

SERVICE DES BASSES TEMTERATIONES (CEM DSM/DAT MC/SDT)

SPIRE & PACS Sorption Coolers PRODUCT ASSURANCE PLAN

SBT internal ref : SBT/CT/2001-21

	Name & Function	Date	Signature
Prepared	P. Dupont – Cooler PA Manager		
SBT PA Check	P. Dupont – Cooler PA manager		
SPIRE Approval			
PACS Approval			
PA Approval	F. Loubere – PA manager		
Project Approval	J.L Augueres - SAp HSO project manager		
Project Approval	L. Duband - Cooler project manager		

Service des Basses Températures (SBT) Département de Recherche Fondamentale sur la Matière Condensée (DRFMC) COMMISSARIAT A L'ENERGIE ATOMIQUE - GRENOBLE (CEA-Grenoble) 17, rue des Martyrs 38054 GRENOBLE Cédex 9, France.

DOC N°: HSO-SBT-PL-006 Iss/Rev : 1.1 October 31th, 2001 DATE : PAGE :

ii

SERVICE DES BASSES TEMPERATURES (CEA/DSM/DRFMC/SBT)

Document Status

Issue	Revision	Date	Nb of Pages	Modifications
Draft		April 4 th , 2001		First draft – released for comments
0	0	April 25 th , 2001	36	First Issue
0	1	April 27 th , 2001	36	p2, 3 & 4 – upper level defined as SAp
1	0	July 27 th , 2001	39	Updated after DDR Cleanliness & Contamination Control chapter revisited
1	1	October 31 th , 2001	40	Chap. 6 updated

DOC N°: HSO-SBT-PL-006 Iss/Rev : 1.1 October 31th, 2001 DATE : PAGE :

iii

SERVICE DES BASSES TEMPERATURES (CEA/DSM/DRFMC/SBT)

Table of Contents

1.	S	cope of the document	1
2.	D	Documents	2
	2.1	Applicable documents	2
	2.2	Reference documents	2
3.	P	A Management	3
	3.1	General	3
	3.2	Organization	5
	3.3	Right of Access	6
	3.4	Critical Items Identification & Control	6
	3.5	Management of Subcontractors	6
	3.6	PA Planning & Documentation	6
	3.7	Reporting	7
	3.8	Training & Certification	7
4.	Ν	Iaterials & Processes Selection & Control	8
	4.1	General	8
	4.2	Control & Selection of Materials & Processes	8
	4.3	Materials Procurement	8
	4.4	Limited Shelf Life Materials	8
	4.5	Critical Processes	
	4.6	Reporting & Documentation on Materials & Processes	9
		Request for Approval	
5.		EE Parts Selection & Control	
6.	С	leanliness & Contamination Control	11
		General	
	6.2	Cleanliness Plan – Adopted Approach	11
	6	.2.1 Manufacturing & Assembly activities	11
	6	.2.2 Integration & Test activities	
	6	.2.3 SBT Facilities	12
		6.2.3.1 Access	12
		6.2.3.2 Cleanroom	12
		6.2.3.3 Laminar Flow tent	12
		6.2.3.4 Dedicated garments	12
	6	.2.4 Cleanliness verification	12
		6.2.4.1 Cleanroom environmental monitoring	
		6.2.4.2 Surface contamination measurement	
		6.2.4.3 Particle contamination measurement	
		6.2.4.4 Molecular contamination measurement	13
		6.2.4.5 Exposure time	13
	6	.2.5 Cleaning Procedure	
		.2.6 Storage	
		Handling, Packing & Shipping	
	6	.3.1 Transport container	14

SPIRE & PACS Sorption Coolers

Product Assurance Plan

DOC N°: HSO-SBT-PL-006 Iss/Rev : 1.1 DATE : October 31th, 2001 PAGE : iv

SERVICE DES BASSES TEMPERATURES (CEA/DSM/DRFMC/SBT)

7.	R	eliab	ility Assurance	15
	7.1	Gen	eral	15
	7.2	Reli	ability Analysis	15
8.	Sa	afety	Assurance	16
	8.1	Gen	eral	16
	8.2	Safe	ty Assurance Analysis	16
9.	Q		ssurance	
	9.1	Gen	eral	17
	9.2	Proc	curement	17
	9.	2.1	Selection of Procurement sources	17
	9.	2.2	Procurement Documents	17
	9.	2.3	Surveillance	17
	9.	2.4	Incoming Inspection	17
	9.3	Mar	ufacturing & Assembly Control	
		3.1	Documentation	
	9.	3.2	Reviews	
	9.	3.3	Metrology & Calibration	
		3.4	Inspection Points	
		3.5	Storage	
			gration & Test Control	
		4.1	Test Procedures	
		4.2	Test witnessing	
		4.3	Reviews	
		4.4	Test Reports	
		4.5	Logbook	
		4.6	Handling, Storage, Packaging, Marking & Labeling	
			-Conformances Control	
		5.1	General	
		5.2	Non-Conformances Definition & Classification	
		5.3	Non-Conformance Control System	
).		3.1 Non-Conformance Detection	
			3.2 Internal MRB	
			3.3 Action Propositions	
			3.4 Upper Level Notification	
			3.5 External MRB	
			3.6 Performing of Actions & Control	
			3.7 Change Proposal	
			3.8 Closure	
			3.9 NCR resulting from a subcontractor	
			3.10 NCR Database	
	06		3.11 NCR Reporting	
		Acc 6.1	eptance & Delivery	
		6.1	Delivery Review Board	
10			Acceptance Data Package	
10			re Product Assurance	
11	. U	onng	Juration Management & Control	20

11.1	General	. 26
11.2	Configuration Items	. 26
11.3	Configuration Items Data List (CIDL)	. 26
	Documentation Control	
11.4	.1 Identification	. 26
11.4	.2 Storage	. 27
11.4	.3 Backup	. 27
11.5	Approval Procedure	. 27
	Configuration Status Accounting	
11.7	Change Processing	. 28
11.8	Implementation Verification	. 28

