11	186.6	-181.5
12	193.2	-173.2
13	191.6	-178.4
14	176.4	-181.9
15	190.1	-177.5
16	181.9	-187.0
17	188.8	-180.8
18	186.3	-179.9
19	188.3	-178.8
20	191.9	-170.0
21	169.4	-193.2
22	179.5	-190.3
23	179.2	-189.8
24	196.6	-174.2

Observations:

Mean of moduli of both sides: 183.08mT

Range: 32.3mT

Std. Deviation: 7.46mT

Conclusion of Test 1.

Magnets are quite similar in strength: there is not a large spread of strengths.

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 88 of 102

Notes on Test 2:

Magnets used: 1, 5, 11, 15, 19, 22. Bake 1 is at 86 deg C peak, bake 2 is at 80 deg C peak. For bake-out records, see Appendix 1.

Magnet No.	Strength Before bake 1 (mT)	Strength After bake 1 (mT) * 86 deg C	Strength After bake 2 (mT).	Strength After bake 3 (mT).	Strength After bake 4 (mT).
			80 deg C	80 deg C	90 deg C
1	179.5, -191.7	110.8, -121.5	110.2, -123.4	111.5, -123.5	Results
		109.6, -120.8	110.8, -122.9	111.4, -122.6	available after
		111.4, -123.4			measurement
		111.8, -123.0			
5	188.3, -172.2	121.0, -106.5			
		121.5, -105.8			
		121.4, -107.4			
		119.7, -106.6			
11	186.3, -183.5	107.5, -103.1	106.6, -103.7	108.5, -104.7	"
		106.7, -103.6	105.8, -103.4	107.7, -103.5	
		107.5, -105.1			
		108.0, -104.2			
15	190.6, -180.2	123.3, -114.8			
		124.0, -115.0			
		125.6, -115.2			
		122.9, -115.0			
19	191.2, -175.8	112.8, -102.9			
		111.9, -99.9			
		112.4, -99.9			
		112.1, -99.6			
22	178.5, -189.7	109.4, -117.7	108.6, -117.4	108.8, -115.1	"
		109.0, -116.4	108.7, -116.8	109.1, -115.9	
		110.1, -118.8			
		108.5, -118.4			

^{*} The first 4 readings for each magnet in this column are taken 10+ minutes after removal from oven. The second 4 readings for each magnet are taken the following morning, approximately 17 hours after baking.

^{**} These readings taken >= 1 hour after baking.

Magnet #	Before bake 1 strength mT (average)	After bake 1 strength mT (average)	After bake 2 strength mT (average)	After bake 1, fraction decrease	After bake 2, fraction decrease from before bake 1
1	185.6	116.54	116.83	0.62790948	0.62947198
5	180.25	113.74		0.63101248	
11	184.9	105.71	104.88	0.57171444	0.56722553
15	185.4	119.48		0.6444444	

v 1.4

Ref: SPI_BSM_DOC_0738 Date :25-Mar-04

Author: BG Page 89 of 102

19	183.5	106.44		0.5800545	
22	184.1	113.54	112.88	0.61673004	0.61314503
averages:	183.9583333	112.575	111.53	0.61197756	0.60328085

Two magnets baked to 80 deg C (peak temp) for first time, baked with the magnets 22, 1, 11 which are being baked for the second time, as described in test description.

Magnet No.	Strength before bake (bake 2) (mT)	Strength ~20 mins after bake to 80 deg peak (mT)
6	188.5, -182.3	114.0, -112.0
	187.3, -185.4	114.8, -110.3
10	191.0, -192.4	114.8, -119.6
	190.8, -191.3	115.0, -115.9

Two magnets cooled to 77K and tested for strength as they warm up, as described in the test description. Testing one that has been baked once to 80 deg, and one magnet that has not been previously baked.

Magnet #	Strength before cooling	Strength straight after	30 secs after	1 min after	2 min after	4 min after	6 min after	10 min after	20 min after
2	178.1,	202.0,	185.8,	181.7,	177.2,	175.0,	173.4	174.1,	176.1
	-192.6	-213.4	-205.0	-201.0	-197.5	-195.0	-193.9	-195.8	-194.2
6	114.7,	129.5,	124.2	121.1	118.0	115.8	115.8	114.5,	N/A
	-112.0	-127.0	-121.0	-117.8	-114.0	-113.2	-111.2	-111.0	

Magnets were measured by re-immersing after the first 4 readings after cooling. This is to keep readings dependable: turning magnets over to measure other side takes too long and heats them up.

Resu	Its:

Conclusion:

Appendix 1

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 90 of 102

Record of baking:

Bake 1.

Time in oven	Temp (deg C)
0 min	70
5 min	73
12 min	78
16 min	81
20 min	82.5
22 min 30	83.5
25 min	86
27 min 30	84
30 min	80

Bake 2.

Time in oven	Oven
	Temp
	(deg C)
0 min	76
2 min 30	70
5 min	71
7 min 30	72.5
10 min	74
12 min 30	76
15 min	78
17 min 30	79
20 min	80
23 min 30	80
25 min	79
27 min 30	78
30 min	77.5

Bake 3.

