## **SPIRE**

# **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: SPIRE-RAL-PRJ-000728

Issue: Issue 2 Date: 12-12-02 Page 1 of 31

| SUBJECT: | SPIRE | CRYOGENIC    | INTERFACE | THERMAL |
|----------|-------|--------------|-----------|---------|
|          | MATHE | MATICAL MODE | EL (ITMM) |         |



# **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 2 of 31

## **DISTRIBUTION LIST**

| Institute | Holder      |         | Issue/ Revision and Distribution Date |  |  |  |  |  |
|-----------|-------------|---------|---------------------------------------|--|--|--|--|--|
|           |             | 1.0     | Issue 2.0                             |  |  |  |  |  |
|           |             | 20/6/01 | 12/12/02                              |  |  |  |  |  |
| RAL       | Delderfield | х       | х                                     |  |  |  |  |  |
|           | Swinyard    | х       | х                                     |  |  |  |  |  |
|           | Griffin     | х       | Х                                     |  |  |  |  |  |
|           | King        |         |                                       |  |  |  |  |  |
|           | Smith       |         |                                       |  |  |  |  |  |
|           | Sawyer      | Х       | х                                     |  |  |  |  |  |
|           | Heys        | Х       | х                                     |  |  |  |  |  |
|           |             |         |                                       |  |  |  |  |  |
| ASTRIUM   | Faas        |         | х                                     |  |  |  |  |  |
|           | Hauser      |         | х                                     |  |  |  |  |  |
|           | Wagner      |         | X                                     |  |  |  |  |  |
|           |             |         |                                       |  |  |  |  |  |
| QMW       | Griffin     | Х       |                                       |  |  |  |  |  |
|           | Hargrave    |         |                                       |  |  |  |  |  |
|           |             |         |                                       |  |  |  |  |  |
| ATC       | Cunningham  | Х       |                                       |  |  |  |  |  |
|           | Stobie      |         |                                       |  |  |  |  |  |
|           |             |         |                                       |  |  |  |  |  |
| MSSL      | Winter      | X       |                                       |  |  |  |  |  |
|           |             |         |                                       |  |  |  |  |  |
| CEA-SBT   | Duband      | Х       |                                       |  |  |  |  |  |
|           |             |         |                                       |  |  |  |  |  |
| CEA-SAP   | Cara        |         |                                       |  |  |  |  |  |
|           | Auguères    |         |                                       |  |  |  |  |  |
|           | Pinsard     |         |                                       |  |  |  |  |  |
|           |             |         |                                       |  |  |  |  |  |
| JPL       | Bock        |         |                                       |  |  |  |  |  |
|           | Lilienthal  |         |                                       |  |  |  |  |  |
|           | Cafferty    | X       |                                       |  |  |  |  |  |
|           |             |         |                                       |  |  |  |  |  |
| LAM       | Pouliquen   |         |                                       |  |  |  |  |  |
|           |             |         |                                       |  |  |  |  |  |
| Can.      | Taylor      |         |                                       |  |  |  |  |  |
|           | Peterson    |         |                                       |  |  |  |  |  |
|           |             |         |                                       |  |  |  |  |  |
| ESA       | Heske       |         | X                                     |  |  |  |  |  |
|           | Linder      | X       | X                                     |  |  |  |  |  |
|           |             |         |                                       |  |  |  |  |  |
| CESR      | Pons        |         |                                       |  |  |  |  |  |
|           |             |         |                                       |  |  |  |  |  |



# **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 3 of 31

| IFSI    | Giorgio |  |  |  |  |
|---------|---------|--|--|--|--|
|         | Orfei   |  |  |  |  |
|         |         |  |  |  |  |
| ALCATEL | Lund    |  |  |  |  |

## **CHANGE RECORD**

| ISSUE | DATE     | SECTION | CHANGE       |
|-------|----------|---------|--------------|
| 1.0   | 20-06-01 | -       | New Document |
| 2.0   | 12-12-02 | All     | Rewritten    |
|       |          |         |              |
|       |          |         |              |
|       |          |         |              |
|       |          |         |              |
|       |          |         |              |



## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 4 of 31

### **ACRONYM LIST**

BSM Beam Steering Mechanism

DTMM Detailed Thermal Mathematical Model

FPU Focal Plane Units HOB Herschel Optical Bench

HS Heat Switch IF Interface

IGMM Interface Geometrical Mathematical Model ITMM Interface Thermal Mathematical Model

JFET Junction Field Effect Transistor
L0 Herschel Temperature Level 0
L1 Herschel Temperature Level 1
L2 Herschel Temperature Level 2
L3 Herschel Temperature Level 3
LDVT Inductive Position Transducer
PCAL Photometer Calibration Source

RGMM Reduced Geometrical Mathematical Model
RTMM Reduced Thermal Mathematical Model
SCAL Spectrometer Calibration Source

SMEC Spectrometer Mechanism SOB SPIRE Optical Bench

SPIRE Spectral and Photometric Imaging Receiver

TBC To Be Confirmed TBD To Be Defined

Doc Nu: Issue: Issue 2 Date: 12-12-02 **Cryogenic Interface Thermal Mathematical Model** Page 5 of 31

# **CONTENTS**

| 1.  | SCOPE                                                                                                                                                         | 6  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.  | APPLICABLE DOCUMENTS                                                                                                                                          | 6  |
| 2   | 2.1. ESA APPLICABLE DOCUMENTS                                                                                                                                 | 6  |
| 3.  | INSTRUMENT THERMAL REQUIREMENTS                                                                                                                               | 7  |
|     | 3.1. SPIRE INTERFACE REQUIREMENTS WITH HERSCHEL                                                                                                               |    |
| 4.  | INSTRUMENT THERMAL DESIGN OVERVIEW                                                                                                                            | 7  |
| 5.  | SPIRE INTERFACE GEOMETRICAL MODEL                                                                                                                             | 9  |
| 6.  | SPIRE INTERFACE THERMAL MODEL - NODAL BREAKDOWN                                                                                                               | 10 |
| (   | 6.1. SPIRE AND HERSCHEL INTERFACE NODES DEFINITION                                                                                                            |    |
|     | 6.2. SPIRE NODES                                                                                                                                              |    |
|     |                                                                                                                                                               |    |
| 7.  |                                                                                                                                                               |    |
|     | 7.1. HERSCHEL-SPIRE INTERFACE COUPLINGS                                                                                                                       |    |
|     | 7.3. SPIRE INTERNAL COUPLINGS                                                                                                                                 |    |
| -   | 7.4. HEAT SWITCH AND COOLER STATUS                                                                                                                            | 18 |
| 8.  | SPIRE INTERFACE THERMAL MODEL - POWER DISSIPATION                                                                                                             | 19 |
| 8   | 8.1. Steady-State Cases                                                                                                                                       | 19 |
| 8   | 8.2. Transient Cases                                                                                                                                          |    |
|     | 8.2.1. Cooler Recycling                                                                                                                                       |    |
|     | 8.2.2. SPIRE Nominal Operation Timeline                                                                                                                       |    |
| 9.  | SPIRE INTERFACE THERMAL MODEL OPERATION                                                                                                                       | 22 |
| 10. | . ANALYSIS ASSUMPTIONS AND UNCERTAINTIES                                                                                                                      | 23 |
| 11. | . SUMMARY                                                                                                                                                     | 24 |
| AN  | NNEX A: COMPARISON OF ITMM AND DTMM RESULTS                                                                                                                   | 25 |
|     | A1: Steady-State Results                                                                                                                                      |    |
|     | A2: COOLER TEMPERATURE PROFILE DURING RECYCLING                                                                                                               |    |
|     | A3: POWER DISSIPATION PROFILES USED FOR SPIRE DTMM AND ITMMA4: LEVEL 1 AND LEVEL 0 LOADS CORRELATION DURING SPIRE RECYCLING AND OPERATION                     |    |
|     | A4: LEVEL 1 AND LEVEL O LOADS CORRELATION DURING SPIRE RECYCLING AND OPERATION<br>A5: INTERFACES TEMPERATURE CORRELATION DURING SPIRE RECYCLING AND OPERATION |    |
|     | NNEX B: SPIRE BSM AND SMECM POWER DISSIPATION PROFILES                                                                                                        |    |
|     | B1: BSM                                                                                                                                                       |    |
|     | B2: SMECM                                                                                                                                                     |    |
|     |                                                                                                                                                               |    |

#### **SPIRE**

## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 6 of 31

#### 1. SCOPE

This document defines the reduced node Interface Thermal Mathematical Model (spirntrm.d – Issue 2) of the SPIRE instrument FPU. This ITMM is a simplified version of the detailed thermal model (spir20ntrm.d) and is provided for incorporation into the HERSCHEL Cryostat thermal model. Updates to this model will be necessary as the SPIRE design iterates. A description of the SPIRE Interface Geometrical Mathematical model (spirengrm.erg) is also given. The HERSCHEL reduced geometrical and thermal models (Issue 1, PDR status) have been used to perform the correlation between the detailed and interface thermal models of SPIRE. Please note that patch for the Level 3 was not included in the HERSCHEL RTMM at the time of the correlation.