Table of Figures

Figure 3-1 : relation between PA documents at different levels	. 4
Figure 3-2 : PA organization on SCO Project	. 5

Table of Tables

Table	3-1: Applicability of PA Program to the SCO models	3
Table	11-1: Document identification	27

DOC N°: HSO-SBT-PL-006 Iss/Rev : 1.1

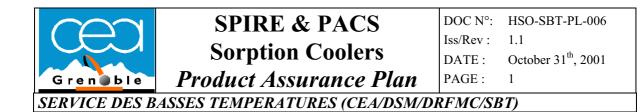
DATE :

October 31th, 2001 PAGE : vii

SERVICE DES BASSES TEMPERATURES (CEA/DSM/DRFMC/SBT)

List of Acronyms

AD / RD	Applicable / Reference Document		
ADP (EIDP)	Acceptance (End Item) Data Package		
AIT / (M)AIV	(Manufacturing,) Assembly, Integration & Test / Verification		
CADM	Configuration and Data Management		
CDR (DDR)	Critical (Detailed) Design Review	Revue de conception détaillée	RCD
CEA	Commissariat à l'Energie Atomique		
CIDL / ABCL	(As Built) Configuration Items Data List		
CN	Change Notice	Demande de Modification	DM
CQM	Cryogenic Qualification Model		
DML / DPL	Declared Material / Process List		
DRB	Delivery Review Board	Revue de Qualification	RQ
EM / (P)FM / FS	Engineering / (Proto)Flight / Spare Model		
ETF	Environmental Test Facility		
EV	Evaporator		
FIRST	Far Infrared and SubmillimetreTelescope		
FMECA	Failure Mode Effects and Criticity Analysis		AMDEC
(M)GSE	(Mechanical) Ground Support Equipment		
H/W	Hardware		
HIFI	Heterodyne Instrument for FIrst		
HSE	Heat Switch (on evaporator)		
HSP	Heat Switch (on sorption pump)		
ICD	Interface Control Document	Dossier de Contrôle des Interfaces	DCI
KIP / MIP	Key / Mandatory Inspection Point		
MRB	Material Review Board		
N/A	Not Applicable		
NCR	Non Conformance Report	Fiche d'Anomalie	FA
PACS	Photoconductor. Array Camera and Spectrometer		
PDR	Preliminary Design Review	Revue de Définition Préliminaire	RDP
PTR	Post Test Review	Comité de Revue et d'essai	CRE
PFM	ProtoFlight Model		
QA / PA	Quality / Product Assurance	Assurance Qualité / Produit	AQ / AP
RFA	Request For Approval		


DOC N°: HSO-SBT-PL-006 Iss/Rev : 1.1

DATE : October 31th, 2001

PAGE : viii

SERVICE DES BASSES TEMPERATURES (CEA/DSM/DRFMC/SBT)

SAp	Service d'Astrophysique		
SBT	Service des Basses Températures		
SCO	Sorption Cooler (full unit)		
S/C	SpaceCraft		
SP	Sorption pump		
SPIRE	Spectral & Photometric Imaging Receiver		
TRR	Test Readiness Review	Bilan Technique	BT

<u>1. SCOPE OF THE DOCUMENT</u>

This document presents the Product Assurance activities to be carried-out throughout the SBT Sorption Coolers Project Life, from design phase upon delivery to higher level.

2. DOCUMENTS

2.1 Applicable documents

All Applicable Documents are listed in the AD chapter of the CIDL (HSO-SBT-LI-010).

2.2 Reference documents

	Title	Reference	Iss	Rev	Date
RD01	STANDARD Product assurance plan for Space Instruments	SAp-GERES-FLo-436-00	1	0	07/11/00
RD02	Manufacturing, Assembly, Integration & Test Flow Chart	HSO-SBT-FC-003			
RD03	CONSTITUTION D'UN ADP	SAp-GERES-FLo-97-356	1	3	04/03/99
RD04	SPIRE Product Assurance Plan	SIRE-RAL-PRJ-0017	1	0	11/04/01
RD05	PACS Project Product Assurance Plan	TBD	Draft		26/11/99
RD06	Contamination & Cleanliness Control	ESA PSS-01-201	1		August 1983
RD07	SPIRE Subsystems Cleanliness budget	Draft for comment – second iteration dated 12/09/01			
RD08	Cleanliness Philosophy	HSO-SBT-QA-040	0	0	23/10/01

<u>3. PA MANAGEMENT</u>

3.1 General

This PA Program has been established in accordance with the SAp Product Assurance Plan . This Plan is applicable to all SBT Sorption Coolers models as described in Table 3-1:

Chapter #	PA Requirements	SCO Models			
		STM (x2)	CQM (x2)	PFM (x2)	FS (x1)
3	PA Management	Р	А	А	А
4	Material & Process Selection & Control	А	А	А	А
5	EEE Parts Selection & Control	N/A	N/A	N/A	N/A
6	Cleanliness & Contamination Control	N/A	А	А	А
7	Reliability Assurance	А	А	А	А
8	Safety Assurance	А	А	А	А
9	QA Assurance	Р	А	А	А
10	Software Product Assurance	N/A	N/A	N/A	N/A
11	Configuration Management & Control	Р	А	А	А

A: Applicable N/.

