SPIRE Sensitivity Models

SPIRE-QMW-NOT-000642 Issue 2.0

Matt Griffin

22 January 2002

This is an update to the note issued for the SPIRE IIDR (April 6 2001). Changes with respect to that version are relatively minor and are indicated in blue.

The attached MathCad models describe the computed sensitivities of the SPIRE photometer and spectrometer for point source and mapping observations. The main assumptions made in estimating the scientific performance of the instrument are listed below. Additional assumptions are given in the worksheets.

Telescope			
Telescope temperature (K)	80		
Telescope emissivity	0.04		
Telescope used diameter (m) (1)	3.29		
No. of observable hours per 24-hr period	21		
Photometer			
Bands ($\mu \mathrm{m}$)	250	363	517
Numbers of detectors	139	88	43
Beam FWHM (arcsec.)	17	24	35
Bolometer DQE (2)	0.73	0.68	0.61
Feed-horn/cavity efficiency (3)	0.60	0.65	0.70
Filter widths ($\lambda / \Delta \lambda$)	3.0	3.2	3.0
Throughput	λ^{2}		
Bolometer yield	0.8		
Field of view (arcmin.) $\quad \begin{aligned} & \text { Scan mapping } \\ & \text { Field mapping }\end{aligned}$	$\begin{aligned} & 4 \times 8 \\ & 4 \times 4 \end{aligned}$		
Overall instrument transmission	0.3		
Observing efficiency (slewing, setting up, etc.)	0.9		
Chopping efficiency factor	0.45		
Reduction in telescope background by cold stop (4)	0.8		
FTS spectrometer			
Bands ($\mu \mathrm{m}$)	200-315		670
Numbers of detectors	37		
Bolometer DQE	0.70		
Feed-horn/cavity efficiency	0.70		
Usable field of view diameter (arcmin.)	2.6		
Max. spectral resolution (cm^{-1})	0.04		
Overall instrument transmission	0.15		
Signal modulation efficiency	0.5		
Observing efficiency	0.8		
Electrical filter efficiency	0.8		

Notes:

1. The telescope secondary mirror is the pupil stop for the system, so that the outer edges of the primary mirror are not seen by the detectors. This is important to make sure that radiation from highly emissive elements beyond the primary reflector does not contribute stray light.
2. The bolometer DQE (Detective Quantum Efficiency) is defined as $\left[\frac{N E P_{p h}}{N E P_{\text {Total }}}\right]^{2}$ where $N E P_{p h}$ is the photon noise NEP due to the absorbed radiant power and $N E P_{\text {Total }}$ is the overall NEP including the contribution from the bolometer noise.
3. This is the overall absorption efficiency of the combination of feed-horn, cavity and bolometer element.
4. A fraction of the feedhorn throughput falls outside the solid angle defined by the photometer 2-K cold stop and is thus terminated on a cold (non-emitting) surface rather than on the 4% emissive $80-\mathrm{K}$ telescope. This reduces the background power on the detector.

Summary:

	Photometer band $(\mu \mathbf{m})$			FTS band $(\mu \mathbf{m})$		
	250	350	500	$200-315$	$315-670$	
Background power/detector	pW	3.8	3.0	2.6	11	11
Background-limited NEP	$\mathrm{W} \mathrm{Hz}^{-1 / 2} \times 10^{-1 /}$	7.9	5.9	4.6	11	14
Overall NEP (inc. detector)	$\mathrm{W} \mathrm{Hz}^{-1 / 2} \times 10^{-1 /}$	9.3	7.1	5.9	13	16

Table Error! No text of specified style in document.-1 - Background power and photon noise-limited NEPs for SPIRE.

Line spectroscopy $\Delta \sigma=\mathbf{0 . 0 4} \mathbf{~ c m}^{-1}$					
λ	um	$200-315$	$315-500$	$500-670$	
$\Delta \mathrm{~S}(5-\sigma ; 1-\mathrm{hr})$	$\mathrm{W} \mathrm{m} \mathrm{m}^{-2} \times 10^{-17}$	Point source	4.7	4.0	$4.0-5.6$
	2.6^{\prime} map	13	11	$11-15$	

Low-resolution spectrophotometry $\Delta \sigma=\mathbf{1 ~ c m}^{-1}$					
λ	um			$200-315$	$315-500$
$\Delta \mathrm{~S}(5-\sigma ;$ 1-hr)	mJy	Point source	160	140	$140-190$
	2.6 ' map	430	360	$360-500$	

SPIRE_Phot_5_IBDR.MCD 22 Jan 2002

* Prepared for SPIRE IBDR
* Includes estimation of sensitivity to temperatures of telescope and SPIRE instrument stages
* Filter bands updated to reflect filter DDR and horn specification definition (now 250, 363, $517 \mu \mathrm{~m}$)
* Feedhorn efficiencies and DQE values updated according to the BDA SSSD SPIRE-JPL-PRJ-000456 Working Version, 7 November 2001
* Revised analysis of PCAL requirements

Previous versions:

SPIRE_Phot_1.MCD 21 November 2000

* Version prepared for Systems Design Review and Toledo Meeting

SPIRE_Phot_2_IIDR.MCD April 2001

* Version prepared for IIDR

SPIRE_Phot_3_SCM.MCD April 2001

* Version prepared for SPIRE Consortium meeting July 2001
* Proposed $0.56-\mathrm{m}$ central obscuration included

$$
\begin{array}{llll}
\text { Constants } & \mathrm{h} \equiv 6.626 \cdot 10^{-34} \mathrm{c} \equiv 3 \cdot 10^{8} & \mathrm{~kb} \equiv 1.38 \cdot 10^{-23} & \begin{array}{l}
\text { Planck } \\
\text { function }
\end{array} \\
\mathrm{i} \equiv 1,2 . .3 & \text { origin } \equiv 1 & \mathrm{nu}, \mathrm{~T}):=\frac{2 \cdot \mathrm{~h} \cdot(\mathrm{nu})^{3}}{\mathrm{c}^{2} \cdot\left[\mathrm{ee}^{\left(\frac{\mathrm{h} \cdot \mathrm{nu}}{\mathrm{~kb} \cdot \mathrm{~T}}\right)}-1\right]}
\end{array}
$$

Assumptions

Telescope
Dtel $\equiv 3.285$
Ftel := 8.68
Diameter of central

Area $\left(m^{\wedge} 2\right) \quad$ Atel $:=0.25 \cdot \pi \cdot\left(\right.$ Dtel $^{2}-$ Dobs $\left.^{2}\right)$
Temp.
Ttel $\equiv 80$
obscuration (m)
Dobs $\equiv 0.56$

$$
\begin{aligned}
& \text { Percentage } \quad \text { Obs_percent }:=\left(1-\frac{8.229}{8.475}\right) \cdot 100 \\
& \text { obscuration }
\end{aligned}
$$

$$
\text { Obs_percent }=2.9
$$

$$
\mathrm{PS}=7.23
$$

PSA $=12.6$

Beamwidths (arcsec.):

$$
\begin{aligned}
& \text { PS }:=\frac{1}{\text { Dtel } \cdot \text { Ftel }} \cdot \frac{360}{2 \cdot \pi} \cdot 3.6 \\
& \text { PSA }:=\text { PS } \cdot \frac{8.68}{5}
\end{aligned}
$$

Plate scale at telescope focus ($\mathrm{arcsec} / \mathrm{mm}$):

$$
\mathrm{FWHM}_{\mathrm{i}}:=\frac{1.11 \cdot \lambda_{\mathrm{i}} \cdot 10^{-6}}{\text { Dtel }} \cdot \frac{360}{2 \cdot \pi} \cdot 3600 \quad \mathrm{FWHM}_{\mathrm{i}}=
$$

$$
\eta \text { tel } \equiv 0.7
$$

17.4
25.3
36

Final optics focal ratio

$$
\text { Ffin }:=5
$$

Cold stop attenuation of telescope background:

$$
\eta \mathrm{cs}:=0.8
$$

Bolometer and feedhorn properties (see BDA Subsystem Spec. Doc. SPIRE-JPL-PRJ-000456):
Overall optical efficiency of $\quad \eta$ feed_min := $0.45 \quad \eta$ feed_goal := 0.85
horn + bolometer combination
Assume intermediate value with slightly better performance for the larger horns. Note: Mapping speed scales with η feed and with sqrt(DQE)

$\lambda_{i}=$	feed_nom $_{\mathrm{i}}:=$
250	
363	0.60 517 0.65 0.70

Bands: defined by central wavelengths (in $\mu \mathrm{m}$) and resolution of the filters
$\lambda_{i} \equiv \quad R_{i}:=$

$\mathrm{i}=$	$\lambda_{i}=$	$\lambda L_{i}=$	$\lambda \mathrm{U}_{\mathrm{i}}=$	$\Delta \lambda_{i}=$	$v_{\mathrm{i}} \cdot 10^{-}$	$\nu L_{i} \cdot 1$	$v \mathrm{U}_{\mathrm{i}} \cdot$	Δv_{i}
1	250	208.3	291.7	83	1200	1029	1440	400
2	363	305.9	420.1	114	826	714	981	260
3	517	430.8	603.2	172	580	497	696	193