#### 2. APPLICABLE DOCUMENTS

#### 2.1. ESA Applicable Documents

| ID       | TITLE                                      | Number                    |
|----------|--------------------------------------------|---------------------------|
| AD 2.1.1 | FIRST/Planck Instrument Interface Document | SCI-PT-IIDB/SPIRE-02124   |
|          | Part B (IID-B) Instrument "SPIRE"          | Issue 2.2 01/07/02        |
| AD 2.1.2 | FIRST Simplified Optical Bench Thermal     | Fax Ref: SCI-PT/FIN-08132 |
|          | Model                                      | 24-AUG-00                 |
| AD2.1.3  | FIRST /Planck Instrument Interface         | SCI-PT-IIDA-04624         |
|          | Document IID-Part A                        | Issue 3.0 01/07/02        |

Table 8.2.1-1 – ESA Applicable Documents

#### 2.2. Astrium Applicable Documents

| ID       | TITLE                                      | Number                      |
|----------|--------------------------------------------|-----------------------------|
| AD 2.2.1 | FIRST Instrument I/F Study Final Report    | FIRST-GR-B0000.009. Issue 1 |
|          |                                            | 02-FEB-00                   |
| AD2.2.2  | HERSCHEL Reduced Model                     | K. Wagner                   |
|          | Issue1 (EPLM PDR status)                   | 08-JUL-2002                 |
| AD2.2.3  | Steady-State and Transient Patches for the | K. Wagner                   |
|          | H_EPLM RTMM                                | 28-OCT-2002                 |
|          | L3 Patch for H_EPLM RTMM                   | K. Wagner                   |
|          |                                            | 11-NOV-2002                 |

Table 8.2.1-1 - Astrium Applicable Documents

#### 2.3. RAL Applicable Documents

| ID       | TITLE                                    | Number                          |
|----------|------------------------------------------|---------------------------------|
| AD 2.3.1 | SPIRE Thermal Transient Cases for        | SPIRE-RAL-NOT-xxx               |
|          | Cryostat Study                           | 14-DEC-99                       |
| AD 2.3.2 | SPIRE Inputs For Cryostat and Instrument | RAL                             |
|          | Thermal Modeling                         | 15-MAY-00 -update               |
| AD 2.3.3 | Instrument Requirement Document          | SPIRE-RAL-PRT-000034            |
|          | Issue 1.1                                | 2-JAN-02                        |
| AD 2.3.4 | SPIRE Thermal Configuration Control      | SPIRE-RAL-PRJ-000560 Issue: D11 |
|          | Document                                 |                                 |
| AD 2.3.5 | SPIRE Detailed Thermal Model             | AS GOIZEL                       |
|          | Spir20ntrm.d                             | 6-DEC-02                        |
| AD 2.3.6 | SPIRE Detailed Geometrical Model         | AS GOIZEL                       |
|          | ral_spire18_g.erg                        | 4-NOV-02                        |
| AD 2.3.7 | SPIRE Interface Thermal Model            | AS GOIZEL                       |
|          | Spirntrm.d                               | 6-DEC-02                        |
| AD 2.3.8 | SPIRE Interface Geometrical Model        | AS GOIZEL                       |
|          | Spirengrm.d                              | 4-NOV-02                        |

Table 8.2.1-1 - SPIRE Applicable Documents

#### **SPIRE**

## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 7 of 31

#### 3. INSTRUMENT THERMAL REQUIREMENTS

#### 3.1. SPIRE Interface Requirements with HERSCHEL

| PARAMETER                                      | SPECIFICATION | REFERENCE |
|------------------------------------------------|---------------|-----------|
| Level 2 Load / Interface Temperature           | TBD           |           |
| Level 1 Load / Interface Temperature           | TBD           |           |
| Level 0 Enclosure Load / Interface Temperature | TBD           |           |
| Level 0 Enclosure Load / Interface Temperature | TBD           |           |
| Level 0 Enclosure Load / Interface Temperature | TBD           |           |

Table 8.2.1-1 - SPIRE Interface Thermal Requirements with HERSCHEL

All requirements are still to be negotiated via the IID-B.

#### 3.2. SPIRE Internal Requirements

| PARAMETER                             | SPECIFICATION                                       | REFERENCE |
|---------------------------------------|-----------------------------------------------------|-----------|
| FPU Bulk Temperature                  | ~4K                                                 | -         |
| Cooler Interface Temperature          | 4K                                                  | -         |
| Detector Module Interface Temperature | ~1.8K                                               | -         |
| Detector temperature                  | T <310mK                                            | AD2.3.3   |
| 300mK detector array stability*       | $670$ nK/ $\sqrt{\text{Hz}}$ between 0.03 and 25Hz. | AD2.3.3   |
| 1.8K stage stability*                 | 9.1K/√Hz                                            | AD2.3.3   |
| 4K stage stability*                   | 5mK/√Hz                                             | AD2.3.3   |
| 80K stage stability*                  | 1mK/√Hz                                             | AD2.3.3   |

<sup>\*</sup> Drift Scanned/Extended Emission observing modes specify more stringent stabilities (see AD2.7.7). However these are subject to evaluation.

Table 8.2.1-1 - SPIRE Instrument Thermal Requirements

### 4. INSTRUMENT THERMAL DESIGN OVERVIEW

The SPIRE FPU and JFET Boxes are mounted off the HERSCHEL Cryostat Optical Bench on isolating supports, surrounded by the HERSCHEL Instrument Shield. Four temperature stages on the FPU are used to achieve the 300mK detector temperature, with nominal temperatures of 10K, 4K, 1.8K and 300mK. Each stage below 10K is cooled via thermal straps to the Cryostat Vent Pipes or LHe Tank. Stringent specifications are placed on the allowable heat loads between these stages in order to maximise mission life and to guarantee the interface temperatures.

Please note that although the Level 3 stage is part of the current baseline, it had not been implemented at the time of the correlation between the SPIRE DTMM and ITMM. The old interface has therefore been used for the JFETs enclosures which are bolted on the HOB rather than on isolation supports.



## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 8 of 31

| STAGE   | SPIRE COMPONENTS                         | HEAT SINK                             |
|---------|------------------------------------------|---------------------------------------|
| Level 2 | JFET boxes                               | HERSCHEL L3 Vent Pipes                |
| Level 1 | SOB structure/ mechanisms / mirrors      | HERSCHEL L1 Vent Pipes                |
| Level 0 | FPU detector boxes / dichroics / mirrors | HERSCHEL L0 LHe Tank                  |
| 300mK   | FPU detectors / cooler thermal link      | SPIRE <sup>3</sup> He Sorption Cooler |

Table 8.2.1-1 - SPIRE Temperature Stages and Heat Sinks

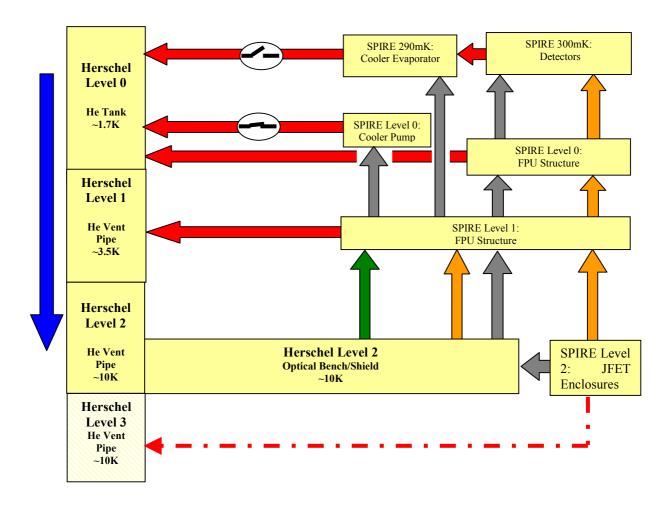
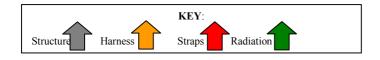




Figure 3.2-1 - SPIRE Temperature Stages and Heat Sinks





## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 9 of 31

#### 5. SPIRE INTERFACE GEOMETRICAL MODEL

The interface geometrical model of SPIRE (spirengrm.erg) is a reduced version of the SPIRE geometric model "ral\_spire18\_g.erg". The IGMM consists of three nodes described in the table below.

| NODE | DESCRIPTION                 | IR-EMISSIVITY |
|------|-----------------------------|---------------|
|      |                             |               |
| 801  | Photometer JFET Enclosure   | 0.2           |
| 802  | Spectrometer JFET Enclosure | 0.2           |
| 803  | SPIRE FPU *                 | 0.2           |

Table 5 - SPIRE IGMM Thermal Optical Properties

Note \* - the FPU node 803 also includes the instrument aperture for which an emissivity of 1.0 has been set.

The SPIRE IGMM has been integrated into the HERSCHEL RGMM (Issue 1, PDR Status). An "in-orbit" radiative case has then been performed to obtain the radiative coupling between the SPIRE IGMM nodes and the HERSCHEL RGMM nodes.

