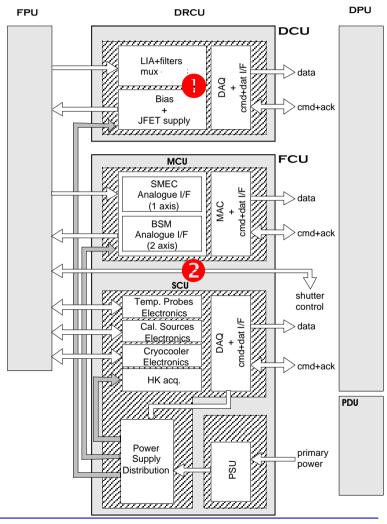


DRCU Design and Interfaces C. CARA

DRCU Engineer

Overview


- The **DRCU** is a two box units:
 - The FPU Control Unit comprises
 - The FTS and BSM associated electronics which constitutes the Mechanisms Control Unit
 - The Calibrators, cooler and thermometer associated electronics along with the power control functions which constitutes the Subsystems Control Unit
 - The Power Supply
 - The Detector Control Unit comprises analog and digital electronics exclusively devoted to bolometers operation
- The WIH comprises all DPU to FCU and DCU harnesses and DRCU subsystem power distribution harnesses

Block Diagram

- The Detector Control Unit
- The FPU Control Unit
- ◆ The Mechanisms Control Unit
- ◆ The Subsystem Control Unit
- ◆ The Power Supply Unit

DCU Specifications (1)

Analog Processing channels

- Functions: receive, amplify, demodulate & filter bolometer signals
- 336 total number : 288 for photometer & thermometer +
 66 for spectrometer
- Specifications:
 - gains:

- Photometer: 375

Spectrometer: 265

Input signal bandwidth:

Photometer: 0.1 to 5 Hz

Spectrometer: 0.1 to 25 Hz

Input noise ≤ 7 nV rms/rt(Hz)

DCU Specifications (2)

- Analog Processing channels ...
 - Signal dynamic

- **Photometer: 270 000**

- **Spectrometer** : **170 000**

DCU Specifications (3)

Bias generators

- Functions: generate AC and DC biases for bolometers and JFETs
- 2 types are defined:
 - Adjustable AC biases:
 - Photometer: 1 sine generator / 4 channels with independent amplitudes
 - Spectrometer: 1 sine generator / 2 channels with independent amplitudes
 - Adjustable DC biases (with on/off command):
 - Photometer: 12 generators for JFET + 1 for heater
 - Spectrometer: 3 generators for JFET + 1 for heater

DCU Specifications (4)

Bias generators ...

Specifications:

AC bias

- Voltage range is 0 to 200 mV rms for bolometers and 0 to 500 mV for thermometers
- Accuracy: 1 mV (equivalent to 8-bit DACs)
- Frequency range: 50 to 300 Hz

DC bias

- Voltage range (Vss): 0 to -5 V
- Output current: 5 mA max

DCU Specifications (5)

Data acquisition & DPU interface

- Functions: digitize signals (from bolometers & H/K parameters), built / transmit data formats, receive / decode low-level commands.
- Specifications:
 - Digitizing resolution: 19 bits (16-bit ADC + 4-bit offset)
 - Frame rate: 1 to 1/256 of AC bias frequency (max. 300 Hz)
 - Frame acquisition time ≤ 3 ms
 - Data formats and Command are defined in DRCU ICD
 - Electrical interface : RS422

SCU Specifications (1)

Cooler Control Electronics

- Functions: provide cryo-cooler heaters (gas switches + sorption pump) and FPU temperature stabilization heater with biases
- Specifications :
 - Heater bias :
 - 4 channels
 - » 1 high power : 0 to 500 mW (pump recycling)
 - \gg 3 low power : 0 to 200 μ W (gas switch+temperature stabilization)
 - Adjustable over 4000 steps

SCU Specifications (2)

- Temperature probe electronics
 - Functions: provide biases for temperature probes and digitize
 - Specifications :
 - Temperature probes :
 - 16 total channel number :
 - » 2 for "300 mK" range
 - » 14 for measurement above 1 K
 - 16-bit digitization
 - DC or AC (square) generators in the range 0.1 μ A to 10 μ A

