SPIRE sensitivity models SPIRE-QMW-NOT-000642 Matt Griffin 6 April 2001

The sensitivities of the SPIRE photometer and spectrometer for point source and mapping observations have been computed in the attached MathCad worksheets, under the assumptions listed. The main assumptions made in estimating the scientific performance of the instrument are listed below. Additional assumptions are given in the worksheets.

Telescope temperature (K)	80		
Telescope emissivity	0.04		
Telescope used diameter (m) (1)	3.29		
No. of observable hours per 24-hr period	21		
Photometer			
Bands ($\mu \mathrm{m}$)	250	350	500
Numbers of detectors	139	88	43
Beam FWHM (arcsec.)	17	24	35
Bolometer DQE (2)	0.6	0.7	0.7
Throughput	λ^{2}		
Bolometer yield	0.8		
Feed-horn/cavity efficiency (3)	0.7		
$\begin{array}{lc}\text { Field of view (arcmin.) } & \text { Scan mapping } \\ \text { Field mapping }\end{array}$	$\begin{array}{r} 4 \times 8 \\ 4 \times 4 \\ \hline \end{array}$		
Overall instrument transmission	0.3		
Filter widths ($\lambda / \Delta \lambda$)	3.3		
Observing efficiency (slewing, setting up, etc.)	0.9		
Chopping efficiency factor	0.45		
Reduction in telescope background by cold stop (4)	0.8		
FTS spectrometer			
Bands ($\mu \mathrm{m}$)	200-300	300-670	
Numbers of detectors	37		19
Bolometer DQE	0.6		0.7
Feed-horn/cavity efficiency	0.70		
Field of view diameter (arcmin.)	2.6		
Max. spectral resolution (cm^{-1})	0.04		
Overall instrument transmission	0.15		
Signal modulation efficiency	0.5		
Observing efficiency	0.8		
Electrical filter efficiency	0.8		

Notes:

1. The telescope secondary mirror is the pupil stop for the system, so that the outer edges of the primary mirror are not seen by the detectors. This is important to make sure that radiation from highly emissive elements beyond the primary reflector does not contribute stray light.
2. The bolometer DQE (Detective Quantum Efficiency) is defined as $\left[\frac{N E P_{p h}}{N E P_{\text {Total }}}\right]^{2}$ where $N E P_{p h}$ is the photon noise NEP due to the absorbed radiant power and $N E P_{\text {Total }}$ is the overall NEP including the contribution from the bolometer noise.
3. This is the overall absorption efficiency of the combination of feed-horn, cavity and bolometer element.
4. A fraction of the feedhorn throughput falls outside the solid angle defined by the photometer $2-\mathrm{K}$ cold stop and is thus terminated on a cold (non-emitting) surface rather than on the 4% emissive $80-\mathrm{K}$ telescope. This reduces the background power on the detector.

This version: SPIRE Phot 2.MCD

* Update prepared for IIDR

Previous versions:

BOLPH_01.MCD 18 Sept. 1997
Modified to compute mapping sensitivity correctly following discussion with WKG
BOLPH_02.MCD 11 Oct. 1997
Telescope focal ratio changed to f/9.59
Horn outside diameter changed to 2F
Hours per day changed from 20 to 22
BOLPH_03.MCD 11 Nov. 1997
Telescope focal ratio changed to $f / 8.68$
Dtel changed to 3.285 m
BOLPH_04.MCD 26 Nov. 1997
Adjusted calculation of sensitivity for frame mapping to use factors for S / N enhancement as in draft note on mapping speed by Griffin, Bock and Gear
NEPdet changed from 1E-17to 3E-1'7
Observing efficiency: 0.9 for point source ; 0.8 for field map

BOLPH_05.MCD 2 April 1999
Revised to include each optical element of photometer explicitly
$15-\mathrm{K}$ level makes significant additional contribution
Overall transmission still set at around 0.3
BOLPH_06.MCD 22 April 1999
Revised to incorporate 4×8 fov for deep surveys
Strong source power levels calculated
Internal calibrator requirements now included
BOLPH_07.MCD 16 May 1999
Detector sensitivity characterised in terms of DQE
BOLPH_07_revised.MCD 28 June 1999
New version incorporating Jamie's comments in his e-mail of June 25. Revisions are noted in purple.

BOLPH_08.MCD

Version prepared for array selection meeting

* Bands set at 250, 350, 500 mm , the nominal values used for the array selection
* Temperature table updated to reflect current optical/thermal design
* Power and NEP now referred to what is absorbed by the detector
* Only one observing efficiency factor (0.9) used for all observations
* Full NEPph calculation implemented (makes no real difference)

BOLPH_08_JPL_Spec.MCD

* QE changed to represent bolometer + horn with spec of 0.6 , goal of 0.85
* DQE wrt absorbed power now used to define overall NEP using values in JPL spec doc.

SPIRE_Phot_1.MCD 21 November 2000

* Version prepared for Systems Design Review and Toledo Meeting

$$
\begin{array}{llll}
\text { Constants } & \mathrm{h} \equiv 6.626 \cdot 10^{-34} \mathrm{c} \equiv 3 \cdot 10^{8} & \mathrm{~kb} \equiv 1.38 \cdot 10^{-23} & \begin{array}{l}
\text { Planck } \\
\text { function }
\end{array} \\
\mathrm{i} \equiv 1,2 . .3 & \text { origin } \equiv 1 & \mathrm{nu}, \mathrm{~T}):=\frac{2 \cdot \mathrm{~h} \cdot(\mathrm{nu})^{3}}{\mathrm{c}^{2} \cdot\left[\mathrm{e}^{\left(\frac{\mathrm{h} \cdot \mathrm{nu}}{\mathrm{~kb} \cdot \mathrm{~T}}\right)}-1\right]}
\end{array}
$$