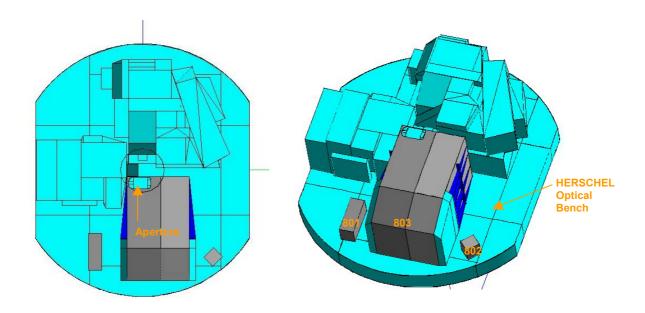



Figure 5 - SPIRE IGMM Integrated with PACS and HIFI on the HERSCHEL Optical Bench

## **SPIRE**

## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 10 of 31

#### 6. SPIRE INTERFACE THERMAL MODEL - NODAL BREAKDOWN

#### 6.1. SPIRE and HERSCHEL Interface Nodes Definition

The table 6.1.1 hereafter describes the nodes of the SPIRE ITMM, which interface with the HERSCHEL RTMM. A brief description of the HERSCHEL interface nodes is also given in table 6.1.2. for information.

| NODE   | NAME                         | DESCRIPTION                                                       |
|--------|------------------------------|-------------------------------------------------------------------|
| NUMBER |                              |                                                                   |
| 800    | L1 Strap IF @ SOB            | Attachment Point of L1 strap on the SPIRE side.                   |
| 801    | PHOTOMETER JFET ENCLOSURE    | Mounted off the HOB.                                              |
| 802    | SPECTROMETER JFET ENCLOSURE  | Mounted off the HOB.                                              |
| 803    | FPU OPTICAL BENCH            | Mounted off the HOB on isolated supports.                         |
| 804    | RF FILTER BOXES              | Attachment Point for RF harness on SPIRE side.                    |
| 814    | L0 Enclosures External Strap | Attachment Point for the Hell main tank Interfaces on SPIRE side. |
| 815    | L0 Pump External Strap       | Attachment Point for the Hell main tank Interfaces on SPIRE side. |
| 816    | L0 Evaporator External Strap | Attachment Point for the Hell main tank Interfaces on SPIRE side. |

Table 8.2.1-1 - SPIRE Interface Nodes with HERSCHEL

| NODE        | Name                   | DESCRIPTION                                               |
|-------------|------------------------|-----------------------------------------------------------|
| NUMBER      |                        |                                                           |
| 10          | MAIN Helium II TANK    | HERSCHEL Cryostat - Boundary Node at 1.7K.                |
| 338         | Vent line wall         | Attachment Point of L1 strap on the HERSCHEL side.        |
| 376,378,379 | HERSCHEL Optical Bench | Attachment Point for the SPIRE FPU and JFETs supports and |
| 380,381     |                        | harness on the HERCHEL side.                              |
| 9301        | SPIRE int. harn. 11    | Attachment Point for SPIRE RF harness on HERSCHEL side.   |

Table 8.2.1-2 - HERSCHEL Interface Nodes with SPIRE



## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 11 of 31

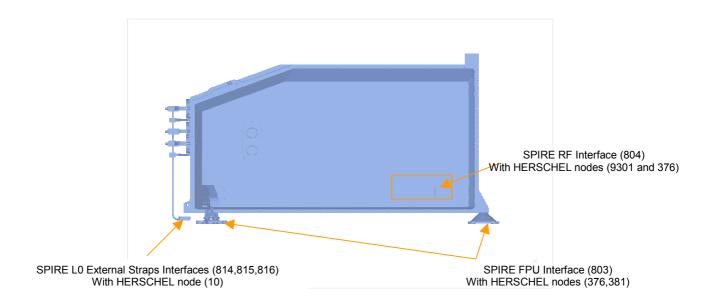



Figure 6.1-1 -SPIRE Interface Nodes Description

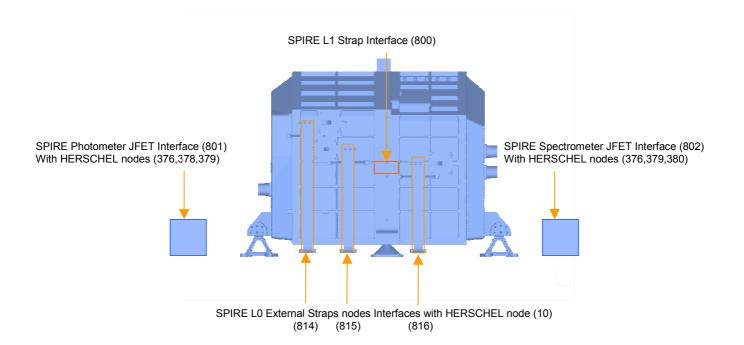



Figure 6.1-2 - SPIRE Interface Nodes Description

## **SPIRE**

# **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 12 of 31

## 6.2. SPIRE NODES

| NODE   | NODE NAME                                                    | DESCRIPTION                                       | LOCATION                                             | MATERIAL                           | MASS           |
|--------|--------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------|----------------|
| NUMBER |                                                              |                                                   |                                                      |                                    |                |
| evel 2 |                                                              |                                                   |                                                      |                                    |                |
| 801    | PHOTOMETER JFET ENCLOSURE                                    |                                                   | Hard mounted to HOB                                  | Aluminium Alloy<br>6082            | 2.348          |
| 802    | SPECTROMETER JFET ENCLOSURE                                  |                                                   | Hard mounted to HOB                                  | Aluminium Alloy<br>6082            | 0.813          |
| evel 1 |                                                              |                                                   |                                                      |                                    |                |
| 800    | L1 Strap IF @ SOB                                            | SPIRE side of strap attachment joint              | Mounted Off SOB                                      | Ероху                              | 0.001          |
| 803    | FPU OPTICAL BENCH                                            | L1 SPIRE Optical Bench,<br>Side Panels and optics | Mounted Off HOB on insulating supports               | Aluminium Alloy<br>6082            | 26.75          |
| 804    | RF FILTER BOXES                                              | ·                                                 | Hard mounted to<br>SOB                               | Aluminium Alloy<br>6082            | 1.465          |
| 805    | BEAM STEERING<br>MECHANISM                                   | Mechanism                                         | Hard mounted to SOB                                  | Aluminium Alloy<br>6082            | 1.1            |
| 806    | SMECm                                                        | Mechanism                                         | Hard mounted to SOB                                  | Aluminium Alloy<br>6082            | 1.043          |
| 807    | PHOTOMETER<br>CALIBRATOR                                     | Calibration Source                                | Hard mounted to SOB                                  | Aluminium Alloy<br>6082            | 0.03           |
| 808    | SPECTROMETER<br>CALIBRATOR                                   | Calibration Source                                | Mounted to SOB on insulating supports                | Aluminium Alloy<br>6082            | 0.0002         |
| evel 0 |                                                              |                                                   |                                                      |                                    |                |
| 809    | PHOTOMETER L0 Enclosure housing DETECTOR Spectrometer Detect |                                                   | Mounted Off SOB on insulating supports               | Aluminium Alloy<br>6082            | 3.56           |
|        | ENCLOSURE                                                    | Modules                                           |                                                      | Stainless Steel                    | 0.114          |
|        |                                                              |                                                   | _                                                    | Invar                              | 0.192          |
| 810    | SPECTROMETER<br>DETECTOR                                     | L0 Enclosure housing<br>Photometer Detector       | Mounted Off SOB on insulating supports               | Silicon<br>Aluminium Alloy<br>6082 | 0.048<br>1.468 |
|        | ENCLOSURE                                                    | Modules                                           | Insulating supports                                  | Stainless Steel                    | 0.076          |
|        |                                                              |                                                   |                                                      | Invar                              | 0.128          |
|        |                                                              |                                                   |                                                      | Silicon                            | 0.032          |
| 811    | L0 Enclosure Flexible Strap                                  | 1.8K Enclosures Internal<br>Strap                 | At FPU Cover                                         | Aluminium                          | 0.0062         |
| 812    | L0 Pump Flexible Strap                                       | Cooler Pump Internal<br>Strap                     | At FPU Cover                                         | Aluminium                          | 0.0062         |
| 813    | L0 Evaporator Flexible Strap                                 | Cooler Evaporator Internal Strap                  | At FPU Cover                                         | Aluminium                          | 0.0062         |
| 814    | L0 Enclosure External Strap                                  | 1.8K Enclosures External Strap                    | SPIRE side of strap attachment joint                 | Aluminium                          | 0.0454         |
| 815    | L0 Pump External Strap                                       | Cooler Pump External Strap                        | SPIRE side of strap attachment joint                 | Aluminium                          | 0.0523         |
| 816    | L0 Evaporator External Strap                                 | Cooler Evaporator<br>External Strap               | SPIRE side of strap attachment joint                 | Aluminium                          | 0.0653         |
| ooler  |                                                              |                                                   |                                                      |                                    |                |
| 817    | COOLER PUMP                                                  |                                                   | Mounted Off SOB on                                   | Titanium                           | 0.15           |
| 818    | COOLER SHUNT                                                 |                                                   | insulating supports Suspended between evaporator and | Titanium                           | 0.01           |
| 819    | COOLER EVAP                                                  |                                                   | pump<br>Mounted Off SOB on                           | Titanium                           | 0.084          |
|        | OOOLED EVADUEAT                                              | Heat Switch to L0 Sink                            | insulating supports Mounted Off SOB on               | Titanium                           | 0.074          |
| 820    | COOLER EVAP HEAT<br>SWITCH                                   | Heat Switch to Lo Sink                            | insulating supports                                  | ritariiarii                        | 0.07           |



## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 13 of 31

| NODE   | NODE NAME    | DESCRIPTION                | LOCATION                                  | MATERIAL | MASS  |
|--------|--------------|----------------------------|-------------------------------------------|----------|-------|
| NUMBER |              |                            |                                           |          |       |
| 300mK  |              |                            |                                           |          |       |
| 822    | PHOTOMETER   | 300mK Photometer           | Mounted Off                               | Invar    | 0.435 |
|        |              |                            | Detector Enclosure on insulating supports | Copper   | 0.709 |
| 823    | SPECTROMETER | 300mK Spectrometer         | Mounted Off                               | Invar    | 0.281 |
|        | DETECTORS    | Detectors and cooler strap | on insulating supports                    | Copper   | 0.254 |

Table 8.2.1-1 - SPIRE ITMM Nodes Description

### Note: The masses described in the above table are nominal values and do not include any margin.

The SPIRE internal and external L0 straps descriptions are given in in light grey to highligth the fact that although aluminium has been used to define those nodes, this material is not part of the baseline yet.



## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 14 of 31

#### **6.3.** SPIRE ITMM OVERVIEW

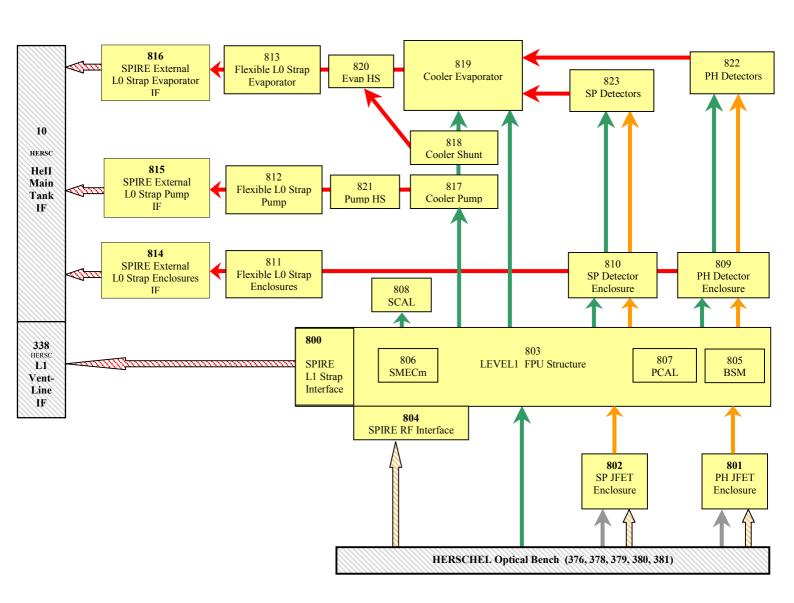
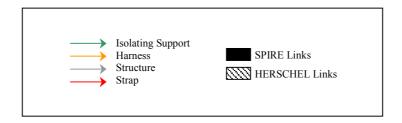




Figure 6.3-1 – SPIRE ITMM Overview



#### **SPIRE**

## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 15 of 31

#### 7. SPIRE INTERFACE THERMAL MODEL - COUPLINGS

### 7.1. HERSCHEL-SPIRE Interface Couplings

The table hereafter describes the interface couplings of SPIRE with HERSCHEL (Level3 not implemented). For information, the shaded areas describe HERSCHEL own couplings as defined in the RTMM Issue1.

|          | 1      | 1                         |                   | î          | 1      | î          | 1               |
|----------|--------|---------------------------|-------------------|------------|--------|------------|-----------------|
| HERSCHEL | SPIRE  | DESCRIPTION               | MATERIAL          | X-SECTION  | LENGTH | INTERFACE  | INTERFACE       |
| Node 1   | Node 2 |                           |                   | $(m^2)$    | (m)    | @ N1 (W/K) | @ N2 (W/K)      |
| 338      | 800    | L1 Strap                  | Commercial        | 20E-06     | 0.22   | Cu/Cu      | Cu / Epoxy / Cu |
|          |        |                           | Copper            |            |        | 0.4        | ~ 0.117         |
| 378,379  | 801    | PJFET mounted off the HOB | Al-Al             | 4 bolts    | -      | -          | -               |
| 376      |        | PJFET harness to          | Stainless Steel   | 21.5E-06   | 0.3    | 2 x 0.025  | -               |
|          |        | the HOB                   | Brass             | 0.85E-06   |        |            |                 |
|          |        |                           | Teflon            | 170.2E-06  |        |            |                 |
| 379,380  | 802    | SJFET mounted off the HOB | Al-Al             | 4 bolts    | -      | -          | -               |
| 376      | 802    | S JFET harness to         | Stainless Steel   | 6.15E-06   | 0.3    | 2 x 0.025  | -               |
|          |        | the HOB                   | Brass             | 0.59E-06   |        |            |                 |
|          |        |                           | Teflon            | 52.43E-06  |        |            |                 |
| 376      | 803    | SPIRE FPU Support         |                   |            |        | -          | -               |
|          |        | Feet Cone                 | Stainless Steel   | 53.154E-06 | 0.0334 |            |                 |
| 381      | 803    | SPIRE FPU Support         |                   |            |        | -          | -               |
|          |        | Feet 2 A Frames           | Stainless Steel   | 44.2E-06   | 0.027  |            |                 |
| 376      | 804    | RF harness                | Stainless steel   | 7.371E-06  | 0.3    | 3 x 0.025  | -               |
|          |        |                           | Brass             | 6.17E-06   |        |            |                 |
|          |        |                           | Teflon            | 55.73E-06  |        |            |                 |
| 9301     | 804    | RF harness                | Stainless steel   | 2.94E-06   | 0.3    | -          | -               |
|          |        |                           | Brass             | 1.88E-06   |        |            |                 |
|          |        |                           | Teflon            | 27.57E-06  |        |            |                 |
| 10       | 814    | SPIRE L0 Enclosures       | High Conductivity | 10.0E-05   | 0.58** | Cu/Cu      | Cu/Cu           |
|          |        | Strap to Hell Tank        | Copper            |            |        | 0.4        | 0.4             |
| 10       | 815    | SPIRE L0 Pump             | High Conductivity | 4.0E-05    | 0.62** | Cu/Cu      | Cu/Cu           |
|          |        | Strap to Hell Tank        | Copper            |            |        | 0.4        | 0.4             |
| 10       | 816    | SPIRE L0 Evaporator       | High Conductivity | 4.0E-05    | 0.68** | Cu/Cu      | Cu/Cu           |
|          |        | Strap to Hell Tank        | Copper            |            |        | 0.4        | 0.4             |

Table 8.2.1-1 - HERSCHEL / SPIRE Interface Conductances

- \* This interface includes an electrical isolation joint which is part of the SPIRE internal Couplings.
- \*\* A 0.6 factor had been assumed and applied to the lengths of the Level 0 straps initially provided in the HERSCHEL RTMM (Issue1) and so to account for the change in location of the HERSCHEL / SPIRE Level 0 interfaces, as described in the figure below.

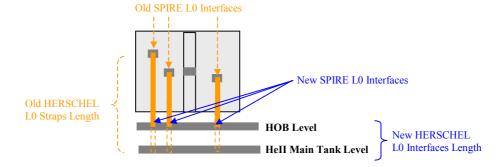



Figure 7.1-1 - Change in HERSCHEL/SPIRE Level 0 Interface Locations

## **SPIRE**

## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 16 of 31

## 7.2. HERSCHEL-SPIRE Radiative Coupling

The radiation couplings resulting from the "in-orbit" radiative case have been included into the SPIRE ITMM spirntrm.d as an "include" file. This file defines the radiative links existing between the SPIRE IGMM nodes and the RGMM nodes.

## 7.3. SPIRE Internal Couplings

| NODE I | NODE J | DESCRIPTION                                                    | MATERIAL                  | X-SECTION (m <sup>2</sup> ) |                   |  |
|--------|--------|----------------------------------------------------------------|---------------------------|-----------------------------|-------------------|--|
|        |        | 1                                                              |                           | ` /                         | (m)               |  |
| 800    | 803    | Electrical Insulation Joint Interface <sup>1</sup>             | Ероху                     | 13 .0E-04                   | 0.117 W/K         |  |
| 801    | 803    | Photometer JFET Harness to SOB  Effective Conductance          | Stainless steel           | A/ L = 1.83                 |                   |  |
|        |        | Enective Conductance                                           | Manganin                  | A/ L = 2.69                 |                   |  |
|        |        |                                                                | Teflon                    | A/ L = 6.32                 | E-04 m            |  |
| 801    | 803    | Harness Vespel Supports                                        | Vespel                    | 7.5 x 5.0E-06               | 0.08              |  |
| 802    | 803    | Spectrometer JFET Harness to SOB                               | Stainless steel           | A/ L = 3.923                | 3E-05 m           |  |
|        |        | Effective Conductance                                          | Manganin                  | A/ L = 5.623                | 3E-06 m           |  |
|        |        |                                                                | Teflon                    | A/ L = 1.323                | 3E-04 m           |  |
| 802    | 803    | Harness Vespel Supports                                        | Vespel                    | 7.5 x 5.0E-06               | 0.08              |  |
| 803    | 804    | RF Filters Hard Bolted to FPU                                  | Al-Au-Al                  | 6 bolts                     | -                 |  |
| 803    | 805    | Mechanism Hard Bolted to FPU                                   | Al-Au-Al                  | 4 bolts                     | -                 |  |
| 803    | 806    | Mechanism Hard Bolted to FPU                                   | Al-Au-Al                  | 4 bolts                     | -                 |  |
| 803    | 808    | Spec Calibrator Insulated Support                              | Torlon                    | 5.3E-06                     | 0.02              |  |
| 803    | 809    | Photometer Enclosure Supports                                  | Stainless Steel           |                             |                   |  |
|        |        | - Cone<br>- 2 A Frames                                         |                           | 45.96E-06<br>2 x 25.0E-06   | 0.0346<br>0.0362  |  |
| 803    | 809    | Photometer Enclosure Detector Harness                          | Stainless Steel           | A/L = 2.749                 |                   |  |
|        |        | Effective Conductance                                          | Manganin                  | A/L = 6.886E-05 m           |                   |  |
|        |        |                                                                | Teflon                    | A/L= 1.614                  | 4E-03 m           |  |
| 803    | 809    | Harness Vespel Supports                                        | Vespel                    | 9 x 5.0E-06                 | 0.08              |  |
| 803    | 810    | Spectrometer Enclosure Supports                                | Stainless Steel           |                             |                   |  |
|        |        | - 3 A Frames                                                   |                           | 3 x 10.38E-06               | 0.0346            |  |
| 803    | 810    | Spectrometer Enclosure Detector Harness  Effective Conductance | Stainless Steel           | A/L = 6.061                 |                   |  |
|        |        | Enective Conductance                                           | Manganin                  | A/L = 1.509                 |                   |  |
|        |        |                                                                | Teflon                    | A/L = 3.552                 | -                 |  |
| 803    | 810    | Harness Vespel Supports                                        | Vespel                    | 6 x 5.0E-06                 | 0.08              |  |
| 803    | 814    | L0 external strap supports Off the SOB                         | Vespel                    | 4 x 25.0E-06                | 0.03              |  |
| 803    | 815    | L0 external strap supports Off the SOB                         | Vespel                    | 4 x 25.0E-06                | 0.03              |  |
| 803    | 816    | L0 external strap supports Off the SOB                         | Vespel                    | 4 x 25.0E-06                | 0.03              |  |
| 805    | 807    | Calibrator within BSM                                          | Al-Au-Al                  | 4 bolts                     | -                 |  |
| 809    | 810    | Photometer-Spectrometer Enclosures                             | Cu / Cu                   | -                           | 0.147 W/K         |  |
|        |        | Internal Strap                                                 | Copper                    | 9.0E-06                     | 0.198             |  |
| 809    | 822    | Photometer Detector Supports                                   | Cu / Epoxy / Cu<br>Kevlar | 6.0E-04<br>1.752E-05        | 0.03 W/K<br>0.023 |  |
|        | 022    | Photometer 300mK Busbar & Supports                             | Kevlar                    | 4.07E-06                    | 0.025             |  |
|        |        | i notometer boomit busbar & bupports                           | IVEAIQI                   | 7.07 L-00                   | 0.020             |  |

\_

 $<sup>^{1}</sup>$  A 0.425 factor has been applied to the original interface conductance as to get an appropriate SOB mean temperature and allow an appropriate correlation with the DTMM.



## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 17 of 31

| NODE 1 | NODE J | DESCRIPTION                                            | MATERIAL                              | X-SECTION | LENGTH  |
|--------|--------|--------------------------------------------------------|---------------------------------------|-----------|---------|
|        |        |                                                        |                                       | $(m^2)$   | (m)     |
| 809    | 822    | Photometer Harness                                     | Kapton                                | 1.254E-05 | 0.033   |
|        |        |                                                        | Constantan                            | 3.828E-07 | 0.033   |
| 810    | 811    | Internal L0 Flexible Strap - Enclosures                | High Purity Aluminium                 | 30.0E-06  | 0.076   |
|        |        |                                                        | Cooler Interface                      | -         | 0.4 W/K |
| 810    | 823    | Spectrometer Detector Support                          | Kevlar                                | 1.15E-05  | 0.023   |
|        |        | Spectrometer 300mK Busbar & Supports                   | Kevlar                                | 1.36E-06  | 0.025   |
| 810    | 823    | Spectrometer Harness                                   | Kapton                                | 2.97E-06  | 0.033   |
|        |        |                                                        | Constantan                            | 9.57E-08  | 0.033   |
| 811    | 814    | External L0 Strap - Enclosures                         | High Purity Aluminium                 | 1.25E-04  | 0.22405 |
|        |        |                                                        | Elec Isolation Interface              | -         | 0.4 W/K |
| 812    | 815    | External L0 Strap – Pump                               | High Purity Aluminium                 | 1.25E-04  | 0.2585  |
|        |        |                                                        | Elec Isolation Interface              | -         | 0.4 W/K |
| 813    | 816    | External L0 Strap – Evaporator                         | High Purity Aluminium                 | 1.25E-04  | 0.3225  |
|        |        |                                                        | Elec Isolation Interface              | -         | 0.4 W/K |
| 817    | 803    | Pump Support                                           | Kevlar                                | 3.14E-06  | 0.037   |
| 817    | 818    | Cooler Pump to Shunt                                   | Ti6Al4V                               | 6.41E-06  | 0.038   |
| 817    | 821    | Pump Heat Switch<br>ON @ ~ 1.78 K<br>OFF @ 1.85 K      | ON = 65.5mW/K<br>OFF = 4.84 microW/K  | -         | -       |
| 818    | 819    | Cooler Shunt to Evaporator                             | Ti6Al4V                               | 6.41E-06  | 0.06    |
| 818    | 820    | Internal Shunt strap                                   | Copper                                | 5.0E-06   | 0.05    |
| 819    | 803    | Evaporator Support                                     | Kevlar                                | 3.14E-06  | 0.031   |
| 819    | 820    | Evaporator Heat Switch<br>ON @ ~ 3.5 K<br>OFF @ 1.85 K | ON = 79.2 mW/K<br>OFF = 4.84 microW/K | -         | -       |
| 819    | 822    | Cooler - Photometer Detector Strap                     | Copper                                | 7.07E-06  | 0.130   |
| 819    | 823    | Cooler - Spectrometer Detector Strap                   | Copper                                | 7.07E-06  | 0.244   |
| 820    | 803    | Evaporator HS Support                                  | Ti6Al4V                               | 1.16E-05  | 0.027   |
| 820    | 813    | Internal L0 Flexible Strap - Evaporator                | High Purity Aluminium                 | 30.0E-06  | 0.076   |
|        |        |                                                        | Cooler Interface                      | -         | 0.4 W/K |
| 821    | 803    | Pump HS Support                                        | Ti6Al4V                               | 1.16E-05  | 0.027   |
| 821    | 812    | Internal L0 Flexible Strap - Pump                      | High Purity Aluminium                 | 30.0E-06  | 0.076   |
|        |        |                                                        | Cooler Interface                      | -         | 0.4 W/K |

Table 8.2.1-1 - SPIRE Internal Conductance

Note: The conductances described in the above table are nominal values and do not include any margin.

### <u>Important note on the SPIRE Level 0 Internal and External Strap Dimensions:</u>

In order to meet the overall conductance of 100 mW/K required for the SPIRE Level 0 evaporator strap (defined between the HERSCHEL HeII tank and the SPIRE cooler interface) an initial assumption has been to split this conductance equally between the following items:

- HERSCHEL Interface with HeII Tank,
- SPIRE External Level 0 Straps (between the HERSCHEL Interface and the SPIRE L0 Internal Strap),
- SPIRE Internal Level 0 Straps (between the SPIRE L0 External Strap and the cooler interface).

#### **SPIRE**

### **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 18 of 31

This represents a minimum overall conductance of 150 mW /K for the SPIRE evaporator Level 0 straps (from the HERSCHEL interface to the cooler), which should also account for the two following joint conductances:

- An electrical insulation joint conductance at the interface between the external and internal L0 straps,
- An interface between the internal L0 strap and the cooler.

At this stage of the analysis, the design of the SPIRE Level 0 straps is still under investigation. Although an overall conductance of 200 mW/K is currently the goal for the design of the SPIRE level 0 straps, a 150 mW/K overall conductance has initially been used in the present ITMM to represent the worst-case conditions in terms of loads and interface temperatures.

The SPIRE internal and external L0 straps dimensions and material descriptions are given in in light grey to highlight the fact that those are not part of the baseline yet. They have been used

#### 7.4. Heat Switch and Cooler Status

| NODE I | NODE J | DESCRIPTION            | MODE                  |                       |            |                       |                   |                       |
|--------|--------|------------------------|-----------------------|-----------------------|------------|-----------------------|-------------------|-----------------------|
|        |        |                        | Photometer            | Spectrometer          | Off        | Average               | Cooler<br>Recycle | Mode<br>Change        |
| 817    | 821    | Pump Heat Switch       | ON                    | ON                    | OFF        | ON                    | See 8.2.1         | ON                    |
| 819    | 820    | Evaporator Heat Switch | OFF                   | OFF                   | OFF        | OFF                   | See 8.2.1         | OFF                   |
| 819    | -      | Evaporator Node        | Boundary<br>At 0.29 K | Boundary<br>At 0.29 K | Diffuse    | Boundary<br>At 0.29 K | See 8.2.1         | Boundary<br>At 0.29 K |
| VAR    | ABLE   | MODE                   | SWITCH_ON             | SWITCH_ON             | SWITCH_OFF | SWITCH_ON             | See 8.2.1         | SWITCH_ON             |

Table 8.2.1-1 – SPIRE Heat Switches and Evaporator Status



## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 19 of 31

#### 8. SPIRE INTERFACE THERMAL MODEL - POWER DISSIPATION

#### 8.1. Steady-State Cases

Four steady-state cases have been defined to describe the various modes in which SPIRE will operate. For each mode, the worse case "mean power dissipation" has been used. A variable called "margin\_fac" has also been defined in the SPIRE ITMM as to allow any desired margin to be applied to the SPIRE power dissipation. The defaults value of "margin fac" is 1.2 (i.e. 20 % margin applied to the nominal data).

| Node   | Node Name      | Mean Power Dissipation (mW) |              |     |         |  |  |  |
|--------|----------------|-----------------------------|--------------|-----|---------|--|--|--|
| Number |                | Photometer                  | Spectrometer | Off | Average |  |  |  |
| 801    | PH. JFET       | 42.0                        | 0.0          | 0.0 | 6.722   |  |  |  |
| 802    | SP. JFET       | 0.0                         | 14.1         | 0.0 | 2.257   |  |  |  |
| 805    | BSM            | 3.0                         | 0.2          | 0.0 | 0.424   |  |  |  |
| 806    | SMECm          | 0.0                         | 3.2          | 0.0 | 0.328   |  |  |  |
| 807    | PH. CALIBRATOR | 0.033                       | 0.033        | 0.0 | 0.011   |  |  |  |
| 808    | SP. CALIBRATOR | 0.0                         | 5.25         | 0.0 | 0.84    |  |  |  |
| 817    | PUMP Nominal * | 1.5                         | 1.5          | 0.0 | 1.106   |  |  |  |
| 818    | SHUNT          | 0.005                       | 0.005        | 0.0 | 0.222   |  |  |  |
| 819    | EVAP           | 0.0                         | 0.0          | 0.0 | 0.04    |  |  |  |
| 820    | EVAP HS        | 0.0                         | 0.0          | 0.0 | 0.001   |  |  |  |
| 821    | PUMP HS        | 0.2                         | 0.2          | 0.0 | 0.065   |  |  |  |

Table 8.2.1-1 - SPIRE Operation Mode Power Dissipation Profile for Steady-State Analysis

#### \* Important Note on the SPIRE pump dissipation:

When SPIRE is in operation, the power dissipation by the cooler pump depends on the total evaporator load and is calculated using the following expression:

Pump Internal Dissipation (mW) ~ Total Evaporator Load (mW) x 50.0

[*Equation 8.1-1*]

A nominal power dissipation has been fixed to 1.5 mW and is applied to the SPIRE pump (node 817) each time the instrument is in operation (not during recycling). This corresponds to an initial cooler total load of  $30\mu W$ . The required pump internal dissipation is calculated using the above equation and the "missing pump dissipation" is iterated at each time step and applied to the node 812 located along the Pump L0 flexible strap. This approach allows an accurate L0 pump load to be reached at the end of steady state and provide a good estimation of the load during transient runs while limiting instability in the model as the pump power dissipation is re-iterated according to the evaporator load.