Time in oven	Oven Temp (deg C)
0 min	76
2 min 30	72.5
9 min	77.5
12 min 30	79
17 min 30	80
24 min	80
27 min 30	79.5
30 min	79

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 91 of 102

Bake 4

Time in oven Oven Temp (deg C) 77 0 min 2 min 30 72.5 7 min 30 80 12 min 30 86 18 min 30 89.5 22 min 30 91 27 min 30 90 30 min 89

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 92 of 102

APPENDIX B

(D.MacNeill)

The following are results for the 35 minute bake at 80.5 deg C (max) of the new 'Magnet Sales' magnets:

In summary, neither of these magnets shows any decrease in performance as a result of the bake.

SmCo rated for use at 300 deg C with no fall in strength; NdFeB rated for use at 120 deg C with no fall in strength.

Magnet strength before (mT):

SmCo 189.4, -185.7; 189.2, -185.8. Average strength: | 187.5 | NdFeB 194.8, -183.0; 194.9, -180.5 Average strength: | 188.3 |

Magnet strength after (mT):

(Test >15 minutes after to allow time to cool)

SmCo 188.7, -182.7; 187.8, -184.2 Average strength: | 185.9 | NdFeB 200.0, -178.4; 195.8, -182.7 Average strength: | 189.2 |

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 93 of 102

APPENDIX C

The PFM Chop axis was moved to the position where maximum current of 50mA existed, then released to settle at its rest position.

From figure 1, showing the results at various temperatures, it can be noted that :

Temperature (degK)	Amplitude (arbritary units)	Period (arbritary units)
294	62.0	7.85
225	66.1	7.85
4	56.6	7.7

(The smallest amplitude shows the oscillation frequency at 294 degK, but is not marked as such on the graph. The '62.0' amplitude measured above was done separately using a power supply to force the 50mA through the motor.)

The frequency of oscillation of a linear spring-inertia system is given by sqrt(Ks/J), where:

Ks = spring constant (force per angle)

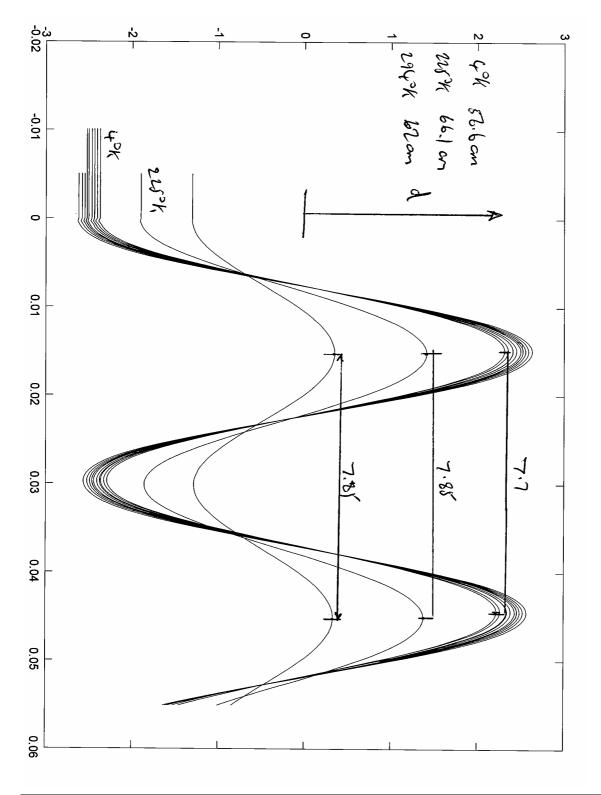
J = Inertia

As the inertia is essentially fixed for the experiment, it means that any change in oscillation frequency must be due to changes in spring constant. The actual change in spring stiffness will be proportional to the square of the frequency change.

The angle achieved is proportional to the ratio of the spring scale factor and the motor force. However at a fixed current, the motor force is just proportional to the magnet field strength, therefore the angle is proportional to Fm/Ks, and where Fm is the magnet strength and Ks is the spring scale factor.

We can then construct the following table of results (changes from 294 degK):

Temp (degK)	delta Angle	delta Oscillation Frequency	delta Spring Const.	delta Magnet Force
294	(at 62.0)	(at 1/7.85)	n/a	n/a
225	66.1/62.0 = 1.066 = + 6.6%	no measurable change	0	+6.6%
4	56.6/62.0 =	0.12987/0.12739	1.0195^2 =	0.913*1.0393
	0.913	=1.0195	1.0393	= 0.949
	= -8.7%		= +3.9%	= - 5.1%