Waveguide diameters ($\mu \mathrm{m}$)

$$
\mathrm{D}_{-} \mathrm{wg}_{\mathrm{i}}:=\frac{\lambda \mathrm{U}_{\mathrm{i}} \cdot 1.841}{\pi}
$$

D_{-}wg $_{i}=$

171
246
353

Transmission, emissivity and temperature of optical elements $j \equiv 0,1 . .11 \quad k \equiv 0,1 . .12$
Tdets $\equiv 0.3$

$$
\mathrm{T} 2 \equiv 2.0
$$

$$
\mathrm{T} 4 \equiv 5.0
$$

	$=$	$\mathrm{t}_{\mathrm{k}} \equiv$	$\varepsilon_{\mathrm{k}} \equiv$	$\mathrm{T}_{\mathrm{k}} \equiv$	$\mathrm{td}_{\mathrm{j}}=$
0 = Telescope	0	0.960	0.04	Ttel	0.30
1 = input filter	1	0.900	0.100	T4	0.33
2 = M3	2	0.995	0.005	T4	0.34
3 = M4	3	0.995	0.005	T4	0.34
4 = M5	4	0.995	0.005	T4	0.34
5 = 4-K filter	5	0.900	0.100	T4	
6 = M6	5	0.995	0.005	T4	0.38
7 - $2-\mathrm{K}$ filter	6	0.900	0.300	T2	0.38
	7	0.995	0.005	T2	0.42
$8=\mathrm{M} 7$	8	0.900	0.100	T2	0.42
9 = Dichroic	9	0.995	0.005	T2	0.47
$10=\mathrm{M} 8$	10	0.525	0.100	Tdets	0.47
11 = Bandpass filter	11	0.900	0.100	Tdets	0.90
12 = Blocker	12				

Transmission from
element to detector $\operatorname{td}_{j} \equiv \prod_{k=j+1}^{12} t_{k}$

Note:

The 2-K filter is located at the 2-K pupil stop. An emissivity of 0.3 is ascribed to this component: 0.1 for the filter itself plus 0.2 for the spillover onto the cold-stop

Overall transmission of filter stack
$\mathrm{t}_{\mathbf{f}}$ filters $:=\mathrm{t}_{1} \cdot \mathrm{t}_{5} \cdot \mathrm{t}_{7} \cdot \mathrm{t}_{9} \cdot \mathrm{t}_{11} \cdot \mathrm{t}_{12}$
t _filters $=0.31$

Array parameters

Detector Numbers

Ndets $_{\mathrm{i}}:=$	Ndets $_{\mathrm{i}}=$
$15 \cdot 5+16 \cdot 4$	139 $13 \cdot 4+12 \cdot 3$ $9 \cdot 3+8 \cdot 2$

Horn size projected onto telescope focus (mm):

$$
\text { Dpix }_{\mathrm{i}}:=\left(\text { Dhorn }_{\mathrm{i}}\right) \cdot \frac{\text { Ftel }}{\text { Ffin }}
$$

Array dimensions at telescope focus centre-centre (mm):
$\operatorname{Lmm}_{\mathrm{i}}:=$ Nmax $_{\mathrm{i}} \cdot$ Dpix $_{\mathrm{i}}$ $\mathrm{Wmm}_{\mathrm{i}}:=\mathrm{Nmin}_{\mathrm{i}} \cdot$ Dpix $_{\mathrm{i}}$

Field size (arcmin):
$\operatorname{Larcmin}_{\mathrm{i}}:=\frac{\mathrm{Lmm}_{\mathrm{i}} \cdot \mathrm{PS}}{60} \quad$ Warcmin $_{\mathrm{i}}:=\frac{\mathrm{Wmm}_{\mathrm{i}} \cdot \mathrm{PS}}{60}$

Background power levels on the detectors

Throughput:

Power contribution absorbed by detector from any element (pW)

$$
\mathrm{A} \Omega_{\mathrm{i}}:=\eta \mathrm{cs} \cdot\left(\lambda_{\mathrm{i}} \cdot 10^{-6}\right)^{2}
$$

$$
\text { Power }_{\mathrm{i}, \mathrm{j}}:=\operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot 10^{12} \cdot \eta \mathrm{\eta feed}_{\mathrm{i}} \cdot \int_{\mathrm{vL}_{\mathrm{i}}}^{\mathrm{vU} \mathrm{U}_{\mathrm{i}}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega_{\mathrm{i}} \mathrm{~d} v
$$

Photon noise levels and single-detector NEFD

Photon noise limited NEP (full expression)

Overall NEP
(W Hz-1/2 x 10-17)
NEPtot $_{i}:=\frac{\mathrm{NEPph}_{i}}{\left(\mathrm{DQE}_{\mathrm{i}}\right)^{0.5}} \quad$ referred to the power absorbed by the detector
Detector NEP
NEPdet $_{\mathrm{i}}:=\left[\left(\text { NEPtot }_{\mathrm{i}}\right)^{2}-\left(\mathrm{NEPph}_{\mathrm{i}}\right)^{2}\right]^{0.5}$
(W Hz-1/2 x 10-17)

NEFD (mJy Hz-1/2) for point source chopped observations

$$
\mathrm{NEFDp}_{\mathrm{i}}:=\frac{\text { NEPtot }_{\mathrm{i}} \cdot 10^{-17} \cdot 10^{26} \cdot 1000}{\eta \mathrm{ch} \cdot \eta \text { tel } \cdot 2^{0.5} \cdot \text { Atel }^{2} \cdot \mathrm{td}_{0} \cdot \Delta \mathrm{v}_{\mathrm{i}} \cdot \mathrm{t}_{0} \cdot \eta \text { feed }_{i}} \quad \begin{aligned}
& \text { Factor of SQRT(2) from } \\
& \text { pixel-pixel chopping }
\end{aligned}
$$

NEFD (mJy Hz-1/2) for field mapping (jiggle mode)

NEFD (mJy Hz-1/2) for scan map observations without chopping

No factor of SQRT(2) in the denominator as we are not pixel-pixel chopping

Factor of SQRT(2) assumes need for background subtraction (probably pessimistic as background can be estimated by averaging a number of scan points)

1- σ; 1 sec. limiting flux densities (mJy):
$S_{-} 1 \sigma_{-} 1 s_{-}$point $_{\mathrm{i}}:=\frac{\text { NEFDp }_{\mathrm{i}}}{2^{0.5}} \quad$ S_$_{-} 1 \sigma_{-} 1 \mathrm{~s}_{-}$field $_{\mathrm{i}}:=\frac{\text { NEFD }_{\mathrm{i}}}{2^{0.5}} \quad$ S_1 $_{-} \sigma_{-} 1 \mathrm{~s}_{-} \mathrm{scan}_{\mathrm{i}}:=\frac{\text { NEFDs }_{\mathrm{i}}}{2^{0.5}}$
1- σ; 1 hr . limiting flux densities (mJy):

Point source photometry in 7-point mode:
Loss in S/N for point source due to need to make a 7-point map:

0.453
0.494
0.514

Deep mapping of one field for 1 hour in jiggle-map mode:

Loss in S / N for point source due to need to make a map:
S/N improvement through pixel co-addition

$$
\begin{aligned}
& \text { SN_imp }:=1.5 \\
& \text { SN_red }:=4
\end{aligned}
$$

S / N reduction through decrease in
integration time/point by factor of 16
Overall reduction in S / N

$$
\text { factor }:=\frac{\text { SN_imp }}{\text { SN_red }} \quad \text { factor }=0
$$

Deep mapping of one field for 1 hour in scan-map mode:

Note: this would not be done in practice as the telescope turn-around overhead would be unacceptable. But the calculation allows the sensitivity for large-scale maps to be estimated.
$1 \sigma ; 1$ hr limiting flux density for scan map (mJy)

Time to map 1 sq.deg. to the confusion limit in scan-map mode

Confusion limit for 1 source per 40 beams (mJy) using source count models of Rowan-Robinson (2000)
Δ Sconf_MRR $_{\mathrm{i}}:=$

19
20
15

Take 15 mJy as required
$5-\sigma$ limit for all three bands
Δ Sconf $_{\mathrm{i}}:=$

15
15
15

Time to reach confusion limit for one field at $5-\sigma$ (minutes)

Required overlap between fields:
T_1_field ${ }_{i}=$

$$
\text { overlap := } 1.2
$$

12.3
14.6

$$
5.9
$$

15.9

Number of fields to be mapped for 1 sq. deg.

