
Ref: SPIRE-RAL-NOT-000717
Issue: 1.0
Date: 12th June 2001
Page: 1 of 7

SPIRE TM/DataFrame Interface
Technical Note

1. Introduction

This technical note describes a stream-based interface to packets and data frames. It is not restricted
to database access.

Originally it was envisaged that separate mechanisms would be used to access packets and data
frames. It became evident that there were enough similarities in the requirements to combine the two,
thus avoiding duplication of effort.

Note that the current implementation is incomplete and only contains certain elements of this
specification.

2. Purpose

This interface specifies a one-way (read-only) protocol for homogeneous access to packets and data
frames. It is not appropriate for clients wishing to update these objects. Neither is it a generic object
server. The concept is based on data frames being the starting point for data processing, and
therefore providing a convenient method for their access. As noted above, the requirements for
packets are similar.

The intention is that objects can be streamed from a variety of sources, including over networks.
Clients are not required to have a Versant installation (though they will be able to do more if they do).
This approach also allows the possibility to design IA as an internet-aware application.

3. Scope

This interface applies to all mission phases, not just ILT, in accordance with the concept of smooth
transition.

It includes:
• Getting them from a local database.
• Getting them from a database across a network, including via the Internet.
• Getting them from local (non-Versant) persistent storage.
• Getting them from the telemetry ingestor.
• Getting them from the router.

It does not include:
• Any access to objects other than packets or data frames. However, some elements of the design

might prove to be applicable to other objects.
• Any means of writing to any persistent storage, including the database.

However, it does not preclude normal database operations if the client is a Versant one. In other
words, it imposes no restrictions on trusted database clients.



Ref: SPIRE-RAL-NOT-000717
Issue: 1.0
Date: 12th June 2001
Page: 2 of 7

SPIRE TM/DataFrame Interface
Technical Note

4. Requirements

This section is extracted from the output of Action CSDT#5/2-2, compiled by Kevin Galloway.

4.1 Purpose

To identify the telemetry and data frame services to be provided by the HCSS to the HCSS ILT
clients.
Note: In the text below tsps = telemetry source packets = telemetry packets while pdfs = product
data frames = data frames.

4.2 Scope

These requirements address only the telemetry packet and data frame needs of the ILT clients.
The requirements to write ILT-client logs etc to the database are not addressed here. The
requirements presented here are the read-only requirements on tsps and pdfs.
The requirements of the telemetry ingestor, which writes tsps and pdfs to the HCSS archive are not
presented here.
If other ILT-clients need tsp and pdf write capability then these requirements will need extending.

4.3 General Description

ILT clients will exist both within the HCSS (internal ILT clients) and outside the HCSS (external ILT
clients). ILT clients need to be able to retrieve telemetry packets and data frames from the HCSS
archive and to be able to receive telemetry packets and data frames in NRT. The HCSS must
provide these services.

Examples of ILT clients are: RTA client, QLA client, IA, database browsers. Note that the telemetry
ingestor can also be considered an ILT-client but its specific requirements are not addressed here.

Note: No assumption is made regarding whether RTA, QLA, IA, database browsers, ... are internal
or external clients.

4.4 Capability requirements

Cap-Req-1: The HCSS shall provide tsps and pdfs to both internal and external ILT clients.

Cap-Req-2: ILT clients shall be able to request:

1. Near real time (NRT) access to tsps
2. NRT access to pdfs
3. Access to tsps in the database based on various selection criteria
4. Access to pdfs in the database based on various selection criteria

Comments associated with Cap-Req-2:
Note 1: PACS: Although PACS QLA works with dataframes it also needs housekeeping telemetry,
TEI telemetry etc.



Ref: SPIRE-RAL-NOT-000717
Issue: 1.0
Date: 12th June 2001
Page: 3 of 7

SPIRE TM/DataFrame Interface
Technical Note

Note 2: PACS: RTA uses SCOS functionality

The selection criteria currently identified for the request types 3 and 4 above are:
i. Give me tsps/ pdfs as they arrive (near real-time connection)
ii. Give me tsps/ pdfs for specified time period
iii. Give me tsps/ pdfs associated with observation execution x
iv. Give me pdfs associated with building block y

Note 1: Bullet (iv) Currently all tsps are associated with an observation as not all packets contain, or
have accessible, a BBID (see core class model).

The ILT-Client developers will be provided with an interface, which they can use to perform these
requests.

Cap-Req-3: The interface used by the ILT-Clients shall be the same for all of the above request
types.

Comments associated with Cap-Req-3:
The ILT-client developer simply selects the request type/ connection he wants. Irrespective of the
request type the tsps and/ or the pdfs should be made available to the ILT-Client developer in the
same way.

Cap-Req-4: It must be possible to serve data to a remote site, even through a firewall.