N/A: Not Applicable

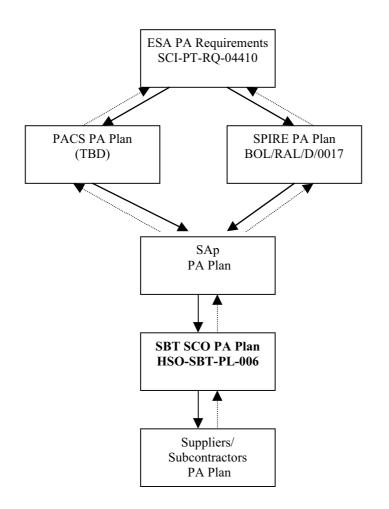
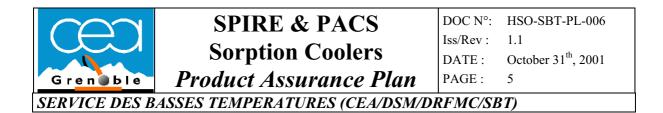
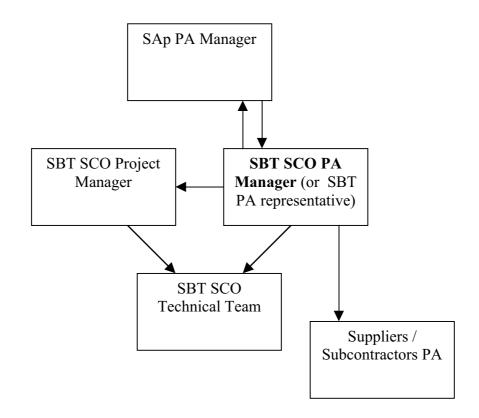

P: Partially Applicable

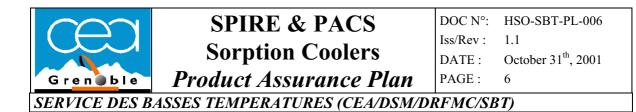
Table 3-1: Applicability of PA Program to the SCO models



If necessary, this plan will be tailored to the needs of the suppliers (see § 3.5).

The relation of this plan to higher & lower levels is presented in Figure 3-1.


Figure 3-1 : relation between PA documents at different levels


3.2 Organization

SBT has nominated a dedicated PA Manager who is responsible for the implementation and verification of the PA Requirements related to the Sorption Coolers Project. He will be present at SBT facilities whenever needed and will report directly to the Sorption Coolers Project Manager. For what concerns the PA activities, he is in relation with SAp PA Manager. Additionally, a SBT PA representative (located at SBT premises) has been nominated and is in charge of the daily PA activities. He will report to both the PA & Project Manager.

Note that whenever required, PA Manager will be assisted by specialists or experts.

Figure 3-2 : PA organization on SCO Project

3.3 Right of Access

For purpose of Product Assurance or technical coordination, ESA, the Instruments Consortium Product Assurance Representatives and the SAp PA Manager will have access to SBT facilities whenever required (participation to KIP & MIP, audits, reviews, ...).

Note that Proprietary rights should be fully respected.

A formal demand will be issued one week prior to visit so one can arrange access to the Project facilities.

3.4 Critical Items Identification & Control

A Critical Item List (CIL) will be prepared and maintained, ensuring that all critical items derived from the different PA disciplines are followed up with the required emphasis. This List will be presented at Project CDR and updated throughout the Project Life.

Additionally, this List will also include items which have a long procurement time (identified as "Long Lead Items").

3.5 Management of Subcontractors

Whenever contractors are employed to provide service or equipment, the PA requirements listed in this Plan will be imposed, tailored to the criticality of the services or products being provided.

Surveillance of PA activities will be carried out by SCO PA Manager (or its representative) who will ensure that appropriate inspections, tests and documentation are specified and completed.

Contractors shall be assessed on the basis of their Product Assurance in addition to their technical capabilities.

3.6 PA Planning & Documentation

This PA Plan will be a controlled document and should be approved by SAp PA Manager. All project documents (plans, specifications, procedures and design documentation) will be reviewed for compliance with PA Requirements, signed-off and submitted to Configuration Control as explained in § 11.

PA events will appear in the project planning. This planning will be updated on a regularly basis and sent to higher level for review.

DOC N°: HSO-SBT-PL-006 Iss/Rev: 1.1 DATE: October 31th, 2001 PAGE: 7

SERVICE DES BASSES TEMPERATURES (CEA/DSM/DRFMC/SBT)

3.7 Reporting

Reporting on the progress and status of Product Assurance matters will form part of the regular project reporting procedure and will include information on:

- Status of FMECA & hazard analysis,
- Status of material & processes control program,
- Status for Non-Conformances & Request for Waivers,
- Status of contamination Control Program,
- Overview of major events in the forthcoming period,
- ...

note that this list is not exhaustive.

3.8 Training & Certification

SBT ensures that only experienced technicians will be involved in manufacturing and assembly operations. These latest will be part of new processes and assembly evaluations programs. There skills will be evaluated before the beginning of operations. If necessary they will follow additional training courses and certification programs (e.g. certification by upper level authorities of our technicians is foreseen in the field of soft soldering so they will be considered "space qualified").

DOC N°: HSO-SBT-PL-006 Iss/Rev: 1.1 DATE: October 31^{th} , 2001 PAGE: 8

SERVICE DES BASSES TEMPERATURES (CEA/DSM/DRFMC/SBT)

4. MATERIALS & PROCESSES SELECTION & CONTROL

4.1 General

SCO PA Manager has the responsibility for selecting materials & processes and for demonstrating their suitability for the intended application.

4.2 Control & Selection of Materials & Processes

Preferably materials & processes that have successfully been applied to previous space projects will be selected.

Materials & Processes which cannot be considered either space proven or standard / established shall be subjected to an evaluation program to assess the suitability for the intended application. This program will be submitted to the upper level PA Manager for approval. Evaluation reports will be issued after qualification.

Description of processes carried-out by subcontractors shall be made available to the PA Manager so that they can be evaluated. If these descriptions cannot be delivered (ie for commercial reasons), a Certificate of Conformity should be established by the subcontractor.

4.3 Materials Procurement

Materials procurement will be made in accordance to dedicated specifications. Certification to mechanical properties, chemical composition & lot traceability, as a minimum, will be included if appropriate.

4.4 Limited Shelf Life Materials

A system to control Limited Shelf Life Materials (such as adhesives) will be established.

4.5 Critical Processes

Application of critical processes will be either witnessed by PA Manager (or his representative) and/or will be evaluated on reference samples.