Time needed (days)

$$
\mathrm{T}_{-} 1 _ \text {field }_{\mathrm{i}}:=\left(\frac{\Delta \mathrm{S}_{-} \text {scan_5_ } \sigma_{-} 1 \mathrm{hr}_{\mathrm{i}}}{\Delta \mathrm{Sconf}_{\mathrm{i}}}\right)^{2} \cdot 60
$$

Nfields $:=\frac{60^{2}}{4 \cdot 8} \cdot \frac{\text { overlap }}{\text { yield }}$
$T_{-} 1_{-} \mathrm{sq}_{-}$deg $_{\mathrm{i}}:=$ Nfields \cdot T_1_field $_{\mathrm{i}} \cdot \frac{1}{60 \cdot 21}$
Note: It is assumed (pessimistically) that the overlap
between fields does not lead to any S/N enhancement
T_1_sq_deg $_{\mathrm{i}}=$

1.7
2.0
2.1

Large area deep survey (nominally 100 sq. deg; 180 days):

Area of one field (sq. arcmin) taking bolometer yield into account

Area to be surveyed (sq. deg.)

Number of fields to be observed:

Time for survey:

Time for each field (hrs):
1- σ; 1-hr limiting flux density for scan map (mJy)

Large survey $5-\sigma$ flux density limit (mJy):

Afield $:=(4) \cdot(8) \cdot$ yield \quad Afield $=26$
Asurv := 100
Nfields $:=\frac{\text { Asurv } \cdot 60^{2}}{\text { Afield }} \cdot$ overlap \quad Nfields $=16875$
Tdays $:=180 \quad$ Tmonths $:=$ Tdays $\cdot \frac{12}{365} \quad$ Tmonths $=5.9$
Thrs := Tdays•21 Thrs $=3780$
TField := Thrs \quad TField $=0.224$
$\Delta \mathrm{S}_{-}$scan_1 $\mathrm{hr}_{\mathrm{i}}:=\frac{\text { Slim_scan_1 } \mathrm{hr}_{\mathrm{i}} \cdot \text { margin }}{\text { factor }}$
$\Delta \mathrm{S} _$surv_ $5 \sigma_{\mathrm{i}}:=\Delta \mathrm{S} _$scan_1 $\mathrm{hr}_{\mathrm{i}^{\mathrm{i}}}\left(\frac{1}{\text { TField }}\right)^{0.5} \cdot 5$
Δ S_surv_ $^{2} \sigma_{i}=$

Summary of power loading and sensitivity calculations

Pdet absorbed (pW)

$\lambda_{i}=$
250
363
517

NEPs (W Hz-1/2 E-17	
$\mathrm{NEPph}_{\mathrm{i}}=$ NEPtot $_{\mathrm{i}}=$	
7.9	9.3
5.9	7.1
4.6	5.9

NEFDs (mJy Hz-1/2)

NEFDp $_{i}=$	NEFDf $_{i}=$
36 40 41 NEFDs $_{i}=$ 52 59	33 36 37

	Point source 7-point (mJy) $5 \sigma 1 \mathrm{hr}$	Field Map (mJy $5 \sigma 1 \mathrm{hr}$)
$\lambda_{i}=$	Slim_7_pt_5_ ${ }_{-} 1 \mathrm{hr}_{\mathrm{i}}=$	$\Delta \mathrm{S}$ _field_ $1 \mathrm{hr}_{\mathrm{i}} \cdot 5=$
250	2.4	8.5
363	2.8	9.3
517	3.1	9.7

Point source 7-point (mJy) $5 \sigma 1 \mathrm{hr}$

Field Map (mJy $5 \sigma 1 \mathrm{hr}$)
Δ S_field_1hri $\cdot 5=$
Slim_7_pt_5_ $\sigma_{-} 1 \mathrm{hr}_{\mathrm{i}}=$

Scan Map (mJy $5 \sigma 1 \mathrm{hr}$)

1 sq.deg. 100 sq.deg. ($15 \mathrm{mJy} \mathrm{5} \mathrm{\sigma}$) 180 day survey Days
$\Delta \mathrm{S}_{-}$scan_5_ $\sigma_{-} 1 \mathrm{hr}_{\mathrm{i}}=\mathrm{T}_{-} 1$ _sq_ $\mathrm{deg}_{\mathrm{i}}=$
$\Delta \mathrm{S}_{-}$surv_5 $\sigma_{\mathrm{i}}=$

	Point source 7-point (mJy) $5 \sigma 1 \mathrm{hr}$	Field Map (mJy $5 \sigma 1 \mathrm{hr}$)
$\lambda_{i}=$	Slim_7_pt_5_ ${ }_{-} 1 \mathrm{hr}_{\mathrm{i}}=$	$\Delta \mathrm{S}$ _field_ $1 \mathrm{hr}_{\mathrm{i}} \cdot 5=$
250	2.4	8.5
363	2.8	9.3
517	3.1	9.7

Temperature stability analysis

1. Telescope

Power from telescope absorbed by detector for nominal telescope temp.

$$
\begin{aligned}
& \text { Ptel_nom }_{\mathrm{i}}:=\operatorname{td}_{0} \cdot \varepsilon_{0} \cdot 10^{12} \cdot \eta \text { feed }_{\mathrm{i}} \cdot \int_{\mathrm{vL}_{\mathrm{i}}}^{\mathrm{vU} \mathrm{U}_{\mathrm{i}}} \mathrm{~B}\left(\nu, \mathrm{~T}_{0}\right) \cdot \mathrm{A} \Omega_{\mathrm{i}} \mathrm{~d} v \\
& \text { Ptel_plus }_{\mathrm{i}}:=\operatorname{td}_{0} \cdot \varepsilon_{0} \cdot 10^{12} \cdot \eta \text { feed }_{\mathrm{i}} \cdot \int_{\mathrm{vL}_{\mathrm{i}}}^{\mathrm{vU} \mathrm{U}_{\mathrm{i}}} \mathrm{~B}\left(v, \mathrm{~T}_{0}+1\right) \cdot \mathrm{A} \Omega_{\mathrm{i}} \mathrm{~d} v \\
& \text { dPteldT }_{\mathrm{i}}:=\text { Ptel_plus }_{\mathrm{i}}-\text { Ptel_nom }_{\mathrm{i}}
\end{aligned}
$$

Power from telescope absorbed by detector for telescope temp. 1 K higher

Rate of change of Ptel with Ttel (pW K-1)

Maximum telescope temperature noise (mK Hz-1/2) based on criterion: Δ Ptel < NEP/3

$$
\text { Tn_tel_max }_{\mathrm{i}}:=\frac{\frac{1}{3} \cdot \text { NEPtot }_{\mathrm{i}} \cdot 10^{-17}}{\mathrm{dPteldT}_{\mathrm{i}} \cdot 10^{-12}} \cdot 1000
$$

Summary

Ptel_nom ${ }_{1}=$	Ptel_plus ${ }_{\text {i }}=$	$\mathrm{dPteldT}_{\mathrm{i}}=$	Tn_tel_max ${ }_{\text {i }}=$
3.755	3.821	0.067	0.46
2.981	3.029	0.048	0.50
2.619	2.658	0.039	0.51
pW	pW	pW K-1	mK Hz-1/2

2. 4-K and 2-K stages

Elements 1-6 are at the "4-K" stage o_min $:=1 \quad$ o_max $:=6 \quad$ o := o_min, o_min +1 .. o_max
Elements $7-10$ are at the "2-K" stage p_min :=7 p_max:= $10 \quad$ p:= p_min,p_min +1 .. p_max

$\mathrm{k}=$	$\mathrm{T}_{\mathrm{k}}=$
0	80
1	5
2	5
3	5
4	5
5	5
6	5
7	2
8	2
9	2
10	2
11	0
12	0

Power contributions (pW) absorbed by detector from each 4-K and 2-K element at nominal temps. +0.1 K

Total power contributions (pW) from $4-\mathrm{K}$ and $2-\mathrm{K}$ at nominal temp.

$$
\begin{aligned}
& \text { P4K_nom } \\
& i, o
\end{aligned}:=\operatorname{td}_{\mathrm{o}} \cdot \varepsilon_{\mathrm{o}} \cdot 10^{12} \cdot \eta \text { feed }_{\mathrm{i}} \cdot \int_{\mathrm{vL}_{\mathrm{i}}}^{v \mathrm{U}_{\mathrm{i}}} \mathrm{~B}\left(\mathrm{v}, \mathrm{~T}_{\mathrm{o}}\right) \cdot \mathrm{A} \Omega_{\mathrm{i}} \mathrm{~d} v .
$$

$$
\begin{aligned}
& \text { Ptot } 4 K_{_} \text {nom }_{1}:=\sum_{o=0 _ \text {_min }}^{o _ \text {max }} \text { P4K_nom } \\
& 1, o
\end{aligned}
$$

$$
\text { P4K_plus }{ }_{i, o}:=\operatorname{td}_{o} \cdot \varepsilon_{o} \cdot 10^{12} \cdot \eta \text { feed }_{i^{*}} \int_{v L_{\mathrm{i}}}^{\mathrm{vU}_{\mathrm{i}}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{o}}+0.1\right) \cdot \mathrm{A} \Omega_{\mathrm{i}} \mathrm{~d} v
$$

$$
\text { P2K_plus }{ }_{i, p}:=\operatorname{td}_{\mathrm{p}} \cdot \varepsilon_{\mathrm{p}} \cdot 10^{12} \cdot \eta \text { feed }_{\mathrm{i}} \cdot \int_{\mathrm{vL}_{\mathrm{i}}}^{\mathrm{vU}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{p}}+0.1\right) \cdot \mathrm{A} \Omega_{\mathrm{i}} \mathrm{~d} v
$$