Note: The power disispation described in the above table are nominal values and do not include any margin.

#### **SPIRE**

## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 20 of 31

#### 8.2. Transient Cases

#### 8.2.1. Cooler Recycling

During recycling, the Cooler Cold Tip is changed from a boundary to a diffuse node as recycling starts. After 55 minutes, when Cryopumping starts, the cooler is converted to a boundary node, whose temperature is reduced at a constant rate of 0.105K/min to 290mK. The cooldown of the cooler usually takes between 20 and 30 min while the overall cooler recycling should not last more than 2 hrs. A nominal 1.5 hrs has been allocated to the recycling in this case. Heat switch states and therefore input powers and conductance are switched during this analysis as described in table 8.2.1. A Margin factor can be applied to the pump, shunt evaporator and heat switches power dissipations during recycling if needed.

| TIME        | Node   | NODE NAME                          | STATUS                               | Power (MW)                |
|-------------|--------|------------------------------------|--------------------------------------|---------------------------|
| (H:MM:SS)   | Number |                                    |                                      |                           |
| 0:00:00     | All    | SPIRE                              | OFF                                  | 0.0                       |
| RECYCLE     |        |                                    |                                      |                           |
| 0:00:01     | 820    | EVAP HS                            | ON                                   | 0.2                       |
|             | 821    | PUMP HS                            | OFF                                  | 0.0                       |
| 0:00:02     | 817    | PUMP                               | NET LOAD                             | 142.1                     |
|             | 818    | SHUNT                              | -                                    | 57.8                      |
|             | 819    | EVAP                               | -                                    | 5.79                      |
| 0:25:00     | 817    | PUMP                               | NET LOAD                             | 25.0                      |
|             | 818    | SHUNT                              | NET LOAD                             | 6.9                       |
|             | 819    | EVAP                               | -                                    | 5.79                      |
| 0:55:00     | 817    | PUMP                               | OFF                                  | 0.0                       |
|             | 818    | SHUNT                              | NET LOAD                             | 0.0                       |
|             | 819    | EVAP                               | -                                    | 5.79                      |
| COOLDOWN    |        |                                    |                                      |                           |
| 0:55:01     | 820    | EVAP HS                            | OFF                                  | 0.0                       |
|             | 821    | PUMP HS                            | ON                                   | 0.2                       |
| 0:55:02     | 817    | PUMP                               | NET LOAD (until evap reaches 290mK). | 17.07                     |
| 0:55:02     | 818    | SHUNT                              | (until evap reaches 290mK).          | 0.0                       |
| 0:55:02     | 819    | EVAP                               | Cryopumping to 290mK<br>@ 0.105K/min | 0.0                       |
| ~1:15:00    | 820    | EVAP HS                            | OFF                                  | 0.0                       |
|             | 821    | PUMP HS                            | ON                                   | 0.2                       |
|             | 817    | PUMP                               | ON                                   | 50 x Evaporator load (mW) |
|             | 818    | SHUNT                              | NET LOAD                             | 0.0054                    |
|             | 819    | EVAP                               | Boundary @ 0.29 K                    | -                         |
| ND OF RECYC | LING   |                                    |                                      |                           |
| 1:30:00     |        | End of Time allocated to Recycling |                                      |                           |
| 1:30:01     |        | Start SPIRE Operation              |                                      |                           |

Table 8.2.1-1 - Nominal SPIRE Recycling Profile (no margin factor applied)

Note: The power disispation described in the above table are nominal values and do not include any margin.

## **SPIRE**

## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 21 of 31

#### 8.2.2. SPIRE Nominal Operation Timeline

The following assumptions have been used when defining the nominal SPIRE operation timeline:

- SPIRE is in nominal operation for 48 hrs,
- SPIRE operation starts with a cooler recycling during which the instrument is in the OFF mode,
- SPIRE operates half the time in spectrometer mode then switches to the photometer mode,
- Both the minimum and maximum power dissipation cases are being looked at during both the spectrometer and photometer modes.

The table 8.2.2 describes the proposed nominal SPIRE operation timeline and the table 8.2.3 provides a more detailed description of the power dissipation profiles used during the SPIRE operation.

| TIMELINE<br>(hr:min) |        | INSTRUMENT OPERATION                                 | PERIOD<br>(min) |
|----------------------|--------|------------------------------------------------------|-----------------|
| 00:00                | 48:00  | SPIRE in OFF mode During PACS operation              | 2880            |
| 48:00                | 49:30  | SPIRE Cooler Recycling JFET and Mechanisms OFF       | 2970            |
| 49:30                | 61:30  | SPIRE in Spectrometer Mode - * SMECm in R =1000 mode | 3690            |
| 61:30                | 73:30  | SPIRE in Spectrometer Mode<br>SMECm in R =10 mode    | 4410            |
| 73:30                | 85:00  | SPIRE in Photometer Mode BSM in Chopping Mode        | 5100            |
| 85:00                | 96:00  | SPIRE in Photometer Mode - * BSM in Scanning Mode    | 5760            |
| 96:00                | 144:00 | SPIRE in OFF mode During HIFI operation              | 8640            |

Table 8.2.2-1 - SPIRE nominal operation timeline

<sup>\*</sup> Worst-case power dissipation

| TI             | TIMELINE  |         | 0 to 61:30    | From 61:3 | 0 to 73:30    | From 73:3 | 0 to 85:00    | From 85:0 | 0 to 96:00    |
|----------------|-----------|---------|---------------|-----------|---------------|-----------|---------------|-----------|---------------|
| NODE<br>Number | NODE NAME | STATUS  | Power<br>(MW) | STATUS    | Power<br>(MW) | STATUS    | Power<br>(MW) | STATUS    | Power<br>(MW) |
| 801            | P. JFET   | OFF     | 0.0           | OFF       | 0.0           | ON        | 42.0          | ON        | 42.0          |
| 802            | S. JFET   | ON      | 14.1          | ON        | 14.1          | OFF       | 0.0           | OFF       | 0.0           |
| 805            | BSM       | ON      | 0.2           | ON        | 0.2           | ON        | 1.9           | ON        | 3.0           |
| 806            | SMECm     | ON      | 3.2           | ON        | 0.9           | OFF       | 0.0           | OFF       | 0.0           |
|                |           | R =1000 |               | R =10     |               |           |               |           |               |
| 807            | PCAL      | ON      | 0.033         | ON        | 0.033         | ON        | 0.033         | ON        | 0.033         |
| 808            | SCAL      | ON      | 5.25          | ON        | 5.25          | OFF       | 0.0           | OFF       | 0.0           |
| 817            | PUMP      | ON      | 1.5           | ON        | 1.5           | ON        | 1.5           | ON        | 1.5           |
| 818            | SHUNT     | ON      | 0.005         | ON        | 0.005         | ON        | 0.005         | ON        | 0.005         |
| 819            | EVAP      | 0.29    | 9 K           | 0.2       | 9 K           | 0.2       | 9 K           | 0.2       | 9 K           |
| 820            | EVAP HS   | OFF     | 0.0           | OFF       | 0.0           | OFF       | 0.0           | OFF       | 0.0           |
| 821            | PUMP HS   | ON      | 0.2           | ON        | 0.2           | ON        | 0.2           | ON        | 0.2           |
|                | PACS      |         | -             | OFF       | -             | OFF       | -             | OFF       | -             |
|                | HIFI      | OFF     | -             | OFF       | 1             | OFF       | -             | OFF       | -             |

Table 8.2.2-2 - SPIRE Power Dissipation Profile during Nominal Operation

#### **SPIRE**

## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 22 of 31

#### 9. SPIRE INTERFACE THERMAL MODEL OPERATION

When operating the SPIRE ITMM, the following variables need to be setup:

- The variable "ANALYSIS" must be set according to the type of analysis being performed: either 'STEADY STATE' or 'TRANSIENT'.
- The variable "margin\_fac" must be set to define the level of margin to be applied on the SPIRE power dissipation (default value is 1.2).

A variable called MODE is used to describe the instrument status. This variable has been defined for each steady-state case as either "SWITCH\_ON" or "SWITCH\_OFF". This variable is then checked at each iteration and the Heat Switches and Evaporator status set accordingly as described in table 7.4.1.

At the end of each steady-state run, please make sure that the following items have been set properly:

- Heat Switches Status HS\_EVAP\_STATE and HS\_PUMP\_STATE is either ON or OFF as described in table 7.4.1,
- Heat switches gas conductance has been set properly according to their status:
  - o HS\_EVAP\_GAS and HS\_PUMP\_GAS should be 0.0 when heat switch is OFF,
  - HS\_EVAP\_GAS and HS\_PUMP\_GAS should be around 0.06-0.07 W/K when heat switch is ON during normal operation.
- Check that the cooler evaporator is a boundary node at 0.29K when the instrument is operating and a diffuse node when the instrument is in OFF mode.
- The variable "q pump add" applied on the node 812 is either:
  - o 0.0 when SPIRE is not operating i.e. "SWITCH\_OFF" mode,
  - o Equal to [(50 x Total Cooler)/1000000)-0.0015] as defined by equation 8-1-1.