SCU Specifications (3)

Calibrators Control Electronics

- Functions: provide biases for calibrator blackbodies, monitor voltage & current across the resistors
- Specifications:
 - Current bias:
 - 3 channels
 - » 2 point sources : 0 to 10 mW (into R_{bh} =200 Ω)
 - » 1 flood source : 0 to 7 mW (into R_{bb} =200 Ω)
 - » Time constant (PCAL) : \leq 6 ms
 - » Stability/repeatability: max. of 5 μA or 0.5%
 - Adjustable over 4000 steps

SCU Specifications (4)

Power Distribution Electronics

- Functions: provide sub-systems with power supply on/off switching and DCU main/redundant power switching
- Specifications :
 - 18 individual lines to be interrupted
 - 8 groups of power lines to be interrupted independently:
 - DCU LIA P
 - DCU LIA S
 - DCU DAQ
 - DCU_BIAS_P
 - DCU BIAS S
 - MCU MAC
 - MCU_SMEC
 - MCU_BSM

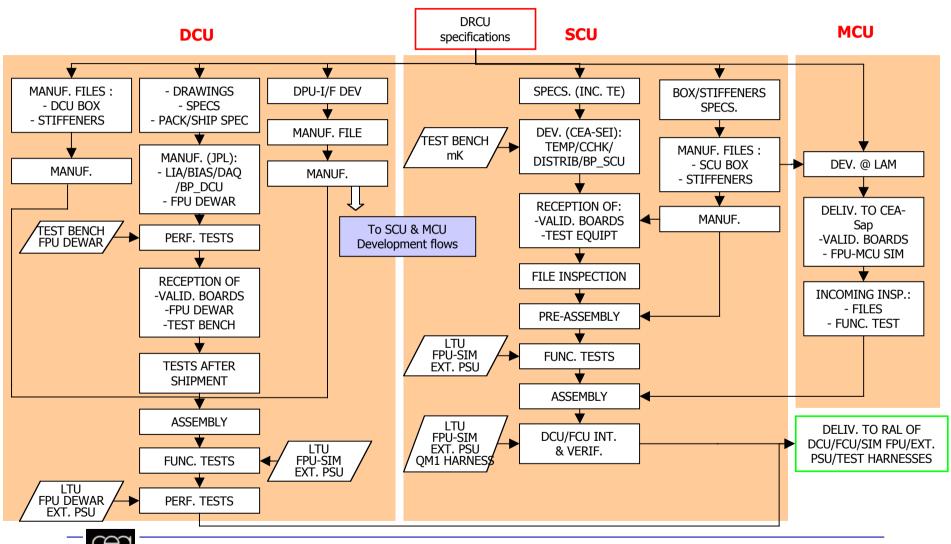
SCU Specifications (5)

Data acquisition & DPU interface

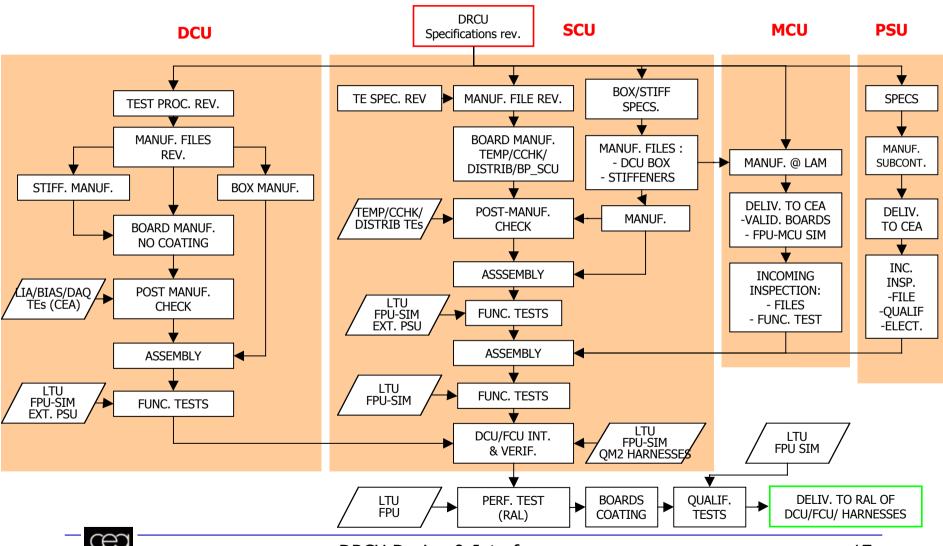
- Functions: collect digitized signals (from temperature probes & calibrators), digitize HK parameters (secondary supply voltages), built / transmit data formats, receive / decode low-level commands.
- Specifications:
 - HK Digitizing resolution: 8 bits
 - Data formats and Command are defined in DRCU ICD
 - Electrical interface: RS422