Assumptions

Telescope

$$
\begin{array}{lllll}
\text { Temp. } & \text { Emissivity } & \text { Diameter } & \text { Area } & \text { Focal ratio } \\
\text { Ttel } \equiv 80 & \text { عtel } \equiv 0.04 & \text { Dtel } \equiv 3.285 & \text { Atel } \equiv 0.25 \cdot \pi \cdot \text { Dtel }^{2} & \text { Ftel }:=8.68
\end{array}
$$

Plate scale at telescope focus (arcsec/mm):

$$
\text { PS }:=\frac{1}{\text { Dtel } \cdot \text { Ftel }} \cdot \frac{360}{2 \cdot \pi} \cdot 3.6 \mathrm{PS}=7.23
$$

Plate scale at arrays (arcsec/mm):

$$
\text { PSA }:=\mathrm{PS} \cdot \frac{8.68}{5} \quad \text { PSA }=12.56
$$

Beamwidths (arcsec.):

$$
\mathrm{FWHM}_{\mathrm{i}}:=\frac{1.11 \cdot \lambda_{\mathrm{i}} \cdot 10^{-6}}{\text { Dtel }} \cdot \frac{360}{2 \cdot \pi} \cdot 3600 \mathrm{FWHM}_{\mathrm{i}}=
$$

Feedhorn point source coupling efficiency:

$$
\eta \text { tel } \equiv 0.7
$$

Final optics focal ratio

$$
\text { Ffin := } 5
$$

Cold stop attenuation of telescope background:

$$
\eta \mathrm{cs}:=0.8
$$

Bolometer and feedhorn properties (see BDA Subsystem Spec. Doc. SPIRE-JPL-PRJ-000456):

Overall optical efficiency of horn + bolometer combination

DQE of horn-bolometer combination

Bolometer yield
Chopping efficiency factor
Observing efficicency (slewing, mechanism overheads, etc.):
η feed_min $:=0.45 \quad \eta$ feed_goal $:=0.85 \quad \eta$ feed_nom $:=0.7$

DQE_min $_{\mathrm{i}}:=\quad$ DQE_goal $:=$ DQE_nom ${ }_{\mathrm{i}}:=$

| 0.55 |
| :--- | :--- |
| 0.61 |
| 0.66 |\quad| 0.66 |
| :--- |
| 0.73 |
| 0.79 |\quad| 0.6 |
| :--- |
| 0.7 |
| 0.7 |\quad| η feed $:=\eta$ feed_nom |
| :--- |
| |

$$
\begin{aligned}
& \text { y_min }:=0.75 \quad \text { y_goal }:=0.9 \quad \text { y_nom }:=0.8 \quad \text { yield }:=y _ \text {nom } \\
& \eta \text { ch } \equiv 0.45
\end{aligned}
$$

$$
\eta \mathrm{obs} \equiv 0.9
$$

Bands: defined by central wavelengths (in $\mu \mathrm{m}$) and resolution of the filters

$\lambda_{\mathrm{i}} \equiv$	$\mathrm{R}_{\mathrm{i}}:=$
250	3.3
350	3.3 500 3.3

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{i}}:=\frac{\mathrm{c}}{\lambda_{\mathrm{i}} \cdot 10^{-6}} \lambda \mathrm{~L}_{\mathrm{i}}:=\lambda_{\mathrm{i}}-\frac{\lambda_{\mathrm{i}}}{2 \cdot \mathrm{R}_{\mathrm{i}}} \quad \lambda \mathrm{U}_{\mathrm{i}}:=\lambda_{\mathrm{i}}+\frac{\lambda_{\mathrm{i}}}{2 \cdot \mathrm{R}_{\mathrm{i}}} \quad \Delta \lambda_{\mathrm{i}}:=\frac{\lambda_{\mathrm{i}}}{\mathrm{R}_{\mathrm{i}}} \\
& \mathrm{~L}_{\mathrm{i}}:=\frac{\mathrm{c}}{\lambda \mathrm{U}_{\mathrm{i}} \cdot 10^{-6}} \nu \mathrm{U}_{\mathrm{i}}:=\frac{\mathrm{c}}{\lambda \mathrm{~L}_{\mathrm{i}} \cdot 10^{-6}}
\end{aligned}
$$

$$
\Delta v_{\mathrm{i}}:=\frac{v_{\mathrm{i}}}{\mathrm{R}_{\mathrm{i}}}
$$

$\mathrm{i}=$	$\lambda_{i}=$	$\lambda \mathrm{L}_{\mathrm{i}}=$	$\lambda \mathrm{U}_{\mathrm{i}}=$	$\Delta \lambda_{\mathrm{i}}=$	$\mathrm{v}_{\mathrm{i}} \cdot 10$	L_{i}	U_{i}	$\Delta v_{i} \cdot 10$
1	250	212	288	76	1200	1042	1414	364
2	350	297	403	106	857	744	1010	260
3	500	424	576	152	600	521	70	182

Transmission, emissivity and temperature of optical elements

$$
\mathrm{j} \equiv 0,1 . .1 \mathrm{k} \equiv 0,1 . .12
$$

Tdets $\equiv 0.3 \quad \mathrm{~T} 2 \equiv 2.0 \quad \mathrm{~T} 4 \equiv 5.0 \quad \mathrm{~T} 4=5$