4.5 Constraint requirements

4.5.1 Access constraints

Con-Req-1: Access to the tsps and pdfs shall be read only.

Comments associated with Con-Req-1:
The writing of tsps and pdfs to the HCSS archive (by the telemetry ingestor) is outside the scope of
these requirements

Con-req-2: Data rights (?) Are there any associated with ILT?

4.5.2 Operational constraints

TBW

4.5.3 Performance constraints

TBW

4.5.4 Reliability, maintainability and availability constraints

TBW



Ref: SPIRE-RAL-NOT-000717
Issue: 1.0
Date: 12th June 2001
Page: 4 of 7

SPIRE TM/DataFrame Interface
Technical Note

5. Architecture

The key to the architecture is the desire to abstract a connection to a stream of packet and data frame
objects. Database access was originally conceived as a standard 3-tier architecture as is normal in the
Java world. However the built-in flexibility makes supporting the need for 2-tier applications virtually
trivial.

Applications API
(ProductReader)

Data
Servers

(socket,http)

Database
(Versant)

Local
storage

Data Stream
(router) query

openStream()

direct
query

The Java implementation is split into connection and data storage packages in order to isolate the
database-aware classes. The package organisation as it stands does not seem to be completely
natural and should be reviewed.

5.1 Connection Layer

This layer is purely concerned with the mechanics of making a connection and is therefore mostly
network-biased. It has no concept of persistent data storage. Note that the concept of a query is fully
encapsulated by the HCSSAccess class. Some notes on recent changes are:

• HCSSConnection has been renamed to NetworkConnection to make its purpose and scope
more explicit.

• ProductStream has been changed from a class to an interface.
• ProductReader has been added as a separate interface.

This package is currently missing a factory class to create ProductReader objects so that the type of
implementation (local database, network, direct stream) is transparent to the application. The correct
class could be dynamically loaded from a name in a properties file.

At some stage the issue of data rights will have to be addressed in the context of networked access.



Ref: SPIRE-RAL-NOT-000717
Issue: 1.0
Date: 12th June 2001
Page: 5 of 7

SPIRE TM/DataFrame Interface
Technical Note

An application uses the interface like this:
1. It constructs an HCSSAccess object to encapsulate the query. (This step is not necessary in

applications where it makes no sense).
2. It creates an instance of ProductReader and opens a stream with the openStream() method.
3. It iterates through the resulting stream.

5.2 Data storage layer

This layer contains the classes for accessing the database. A LocalConnection class has been added
here to support 2-tier implementations.



Ref: SPIRE-RAL-NOT-000717
Issue: 1.0
Date: 12th June 2001
Page: 6 of 7

SPIRE TM/DataFrame Interface
Technical Note

Note that QueryFactory objects are themselves created by a factory method by dynamically loading
the correct class (set in a properties file). These query classes are intended to be the same as the ones
in the ‘store’ package (though they don’t currently have all the functionality).

6. Implications on database schema

6.1 Queries

I expect the natural and efficient way of finding these sorts of objects in the database will be by a
database query (TBC). Database clients can potentially navigate from there. Queries will typically be
on:

• Time
• Observation
• Building Block

This implies that these should all be fields that can be queried directly for both packets and data
frames. In other words, both should tagged with the OBSID, BBID and a date field understandable
by Versant (eg Date). It is possible to go directly to observation or building block and then navigate,
but this is:



Ref: SPIRE-RAL-NOT-000717
Issue: 1.0
Date: 12th June 2001
Page: 7 of 7

SPIRE TM/DataFrame Interface
Technical Note

1. More complex.
2. Doesn’t work with composite queries.
3. Due to serialization issues (see below), doesn’t allow a non-Versant client to re-query (eg get

frames for time range, then get the matching Observation objects).

It is not currently envisaged that PACS science telemetry will be tagged. This means that different
instruments are likely to require different database search algorithms. Any such algorithms should be
pluggable.

6.2 Serialization

Implications of serialization on the schema are applicable only to non-Versant clients. Any exporting
of an object outside of Versant will cause it to be serialized. This will cause all references in the
object to be recursively serialized with it. If the schema contains circular references this could result in
the entire database being serialized. Possible solutions are:

• Don’t allow objects to be exported. This is so restrictive as to be a non-starter.
• Have two core class models, one for internal (persistent) classes, and another external one for use

in applications such as IA. This division could avoid a lot of confusion but would increase
complexity. In practice it may not be necessary to duplicate the entire CCM. The external model
could be considered as a ‘view’ of the database.

• Avoid unnecessary references in the schema. This compromises object navigation of the
database. This may be OK for packets and data frames though.

• Implement readObject/writeObject methods so that references are not serialized. This has a
drawback of leaving dangling references. Alternatively this could be hidden by façade classes
(similar to the dual-CCM approach).

• Nullify references in the server. This is similar to the previous point.