PSU Specifications

- Functions: provide DRCU sub-systems with secondary power supplies from S/C power bus
- Specifications :
 - Secondary voltage normalized to +/- 9 V("analogue") and 5 V "digital") except for MCU
 - All power returns are isolated (DC/DC converter side)
 - Efficiency better than 70%
 - Power interface with S/C: compliant IID-A §
 - Running frequency: synchronized by space-craft CDMU synchronization signal
 - N x 131 kHz
 - Sync. electrical interface is tbd (likely diff. receiver)

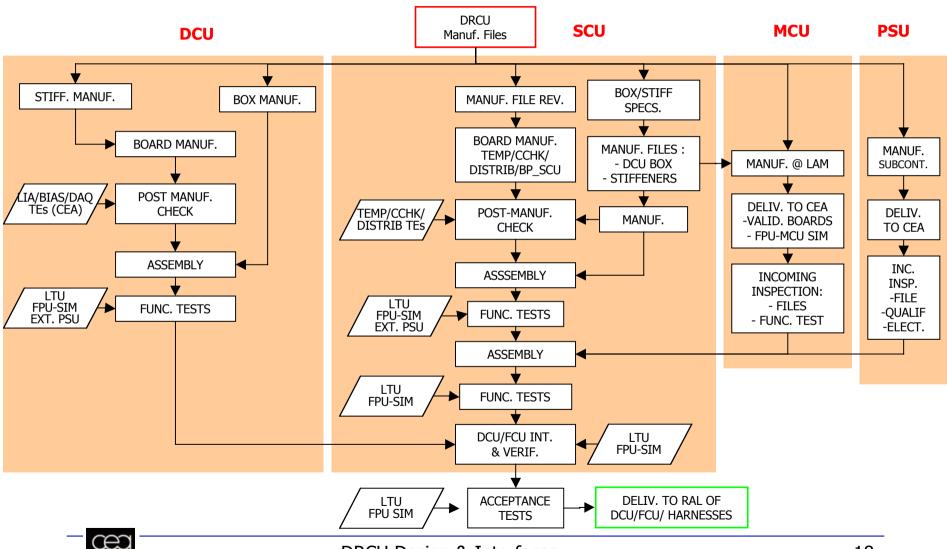

MCU Specifications

• See dedicated presentation ...



Development Plan (QM1)

Development Plan (QM2)



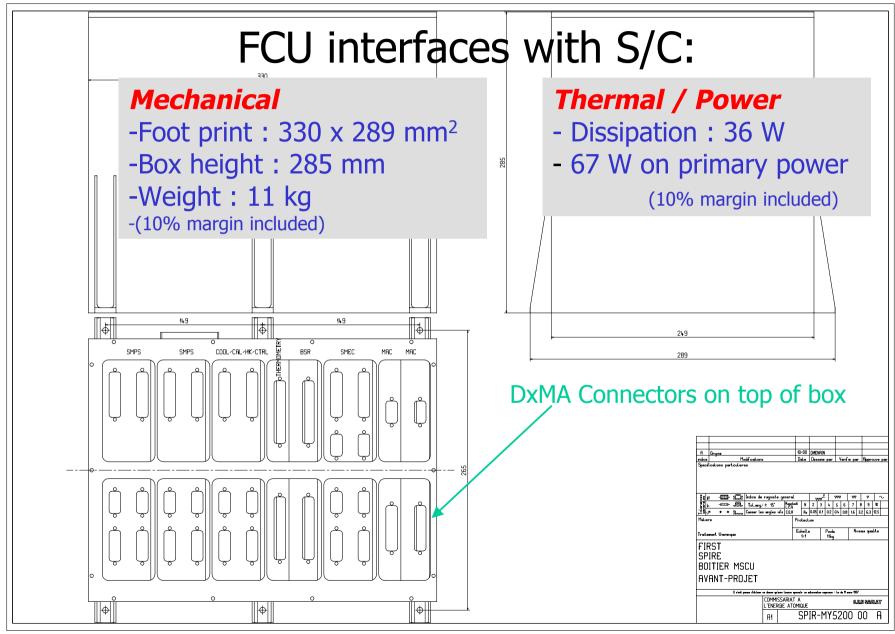
Development Plan (FM)