v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG

Page 94 of 102

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 95 of 102

SPI-BSM-NCR-03	8						Printed on 19/03/2004
Source PROCESS		Project/Suppor	rt Area			Process	
Audit Title		BLIKE		Procedure	3	1	
Department / Supp	olier			Cause / Re	eason		
WORKSHOP		PROCESS /AMBIGUOUS					
Raised By GRAHAM, BRENDA		Severity MAJ		Date 12/03/2004			
Non-Conformance Wiring of motor co	e Details ils incorrect. Labels had	l fallen off before	wiring complet	ed and wires	s got swapped	over.	
Product / Service SPIRE-SPIRE-PFN	Л			Filenam e			
Corrective A	ction						
Target CA Date	Actual CA Date	Cost	Supporting A	Actions	Responsib	le for CA	
07/01/2004	12/03/2004			0	WILSON,,	BRIAN	
reventive A	etion						
	ction Target PA Date	Actual	PA Date		Responsibl	e for PA	
PA Required No	Target PA Date	Actual	PA Date		Responsibl	e for PA	
Preventive A PA Required No Preventive Action	Target PA Date	Actual	PA Date		Responsibl	e for PA	
PA Required No	Target PA Date	Actual	PA Date		Responsibl	e for PA	
PA Required No Preventive Action	Target PA Date	Actual	PA Date	Responsib	Responsibl		

Approver GRAHAM, BRENDA

Actual Close Date

12/03/2004

Status

CLOSED

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 96 of 102

Test Reports

Spacecraft / Project	Herschel
Instrument / Model	SPIRE
Sub System / Serial No.	BSMm

Type of Test	Functional testing
AIV Facility Test No.	
Date(s) of Testing	10/03/04 (start date)
Applicable Test Specification (Document No. & Issue)	SPIRE-ATC-PRJ-000736 Iss 4.0
Applicable Test Procedure (Document No. & Issue)	SPIRE-ATC-PRJ-000736 Iss 4.0

Assignment of Personnel

Function Name Contact number

Test Director David McNeil

Project Manager Philip Parr-Burman

AIV Facility Manager

Safety Officer

Product Assurance Brenda Graham

Documentation / Inspection Status

Test Documentation available:

- AIV Facility Test Plan (if applicable?)
- Verification Procedures

Inspection Status and Records:

BSM built in class 1000 clean room handled with gloves.

Cleanliness
 Item installed into the Cryostat in the clean room.

Unit/Item Bagged
 Screws locked apart from connector to be staked down after testing

NCR raised. Wires also require to be staked down after testing.

Screws Locked

Connector savers installed for Prime and redundant connectors.

Connector Savers

Hazards Identified

Liquid nitrogen and helium used to cool cryostat, test engineer trained

in use of cryogenic liquids. Oxygen monitoring in lab.

Other

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 97 of 102

CONTINUATION SHEET

	As Built Status (Will the following have an Impact on the test performance / results?)
Outstanding "NCR's"	No
Outstanding "Waiver's"	
"Open Work"	No
Other	
HARDWARE COMMEN	NTS/ OBSERVATIONS:

Decision for test continuation

Company Name Signature

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 98 of 102

3.23 BLANK

This section not used (retained for compatibility of numbering sequence with RAL EIDP)

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 99 of 102

3.24 Mass records / Power Budgets

Mass measurement contained in Test Report Power budgets: See calibration data record

v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 100 of 102

3.25 CLEANLINESS STATEMENT

Statement

The PFM has been cleaned, assembled and tested within a class 1000 clean room to meet the requirements of AD4.

Signed	Brenda Graham, Product Assurance Manager, BSM.
Date	

Information

A clean room is available at ATC premises, from range 100 to 1 000. Cleanliness has been checked and logged on a regular (approx weekly) basis.

For cooldown tests the PFM was integrated to the ATC test dewar within the clean room.

For Vibration test the PFM was transported using the Transport and handling procedure section 3.2. At RAL the PFM was bagged in an air tight back under a laminar flow before vibration testing.

For QMM measurements the PFM was placed in a bag in the clean room, this was then back filled with N2.

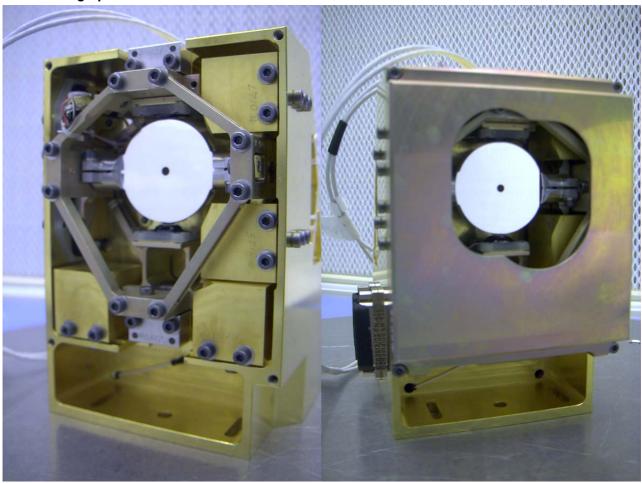
v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG Page 101 of 102

3.26 Compliance Matrix

This is contained in the SSSD (AD1) and the test report.


v 1.4

Ref: SPI_BSM_DOC_0738

Date :25-Mar-04 Author: BG

Page 102 of 102

3.27 Photographs

Spire BSM PFM: Without and with Baffle: Dec 15th 2003