	$\mathrm{k}=$	$\mathrm{t}_{\mathrm{k}} \equiv$	$\varepsilon_{\mathrm{k}} \equiv$	$\mathrm{T}_{\mathrm{k}} \equiv$	$\operatorname{td}_{\mathrm{j}}=$	Transmission from element to detector	$\mathrm{td}_{\mathrm{i}} \equiv \prod^{12}$
0 = Telescope	0	0.960	0.04	Ttel	0.301		
$1=15-\mathrm{K}$ filter	1	0.900	0.100	T4	0.334		$\operatorname{td}_{\mathrm{j}} \equiv$
2 = M3	2	0.995	0.005	T4	0.336		$\mathrm{k}=\mathrm{j}+1$
$3=\mathrm{M} 4$	3	0.995	0.005	T4	0.338		
4 = M5	4	0.995	0.005	T4	0.339		
5 = 4-K filter	5	0.900	0.100	T4	0.377		
6 = M6	5	0.995	0.005	T4	0.377		
7 = 2-K filter	6	0.900	0.100	T2	0.379		
$8 \text { = M7 }$	7	0.995	0.005	T2	0.421		
9 = Dichroic	8	0.900	0.100	T2	0.423		
$10=\mathrm{M} 8$	9	0.995	0.005	T2	0.47		
11 = Bandpass filter	10	0.525	0.300	Tdets	0.473		
	11	0.900	0.100	Tdets	0.9		
	12						

Array parameters

Detector Numbers

Ndets $_{i}:=$
$15 \cdot 5+16 \cdot 4$
$13 \cdot 4+12 \cdot 3$
$9 \cdot 3+8 \cdot 2$

Horn size projected
onto telescope focus (mm):

Dpix $_{\mathrm{i}}:=\left(\right.$ Dhorn $\left._{\mathrm{i}}\right) \cdot \frac{\text { Ftel }}{\text { Ffin }}$ Array dimensions at
telescope focus
centre-centre (mm):

$$
\begin{aligned}
& \operatorname{Lmm}_{\mathrm{i}}:=\mathrm{Nmax}_{\mathrm{i}} \cdot \text { Dpix }_{\mathrm{i}} \\
& \mathrm{Wmm}_{\mathrm{i}}:=\mathrm{Nmin}_{\mathrm{i}} \cdot \text { Dpix }_{\mathrm{i}}
\end{aligned}
$$

Field size (arcmin):

Warcmin $_{\mathrm{i}}:=\frac{\mathrm{Wmm}_{\mathrm{i}} \cdot \mathrm{PS}}{60}$

Dhorn $_{\text {i }}=$	Dpix ${ }_{1}$	Lmm	Wm		$\mathrm{Warcmin}_{\mathrm{i}}=$	
2.5	4.3	65	35	7.8	4.2	
3.5	6.1	73	36	8.8	4.	4
5.0	8.7	69	35	8.4	4.	2

Background power levels on the detectors

Throughput:

Power contribution absorbed by detector from any element (pW)

$$
\mathrm{A} \Omega_{\mathrm{i}}:=\eta \mathrm{cs} \cdot\left(\lambda_{\mathrm{i}} \cdot 10^{-6}\right)^{2}
$$

$$
\text { Power }_{\mathrm{i}, \mathrm{j}}:=\operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot 10^{12} \cdot \eta \text { feed } \cdot \int_{\mathrm{vL}_{\mathrm{i}}}^{\mathrm{vU}} \mathrm{~B}\left(\mathrm{v}, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega_{\mathrm{i}} \mathrm{~d} \nu
$$

Photon noise levels and single-detector NEFD

Photon noise limited NEP (full expression)

$$
\mathrm{NEPph}_{\mathrm{i}}:=\left[\frac{4 \cdot \mathrm{~A} \Omega_{\mathrm{i}} \cdot \mathrm{~h}^{2}}{\mathrm{c}^{2}} \cdot\left[\int_{\mathrm{vL}_{\mathrm{i}}}^{\mathrm{vU}_{i}} \frac{\varepsilon \text { tel } \cdot \mathrm{td}_{0} \cdot \eta \text { feed } \cdot n u^{4}}{\mathrm{e}^{\left(\frac{\mathrm{h} \cdot \mathrm{nu}}{\mathrm{~kb} \cdot \mathrm{~T}_{0}}\right)}-1} \cdot\left[1+\frac{\varepsilon t \mathrm{el} \cdot \mathrm{td}_{0} \cdot \eta \text { feed }}{\mathrm{e}^{\left(\frac{\mathrm{h} \cdot \mathrm{nu}}{\mathrm{~kb} \cdot \mathrm{~T}_{0}}\right)}-1}\right] \mathrm{dnu}\right]\right]^{0.5} \cdot 10^{17}
$$

Overall NEP
(W Hz-1/2 x 10-17)

$$
\mathrm{NEPtot}_{\mathrm{i}}:=\frac{\mathrm{NEPph}_{\mathrm{i}}}{\left(\mathrm{DQE}_{\mathrm{i}}\right)^{0.5}} \quad \text { referred to the power absorbed by the detector }
$$

Detector NEP
(W Hz-1/2 x 10-17)
NEPdet $_{\mathrm{i}}:=\left[\left(\text { NEPtot }_{\mathrm{i}}\right)^{2}-\left(\text { NEPph }_{\mathrm{i}}\right)^{2}\right]^{0.5}$

NEFD ($m \mathrm{Jy} \mathrm{Hz}-1 / 2$) for point source chopped observations

$$
\mathrm{NEFDp}_{\mathrm{i}}:=\frac{\text { NEPtot }_{\mathrm{i}} \cdot 10^{-17} \cdot 10^{26} \cdot 1000}{\eta \mathrm{ch} \cdot \eta \text { tel }^{0.5} \cdot 2^{.5} \cdot{\text { Atel } \cdot \mathrm{td}_{0} \cdot \Delta v_{\mathrm{i}} \cdot \mathrm{t}_{0} \cdot \eta \text { feed }}^{\text {and }} \text {. }}
$$