Design Status (1)

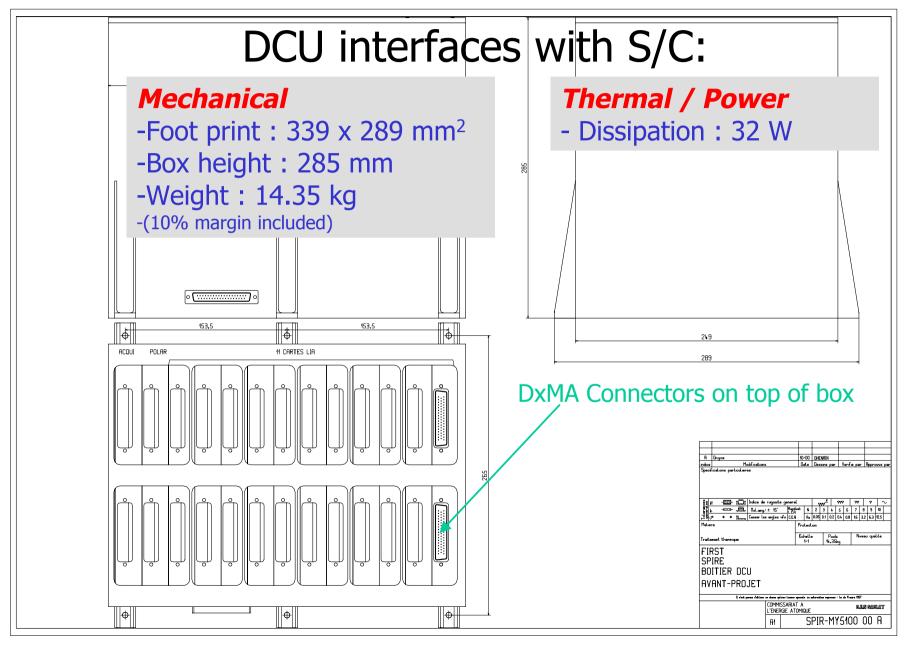
- Detector Control Unit
 - QM1 development is divided into:
 - → Phase 1: July 2000 to December 2000
 - Breadboard design & testing including 2 analog channels, 1 bias channel and 1 data acquisition channel.
 - Goal: elementary functions & internal interfaces optimization
 - → Phase 2: January 2001 to July 2001
 - QM1 design including 5 complete analog boards (2 for photometer & 3 for spectrometer), 1 bias board and 1 data acquisition board.
 - Electrical schematics are ready verification in under progress
 - QM1/QM2/FM Part lists released
 - Ends with DDR foreseen in August
 - → Phase 3: Realization and Test at JPL
 - → Phase 4: integration and test at SACLAY

Design Status (2)

Mechanisms Control Unit: see dedicated presentation



Design Status (3)


- Sub-systems Control Unit
 - QM1 development is divided into:
 - → Phase 1: January 2001 to July 2001
 - Breadboard design & testing for critical functions:
 - 0.3 Kelvin thermometry channel
 - "high power" bias for cooler recycling.
 - → Phase 2: September 2001 to end 2001
 - QM1 design

Critical Areas

Part Procurement :

Design status does not allow to finalize part list

PSU:

- Development is on critical path for QM2 delivery
- → Specifications to be frozen as soon as possible
- → Contacts with potential sub-contractors started

DRCU specifications :

 Internal grounding scheme remains difficult to define due to isolation requirement between photometer and spectrometer instrument

Future ...

- Finalize internal grounding scheme
- PSU specification completion for submission to subcontractor
- Finalize design of cooler/temperature sensor electronics (elementary "bricks" exist)
- Perform an FMECA on DCU and FCU designs