Total power contributions (pW) from 4-K and $2-\mathrm{K}$ stages at nominal temps. +0.1 K

$$
\begin{aligned}
& \operatorname{Ptot} 4 K_{-} \text {plus }_{i}:=\sum_{o=0 _ \text {omin }}^{\text {o_max }} P 4 K_{-} \text {plus }_{i, o} \\
& \operatorname{Ptot} 2 K_{-} \text {plus }_{i}:=\sum_{p=\text { p_min }}^{\text {p_max }} \text { P2K_plus }_{i, p}
\end{aligned}
$$

Rate of change of P4K and P2K with T4K and T2K (pW K-1)
$d P 4 K d T_{i}:=10 \cdot\left(\right.$ Ptot $4 K_{-}$plus $_{i}-\operatorname{Ptot} 4 K _$nom $\left._{i}\right)$
$d P 2 K d T_{i}:=10 \cdot\left(\right.$ Ptot $2 K _p l u s ~_{i}-\operatorname{Ptot} 2 K _$nom $\left._{i}\right)$
Tn_4K_max $_{\mathrm{i}}:=\frac{\frac{1}{3} \cdot \text { NEPtot }_{\mathrm{i}} \cdot 10^{-17}}{\mathrm{dP}^{-17} \mathrm{KdT}_{\mathrm{i}} \cdot 10^{-12}} \cdot 1000$

Tn_2K_max $:=\frac{\frac{1}{3} \cdot \text { NEPtot }_{\mathrm{i}} \cdot 10^{-17}}{\mathrm{dP} 2 \mathrm{KdT}_{\mathrm{i}} \cdot 10^{-12}} \cdot 1000$

Summary

Ptot $4 \mathrm{~K}_{-}$nom ${ }_{1}=$	Ptot4K_plus ${ }_{\text {i }}=$	$\mathrm{dP}^{\text {S }}$ KdT ${ }_{\text {i }}=$	$\mathrm{dP} 2 \mathrm{KdT} \mathrm{i}_{\mathrm{i}}=$	Tn_4K_max	Tn_2K_max ${ }_{\text {i }}=$
3.10-4	3.10-4	6.10-4	$2 \cdot 10^{-9}$	48.9	$2 \cdot 10^{7}$
$4 \cdot 10^{-3}$	$5 \cdot 10^{-3}$	$7 \cdot 10^{-3}$	$2 \cdot 10^{-6}$	3.5	$1 \cdot 10^{4}$
0	0	0	1.10-4	0.7	137
pW	pW	pW K-1	pW K-1	mK Hz-1/2	mK Hz-1/2

Chopped observations:

Assume chopping at 2 Hz , so one cycle $=0.5 \mathrm{sec}$.
Assume drift must correspond to less than NEPtot/3 over this timescale of 0.5 sec

Allowed telescope temperature drift rate (mK s-1)

Drift_tel_max $_{i}:=\frac{\text { Tn_tel_max }_{1}}{0.5}$
Drift_tel_max $=$

0.92
0.99
1.01

Allowed 4-K temperature drift rate (mK s-1)

Drift_4K_max $:=\frac{\text { Tn_4K_max }_{i}}{0.5}$

Drift_4K_max ${ }_{\text {i }}=$
97.85
6.98

Allowed 2-K temperature drift rate (mK s-1)

Drift_2K_max $:=\frac{\text { Tn_2K_max }_{i}}{0.5}$

Drift_2K_max $=$

$3 \cdot 10^{7}$
$3 \cdot 10^{4}$
274

Scan-map observations: point source extraction:

Assume timescale corresponds to $\sim 100 \mathrm{mHz}$ (cf mapping speed note) or 10 seconds Assume drift must correspond to less than NEPtot/3 over this timescale of 10 sec .

Note: this is pessimistic in that temperature fluctuations of the telescope will produce a correlated signal across the arrays which can be used to subtract the drift signal from those detectors involved in the point source detection
Allowed telescope temperature drift rate (mK s-1)
Allowed 4-K
temperature drift rate (mK s-1)
Allowed 2-K temperature drift rate (mK s-1)
Drift_tel_max $_{i}:=\frac{\text { Tn_tel_max }_{i}}{10}$
Drift_4K_max $:=\frac{\text { Tn_4K_max }_{i}}{10}$
Drift_2K_max $:=\frac{\text { Tn_2K_max }_{i}}{10}$
Drift_tel_max ${ }_{1}=$
Drift_4K_max ${ }_{i}=$
Drift_2K_max ${ }_{i}=$

0.046
0.050
0.051

4.893
0.349
0.070

$1.7 \cdot 10^{6}$
$1.5 \cdot 10^{3}$
13.7

Conclusions:

The strongest requirement is set by point source extraction from scan map observations.
Required temperature stabilities (for 5-K Level-1 temperature) are:
Telescope: \quad Better than $50 \mu \mathrm{~K} \mathrm{s-1}$ (180 mK hr-1)
4-K: \quad Better than $70 \mu \mathrm{~K} \mathrm{~s}-1 \quad$ (290 mK hr-1) (decreases to $42 \mu \mathrm{~K} \mathrm{s-1}$ if the Level-1 stage rises to 6 K)
2-K: Better than $14 \mathrm{mK} \mathrm{s}-1$ - should be no problem

Comparison with Jamie Bock's calculations (SPIRE-JPL-NOT-000623 "Temperature Stability Requirements for SPIRE"):
$\begin{array}{lll}\text { Jamie's results } & 4 \mathrm{~K} \text { : } & 260 \mathrm{mK} \mathrm{hr}-1 \\ & \text { Telescope: } & 50 \mathrm{mK} \mathrm{hr}-1\end{array}$ *

* Jamie assumed $\Delta v=v$, leading to factor of three greater background so a factor of three greater sensitivity to telescope temperature fluctuations

Signal power absorbed by detector

Psig $_{\mathrm{i}, \mathrm{j}}:=\mathrm{S}_{\mathrm{j}} \cdot 10^{-26} \cdot 10^{12} \cdot \eta$ tel $\cdot \eta$ feed $_{\mathrm{i}} \cdot{\text { Atel } 1 \cdot \mathrm{td}_{0} \cdot \mathrm{t}_{0} \cdot \Delta \mathrm{v}_{\mathrm{i}} \quad \mathrm{pW}, ~}_{\text {l }}$

Typical 350- μ m flux densities (factor of 2 higher or lower for 250 and 500 for planets):

OMC1	1500
W3(OH)	680
K3-50	320
W75N	650
Neptune	100
Uranus	250
Saturn	7300
Jupiter	24000

Pdet $_{i}=$	$\lambda_{i}=$
3.8 3.0 2.6	250

Comments and conclusions:

* We define a signal power equivalent to 20% of the background to correspond to a high level of loading (where one would expect corrections for detector non-linearity to become problematic).
* This corresponds to a flux densithy level of aroud 200 Jy for all bands. This means that Uranus will be rather too bright to use as a primary calibrator, but Neptune shold be usable.
* Sources in the 1E5 Jy range will result in signal powers more than 20 times the telescope background. This would completely swamp the detectors such that observations would be impossible to carry out or to calibrate.
* A reasonable limit to adopt at present to define observability is 1000 Jy. Sources near this limit will be difficult to calibrate (achievable accuracy will need to be assessed in ground calibration and PV phase).

Requirements for internal calibrator (PCAL)

Assumptions: \quad Calibrator $=$ black body located at centre of M4
M4 diameter and area ($\mathrm{mm} ; \mathrm{mm}^{\wedge} 2$)

$$
\text { DM } 4:=26 \quad \text { AM } 4:=\frac{\pi \cdot \mathrm{DM} 4^{2}}{4}
$$

PCAL size and area (mm; mm^2)

$$
\mathrm{DCal}:=1 \quad \mathrm{ACal}:=\mathrm{DCal}^{2} \quad \text { Square emitting area assumed }
$$

Required instantaneous S / N
Overall NEPs (W Hz-1/2 E-17) for the three bands, referred to power absorbed by detector)

SN_Req := 500

$\lambda_{i}=$	NEPtot $_{i}=$
250 9.3 363 517 7.1	

PCal_Req ${ }_{i}:=$ NEPtot $_{i} \cdot$ SN_Req $\cdot 10^{-17} \cdot 10^{12}$
PCal_Req ${ }_{i}=$

0.046
0.036
0.030

Effect of 8-dB Gaussian illumination profile on the pupil

The pupil is illuminated by the photometer feedhorns with a nominal edge taper of 8 dB . The telescope power received from the pupil is therefore weighted according to this illumination profile. PCAL is at the centre of the pupil, and so is viewed more efficiently than the pupil as a whole. Let PCAL be ascribed an efficiency of unity. The relative efficiency of the whole pupil illumination is calculated as follows.