Factor of SQRT(2) from pixel-pixel chopping

NEFD (mJy Hz-1/2) for field mapping (jiggle mode)

No factor of SQRT(2)in the denominator as we are not pixel-pixel chopping

NEFD (mJy Hz-1/2) for
scan map observations
without chopping \quad NEFDs $_{i}:=\frac{\text { NEPtot }_{i} \cdot 10^{-17} \cdot 10^{26} \cdot 1000}{\eta \text { tel } \cdot \text { Atel } \cdot \mathrm{td}_{0} \cdot \Delta v_{i} \cdot \mathrm{t}_{0} \cdot \eta \text { feed }} \cdot 2^{0.5}$

$$
\text { NEFDf }_{i}:=\frac{\text { NEPtot }_{\mathrm{i}} \cdot 10^{-17} \cdot 10^{26} \cdot 1000}{\eta \mathrm{ch} \cdot \eta \text { tel } \cdot{\text { Atel } \cdot \mathrm{td}_{0} \cdot \Delta v_{\mathrm{i}} \cdot \mathrm{t}_{0} \cdot \eta \text { feed }}^{\text {and }} \text {. }}
$$

Factor of SQRT(2) assumes need for background subtraction (probably pessimistic as background can be estimated by averaging a number of scan points)

1-б; 1 sec. limiting flux densities (mJy):
S_1 $\sigma_{-} 1$ s_point $_{i}:=\frac{\text { NEFDp }_{i}}{2^{0.5}}$
S_1 $\sigma_{-} 1$ s_field $_{i}:=\frac{\text { NEFDf }_{i}}{2^{0.5}}$
S_1 $\sigma_{-} 1 \mathrm{~s}_{-}$scan $_{\mathrm{i}}:=\frac{\text { NEFDs }_{\mathrm{i}}}{2^{0.5}}$

1-б; 1 hr . limiting flux densities (mJy):

Point source photometry in 7-point mode:
Loss in S/N for point source due to need to make a 7-point map:

5- $\sigma 1 \mathrm{hr}$ flux density limit in 7-point mode:

$\operatorname{loss}_{\mathrm{i}}:=$ Slim_point_1 $\mathrm{hr}_{\mathrm{i}}=$ 0.06 0.13 0.20	0.467
0.46	

Slim_7_pt_5_ $\sigma_{-} 1 \mathrm{hr}_{\mathrm{i}}:=5 \cdot$ Slim_point_1 $\mathrm{hr}_{\mathrm{i}} \cdot\left(1+\operatorname{loss}_{\mathrm{i}}\right)$

Slim_7_pt_5_o_1hri $=$

2.5
2.6
2.9

Deep mapping of one field for 1 hour in jiggle-map mode:

Loss in S/N for point source due to need to make a map:
S/N improvement through pixel co-addition

$$
\text { SN_imp := } 1.5
$$

S / N reduction through decrease in integration time/point by factor of 16

Overall reduction in S / N
SN_red := 4

$$
\text { factor }:=\frac{\text { SN_imp }}{\text { SN_red }} \quad \text { factor }=0.375
$$

1σ; 1-hr limiting flux density for field map (mJy)
ΔS_{-}field_1 $1 r_{i}=$

Deep mapping of one field for 1 hour in scan-map mode:
Note: this would not be done in practice as the telescope turn-around overhead would be unacceptable. But the calculation allows the sensitivity for large-scale maps to be estimated.
$1 \sigma ; 1 \mathrm{hr}$ limiting flux density
for scan map (mJy)

$$
\Delta \mathrm{S} _ \text {scan_1hr } r_{\mathrm{i}}:=\frac{\text { Slim_scan_1 }^{\mathrm{h} r_{\mathrm{i}}}}{\text { factor }}
$$

$$
\text { 5- } \sigma \text { flux density limit (mJy) }
$$

$$
\text { for } 4 \times 8 \text { arcminute field }
$$ (allow 25\% margin)

Time to map 1 sq.deg. to the confusion limit in scan-map mode

Confusion limit for 1 source per 40 beams (mJy) using source count models of Rowan-Robinson (2000)

$$
\Delta \text { Sconf_MRR }_{\mathrm{i}}:=
$$

19
20
15

Take 15 mJy as required $5-\sigma$ limit for all three bands
Δ Sconf $_{\mathrm{i}}:=$

15
15
15

Time to reach confusion limit for one field at $5-\sigma$ (minutes)

Required overlap between fields:
Number of fields to be mapped for 1 sq. deg.

$$
\mathrm{T}_{-} 1 _ \text {field }_{\mathrm{i}}:=\left(\frac{\Delta \mathrm{S}_{\text {_scan_5_ }} \sigma_{-1 \mathrm{hr}_{\mathrm{i}}}}{\Delta \mathrm{Sconf}_{\mathrm{i}}}\right)^{2} \cdot 60
$$

T_1_field ${ }_{i}=$
overlap $:=1.2$
13.1
12.7
13.9

Nfields $:=\frac{60^{2}}{4 \cdot 8} \cdot \frac{\text { overlap }}{\text { yield }}$
T_1_sq_deg $:=$ Nfields•T_1_field ${ }_{i} \cdot \frac{1}{60 \cdot 21}$

T_1_sq_deg ${ }_{i}=$

Large area deep survey (nominally 100 sq. deg; 180 days):

Area of one field (sq. arcmin) taking bolometer yield into account

Area to be surveyed (sq. deg.)