For information, some instability issues have been encountered in transient analysis when integrating the SPIRE ITMM into the HERSCHEL RTMM. To compensate for these instabilities, the following nodes capacitances have been set to zero:

■ 800: L1 interface,

805,806,807: BSM, SMECm and PCAL,
 811,812,813: Three Internal L0 straps,
 814,815,816: Three External L0 straps.

The cooler load is computed ("Tot\_Cooler load") at each time step and is then used to evaluate the pump internal power dissipation ("q\_pump\_add") as well as the cooler hold time ("Cooler\_hold") for a given steady-state case.

In annex B some transient profiles resulting from the SPIRE ITMM / DTMM correlation are shown. The ITMM curves have been defined with brighter colours to allow easy distinction with the DTMM curves.

- The SPIRE cooler recycling spreads over the "2880 min 2970 min" period,
- The SPIRE operation spreads over the "2970 min 5760 min" period.

#### **SPIRE**

### **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 23 of 31

#### 10. ANALYSIS ASSUMPTIONS AND UNCERTAINTIES

The SPIRE ITMM is a reduced node version of the ESATAN SPIRE DTMM, spir20ntrm.d. All interface critical aspects of the instrument have been incorporated into the ITMM, whilst more detailed information, such as temperature gradients across the SOB, detectors and straps, internal heat flows, cooler thermodynamic performance, etc have not been included in significant details. In addition the 300mK stage of the instrument is modelled at a basic level to ensure the accuracy of Level 0 interfaces, rather than to accurately predict the loads and temperatures at the detector stage (i.e. total cooler load). Therefore inaccuracies at this stage in the ITMM are expected and acceptable.

In order to compare the ITMM with the DTMM, both models have been integrated into the HERSCHEL Reduced thermal model (issue1) in a similar way and with identical solver setting. The results obtained in steady-state analyses are for a constant mass flow rate of 2.2 mg/s while a varying mass flow rate has been used for transient analyses. The results of the correlation between the SPIRE DTMM and ITMM are shown in Appendix A, and demonstrate a good mean agreement in heat loads and temperatures for the three steady-state cases and also for the transient analysis. Some inconsistencies are present due to the simplified level of the ITMM. However these are anticipated to have a negligible effect on the accuracy of the SPIRE FPU representation within the overall Herschel cryostat TMM.

#### **Inconsistencies Overview:**

- Small oscillations can be observed for the ITMM pump load and interface temperatures profiles for the transient results this is the result of applying the "missing pump power dissipation" to node 812 which having its mass set to zero for stability purpose. As a result the node does not have any inertia to compensate the changes in "missing pump power dissipation" as the cooler load changes.
- Applying the "missing pump power dissipation" to the L0 pump strap rather to the pump itself implies than the pump temperature will run slightly cooler than it should but this does not have any impact the cooler performances at this simplified level.
- Please remember that the "total cooler load" is accurate within 4 5% and that the cooler hold time, which is evaluated from this data, should only be used as an indication of the cooler performances between the cases investigated.
- The remark above implies that the pump power dissipation will always be slightly under-estimated. However this discrepancy remains negligible and acceptable.

## **SPIRE**

## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 24 of 31

#### 11. SUMMARY

The SPIRE ITMM operates properly and correlates within 1-2% for all cases. An average case has initially been defined but presents some instability in the current state for the node 806 (SMEC mechanism), caused by some temperature dependent properties.

Although the transient profiles show some oscillations in some places, it is foreseen that reassigning the capacitance of nodes, which had previously been set to zero should reduce and/or remove those oscillations. The table below gives a general summary of the correlation conclusion.

|                    | ITMM                                    | ITMM                              |  |  |  |
|--------------------|-----------------------------------------|-----------------------------------|--|--|--|
|                    | Load (mW)                               | Interface Temperature (K)         |  |  |  |
| Level 2 Load       | Good Correlation                        | -                                 |  |  |  |
| Level 1 Strap IF   | Equal or Slightly higher                | IF runs slightly cooler           |  |  |  |
|                    | Conservative results                    |                                   |  |  |  |
| Level 1 RF IF      | see L2 load                             | Lower IF temperature because of   |  |  |  |
|                    | Conservative results                    | simplified version of FPU.        |  |  |  |
| Level 0 Enclosure  | Equal or Slightly higher                | IF runs slightly warmer           |  |  |  |
|                    | Conservative results                    |                                   |  |  |  |
| Level 0 Pump       | Load slightly lower than for the DTMM   | IF temperature runs a bit hotter  |  |  |  |
|                    | because of the pump power dissipation   |                                   |  |  |  |
|                    | dependence with the total cooler load.  |                                   |  |  |  |
| Level 0 Evaporator | Equal or Slightly higher                | IF runs warmer                    |  |  |  |
|                    | Conservative results                    |                                   |  |  |  |
| 300 mK Cooler      | Lower load caused by simplified version | -                                 |  |  |  |
|                    | of the L0 and 300 mK stage              |                                   |  |  |  |
| SMECm              | -                                       | 124.5 K versus104 K in DTMM       |  |  |  |
|                    |                                         | because simplified version of the |  |  |  |
|                    |                                         | mechanism mass.                   |  |  |  |



# **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 25 of 31

### ANNEX A: COMPARISON OF ITMM AND DTMM RESULTS

## **A1: Steady-State Results**

|                             | Spectro |        | Photo |        |        | Off   |       |       |       |
|-----------------------------|---------|--------|-------|--------|--------|-------|-------|-------|-------|
|                             | ITMM    | DTMM   | Ratio | ITMM   | DTMM   | Ratio | ITMM  | DTMM  | Ratio |
| Temperature (K)             |         |        |       |        |        |       |       |       |       |
| FPU At Cone                 | 5.74    | 5.921  | 0.969 | 5.319  | 5.491  | 0.969 | 4.02  | 4.164 | 0.965 |
| FPU At 1rst A Frame         | 5.74    | 5.855  | 0.980 | 5.319  | 5.435  | 0.979 | 4.02  | 4.122 | 0.975 |
| FPU At 2nd A Frame          | 5.74    | 5.843  | 0.982 | 5.319  | 5.428  | 0.980 | 4.02  | 4.12  | 0.976 |
| RF Interface on FPU         | 5.824   | 5.937  | 0.981 | 5.364  | 5.47   | 0.981 | 4.06  | 4.139 | 0.981 |
| Level 1 Interface           | 5.318   | 5.32   | 1.000 | 4.967  | 4.967  | 1.000 | 3.828 | 3.819 | 1.002 |
| Level 0 at Enclosure Strap  | 1.743   | 1.742  | 1.001 | 1.736  | 1.736  | 1.000 | 1.719 | 1.719 | 1.000 |
| Level 0 at Pump Strap       | 1.748   | 1.748  | 1.000 | 1.744  | 1.744  | 1.000 | 1.704 | 1.704 | 1.000 |
| Level 0 at Evaporator Strap | 1.711   | 1.71   | 1.001 | 1.709  | 1.709  | 1.000 | 1.705 | 1.705 | 1.000 |
| Loads (mW)                  |         |        |       |        |        |       |       |       |       |
| Net P JFET L2 Load          | 1.071   | 1.079  | 0.993 | 40.453 | 40.571 | 0.997 | 0.796 | 0.795 | 1.001 |
| Net S JFET L2 Load          | 13.81   | 13.83  | 0.999 | 0.345  | 0.346  | 0.997 | 0.204 | 0.203 | 1.005 |
| FPU L2 Load                 | 13.611  | 13.457 | 1.011 | 14.376 | 14.259 | 1.008 | 1.001 | 0.993 | 1.008 |
| L1 Strap Load               | 20.971  | 20.973 | 1.000 | 17.5   | 17.49  | 1.001 | 9.562 | 9.49  | 1.008 |
| L0 Enclosure Load           | 4.241   | 4.174  | 1.016 | 3.557  | 3.529  | 1.008 | 1.856 | 1.862 | 0.997 |
| L0 Pump Load                | 2.61    | 2.615  | 0.998 | 2.393  | 2.407  | 0.994 | 0.235 | 0.223 | 1.054 |
| L0 Evaporator Load          | 0.534   | 0.506  | 1.055 | 0.448  | 0.428  | 1.047 | 0.24  | 0.23  | 1.043 |
| Total Level 0 Load          | 7.385   | 7.295  | 1.012 | 6.398  | 6.364  | 1.005 | 2.331 | 2.315 | 1.007 |
| Total Cooler (microW)       | 37.37   | 38.24  | 0.977 | 34.77  | 35.65  | 0.975 | 1     | -     | -     |
| Cooler Hold Time (hrs)      | 39.43   | 37.92  | 1.040 | 42.4   | 40.7   | 1.042 | ı     | -     | -     |
| MEAN AGREEMEMNT             | -       | -      | 1.011 | -      | _      | 1.007 | -     | -     | 1.015 |

<sup>\*</sup>Agreement does not include 300 mK loads.