Pupil diameter and radius (mm) $\quad \mathrm{D}:=26 \quad \mathrm{R}:=0.5 \cdot \mathrm{D}$
Pupil edge taper (dB and linear) \quad taper_dB $:=8 \quad$ taper_lin $:=10^{\frac{\text { taper_dB }}{10}}$ taper_lin $=6.3$

Define Gaussian illumination pattern

$$
\text { ro := } \begin{array}{ll}
\frac{\mathrm{R}}{\left(-\ln \left(\frac{1}{\text { taper_lin }}\right)\right)^{0.5}} & \text { ro }=9.58 \\
\mathrm{I}(\mathrm{r}):=\exp \left[-\left(\frac{\mathrm{r}}{\mathrm{ro}}\right)^{2}\right] \\
\mathrm{dB}(\mathrm{r}):=10 \log (\mathrm{I}(\mathrm{r}))
\end{array}
$$

Radial distance (mm)

Relative efficiency factor for illumination of telescope pupil
η_{-}taper $:=\frac{\int_{0}^{R} I(x) \cdot 2 \cdot \pi \cdot x d x}{\pi \cdot R^{2}}$
η_{-}taper $=0.457$

Brightness temperature range for calibrator (K)

Ratio at detector of calibrator power to telescope power

$$
\mathrm{k}:=10,11 . .100
$$

$$
\mathrm{TCal}_{\mathrm{k}}:=\mathrm{k}
$$

$$
\text { Ratio }_{i, k}:=\frac{\operatorname{ACal} \cdot \int_{v L_{i}}^{v U_{i}} \mathrm{~B}\left(v, \mathrm{TCaI}_{\mathrm{k}}\right) \mathrm{d} v}{\text { AM4 } \cdot \text { हtel } \cdot \eta _ \text {taper } \cdot \int_{v \mathrm{~L}_{\mathrm{i}}}^{v \mathrm{U}_{\mathrm{i}}} \mathrm{~B}(v, \text { Ttel }) \mathrm{d} v}
$$

Calibrator power at detector $(\mathrm{pW}) \quad \mathrm{PCal}_{\mathrm{i}, \mathrm{k}}:=$ Ratio $_{\mathrm{i}, \mathrm{k}} \cdot$ Pdet $_{\mathrm{i}}$

Plot calibrator power vs.
$m:=0,1 . .1$
$\operatorname{Lim}_{1, m}:=$ PCal_Req $_{i}$ calibrator temperature:

Signal vs. Temperature for Calibrator

Horizontal lines show the required powers for $\mathrm{S} / \mathrm{N}=500$ in the three bands

A brightness temperature of 26 K provides S / N > 500 in all three bands. The figure is 29 K if the emitting area is circular with 1 mm diameter.

This version:

* Prepared for SPIR IBDR
* Filter bands updated to reflect filter DDR and finalised horn specifications as in ECR on BDA SSSD 11 October 2002
* Feed and bolomneter parameters from SPIRE-JPL-PRJ-000456 Working Version, 7 November 2001

Previous versions:

SPIRE_FTS_1.MCD: 21 November 2000:

Version for Toledo meeting and System Review

* Multi-moding of both SW and LW bands now taken into account
* NEP contributions from each mode calculated separately and added in quadrature
* NEP now referred to the power absorbed by the detector
* Calculations done for the minimum and goal parameters of the detectors and feedhorns

SPIRE_FTS_2_IIDR.MCD: 6 April 2001:

* Updated for IIDR
$\begin{array}{llll}\text { Constants: } & \mathrm{h} \equiv 6.626 \cdot 10^{-34} \mathrm{~kb} \equiv 1.3806 \cdot 10^{-23} & \text { Planck } \\ \text { origin }:=1 & \mathrm{c} \equiv 2.998 \cdot 10^{8} & \text { function: } & \mathrm{B}(\mathrm{v}, \mathrm{T}):=\frac{2 \cdot \mathrm{~h} \cdot \mathrm{v}^{3}}{\mathrm{c}^{2} \cdot\left[\exp \left(\left(\frac{\mathrm{~h} \cdot \mathrm{v}}{\mathrm{kb} \cdot \mathrm{T}}\right)\right)-1\right]} \\ \mathrm{b}:=1,2 . .2 & & & \end{array}$

Assumptions

Diameter of central

Telescope	Temp.	Emissivity	Diameter	obscuration	Focal ratio
	Ttel $\equiv 80$	ctel $\equiv 0.04$	Dtel $\equiv 3.285$	Dobs $\equiv 0.56$	Ftel $:=8.68$

Area Atel $:=0.25 \cdot \pi \cdot\left(\right.$ Dtel $^{2}-$ Dobs $\left.^{2}\right) \quad$ Atel $=8.2$

$$
\begin{array}{ll}
\text { Percentage } & \text { Obs_percent }:=\left(1-\frac{8.229}{8.475}\right) \cdot 100 \\
\text { obscuration } & \text { Obs_percent }=2.9
\end{array}
$$

Observing efficiency $\quad \eta$ obs_m $\equiv 0.8$ (jiggle map)

Cold stop attenuation of telescope background: η cs $:=0.8$

FTS efficiency

Observing efficiency	Elec. filter efficiency	$\operatorname{Cos}^{\wedge} 2$ modn efficiency
η obs $:=0.8$	η elec $\equiv 0.8$	$\eta \operatorname{cosq} \equiv 0.5$

Bolometer and feedhorn properties (see BDA Subsystem Spec. Doc. SPIRE-JPL-PRJ-000456):
Overall optical efficiency of horn + bolometer combination

$$
\eta \text { feed_min }:=0.45 \quad \eta \text { feed_goal }:=0.75 \quad \eta \text { feed_nom }_{\mathrm{b}}:=
$$

LW	0.65
SW	0.70

DQE of bolometer (wrt absorbed power)

	E_m	DQE_go	DQE_no	
LW	0.60	0.71	0.65	η feed $_{\mathrm{b}}:=\eta$ feed_nom $_{\mathrm{b}}$
SW	0.67	0.80	0.70	
				$\mathrm{DQE}_{\mathrm{b}}:=\mathrm{DQE}_{\text {_ }}$ nom $_{\mathrm{b}}$

Beam divider reflection

$$
\begin{array}{llrl}
\text { tbd } \equiv 0.487 & \text { rbd } \equiv 0.487 & \eta \mathrm{bd} 1 \equiv 2 \cdot \mathrm{tbd} \cdot \mathrm{rbd} & \eta \mathrm{bd} 2 \equiv \mathrm{tbd}^{2}+\mathrm{rbd}^{2} \\
\eta \mathrm{bd} 1=0.47 & \eta \mathrm{bd} 2=0.47 & \varepsilon b d \equiv 1-(\mathrm{tbd}+\mathrm{rbd}) & \varepsilon b d=0.03
\end{array}
$$

transmission, emissivity
$\mathrm{T} 4 \equiv 5$
diffraction $\equiv 0.97$
$\varepsilon _$mirr $\equiv 1-0.995$
t_mirr $\equiv 0.995 \quad$ t_mirr $=0.99$
diff_loss $:=$ diffraction ${ }^{11}$
diff_loss $=0.72$

This is applied only to the signal, not to the background (see below)

Transmission, emissivity and temperature of optical elements

$\mathrm{k}=$
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

$t_{k} \equiv$
0.96
0.90
0.9
t_mirr
η bbd 1
t_mirr
t_mirr ${ }^{2}$
t_mirr
1
t_mirr
0.9
0.7
0.9

$\mathrm{T}_{\mathrm{k}} \equiv$
80 T 4 2 0.3 0.3

0 = Telescope
1 = CFI1 (4 K)
2 = CFIL2 (4 K)
3 = CIPM (M3)
4 = CBSM (M4)
5 = CRIM (M5)
6 = SPOM (M6)
7 = SIFM
8 = SIRM
9 = SBD_overall
$10=$ SCOM
11 = SRTM
$12=$ SDCM
$13=$ SBD2
14 = SCAM
15 = SFIL3 (2 K)
$16=$ Bandpass (0.3
к)
$17=$ Blocker (2 K)
$\varepsilon_{\mathrm{k}} \equiv$

$$
j \equiv 0,1 . .16 \quad k \equiv 0,1 . .17
$$

Transmission

 from element to detector$$
\operatorname{td}_{j} \equiv \prod_{k=j+1}^{17} t_{k}
$$

td is the transmission efficiency for the telescope background power. The diffraction loss factor is also applied below for the source signal.

Array parameters

Horn external diameter ($\mu \mathrm{m}$)
(internal diameters are $100 \mu \mathrm{~m}$ smaller)
d_horn $_{\mathrm{b}}:=\quad$ The horns are thus $2 F \lambda$ at 225 and $390 \mu \mathrm{~m}$.

Warray $_{1}:=4 \cdot 2 \cdot \frac{\text { d_horn }_{1} \cdot 10^{-6}}{\text { Dtel }} \cdot \frac{360}{2 \cdot \pi} \cdot 60 \quad$ Warray $_{2}:=6 \cdot 2 \cdot \frac{\text { d_horn }_{2} \cdot 10^{-6}}{\text { Dtel }} \cdot \frac{360}{2 \cdot \pi} \cdot 60$

Warray $_{\mathrm{b}}=$	
LW	3.3
SW	2.8

Bands

1. Old SPIRE bands

OldBands :=

Array	Design	Horn	Waveguide	Horn	Waveguide	Defocus	No. of	$\lambda \mathbf{L}$	$\lambda \mathbf{U}$	$\lambda \mathbf{}$	Res.
	λ	Length	Length	Dia.	Diameter		horns				
	$(\mu \mathbf{m})$	$(\mathbf{m m})$	$(\mu \mathbf{m})$	$(\mathbf{m m})$	$(\mu \mathbf{m})$	$(\mathbf{m m})$					
S/SW	275	TBD	550	2.15	185	0	37	200	315	258	2.24
S/LW	450	45.36	900	3.78	393	0	19	305	670	488	1.34

2. New bands

NewBands :=

Array	Design	Horn	Waveguide	Horn	Waveguide	Defocus	No. of	$\lambda \mathbf{L}$	$\lambda \mathbf{U}$	$\lambda \mathbf{0}$	Res.
	λ	Length	Length	Dia.	Diameter		horns				
	$(\mu \mathbf{m})$	$(\mathbf{m m})$	$(\mu \mathbf{m})$	$(\mathbf{m m})$	$(\mu \mathbf{m})$	$(\mathbf{m m})$					
S/SW	275	23.68	575	2.15	190	0	37	190	325	258	1.91
S/LW	450	46.36	925	3.80	393	0	19	300	670	485	1.31

Note: Waveguide diameter is given by $\lambda L^{*}(1.841 / \pi)$
Select new or old bands for calculation (Index $=1$ for new and 0 for old) Index := 1
Extract band limits from the tables above

Crossover wavelength ($\mu \mathrm{m}$)

$$
\begin{array}{ll}
\lambda \mathrm{L}_{2}:=\operatorname{if}\left({\text { Index } \left.=1, \text { NewBands }_{3,8}, \text { OldBands }_{3,8}\right)}\right. & \lambda \mathrm{L}_{2}=190 \\
\lambda \mathrm{U}_{2}:=\operatorname{if}\left(\text { Index }=1, \text { NewBands }_{3,9}, \text { OldBands }_{3,9}\right) & \lambda \mathrm{U}_{2}=325 \\
\lambda \mathrm{~L}_{1}:=\operatorname{if}\left(\text { Index }=1, \text { NewBands }_{4,8}, \text { OldBands }_{4,8}\right) & \lambda \mathrm{L}_{1}=300 \\
\lambda \mathrm{U}_{1}:=\operatorname{if}\left(\text { Index }=1, \text { NewBands }_{4,9}, \text { OldBands }_{4,9}\right) & \lambda \mathrm{U}_{1}=670
\end{array}
$$

$$
\lambda _ \text {cross }:=0.5 \cdot\left(\lambda \mathrm{~L}_{1}+\lambda \mathrm{U}_{2}\right) \quad \lambda _\operatorname{cross}=313
$$

Waveguide radii $(\mu \mathrm{m})$	$\operatorname{roS}:=\frac{\lambda \mathrm{U}_{2} \cdot 1.841}{2 \cdot \pi}$	$\operatorname{roL}:=\frac{\lambda \mathrm{U}_{1} \cdot 1.841}{2 \cdot \pi}$
Waveguide diameter $(\mu \mathrm{m})$	$\operatorname{doS}:=2 \cdot \mathrm{roS}$	$\operatorname{doS}=190$

Band limits (mm and Hz) $\quad \mathrm{L} \mathrm{L}_{\mathrm{b}}:=\mathrm{c} \cdot \sigma \mathrm{L}_{\mathrm{b}} \cdot 100 \quad \mathrm{v} \mathrm{U}_{\mathrm{b}}:=\mathrm{c} \cdot \sigma \mathrm{U}_{\mathrm{b}} \cdot 100$
Band centre (mm and Hz) $\quad v 0_{\mathrm{b}}:=\frac{\nu \mathrm{L}_{\mathrm{b}}+\mathrm{vU}_{\mathrm{b}}}{2} \quad \lambda 0_{\mathrm{b}}:=\frac{\mathrm{c} \cdot 10^{6}}{\mathrm{v} 0_{\mathrm{b}}}$
Band $\lambda \Delta \lambda$

$$
\mathrm{R}_{\mathrm{b}}:=\frac{\sigma \mathrm{U}_{\mathrm{b}}+\sigma \mathrm{L}_{\mathrm{b}}}{2 \cdot\left(\sigma \mathrm{U}_{\mathrm{b}}-\sigma \mathrm{L}_{\mathrm{b}}\right)}
$$

Band limits (mm and THz)

LW	$\lambda \mathrm{L}_{\mathrm{b}}=$	$\begin{aligned} & \lambda 0_{\mathrm{b}}= \\ & 414 \end{aligned}$	$\begin{aligned} & \lambda \mathrm{U}_{\mathrm{b}}= \\ & 670 \end{aligned}$	$\begin{aligned} & \sigma \mathrm{L}_{\mathrm{b}}= \\ & 14.9 \end{aligned}$	$\begin{aligned} & \sigma \mathrm{U}_{\mathrm{b}}= \\ & 33.3 \end{aligned}$	$v \mathrm{~L}_{\mathrm{b}} \cdot 10^{-12}=v 0_{\mathrm{b}} \cdot 10^{-12}=v \mathrm{U}_{\mathrm{b}} \cdot 10^{-12}=\mathrm{R}_{\mathrm{b}}=$			
	300					0.45	0.72	1.00	1.31
SW	190	240	325	30.8	52.6	0.92	1.25	1.58	1.91

Aperture and cavity efficiencies

FTS Horn Aperture Efficiencies
Jason Glenn's caluclations (as summarised in his note of July 2 2001):
Efficiencies :=

$o:=0,1 . .11 \quad p:=0,1 . .21$
$\lambda _S W:=$ Efficiencies ${ }^{\langle 0\rangle} \quad \eta$ app_SW $:=$ Efficiencies $\left.{ }^{\langle }{ }^{\langle }\right\rangle$
$\lambda _$LW $:=$Efficiencies ${ }^{\langle 2\rangle} \quad \eta$ app_LW $:=$ Efficiencies $\left.{ }^{\langle 3}\right\rangle$

-S/LW	- S/SW	\bullet	SM TE11	
\bullet	SM TE11	-	SM TE11	\bullet
SM TE11				
\triangle	MM TE11	- MM TM01	\bullet	MM TE21

Telescope coupling efficiency (point source)

Assume this is the same as the horn aperture efficiency

Simplified wavelength dependence:

* Constant at 0.7 from 200-500 $\mu \mathrm{m}$
* Declines linearly from 0.7 to 0.5 from 500 to $670 \mu \mathrm{~m}$ (factor of 0.7/0.5 = 1.4 assumed below for degradation in sensitivity)

Background power levels on the detectors and photon noise limited NEPs

Assumptions:

1. All modes carry equal background power (per unit bandwidth) from the telescope

$$
\text { Throughput per mode } \quad \mathrm{A} \Omega(v):=\left(\frac{\mathrm{c}}{\mathrm{v}}\right)^{2} \cdot \eta \mathrm{cs}
$$

2. Calibrator contributes same amount of power as the telescope
3. Efficiencies of higher order modes are as in Jason's note (independent of crossover wavelength)

SW horn (multimoded)

$$
\begin{array}{ll}
\eta_{-} S W _T E 11(v):=0.84 & \begin{array}{l}
\text { These values are used in calculating the } \\
\text { background, but a pessimistic value of } \\
\text { nfeed_nom is assumed for TE11 in }
\end{array} \\
\eta_{-} S W _T M 01(v):=0.57 & \begin{array}{l}
\text { calculating the NEFD }
\end{array} \\
\eta_{_} S W _T E 21(v):=0.78 & \quad \eta_{\text {feed_nom }}=\left(\begin{array}{l}
0.0 \\
0.7 \\
0.7
\end{array}\right)
\end{array}
$$

LW horn (multi-moded)
Fundamental mode efficiency vs. frequency
η feed_nom ${ }_{1}=0.65$

$$
\begin{aligned}
& \eta _L W _T E 11(n u):=\operatorname{linterp}(v L W, \eta L W, n u) \quad \eta _L W _T E 11\left(\frac{c \cdot 10^{6}}{650}\right)=0.51
\end{aligned}
$$