Number of fields to be observed:

Time for survey:

Time for each field (hrs):
1- σ; 1-hr limiting flux density for scan map (mJy)

Large survey 5- σ flux density limit (mJy):

Afield $:=(4) \cdot(8) \cdot$ yield \quad Afield $=25.6$

Asurv := 100
Nfields $:=\frac{\text { Asurv } \cdot 60^{2}}{\text { Afield }} \cdot$ overlap \quad Nfields $=16875$
Tdays $:=180 \quad$ Tmonths $:=$ Tdays $\frac{12}{365} \quad$ Tmonths $=5.9$
Thrs := Tdays $21 \quad$ Thrs $=3780$
TField $:=\frac{\text { Thrs }}{\text { Nfields }} \quad$ TField $=0.224$
$\Delta \mathrm{S}_{-}$scan_1 $\mathrm{hr}_{\mathrm{i}}:=\frac{\text { Slim_scan_1 } \mathrm{hr}_{\mathrm{i}} \cdot \text { margin }}{\text { factor }}$
$\Delta \mathrm{S}_{-}$surv_5 $\sigma_{\mathrm{i}}:=\Delta \mathrm{S} _$scan_1 $\mathrm{hr}_{\mathrm{i}} \cdot\left(\frac{1}{\text { TField }}\right)^{0.5} \cdot 5$
$\Delta \mathrm{S}_{-}$surv_5 $\mathrm{\sigma}_{\mathrm{i}}=$

14.8
14.6
15.3

Summary of power loading and sensitivity calculations

Pdet absorbed (pW)
Pdet $_{i}=$

$\lambda_{i}=$
250
350
500

3.9
3.2
2.4

Point source 7-point (mJy) $5 \sigma 1 \mathrm{hr}$

$\lambda_{i}=$
250
350
500

NEPs (W Hz-1/2 E-17)
$\mathrm{NEPph}_{\mathrm{i}}=$ NEPtot $_{\mathrm{i}}=$

8.1
6.1
4.5
---:
7.3
5.4

NEFDs (mJy Hz-1/2)
$\mathrm{NEFDp}_{\mathrm{i}}=\mathrm{NEFDf}_{\mathrm{i}}=\mathrm{NEFD}_{\mathrm{i}}=$

| 38 |
| :--- | :--- |
| 37 |
| 39 |\quad| 53 |
| :--- |
| 52 |
| 55 |
| 33 |

Field Map (mJy $5 \sigma 1 \mathrm{hr}$)

Scan Map (mJy $5 \sigma 1 \mathrm{hr}$)

100 sq.deg. ; 120 day survey (mJy 5 σ)
$\Delta \mathrm{S} _$scan_5_o_1hr $\mathrm{i}_{\mathrm{i}}=$ $\Delta \mathrm{S}_{-}$surv_5 $\mathrm{\sigma}_{\mathrm{i}}=$

14.8
14.6
15.3

This Version

SPIRE_FTS 2_IIDR.MCD
Updated for IIDR

Previous versions

BOL_FTS4.MCD: 1 Dec. 1997:
Dtel changed to 3.285
Bands changed to allow for same array sizes as in photometer and to correct for previous excessively broad band 1 (was 25-38 cm-1, $\lambda / \Delta \lambda$ was 2.4)

BOL_FTS5.MCD: 7 Dec. 1997:
Modified to treat correctly variation of resolving power with wavelength: fixed resolution of $0.1 \mathrm{~cm}-1$ now assumed
Error in treatment of electrical filtering now corrected - flux limits now worse by sqrt(0.8)
Some other changes made to simplify computation and improve tabulation of results

BOL_FTS6.MCD: 11 Jan. 1998:
Bands changed to extend upper wavelength to $15 \mathrm{~cm}-1$ (667 um)
Cross-over put at $33.5 \mathrm{~cm}-1$ (300 um) to give equal photon noise NEP in the two bands.
Background power from calibration source now also included in photon noise calculation.

BOL_FTS7.MCD: 29 Sept. 1998:
Revised to include full set of mirrors

BOL_FTS8.MCD: 6 April 1999:

Revised for Mach Zehnder (ADES) configuration

BOL_FTS9.MCD: 7 May 1999:

Three-band system extending to 150 um
BOL_FTS10.MCD: June 1999:
QE term taken out of denominator
Overall efficiency set at 20\%
Back to 2-band system

BOL_FTS11.MCD: 2 July 1999:
Corrected for effiency of the
intensity beam divider (to ~0.5)

SPIRE FTS 1.MCD: 21 November 2000:

New version for Toledo meeting and System Review

* Multi-moding of both SW and LW bands now taken into account
* NEP contributions from each mode calculated separately and added in quadrature
* NEP now referred to the power absorbed by the detector
* Calculations done for the minimum and goal parameters of teh detectors and feedhorns

$$
\begin{array}{cll}
\text { Constants: } & \mathrm{h} \equiv 6.626 \cdot 10^{-34} \mathrm{~kb} \equiv 1.3806 \cdot 10^{-23} & \begin{array}{l}
\text { Plank } \\
\text { function: }
\end{array} \\
\text { origin }:=1 & \mathrm{c} \equiv 2.998 \cdot 10^{8} & \mathrm{~B}(\mathrm{v}, \mathrm{~T}):=\frac{2 \cdot \mathrm{~h} \cdot \mathrm{v}^{3}}{\mathrm{c}^{2} \cdot\left[\exp \left(\left(\frac{\mathrm{~h} \cdot \mathrm{v}}{\mathrm{~kb} \cdot \mathrm{~T}}\right)\right)-1\right]} \\
\mathrm{b}:=1,2 . .2 & &
\end{array}
$$

Assumptions

Array parameters

SW Band $(243 \mu \mathrm{~m})$: 37-element hex array of 2.0F λ feedhorns:

Array side: \quad Warray $:=6 \cdot 2 \cdot \frac{250 \cdot 10^{-6}}{\text { Dtel }} \cdot \frac{360}{2 \cdot \pi} \cdot 60$
Warray $=3.1 \quad$ arcmin
LW Band (343 mm): 19-element hex array of \quad Array side: \quad Warray $:=4 \cdot 2 \cdot \frac{350 \cdot 10^{-6}}{\text { Dtel }} \cdot \frac{360}{2 \cdot \pi} \cdot 60$
2.0F λ feedhorns:
Warray $=2.9 \quad$ arcmin

Bands

Band limits (cm-1)

Band limits (mm and Hz)
SW Band: 33.5-50 cm¹

$$
\sigma \mathrm{L}_{2} \equiv 33.5 \quad \sigma \mathrm{U}_{2} \equiv 50
$$

$\sigma \mathrm{L}_{1} \equiv 15 \quad \sigma \mathrm{U}_{1} \equiv 33.5$

$$
\lambda \mathrm{L}_{\mathrm{b}}:=\frac{10^{4}}{\sigma \mathrm{U}_{\mathrm{b}}} \quad \lambda \mathrm{U}_{\mathrm{b}}:=\frac{10^{4}}{\sigma \mathrm{~L}_{\mathrm{b}}}
$$

$\nu \mathrm{L}_{\mathrm{b}}:=\mathrm{c} \cdot \sigma \mathrm{L}_{\mathrm{b}} \cdot 100 \quad \mathrm{\nu} \mathrm{U}_{\mathrm{b}}:=\mathrm{c} \cdot \sigma \mathrm{U}_{\mathrm{b}} \cdot 100$

Band centre (mm and Hz)

$$
v 0_{\mathrm{b}}:=\frac{v \mathrm{~L}_{\mathrm{b}}+\nu \mathrm{U}_{\mathrm{b}}}{2}
$$

$$
\lambda 0_{\mathrm{b}}:=\frac{\mathrm{c} \cdot 10^{6}}{v 0_{\mathrm{b}}}
$$

Band $\lambda \Delta \lambda$

$$
\mathrm{R}_{\mathrm{b}}:=\frac{\sigma \mathrm{U}_{\mathrm{b}}+\sigma \mathrm{L}_{\mathrm{b}}}{2 \cdot\left(\sigma \mathrm{U}_{\mathrm{b}}-\sigma \mathrm{L}_{\mathrm{b}}\right)}
$$

Background power levels on the detectors

Assumptions:

1. All modes carry equal background power (per unit bandwidth) from the telescope
2. All modes couple equally well to the bolometer
3. Calibrator contributes same amount of power as the telescope

Throughput per mode $\quad \mathrm{A} \Omega(v):=\left(\frac{\mathrm{c}}{\mathrm{v}}\right)^{2} \cdot \eta \mathrm{cs}$
Coupling of higher order modes to telescope: Assume 50\%
(cf. Martin Caldwell note presented at Boulder Feedhorn meeting): $\quad \eta _$higher $:=0.5$

SW band (b=2)

Designed cut-off wavelength for TE11 mode $\quad \lambda c:=310 \quad$ vo_TE11 $2:=0.5 \cdot\left(v L_{2}+v U_{2}\right)$

Required waveguide radius ($\mu \mathrm{m}$)

$$
\text { ro }:=\frac{\lambda c \cdot 1.841}{2 \cdot \pi} \quad \text { ro }=91 \quad \frac{\text { ro }}{\lambda c}=0.3
$$

Cut-off wavelengths of higher modes (one higher mode can propagate)
λc_{-}TM01 $:=\frac{2 \cdot \pi \cdot \mathrm{ro}}{2.405} \quad \lambda c_{-}$TM01 $=237 \quad$ vc_TM01 $:=\frac{\mathrm{c} \cdot 10^{6}}{\lambda c_{-} \text {TM01 }}$ Propagated \quad vo_TM01 $2:=\frac{v c_{-} T M 01+v U_{2}}{2}$
λc_{-}TE21 $:=\frac{2 \cdot \pi \cdot \mathrm{ro}}{3.054} \quad \lambda c_{-}$TE2 $1=187 \quad v c_{-}$TE21 $:=\frac{c \cdot 10^{6}}{\lambda c_{-} \text {TE21 }} \quad$ Not propagated

TE11 power absorbed by detector from each element(pW)

$$
\begin{aligned}
& \text { P_TE11 }_{2, \mathrm{j}}:=2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta \text { feed } \cdot 10^{12} \cdot \int_{\mathrm{vL}_{2}}^{\mathrm{vU}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \mathrm{d} v \quad \begin{array}{l}
\begin{array}{l}
\text { Factor of } 2 \text { accounts } \\
\text { for same background } \\
\text { from calib. source in } \\
\text { 2nd port }
\end{array} \\
\text { Power_TE11 }:=\sum_{\mathrm{n}=0}^{9} \mathrm{P}_{-} \mathrm{TE} 11_{2, \mathrm{n}} \\
\text { Power_TE11 } 2=4.9
\end{array}
\end{aligned}
$$

TE11 NEPph contribution

$$
\text { NEPph_TE } 11_{2}:=\left(2 \cdot \text { Power_TE } 11_{2} \cdot 10^{-12} \cdot h \cdot v o _T E 11_{2}\right)^{0.5} \cdot 10^{17} \quad \text { NEPph_TE } 11_{2}=9.0
$$

TM01 power absorbed by detector from each element(pW)