## **SPIRE**

## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 26 of 31

### **A2:** Cooler Temperature Profile during Recycling

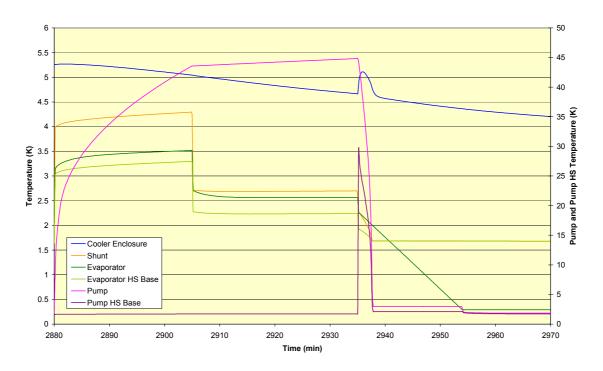



Figure A-2.1 – SPIRE DTMM Cooler Temperature Profile during recycling

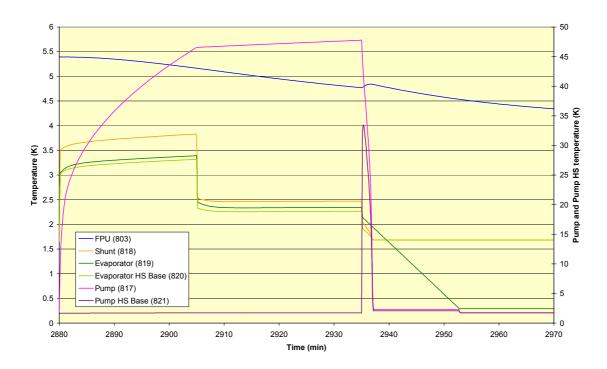



Figure A-2.2 - SPIRE ITMM Cooler Temperature Profile during recycling

## **SPIRE**

## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 27 of 31

## A3: Power Dissipation Profiles used for SPIRE DTMM and ITMM

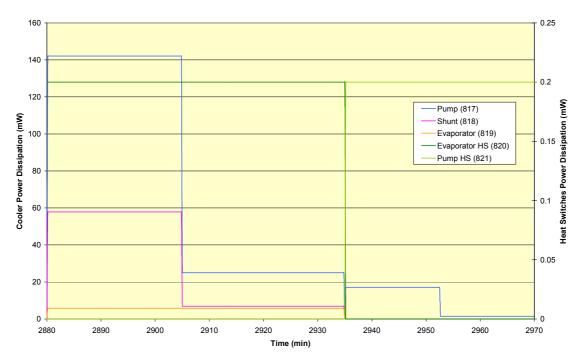



Figure A-3-0-1 - SPIRE Cooler Power Dissipation Profile during Recycling

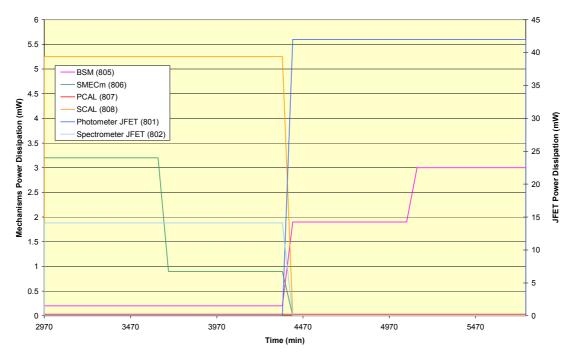



Figure A-3-2 – SPIRE Mechanism Power Dissipation Profile during Operation

## **SPIRE**

## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 28 of 31

## A4: Level 1 and Level 0 Loads Correlation during SPIRE recycling and operation

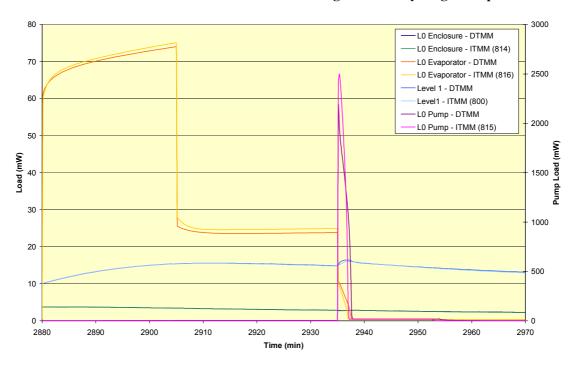



Figure A-4-0-1 - SPIRE DTMM / ITMM loads Correlation During Cooler Recycling

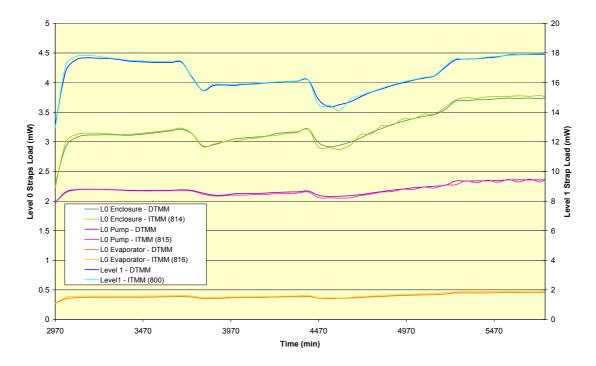



Figure A-4-0-2 - SPIRE DTMM / ITMM loads Correlation During Operation

## **SPIRE**

## **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 29 of 31

### A5: Interfaces Temperature Correlation during SPIRE recycling and operation

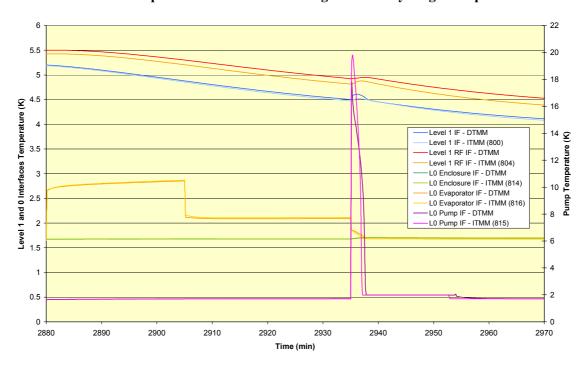



Figure A-5.0-1 - SPIRE DTMM / ITMM Interfaces Temperature Correlation During Cooler Recycling

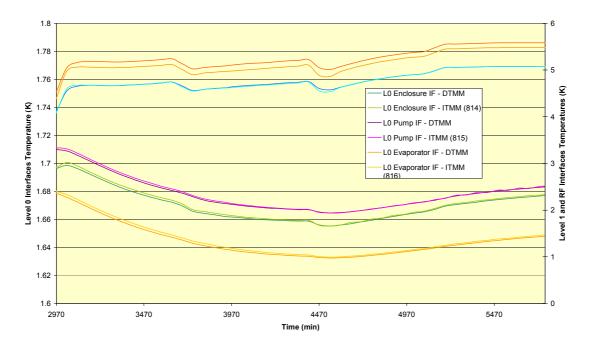
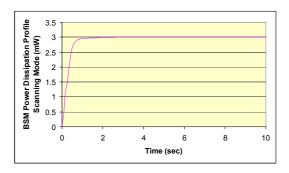
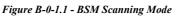



Figure A-5-0-2 - SPIRE DTMM / ITMM Interfaces Temperature Correlation During Operation



### **Cryogenic Interface Thermal Mathematical Model**


Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 30 of 31


#### ANNEX B: SPIRE BSM AND SMECM POWER DISSIPATION PROFILES

#### B1: BSM

When SPIRE operates in Photometer mode, the SPIRE Beam Steering Mechanism (BSM) can be used in two different ways:

- <u>BSM Scanning Mode</u>: this mode represents the worst-case power dissipation during which the BSM mean power dissipation is 3 mW (see Figure B-1.1).
- <u>BSM Chopping Mode</u>: in this mode, the power dissipated by the BSM varies between 0.8 mW and 3 mW at a fixed frequency (see Figure B-1.2). The BSM mean power dissipation in this mode is therefore 1.9 mW which represents the BSM best power dissipation case when SPIRE operates in spectrometer mode.





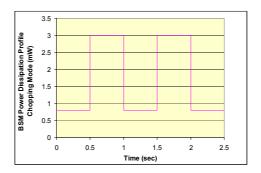


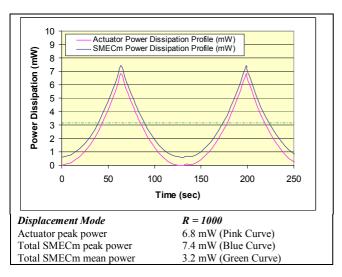

Figure B-1.0-2 – BSM Chopping Mode

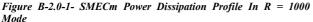
Note: The power dissipations described above are nominal values and do not include any margin.

#### **SPIRE**

### **Cryogenic Interface Thermal Mathematical Model**

Doc Nu: Issue: Issue 2 Date: 12-12-02 Page 31 of 31


#### **B2: SMECm**


The SPIRE SMEC mechanism consists of three components:

- The actuator,
- The optical encoder,
- The LDVT.

The nominal mean power dissipations of the encoder and LDVT are 0.5 mW and 0.1 mW respectively. When SPIRE operates in Spectrometer mode, the course of the SPIRE SMEC actuator can be set to three different displacement lengths. The power dissipation of the actuator varies with the courses selected. Only the two worst cases are considered here:

- R = 1000 "course" this mode represents the longest scanning course that can be achieved by the SMECm actuator and also to the worst-case power dissipation where the actuator peak power dissipation is 6.8 mW (see Figure B-2.1.). This corresponds to a mean power dissipation of 3.2 mW (including the encoder and LDVT).
- R = 10 "course" this mode represents the shortest scanning course that can be achieved by the SMECm actuator and also to the best-case power dissipation where the actuator peak power dissipation is only 0.3 mW (see Figure B-2.2.). This corresponds to a mean power dissipation of 0.9 mW (including the encoder and LDVT).





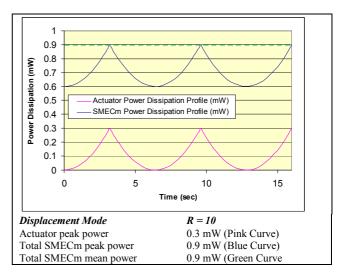



Figure B-2.2- SMECm Power Dissipation Profile In R = 10 Mode

Note: The power dissipations described above are nominal values and do not include any margin.