4.6 Reporting & Documentation on Materials & Processes

A Declared Materials List (DML) and a Processes Declared List (DPL) will be issued and submitted to the approbation of the upper level PA Manager.

4.7 Request for Approval

Requests for Approval (R.F.A.) will be issued when no sufficient application or qualification history does exists and additional evaluation is required to cover the application. RFA will summarize the proposed evaluation activities.

5. EEE PARTS SELECTION & CONTROL

This chapter is not applicable in the scope of this Project. The only identified EEE parts are the connectors (FR 136 type) that will be delivered by SAp, being thus under their responsibility.

DOC N°: HSO-SBT-PL-006 Iss/Rev : 1.1 DATE : October 31th, 2001 PAGE : 11

SERVICE DES BASSES TEMPERATURES (CEA/DSM/DRFMC/SBT)

6. CLEANLINESS & CONTAMINATION CONTROL

6.1 General

SCO PA Manager has the responsibility for defining cleanliness rules applicable for all the activities related to the development of the SCO H/W at SBT or subcontractors premises and for the application of these rules.

All operations related to the SCO H/W shall be recorded. The records shall include reference or description of the related cleaning, cleanliness monitoring and cleanliness protection operations.

Any Non-Conformance to this plan shall be managed according to the SBT NCR management process (see § 9.5).

6.2 Cleanliness Plan – Adopted Approach

This chapter describes the general approach adopted by SBT in order to meet the cleanliness & contamination requirements, as detailed in doc. RD08.

MAIV phases will be designed taking into account those requirements. Estimated duration for AIV activities is 100 days.

6.2.1 Manufacturing & Assembly activities

These activities are mainly performed at subcontractor's facilities. Instruction relative to the cleanliness constraints will be given to the subcontractors.

Concerning the manufacturing process, it is demanded for the parts to be cleaned and packed separately. The cleaning procedure will be reviewed and approved by SBT.

The assembly activities to be performed out of SBT will be submitted to the same rules. As far as possible, subassemblies will be cleaned following SBT procedure after each of the assembly processes.

6.2.2 Integration & Test activities

These activities will mainly be performed in SBT premises. In order to meet the cleanliness & contamination requirements, we plan to use dedicated facilities, such as a cleanroom (controlled area) with a local class-100 horizontal laminar flow bench.

For what concern transition phases, when the H/W is to be moved from one place to another, it is planned to use dedicated containers; a transportation suitcase for loose items or subassemblies and a transportation container when the cooler is assembled.

6.2.3 SBT Facilities

6.2.3.1 Access

Access to SBT SCO facilities is restricted to certified personnel. A list of these personnel will be issued and maintained.

Access to occasional visitors is only possible pending specific authorization of SBT SCO Project manager or PA manager.

6.2.3.2 Cleanroom

A class TBD cleanroom has been set-up to ensure the required level of cleanliness of the SCO. Its main characteristics are:

6.2.3.3 Laminar Flow tent

TBD

6.2.3.4 Dedicated garments

Activities to be performed in the cleanroom will require the use of dedicated garments:

- □ powder free gloves,
- \Box overshoes
- \Box protective hat,
- □ dedicated cleanroom coat with antistatic fibers

6.2.4 Cleanliness verification

6.2.4.1 Cleanroom environmental monitoring

6.2.4.1.1 Temperature & Humidity

Temperature & humidity are permanently measured & recorded. NCR will be raised if non compliance to the following conditions is detected: Temperature: $20^{\circ} + 2^{\circ}$ C Humidity: 45 - 65 %

<u>6.2.4.1.2 Pressure</u> TBD

<u>6.2.4.1.3 Air Flow velocity</u> TBD

6.2.4.1.4 Airborne particle size

TBD : ROYCO 5230 mobile counter will be used to record cleanroom level during operation phases in both cleanroom and laminar flow tent.

6.2.4.2 Surface contamination measurement

Not foreseen.

6.2.4.3 Particle contamination measurement

Not foreseen.

6.2.4.4 Molecular contamination measurement

Not foreseen.

6.2.4.5 Exposure time

See doc. RD08.

6.2.5 Cleaning Procedure

A cleaning procedure taking into account the cleanliness & contamination requirements will be issued and submitted to project.

6.2.6 Storage

Even under cleanroom conditions, SCO H/W will be protected during non-activity. The protection will be assured by one of the following:

- □ Clean transport container
- □ Clean covers
- **Clean packing materials**

6.3 Handling, Packing & Shipping

Handling, Packing & Shipping will be performed such as to avoid any damage to the SCO and to ensure the required levels on cleanliness & contamination.

A dedicated procedure will be issued (see also § 9.4.6.).

Handling of the SCO or any SCO item will only be done by skilled and certified personnel and using dedicated gloves.

Transportation of H/W will always be done using dedicated containers. 2 types are foreseen:

- a transportation suitcase for loose items or subassemblies,
- a transportation container for cooler assembled.

6.3.1 Transportation suitcase

This item id to be used for transporting parts or subassemblies to subcontractors facilities. It is made out a commercial suitcase, filled with foam that can be shaped to best fit the component inside. The component itself will be bagged separately in a clean plastic bag, incl. marking. We plan to use one suitcase per model.

6.3.2 Transport container

The transport container will be built on the double envelope principle:

- □ an inner one, to be purged with dry nitrogen, which will provide the required level of cleanliness,
- □ an outer one which will provide mechanical shielding and will be equipped with shock recorders.

It is also planned to use a dedicated container per model.

Note that the inner container will be equipped with a transparent window so that one can see the component inside without opening it.

DOC N°: HSO-SBT-PL-006 Iss/Rev : 1.1 October 31th, 2001 DATE : PAGE :

15

SERVICE DES BASSES TEMPERATURES (CEA/DSM/DRFMC/SBT)

7. RELIABILITY ASSURANCE

7.1 General

SBT is responsible for the reliability tasks to be performed for its Hardware. Relevant analysis will be performed and reviewed.

7.2 Reliability Analysis

A FMECA study and an Architectural Analysis study will be carried out. Results will be reviewed and included in the current design.