P_TM01 $_{2, \mathrm{j}}:=\eta _$higher $\cdot 2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta$ feed $\cdot 10^{12} \cdot \int_{v c_{-} \text {TM01 }}^{v \mathrm{U}_{2}} B\left(v, T_{j}\right) \cdot A \Omega(v) \mathrm{d} v$ Power_TM01 $2:=\sum_{\mathrm{n}=0}^{9}$ P_TM01 $_{2, \mathrm{n}} \quad$ Power_TM01 $1_{2}=1.1$
TM01 NEPph contribution

$$
\text { NEPph_TM012 }:=\left(2 \cdot \text { Power_TM01 }_{2} \cdot 10^{-12} \cdot \mathrm{~h} \cdot \mathrm{vo}_{-} \text {TM012 }\right)^{0.5} \cdot 10^{17} \quad \text { NEPph_TM01 } 2=4.5
$$

Overall power for SW band

$$
\text { Power }_{2, \mathrm{j}}:=\mathrm{P}_{-} \mathrm{TE} 11_{2, \mathrm{j}}+\mathrm{P}_{-} \mathrm{TM} 01_{2, \mathrm{j}}
$$

Overall NEPph for SW band
$\left.\mathrm{NEPph}_{2}:=\left[\left(\mathrm{NEPph} _\mathrm{TE} 11_{2}\right)^{2}+\left(\mathrm{NEPph} _ \text {TM01 }\right)_{2}\right)^{2}\right]^{0.5}$ (W Hz-1/2 * 1E-17)

$$
\mathrm{NEPph}_{2}=10.1
$$

LW band ($b=1$)
Designed cut-off wavelength for TE11 mode

$$
\lambda c:=670
$$

Required waveguide radius \quad ro $:=\frac{\lambda c \cdot 1.841}{2 \cdot \pi} \quad$ ro $=196 \quad \frac{\text { ro }}{\lambda c}=0.3 \quad \quad$ vo_TE11 $1:=0.5 \cdot\left(\nu \mathrm{~L}_{1}+\nu \mathrm{U}_{1}\right)$
Cut-off wavelengths of higher modes (three higher modes can propagate)
λc_{-}TM01 $:=\frac{2 \cdot \pi \cdot \mathrm{ro}}{2.405} \quad \lambda c_{-}$TM01 $=513 \quad$ vc_TM01 $:=\frac{\mathrm{c} \cdot 10^{6}}{\lambda c_{-} \mathrm{TM} 01}$ Propagated $\mathrm{vo}_{-} \mathrm{TM} 01_{1}:=\frac{v c_{-} \mathrm{TM} 01+\mathrm{vU} \mathrm{U}_{1}}{2}$

λc_{-}TE01 $:=\frac{2 \cdot \pi \cdot \mathrm{ro}}{3.832} \quad \lambda c_{-}$TE0 $1=322 \quad \quad \mathrm{cc}_{-} \mathrm{TE} 01:=\frac{\mathrm{c} \cdot 10^{6}}{\lambda \mathrm{c}_{-} \mathrm{TE} 01} \quad$ Propagated vo_{-}TE01 $1:=\frac{v \mathrm{c}_{-} \mathrm{TE} 01+\mathrm{vU} \mathrm{U}_{1}}{2}$
λc_{-}TE31 $:=\frac{2 \cdot \pi \cdot \mathrm{ro}}{4.201} \quad \lambda c_{-}$TE31 $=294 \quad \quad v c_{-}$TE31 $:=\frac{c \cdot 10^{6}}{\lambda c _ \text {TE31 }} \quad$ Not propagated

TE11 power absorbed by detector from each element (pW)

TE11 NEPph contribution

TM01 power absorbed by detector from each element (pW)

TM01 NEPph contribution

TE21 power absorbed by detector from each element (pW)

TE21 NEPph contribution

P_TE11 $_{1, \mathrm{j}}:=2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta$ feed $\cdot 10^{12} \cdot \int_{v \mathrm{~L}_{1}}^{v \mathrm{U}_{1}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \mathrm{d} v$
Power_TE11 $:=\sum_{\mathrm{n}=0}^{9}{\text { P_TE } 11_{1, \mathrm{n}} \quad \text { Power_TE } 11_{1}=7.0}$
NEPph_TE11 $:=\left(2 \cdot \text { Power_TE } 11_{1} \cdot 10^{-12} \cdot h \cdot v o _T E 11_{1}\right)^{0.5} \cdot 10^{17}$
NEPph_TE11 $1=8.2$
P_TM01 $_{1, \mathrm{j}}:=\eta _$higher $\cdot 2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta$ feed $\cdot 10^{12} \cdot \int_{v c_{-} \text {TM01 }}^{v \mathrm{U}_{1}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \mathrm{d} v$
Power_TM01 $:=\sum_{\mathrm{n}=0}^{9}$ P_TM01 $_{1, \mathrm{n}} \quad$ Power_TM01 $_{1}=2.5$
NEPph_TM01 $:=\left(2 \cdot \text { Power_TM01 } 1_{1} \cdot 10^{-12} \cdot \mathrm{~h} \cdot \mathrm{vo}_{1} \text { TM01 } 1_{1}\right)^{0.5} \cdot 10^{17}$
NEPph_TM01 ${ }_{1}=5.2$
P_TE2 $_{1, \mathrm{j}}:=\eta _$higher $\cdot 2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta$ feed $\cdot 10^{12} \cdot \int_{v c_{-} \text {TE } 21}^{v \mathrm{U}_{1}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \mathrm{d} v$

NEPph_TE $21_{1}:=\left(2 \cdot \text { Power_TE } 21_{1} \cdot 10^{-12} \cdot h \cdot v o_{-} \text {TE } 21_{1}\right)^{0.5} \cdot 10^{17}$
NEPph_TE $21_{1}=4.2$

TE01 power absorbed by detector from each element (pW)