LW horn higher order modes:
(not modelled yet so assume 50\%)
$\eta _L W _$higher : $=0.5$

SW band ($\mathrm{b}=2$)
Cut-off wavelength for TE11 mode

$$
\lambda \mathrm{cSW}:=\lambda \mathrm{U}_{2} \quad \lambda \mathrm{cSW}=325 \quad \text { vo_TE11 } 2:=0.5 \cdot\left(v \mathrm{~L}_{2}+v \mathrm{U}_{2}\right)
$$

Waveguide radius ($\mu \mathrm{m}$)

$$
\operatorname{roS}=95
$$

Cut-off wavelengths of higher modes

$$
\begin{array}{llll}
\lambda c_{-} \text {TM01 }:=\frac{2 \cdot \pi \cdot \mathrm{roS}}{2.405} & \lambda c_{-} \text {TM01 }=249 & \text { vc_TM01 }:=\frac{c \cdot 10^{6}}{\lambda c_{-} T M 01} & \text { vo_TM012 }:=\frac{v c_{-} \text {TM01 }+v \mathrm{U}_{2}}{2} \\
\lambda c_{-} \text {TE21 }:=\frac{2 \cdot \pi \cdot \mathrm{roS}}{3.054} & \lambda c_{-} \text {TE21 }=196 & \text { vc_TE21 }:=\frac{c \cdot 10^{6}}{\lambda c _T E 21} & \text { vo_TE21 }:=\frac{v c _T E 21+v U_{2}}{2}
\end{array}
$$

Power absorbed by detector from each element and for each mode (pw)
Note: 1. Factor of 2 accounts for same background from calib. source in 2nd port
2. Power is set to zero if the mode is not propagated

TE11 $\quad P_{-}$TE11 $2, \mathrm{j}:=2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta$ feed $_{2} \cdot 10^{12} \cdot \int_{v \mathrm{~L}_{2}}^{v \mathrm{U}_{2}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \cdot \eta_{-} \operatorname{SW}$ _TE11 $(v) \mathrm{d} v$

$$
\text { P_TE11 } 2, \mathrm{j}:=\text { if }\left(\text { P_TE11 }_{2, \mathrm{j}}<0,0, \text { P_TE11 }_{2, \mathrm{j}}\right) \quad \text { Power_TE11 } 2:=\sum_{\mathrm{n}=0}^{9} \text { P_TE11 }_{2, \mathrm{n}}
$$

TM01 P_TM01 $2, \mathrm{j}:=2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta$ feed $_{2} \cdot 10^{12} \cdot \int_{v c_{-} \text {TM01 }}^{\mathrm{vU}} \mathrm{B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \cdot \eta_{-}$SW_TM01 $(v) \mathrm{d} v$

$$
\text { P_TM01 }_{2, \mathrm{j}}:=\mathrm{if}\left(\mathrm{P}_{-} \mathrm{TM} 01_{2, \mathrm{j}}<0,0, \mathrm{P}_{-} \mathrm{TM} 01_{2, \mathrm{j}}\right) \quad \text { Power_TM01 } 2:=\sum_{\mathrm{n}=0}^{9} \mathrm{P}_{-} \mathrm{TM} 01_{2, \mathrm{n}}
$$

TE21 $\quad P_{-}$TE2 $1_{2, j}:=2 \cdot \operatorname{td}_{j} \cdot \varepsilon_{j} \cdot \eta$ feed $_{2} \cdot 10^{12} \cdot \int_{v c _T E 21}^{v U_{2}} B\left(v, T_{j}\right) \cdot A \Omega(v) \cdot \eta_{-} S W _T E 21(v) d v$

$$
{\text { P_TE } 21_{2, j}}^{\mathrm{j}}=\mathrm{if}\left({\text { P_TE } 21_{2, j}}<0,0,{\text { P_TE } 21_{2, ~}}^{\mathrm{j}}\right) \quad \text { Power_TE } 21_{2}:=\sum_{\mathrm{n}=0}^{9}{\text { P_TE } 21_{2, n}}^{\text {n }}
$$

NEPph contributions from each mode
TE11 NEPph_TE11 $2:=\left(2 \cdot \text { Power_TE } 11_{2} \cdot 10^{-12} \cdot \mathrm{~h} \cdot \mathrm{vo} \text { _TE11 } 2\right)^{0.5} \cdot 10^{17}$
TM01 NEPph_TM01 $2:=\left(2 \cdot \text { Power_TM01 } 2 \cdot 10^{-12} \cdot \mathrm{~h} \cdot \mathrm{vo}_{\mathbf{Z}} \text { TM01 }{ }_{2}\right)^{0.5} \cdot 10^{17}$
TE21 NEPph_TE2 $1_{2}:=\left(2 \cdot \text { Power_TE21 } 2 \cdot 10^{-12} \cdot \mathrm{~h} \cdot \mathrm{vo}^{2} \text { TE21 } 1_{2}\right)^{0.5} \cdot 10^{17}$

Summary of power (pW) and NEPph contributions (W Hz-1/2 E-17) in SW band

$$
\begin{aligned}
& \text { Power }_{2, \mathrm{j}}:=\text { P_TE11 }_{2, \mathrm{j}}+\text { P_TM01 }_{2, \mathrm{j}}+\text { P_TE } 212, \mathrm{j} \\
& \text { NEPph }_{2}:=\left[\left(\text { NEPph_TE11 }_{2}\right)^{2}+\left(\text { NEPph_TM01 }_{2}\right)^{2}+\left(\text { NEPph_TE21 }_{2}\right)^{2}\right]^{0.5} \\
& \text { Ptot }_{2}:=\text { Power_TE11 }_{2}+\text { Power_TM01 }_{2}+{\text { Power_TE } 21_{2}}^{\text {Pow }}
\end{aligned}
$$

LW band ($b=1$)
Cut-off wavelength for TE11 mode $(\mu \mathrm{m}) \quad \lambda c \mathrm{LW}:=\lambda \mathrm{U}_{1} \quad \lambda c \mathrm{LW}=670$
Waveguide radius (mm)

$$
\mathrm{roL}=196
$$

$$
v o_{-} \text {TE11 } 1:=0.5 \cdot\left(v \mathrm{~L}_{1}+v \mathrm{U}_{1}\right)
$$

Cut-off wavelengths of higher modes

$$
\begin{array}{llll}
\lambda c_{_} \text {TM01 }:=\frac{2 \cdot \pi \cdot r o L}{2.405} & \lambda c_{_} \text {TM01 }=513 & \text { vc_TM01 }:=\frac{c \cdot 10^{6}}{\lambda c_{-} \text {TM01 }} &
\end{array}
$$

TE11 $\quad P_{-}$TE11 $1, \mathrm{j}:=2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta$ feed $_{1} \cdot 10^{12} \cdot \int_{v \mathrm{~L}_{1}}^{v \mathrm{U}_{1}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \cdot \eta_{-}$LW_TE11 $(v) \mathrm{d} v$

$$
\text { P_TE11 }_{1, \mathrm{j}}:=\mathrm{if}\left(\mathrm{P}_{-} \text {TE11 } 1, \mathrm{j}<0,0, \mathrm{P}_{-} \text {TE11 } 1, \mathrm{j}\right) \quad \text { Power_TE11 }:=\sum_{\mathrm{n}=0}^{9} \mathrm{P}_{-} \text {TE11 } 1, \mathrm{n}
$$

$$
\text { P_TM01 }_{1, \mathrm{j}}:=\text { if }\left(\mathrm{P}_{-} \text {TM01 } 1, \mathrm{j}<0,0, \text { P_TM01 }_{1, \mathrm{j}}\right) \quad \text { Power_TM01 }:=\sum_{\mathrm{n}=0}^{9} \text { P_TM01 }_{1, \mathrm{n}}
$$

$$
P_{-} T E 21_{1, \mathrm{j}}:=\text { if }\left(\mathrm{P}_{-} \text {TE } 21_{1, \mathrm{j}}<0,0, \mathrm{P}_{-} \text {TE } 21_{1, \mathrm{j}}\right) \quad \text { Power_TE2 } 1_{1}:=\sum_{\mathrm{n}=0}^{9} \mathrm{P}_{-} \text {TE } 21_{1, \mathrm{n}}
$$

TE01

$$
\begin{aligned}
& \text { P_TE01 }_{1, \mathrm{j}}:=\eta_{-} \text {LW_higher } \cdot 2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta \mathrm{feed}_{1} \cdot 10^{12} \cdot \int_{\mathrm{vc} _ \text {TE01 }}^{\mathrm{vU}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \mathrm{d} v \\
& \text { P_TE01 }_{1, \mathrm{j}}:=\operatorname{if}\left(\mathrm{P}_{-} \mathrm{TE} 01_{1, \mathrm{j}}<0,0, \mathrm{P}_{-} \mathrm{TE} 01_{1, \mathrm{j}}\right) \quad \quad \quad{\text { Power_TE } 01_{1}}:=\sum_{\mathrm{n}=0}^{9} \text { P_TE01 }_{1, \mathrm{n}}
\end{aligned}
$$

NEPph contributions from each mode	TE11	
	TM01	NEPph_TM01 $1:=\left(2 \cdot \text { Power_TM01 } 1_{1} \cdot 10^{-12} \cdot \mathrm{~h} \cdot \text { vo_TM01 } 1_{1}\right)^{0.5} \cdot 10^{17}$
	TE21	NEPph_TE $21_{1}:=\left(2 \cdot P o w e r _T E 21_{1} \cdot 10^{-12} \cdot \mathrm{~h} \cdot \text { vo_TE } 21_{1}\right)^{0.5} \cdot 10^{17}$
	TE01	NEPph_TE01 $1:=\left(2 \cdot \text { Power_TE01 } 1 \cdot 10^{-12} \cdot \mathrm{~h} \cdot \text { vo_TE01 } 1_{1}\right)^{0.5} \cdot 10^{17}$

Summary of power Power $_{1, \mathrm{j}}:=$ P_TE11 $_{1, \mathrm{j}}+$ P_TM01 $_{1, \mathrm{j}}+{\text { P_TE } 21_{1, \mathrm{j}}}+$ P_TE01 $_{1, \mathrm{j}}$ (pW) and NEPph contributions (W Hz-1/2 E-17) in LW band
$\mathrm{NEPph}_{1}:=\left[\left(\mathrm{NEPph}_{_} \mathrm{TE} 11_{1}\right)^{2}+\left(\mathrm{NEPph}_{-} \mathrm{TM} 01_{1}\right)^{2}+\left(\mathrm{NEPph}_{-} \mathrm{TE} 21_{1}\right)^{2}+\left(\mathrm{NEPph}_{-} \mathrm{TE} 01_{1}\right)^{2}\right]^{0.5}$
Ptot $_{1}:=$ Power_TE11 $_{1}+$ Power_TM01 $_{1}+$ Power_TE21 $_{1}+$ Power_TE01 $_{1}$

Summary
SW band
Power_TE11 ${ }_{2}=7.6 \quad$ NEPph_TE11 $2=11.2$
Power_TM01 $1_{2}=2.8 \quad$ NEPph_TM01 $2=7.2$
Power_TE21 $2=0.5$ NEPph_TE21 $2=3.1$
Ptot $_{2}=10.8 \quad \mathrm{NEPph}_{2}=13.6$

LW band
Power_TE11 $1_{1}=5.2 \quad$ NEPph_TE11 $1=7.1$
Power_TM01 $1_{1}=3.1 \quad$ NEPph_TM01 $1=5.7$
Power_TE $21_{1}=1.9 \quad$ NEPph_TE $21_{1}=4.6$
Power_TE $01_{1}=0.5 \quad$ NEPph_TE $01_{1}=2.5$
$\operatorname{Ptot}_{1}=10.6 \quad \mathrm{NEPph}_{1}=10.5$

Note that total power is dominated by the telescope contribution

SW band LW band
Power $_{2, \mathrm{j}}=$

10.8
$4.6 \cdot 10^{-4}$
$2.6 \cdot 10^{-5}$
$1.4 \cdot 10^{-4}$
$5.5 \cdot 10^{-5}$
$1.1 \cdot 10^{-4}-$
$5.6 \cdot 10^{-5}$
$2.9 \cdot 10^{-4}$
$5.7 \cdot 10^{-5}$
$1.1 \cdot 10^{-3}$
$3.1 \cdot 10^{-9}$

Power $_{1, \mathrm{j}}=$

10.6
0
$1.1 \cdot 10^{-3}$
$5.7 \cdot 10^{-3}$
$2.3 \cdot 10^{-3}$
$4.7 \cdot 10^{-3}$
$2.3 \cdot 10^{-3}$
0
$2.4 \cdot 10^{-3}$
0
$8.5 \cdot 10^{-5}$

Photon noise levels and single-detector NEFD

Overall NEP
(W Hz-1/2 x 10-17)

Detector NEP
(W Hz-1/2 x 10-17)

NEFD (Jy Hz-1/2)
Diffraction loss is taken into account here.

NEPtot $_{\mathrm{b}}:=\frac{\mathrm{NEPph}_{\mathrm{b}}}{\left(\mathrm{DQE}_{\mathrm{b}}\right)^{0.5}} \quad$ referred to the power absorbed by the detector
$\operatorname{NEPdet}_{\mathrm{b}}:=\left[\left(\text { NEPtot }_{\mathrm{b}}\right)^{2}-\left(\text { NEPph }_{\mathrm{b}}\right)^{2}\right]^{0.5}$

Note: this is pessimistic in that the higher order modes are assumed to couple to the telescope background but not to the source - η tel is taken to be the same value as for single-mode coupling

$\mathrm{NEFD}_{\mathrm{b}}=$ | 2.04 |
| :--- |
| 2.38 |

Point source observation

Spectral resolution (cm-1 and Hz) $\Delta \sigma \equiv 1 \quad \Delta v \equiv c \cdot \Delta \sigma \cdot 100$
$\begin{aligned} & \text { Limiting flux density } \\ & (\mathrm{mJy} 5-\sigma 1-\mathrm{hr})\end{aligned} \quad \operatorname{Sim}_{\mathrm{b}}:=\frac{1000 \cdot \mathrm{NEFD}_{\mathrm{b}} \cdot 5}{(2 \cdot 3600 \cdot \eta \mathrm{\eta obs})^{0.5}} \quad \begin{aligned} & \text { Limiting line strength } \\ & (\mathrm{mJy} 5-\sigma 1-\mathrm{hr})\end{aligned} \operatorname{Flim}_{\mathrm{b}}:=\left(\frac{\mathrm{Slim}_{\mathrm{b}} \cdot 10^{-26}}{1000} \cdot \Delta \mathrm{v}\right)$

Deep mapping of one field for 1 hour:

Loss in S / N for point source due to need to make a map:
S/N improvement through co-addition of pixels

$$
\begin{aligned}
& \text { SN_imp }:=1.5 \\
& \text { SN_red }:=4 \\
& \text { factor }:=\frac{\text { SN_imp }}{\text { SN_red }} \quad \text { factor }=0.375
\end{aligned}
$$

S / N reduction through decrease in integration time per point by factor of 16

Overall reduction in S / N
Limiting flux density (mJy)
$\Delta \mathrm{S}_{-} 1 \mathrm{hr}_{\mathrm{b}}:=\frac{\mathrm{Slim}_{\mathrm{b}}}{\text { factor }}$
$\Delta \mathrm{F}_{-} 1 \mathrm{hr}_{\mathrm{b}}:=\frac{\text { Flim }_{\mathrm{b}}}{\text { factor }}$

Band centre and edges:
wavlengths and resolving powers

$$
\operatorname{Res} L_{\mathrm{b}}:=\frac{\nu \mathrm{U}_{\mathrm{b}}}{\Delta v} \quad \operatorname{Res} 0_{\mathrm{b}}:=\frac{\nu 0_{\mathrm{b}}}{\Delta v} \quad \operatorname{Res} U_{\mathrm{b}}:=\frac{\nu \mathrm{L}_{\mathrm{b}}}{\Delta v}
$$

	$\lambda L_{b}=$	$\operatorname{ResL}_{\mathrm{b}}=$	$\lambda 0_{\mathrm{b}}=$	$\operatorname{Res} 0_{\mathrm{b}}=$	$\lambda \mathrm{U}_{\mathrm{b}}=$	$\operatorname{ResU}_{\mathrm{b}}=$
LW	300.0	33.3	414.4	24.1	670.0	14.9
SW	190.0	52.6	239.8	41.7	325.0	30.8

Summary:

Pdet absorbed NEPs (W Hz-1/2 E-17) (pW)

Spectroscopy
(W m-2 5-厅: 1-hr) Point source Map
$\frac{\text { Spectrophotometry }}{(m J y ~ 5-\sigma \cdot 1-h r)}$
(mJy 5- $\sigma ; 1$ 1-hr)
Point source Map

Factor of $0.7 / 0.5=1.4$
degradation in telescope coupling efficiency between 500 and $670 \mu \mathrm{~m}$

Notes: 1. Limiting flux density Slim is inversely proporotional to spectral resolution
$(\Delta \sigma)$ and independent of wavelength except for LW band longer than $500 \mu \mathrm{~m}$
2. For an unresolved line, limiting line flux Flim is independent of spectral resolution and wavelength within the SW band. In the LW band it is constant up to $500 \mu \mathrm{~m}$.
3. Beyond $500 \mu \mathrm{~m}$, sensitivity declines linearly, by a factor of $5 / 7$ out to $670 \mu \mathrm{~m}$