Identified Critical Points and/or Single Point Failures resulting from these analyses will be listed in the CIL.

In addition, a mathematical model is being developed so that the behavior of some critical components (e.g. Kevlar cords) can be better understood.

A test campaign is also being carried-out at SBT in order to have a complete characterization of the Kevlar (behaviour under environmental constraints, behaviour after cleaning, fatigue testing, etc).

8. SAFETY ASSURANCE

8.1 General

SBT will ensure that the rules of national safety authorities will be applied as well as safety regulations of the launch vehicle and launch pad.

Potential hazards to personnel and Flight Hardware will be identified and actions will be taken in order to eliminate them or reduce them to acceptable levels. This will apply throughout the MAIV phases.

8.2 Safety Assurance Analysis

A Safety analysis has already been performed on the Coolers Development Models. Results have been reviewed and included in the current design. The structural Failure mode meets the "Leak-before-Burst" requirement so that any catastrophic consequence in case of failure is avoided. A report will be issued.

9. QA ASSURANCE

9.1 General

SBT SCO PA Manager will be responsible for the implementation of QA requirements throughout the project life. He will participate to preparation of materials, components, processes and manufacturing specifications in cooperation with designers and test engineers. In all cases PA Manager will review and approve specifications to safeguard PA requirements.

9.2 Procurement

9.2.1 Selection of Procurement sources

Manufacturers and suppliers will be selected for their proven ability to supply materials & components parts to the required specifications together with the adequate documentation to verify that the requirements of the procurement specification have been met. Procurement sources will preferably have previous experience in supplying space-qualified items or materials.

9.2.2 Procurement Documents

Procurement documents and purchase orders will be reviewed for implementation of PA requirements.

9.2.3 Surveillance

SCO PA Manager (or its representative) will carry out surveys of facilities and Product Assurance Systems for critical materials and/or processes.

9.2.4 Incoming Inspection

All materials and assemblies will be inspected for compliance with the purchase order and specification. These records will be maintained in a dedicated folder and the database will be updated. An example of Incoming Inspection Record Sheet (Fiche d'Inspection) is given in annex A-1.

Incoming Inspections will include: review of the Certificate of Conformance & delivered documentation, visual inspection, and if needed testing and/or verification of critical parameters (i.e. dimensional check of specific parts).

9.3 Manufacturing & Assembly Control

9.3.1 Documentation

The Manufacturing and Assembly processes will be analyzed and the sequence of the various steps thoroughly planned. SCO PA Manager (or its representative) will perform surveillance of manufacturing and assembly activities, by means of inspection, for critical parameters of the processes & satisfactory workmanship.

Manufacturing and Assembly of SCO will be supported by appropriate documentation that will give full traceability. This documentation will comprises (this list is not exhaustive):

- MAIV Flow Chart including relevant inspections,
- Drawing List defining items to be manufactured,
- Declared Materials List & Declared Processes List,
- Manufacturing & Inspection Records.

If needed, in-house procedure will be developed for the project. These procedures will be written in French and will be submitted to SAp PA Manager for review & approval.

9.3.2 Reviews

A Formal Review will be held prior to release drawings for manufacturing.

9.3.3 Metrology & Calibration

All special tools & measuring equipment to be used on the SCO Project (wire bonding equipment, oven, balance, mass spectrometer, ...) will be submitted to a calibration program. They will also be marked. The mark will include (as a minimum):

- serial number,
- last & next date for calibration & maintenance.

A list of those special tools & measuring equipment will be issued and maintained by QA.

9.3.4 Inspection Points

KIP & MIP have been identified in the MAIV Flow Chart (see doc. RD02) and will be reported in the associated planning, so that upper level representatives will be kept informed and could attend these Inspection Points if desired.

<u>9.3.5 Storage</u>

Dedicated shelves will be used to store all materials & components. These shelves will be located in a dedicated area and will only be accessible to authorized personnel.

DOC N°: HSO-SBT-PL-006 Iss/Rev : 1.1 October 31th, 2001 DATE : 19

9.4 Integration & Test Control

9.4.1 Test Procedures

Tests procedures will be issued for Qualification & Acceptance Tests. They will contain, as a minimum:

- Definition of Hardware under test,
- Test objective, •
- Test sequence,
- Success criteria,
- Facilities & support equipment,
- Environmental conditions,
- Hazards/Risks (if any). ٠

These procedures will be fulfilled while playing ("as run" procedure). NCR or open points, if any, will also be reported on the "as run" summary.

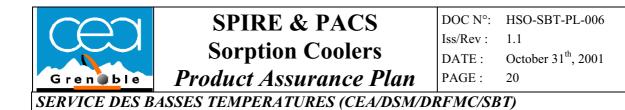
9.4.2 Test witnessing

Qualification & Acceptance Tests will be witnessed by PA to ensure that relevant procedure are followed and that adequate records of the activities & test results are taken.

9.4.3 Reviews

A Test Readiness Review (TRR) will be held before the start of each Qualification & Acceptance test. The aim of this review is to verify:

- the configuration under test ("as build" configuration),
- approval status of required documentation,
- the status of the Non-Conformities, Open Work, Waivers,
- readiness of test facility & associated equipment.


This review will give the agreement to proceed for testing.

After the tests, a Post-Test Review (PTR) will be held to assume that:

- no degradation of the tested equipment has occurred,
- test procedures have been completed,
- records of test data have been properly made,
- success criteria have been met.

This review will give the agreement to proceed to the release of the test article.

Test Review Boards will include, as a minimum, Project Manager, PA Manager, AIV Manager. Upper level representatives will be invited.

9.4.4 Test Reports

A Test Report will be issued for each test that and will include, as a minimum:

- a summary of test results,
- a list of NCR raised during testing,
- the "as run" procedure,
- test data,
- environmental control data,
- conclusion.

9.4.5 Logbook

A Logbook will be established for each of the equipment that will trace all operations and tests starting with the final inspection of the Hardware after the manufacturing/assembly phase.

This Logbook will be part of the Acceptance Data Package (ADP).

It will include (as a minimum):

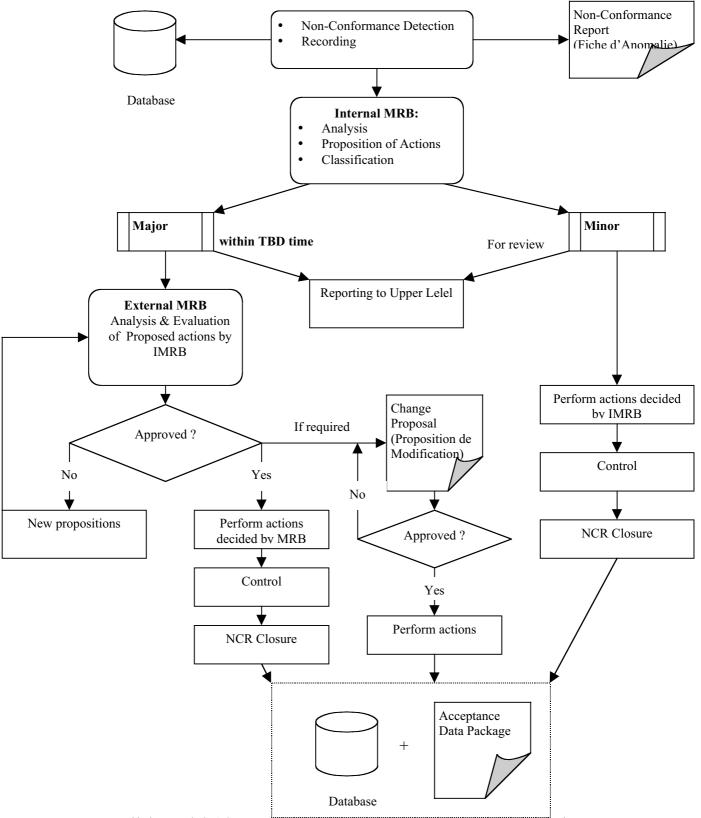
- record of operating time,
- record of mating / demating, commutations,
- operating time and cycles,
- appearance of Non-Conformances and corrective actions taken,
- list of tests or controls carried out.

9.4.6 Handling, Storage, Packaging, Marking & Labeling

A dedicated procedure will be issued explaining how to identify, safely handle and store the various SCO, taking into account the contamination & cleanliness requirements. Effective implementation of this procedure will be verified by QA. Transportation of SCO will be done using a dedicated container.

9.5 Non-Conformances Control

9.5.1 General


PA Manager will establish a Non-Conformances Control system. He will be responsible for its effective application throughout the project life.

9.5.2 Non-Conformances Definition & Classification

Refer to doc. SCI-PT-RQ-04410 (PA Requirements for FIRST/Planck Scientific Instruments).

9.5.3 Non-Conformance Control System

This document is CEA-SBT property and cannot be reproduced or communicated without its authorisation

9.5.3.1 Non-Conformance Detection

Immediate action:

As soon as a Non-Conformance is detected, the following steps will be applied:

- maintain in its current state the item under review,
- prevent it from any degradation that may result from this Non-Conformance,
- mention the Non-Conformance on the document used to support the activity at this time (Inspection Record Sheet, Logbook, Procedure, ...),
- inform the PA Manager & the Project Manager so they can decide how to manage it.

Recording

If the Non-Conformance is confirmed, it is recorded on a dedicated record sheet (Non-Conformance Report (NCR) – see example in annex A-2). This NCR is then put under configuration by QA that will give it a unique number and update the database. This number is to be reported on the document supporting the activity at this time.

9.5.3.2 Internal MRB

In order to analyze the Non-Conformance, an Internal Material Review Board (IMRB) will be held, which purposes are:

- to identify the causes of the Non-Conformance,
- to evaluate the consequences,
- to propose corrective & preventive actions,
- to propose a classification.

This Board will be chaired by the PA and will be composed of the Project Manager and further specialists on request.

9.5.3.3 Action Propositions

MRB will issue corrective & preventive action propositions that will be fully documented. The nature of these actions can be :

- 'scrap',
- 'use as is', (note that if a specification requirement remains violated, a Request for Waiver (RFW) will be issued and submitted for approval),
- 'repair',
- 'modification' (in this case a formal Change Proposal will be issued and submitted for approval).

These action propositions will be mentioned on the NCR or in the MRB minutes.

9.5.3.4 Upper Level Notification

Once issued and recorded, the NCR is send to the affected entities. If the NCR is classified as Major, it will be send under TBD time to the upper level. Minor ones will also be sent to upper level for review.

9.5.3.5 External MRB

If a Non-Conformance is classified as Major, an External MRB (EMRB) will be held with upper level representatives. Its purposes are to analyze the actions proposed by the IMRB and to approve them or not. If not, new propositions should be issued.

This MRB will be composed, in addition to IMRB, of the upper level PA Manager, Project Manager and further specialists on request.

9.5.3.6 Performing of Actions & Control

The person in charge of the activity will implement the proposed & approved actions. QA will ensure that these actions have been properly implemented.

9.5.3.7 Change Proposal

In case of modification, a formal Change Proposal will be issued and submitted for approval. This Change Proposal will be submitted to Configuration Control.

9.5.3.8 Closure

Once the appropriated actions are realized & controlled, the NCR will be formally closed. For that purpose it should be signed off by PA Manager. The NCR database will also be updated.

In any case, all NCR relative to an equipment should be closed before equipment delivery.

9.5.3.9 NCR resulting from a subcontractor

Any Non-Conformance that occurred at one of the contractor's premises will be noted on an SBT NCR and the database will be updated.

9.5.3.10 NCR Database

A database will be issued (Excel file) in order to ensure full traceability of problems occurring during MAIV phases. An example of such a file is given in Annex A-3.

9.5.3.11 NCR Reporting

The NCR status report will be presented at equipment reviews (TRR, PTR, DRB, ...) and be part of the Acceptance Data Package.

9.6 Acceptance & Delivery

9.6.1 Delivery Review Board

Upon completion of final test & inspection and prior to shipment of any deliverable item, a Delivery Review will be held. The purpose or this review is to ensure that there is adequate documentary evidence to demonstrate that the equipment has satisfied all requirements and identify any possible open work.

The following topics will be reviewed (not exhaustive):

- status of deliverable item ("as build" configuration), ٠
- review Change Proposal status, •
- evaluation of test results, •
- status of waivers.
- cleanliness status (if required), •
- review of deliverable documentation. •

The DRB will be composed, as a minimum, of the equipment's PA & Project Managers & upper level's PA & Project Managers.

9.6.2 Acceptance Data Package

An Acceptance Data Package (ADP) will be issued to provide the upper level with sufficient information to continue their work without continuous support of the supplying party. Nevertheless, support can be provided on request.

A typical content of ADP is given in RD03.

10. SOFTWARE PRODUCT ASSURANCE

This chapter is not applicable in the scope of this Project.

DOC N°: HSO-SBT-PL-006 Iss/Rev: 1.1 DATE: October 31th, 2001 PAGE: 26

SERVICE DES BASSES TEMPERATURES (CEA/DSM/DRFMC/SBT)

<u>11. CONFIGURATION MANAGEMENT & CONTROL</u>

11.1 General

A Configuration Management System will be issued to provide systematic and uniform configuration identification, control & accounting of an deliverable item throughout the design, development, fabrication & testing up to and including its acceptance by the upper level authority.

It will be composed of a document database and several configuration files (one per deliverable item – see example in annex A-4).

<u>11.2 Configuration Items</u>

SBT Configuration Items include:

- Deliverable Items (2 CQM, 2 PFM & 1 FS),
- Relevant Documentation (applicable documents & project documents).

<u>11.3 Configuration Items Data List (CIDL)</u>

For each Deliverable Item a CIDL will be issued. This CIDL will be composed of:

- List of applicable documents,
- List of drawings,
- List of project documents,
- List of NCR,
- Configuration File of the Deliverable Item.

This list will be updated for each review and will give the current status of the Deliverable Item.

<u>11.4 Documentation Control</u>

11.4.1 Identification

Documentation generated by SBT will be referenced as explained below:

HSO-SBT-xx-nnn-I-R

DOC N°: HSO-SBT-PL-006 Iss/Rev : 1.1 DATE : October 31th, 2001 PAGE : 27

SERVICE DES BASSES TEMPERATURES (CEA/DSM/DRFMC/SBT)

Where:

- HSO identifies the project
- SBT identifies the institute
- xx identifies the type of the document (see table 11.1 below)
- nnn is a sequential number which comes from the documentation database
- I Issue of the document
- R Revision of the document

FC	Flow Chart
ICD	Interface Control Document
LI	List
MoM	Minutes of Meeting
PL	Plan
PR	Procedure
QA	Quality Assurance
RP	Report
SP	Specification
TN	Technical Note

Table 11-1: Document identification

11.4.2 Storage

Project documents will be stored using their reference (eg HSO-SBT-PL-001-1-0.doc). Other documents will keep their original names.

Documents under configuration control will be stored in a dedicated directory so that they can only be accessed in a read-only mode.

<u>11.4.3 Backup</u>

Backup will be performed on a weekly basis on CD-ROM.

11.5 Approval Procedure

Project documents will be reviewed & approved by both PA & Project Managers. They will also be submitted to upper level management for approval.

<u>11.6 Configuration Status Accounting</u>

A database will be generated, which will trace all documents associated to the qualification of the equipment.

Configuration files will also be maintained for each article reflecting its current status ("as built").

<u>11.7 Change Processing</u>

Changes to an approved configuration are only possible after formal approval. Change Requests (CR) will be issued and discussed with upper level authorities if affecting I/F or approved documentation.

<u>11.8 Implementation Verification</u>

Implementation verification will ensure that the as-designed configuration, which is specified in the database, is consistent with the actual hardware implementation.

Annexe A-1: example of Incoming Inspection Record Sheet

Greneble	SPIRE & PACS Sor FICHE D'INSI (FI)		Référence : HSO-SBT-FI
SERVICE DES BAS	SES TEMPERATURES	5	
Type d'inspection :			Date :
1. Approvisionnement	3. Réception piè	eces	Nom :
2. Equipement	4. Autre		
Type de contrôle :			Signature :
1. Visuel	3. Fonctionnel		
2. Dimensionnel	4. Autre		
Renseignements con	cernant l'équipement à	inspecter :	
Modèle concerné :			
Nom et réf. item :			
Fabriquant :	Sou	s traitant :	
Renseignements qua	lité :		
PV contrôle :	Réf	érence spéc. :	
Anomalie(s) : Visa Projet - Nom, dat Visa Qualité – Nom, d		Si oui, Ref FA :	

Fiche d'inspection – PDT/LD – Edition 1 – 26/03/01

SERVICE DES BASSES TEMPERATURES

Anne	xe A-2: exar	nple of N	Ion-Conformance	Report		
Greneble		E PACS Sa E D'AN (FA	Référence : HSO-SBT-FA			
SERVICE DES BA	SSES TEMPI	ERATURI	ES			
Date :		N	lom de l'émetteur :			
Intitulé fiche d'ano	malie :					
Renseignements con	ncernant l'équ	uipement .	:			
Modèle concerné :						
Nom et réf. item :						
Phase de constat et	conditions d'a	environne	ment :			
□ Fabrication □ F	Recette	□ Intégratio	on 🗆 Test	□ Autre		
□ Ambiante □ V	/ide thermique	□ Vibration	n 🗆 Vide / Press	ion 🗆 Autre		
Analyse : Classification Actions correctives		Majeure				
Actions préventives	:					
Dispositions finales	•					
		🗆 Réparatio	-	□ Rebut		
Autorisation pour dispositions et actions	Responsable te	echnique	Responsable AP	Chef de projet		
Entité responsable						
Niveau supérieur						
Clos le :	Par :	I	Visa :			

Fiche d'anomalie – PDT/LD – Edition 1 – 26/03/01

Annex A-3: example of NCR Database

SPIRE PCAS Sorption Coolers

Liste des Anomalies

HSO-SBT-	FA-nnn													
FA #	date	auteur	Libellé	Modèle	s/s ensemble	référence	classe	status	actions correctrices	actions préventives	réf MRB	date clôture	DM associée	Comentaire
001														
002														
003														
004														
005														
006														
007														
008														
009														
010														
011														
012														
013														
014														
015														
016														
017														
018														
019														
020														

Annex A-4: example of Deliverable Item Configuration File

	n° pièce	Issue	DM	FA	Identification	Marquage Laser	Titre	Matière	Qté	Masse (estimée)	Masse (mesurée)	Traceability comment	Treatement	FI#	Comme
В	000	В				2000-14-B000/1									
В	100	в					Composants Divers								
В	101	в				2000-14-B101/1	Outillage anti rotation	304L	1						
В	109	в					Vis Poulie	TA6V ELI	14	0,5					
в	114	в					Vis Poulie Percée	TA6V ELI	4	0,9					
в	119	в					Butée	TA6V ELI	1	1.4					
в	120	в					Butée	TA6V ELI	1	1.1					
в	124	в				2000-14-B124/1	Capot Pompe	6061	1	73,9					
в	128	B					Roue Dentée	TA6V ELI	4	0.3					
в	129	в					Poulie de Tension	TA6V ELI	4	1,1					
в	132	в					Cliquet	TA6V ELI	4	0.3					
в	134	в					Vis de Centrage	TA6V ELI	2	1,3					
в	135	в					Vis de Centrage	TA6V ELI	2	1					
в	136	в					Tube Guide	2017 A	5	3.9					
в	137	c	004			2000-14-B137/1	Capot Evaporateur	6061	1	10,7					
		в	004			2000-14-B138/1			1				Cold cloted		
В	138						Lame Conductrice	CuC1		2			Gold plated		
В	200	в				2000-14-8200/1	Pompe-Ligne-Evaporateur	T101/511							
В	201	в					1/2 Evaporateur Femelle	TA6V ELI	1	20,8					
В	202	В					1/2 Evaporateur Måle	TA6V ELI	1	22,3					
в	203	С	003				1/2 Coupelle Femelle Evaporateur	CuC1	1	14,5					
В	204	в					1/2 Coupelle Mâle Evaporateur	CuC1	1	7,9					
в	205	в					Tube Evaporateur	TA6V ELI	1	2,7					
в	206	в					Mousse	Procelit P16(1	3,4					
в	207	в					1/2 Pompe Mâle	TA6V ELI	1	37,3					
В	208	в				2000-14-B200/1	1/2 Pompe Femelle	TA6V ELI	1	31,1					
в	209	в					Manchon	TA6V ELI	1	3,6					
в	210	С	002				Bague Shunt	CuC1	1	10,4			Gold plated		
в	211	в					Tube sortie Pompe	TA6V ELI	1	1,7					
в	212	в					Etui à Charbon	CuC1	1	5.88					
в	213	в					Poulie	TA6V ELI	16	0,3					
в	214	в					Axe Poulie	TA6V ELI	16	0.1					
в	217	в					Bague pour Grille	TA6V ELI	1	0,4					
в	218	в					Disgue Grillage	304L	1	0,4					
в	219	в					Bout Froid Evaporateur	CuC1	1	21,6			Gold plated		
в	220	в					Bout Froid Pompe	CuC1	1	16,9			Gold plated		
в	221	в					Capot	TA6V ELI	i	0.6			Cold plated		
В	300	c	001			2000-14-B300/1	Interrupteur Thermique	TAOVILLI		0,0					
В	301	в	001			2000-14-0300/1	Tête Interrupteur	CuC1	2	11.9			Gold plated		
B	301	В					Embase Interrupteur	CuC1	2	39.1			Gold plated		
B	302	В						TA6V ELI	2	0.6			Goid plated		
	305	č	001				Support Tête Tube Mini Pompe		2	0,6					
В			001					304L							
В	306	С	001				Mini Pompe	304L	2	2,4					
В	307	в					Bouchon Mini Pompe	304L	2	0,2					
В	308	в					Capot	TA6V ELI	2	0,6					
в	309	в					Tube Support	TA6V ELI	2	1,9					
в	310	в				2000-14-B300/1	Support Interrupteur	TA6V ELI	2	14,8					
в	311	в					Limiteur	TA6V ELI	2	2,2					
в	313	в					Cache	TA6V ELI	2	0,8					
в	400	в				2000-14B400/1	Structure								
в	401	в					Semelle	TA6V ELI	1	235,2					
в	402	в					Plaque Inférieure	TA6V ELI	1	150,4					
в	403	Ċ	006			2000-14-B400/1	Plaque Supérieure	TA6V ELI	1	173,4					
в	404	B				2000-14-B404/1	Plaque Latérale	TA6V ELI	1	81.5					
в	405	в				2000-14-B405/1	Plaque Cote Fixation	TA6V ELI	1	56					
в	406	c	005				Cadre Evaporateur	TA6V ELI	1	140,2					
В	400	в	000				Cadre Pompe	TA6V ELI	1	221,3					
В	530	В				2000-14-B-530/1		AUV ELI		221,3					
В	530					2000-14-B-530/1 2000-14-B530/1	Embout de Tresse	CuC1	1	6.1			Gold plated		
		В	007			2000-14-0030/1				6,1					
В	532	c	007			2000 44 D 540/4	Embout de Tresse	CuC1	1	5,5			Gold plated		
B B	540 541	в				2000-14-B-540/1	Strap Evaporateur								
		в				2000-14-B540/1	Embout de Tresse	CuC1	1	6.6			Gold plated		