P_TE01 $_{1, \mathrm{j}}:=\eta _$higher $\cdot 2 \cdot \mathrm{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta$ feed $\cdot 10^{12} \cdot \int_{\mathrm{vc} _ \text {TE01 }}^{v \mathrm{U}_{1}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \mathrm{d} v$ Power_TE01 $:=\sum_{\mathrm{n}=0}^{9}$ P_TE01 $_{1, \mathrm{n}} \quad$ Power_TE01 $1=0.4$

TE01 NEPph contribution

NEPph_TE01 $:=\left(2 \cdot \text { Power_TE01 } \cdot 10^{-12} \cdot h \cdot v o_{1} T E 01_{1}\right)^{0.5} \cdot 10^{17}$
NEPph_TE01 $1_{1}=2.3$

Overall power or LW band
Power $_{1, \mathrm{j}}:=$ P_TE11 $_{1, \mathrm{j}}+$ P_TM01 $_{1, \mathrm{j}}+{\text { P_TE } 21_{1, \mathrm{j}}}+$ P_TE01 $_{1, \mathrm{j}}$

Overall NEPph NEPph $_{1}:=\left[\left(\text { NEPph_TE11 }_{1}\right)^{2}+\left(\text { NEPph_TM01 } 1_{1}\right)^{2}+\left(\text { NEPph_TE21 } 1_{1}\right)^{2}+\left(\text { NEPph_TE01 } 1_{1}\right)^{2}\right]^{0.5}$ for LW band

$$
\mathrm{NEPph}_{1}=10.8
$$

Spectral resolution (cm-1 and Hz) $\quad \Delta \sigma \equiv 1 \quad \Delta v \equiv \mathrm{c} \cdot \Delta \sigma \cdot 100$
Band centre and edges: wavlengths and resolving powers

$$
\operatorname{Res} L_{\mathrm{b}}:=\frac{\nu \mathrm{U}_{\mathrm{b}}}{\Delta v} \quad \operatorname{Res} 0_{\mathrm{b}}:=\frac{v 0_{\mathrm{b}}}{\Delta v} \quad \operatorname{Res}_{\mathrm{b}}:=\frac{\nu \mathrm{L}_{\mathrm{b}}}{\Delta v}
$$

$\lambda \mathrm{L}_{\mathrm{b}}=$	ResL ${ }_{\text {b }}$	$\lambda 0_{\mathrm{b}}=$	$\operatorname{Res}^{0} \mathrm{~b}_{\text {b }}=$	$\lambda \mathrm{U}_{\mathrm{b}}=$	$\operatorname{Res} \mathrm{U}_{\mathrm{b}}=$
298.5	33.5	412.4	24.3	666.7	15.0
200.0	50.0	239.5	41.8	298.5	33.5

Photon noise levels and single-detector NEFD

Overall NEP
(W Hz-1/2 x 10-17)

$$
\mathrm{NEPtot}_{\mathrm{b}}:=\frac{\mathrm{NEPph}_{\mathrm{b}}}{\left(\mathrm{DQE}_{\mathrm{b}}\right)^{0.5}} \quad \text { referred to the power absorbed by the detector }
$$

Detector NEP
(W Hz-1/2 x 10-17)

$$
\text { NEPdet }_{\mathrm{b}}:=\left[\left(\text { NEPtot }_{\mathrm{b}}\right)^{2}-\left(\mathrm{NEPph}_{\mathrm{b}}\right)^{2}\right]^{0.5}
$$

NEFD (Jy Hz-1/2)

$$
\mathrm{NEFD}_{\mathrm{b}}:=\frac{\mathrm{NEPtot}_{b} \cdot 10^{-17} \cdot 10^{26}}{\eta \mathrm{elec} \cdot \eta \operatorname{cosq} \cdot \eta \text { tel } \cdot \text { Atel } \cdot \operatorname{td}_{0} \cdot \Delta \mathrm{v} \cdot \mathrm{t}_{0} \cdot \eta \text { feed }}
$$

Note: this is pessimistic in that the additional modes are assumed to couple to the telescope background but not to the source

$\mathrm{NEFD}_{\mathrm{b}}=$
2.0
1.7

Point source observation

$$
\begin{aligned}
& \text { Limiting flux density } \\
& (\mathrm{mJy} 5-\sigma 1-\mathrm{hr})
\end{aligned} \quad \operatorname{Slim}_{\mathrm{b}}:=\frac{1000 \cdot \mathrm{NEFD}_{\mathrm{b}} \cdot 5}{(2 \cdot 3600 \cdot \eta \mathrm{obs})^{0.5}} \quad \begin{aligned}
& \text { Limiting line strength } \\
& (\mathrm{mJy} 5-\sigma 1-\mathrm{hr})
\end{aligned} \operatorname{Flim}_{\mathrm{b}}:=\left(\frac{\operatorname{Slim}_{\mathrm{b}} \cdot 10^{-26}}{1000} \cdot \Delta v\right)
$$

Deep mapping of one field (jiggle-map mode):

Loss in S / N for point source due to need to make a map:
S / N improvement through co-addition of pixels
S / N reduction through decrease in integration time per point by factor of 16

Overall reduction in S / N

> SN_imp $:=1.5$
> SN_red $:=4$
> factor $:=\frac{\text { SN_imp }}{\text { SN_red }} \quad$ factor $=0.375$

Limiting flux density (mJy 5-a 1-hr)

$$
\Delta \mathrm{S}_{-} 1 \mathrm{hr}_{\mathrm{b}}:=\frac{\mathrm{Slim}_{\mathrm{b}}}{\text { factor }} \quad \Delta \mathrm{F}_{-} 1 \mathrm{hr}_{\mathrm{b}}:=\frac{\mathrm{Flim}_{\mathrm{b}}}{\text { factor }}
$$

Summary:

