
Minutes of CSDT meeting #2, RAL 22nd February 2001

Ref: FIRST/FSC/MOM/0175
Date: 26th February 2001
Issue: 1.0
Author: Steve Guest

Participants:
Johannes Riedinger (ESA/HSCDT)
Stephane Veillat (ESA/HSCDT)
Hassan Siddiqui (ESA/HSCDT)
Kevin Galloway (ESA/HSCDT)
Jon Brumfitt (ESA/HSCDT)
Jean-Jacques Mathieu (ESA/HSCDT)
Peer Zaal (SRON/HIFI)
Do Koster (SRON/HIFI)
Erich Wiezorrek (MPE/PACS)
Ekkehard Wieprecht (MPE/PACS)
Rik Huygen (KUL/PACS)
Steve Guest (RAL/SPIRE)
Sunil Sidher (RAL/SPIRE)
Neal Todd (IC/SPIRE)

Agenda
It was agreed to add discussions on proposed changes to the CCM.

Minutes of Last Meeting
To save time it was agreed to refer to the comments made by ErW in his mail of Feb 6th.
The issue of a CCB was raised for clarification. The understanding is that there will be no
formal CCB for the time being.

Open Actions
CSDT#1-03: SG stated the answer to the action and undertook to distribute it in writing.

Common Development Environment
JB presented the status of tools for common development. The presentation is attached.

JR raised the issue of Together/CVS integration. JB explained that there is a security bug
in Together leading to an unencrypted password being stored. JB & EW pointed out that
they prefer to use CVS separately from Together anyway. JB also recommended using
home-made make files rather than the ones generated by Together and to use “javac
*.java” rather than dependencies as it is more efficient. Other tools outside of Together
are also needed.

RH asked about the availability of accounts in the system. The response was that
everybody has read/write access to the CVS tree. ErW & EkW commented that they were
unaware of the presence of the packages outside the FIRST tree. JB proposes to control
the naming of packages & subsystems.

Following discussion of whether to submit packages as JAR files or put them into CVS,
JB proposed the former (drawing on experience from XMM). HS suggested that the
package could also be automatically uploaded into CVS. Files checked into the system
should also follow Javadoc conventions.

SG expressed concern that a number of tools appeared to be extremely Unix-specific.
There is a desire to also be able to do development on PCs running Windows.

RH & EkW asked how we are to handle items of common use and who is responsible for
them (JB). Discussion followed on whether it is time to start s/w coordination meetings,
which would be coordinated with CSDT meetings. How can communication be improved
in general? Ideas included a mailing list and a web site.

Building Block Design
JB presented some possible ways of implementing command Building Blocks.

ErW stated that scientists and engineers want to use a script to define an observation.
There need only be one BuildingBlock class and the constructor could read a script to
generate sub-nodes. There is a complication in the duration calculation since whereas
some instrument commands have a defined time, some are not pre-defined in the MIB. If
something changes in the script it is necessary to regenerate the entire tree. A “dirty flag”
could be introduced for something that needs to be recalculated. The tree would only be
made persistent when frozen ready for the MOC. There is also a need for access to
calibration objects during script execution. This could be done with an extra statement in
the language.

JB felt that Jython was “not a clean solution” and that defining a language was
surprisingly straightforward. It was also felt that it would be better not to be tied to an
external product. On-the-fly compilation introduced security issues which would have to
be checked. It was agreed to implement the scripting solution. Scripting language
requirements are in the CUS URD and Use Cases. Versioning of scripts is also needed.
EkW took an action to circulate ADASS ideas on similar systems.

MIB Ingestion
HS presented the MIB ingestor status.

ErW remarked that the MIB is not a BLOB on ingestion, but a collection of ASCII tables.
JR pointed out that ICD#1 is pending from the EGSE working group and that the tables
for Herschel need to be filled in.

All instruments were in agreement that there is a need for both IA and QLA to access h/k
data from the MIB. Versioning should make it possible to use any previous MIB. The
MIB ingestion needs inputs from the various clients (CUS, QLA, IA) as to what services
they require. Each instrument took an action to provide this by March 2nd.

IA/QLA framework
Prior to JJ’s presentation, EkW was invited to say a few words about the work he had
been doing in this area. He had started with some ISOCAM data and algorithms and
converted the IDL to Java. Jython with plotpy was tried but lacked image visualisation.
The freeware packages VisAD and DISLIN were then tried. These were better, especially
DISLIN, but do not provide all the functionality users expect. The position of RSI with
respect to IDL is still being monitored. JJ asked “why IDL?”, to which DK responded
that is was because of its programming and display capabilities. EkW stated that he was
looking for contacts on technical issues. It was agreed to set up an IA implementation
group comprised of EkW, JJ, JB, PZ, SG. JB proposed a technical note. There followed
some discussion and the needs and priorities of IA versus QLA. SG said that the QLA
was the priority for SPIRE but the needs of IA undoubtedly impacted the CCM and so it
needed to be thought about. EkW indicated that he had primarily been looking at IA. The
IA/QLA working group would analyse the requirements on the core model. EkW took
an action to arrange a kickoff meeting for this group. SG took an action to forward
the details of the forthcoming SPIRE QLA workshop to the group.

JJ then presented the status of his work on the IA/QLA framework. This prompted a
discussion on whether ProductTM is the correct name. RH took an action to provide a
diagram and glossary of terms to KG. All three instruments stressed the need to access
data as a stream as well as by building block. This need is complementary and not
incompatible with JJ’s work – both approaches are needed.

TM ingestion
KG presented the status of his work on TM ingestion, which was generally well received.
KG asked whether it would be useful to have a direct link bypassing the database
between the TM ingestor and server. It was thought that it probably would be useful. It
was clarified that the instrument data frame processing engines are needed.

AOB
There was insufficient time available to discuss the proposed changes to the CCM. SG
asked what the mechanism (process) was for changing the CCM. Proposed changes are to
be submitted to the CSDT and JB will respond with his analysis. JB took an action to
respond to the inputs to the CCM that had been provided.

DoNM: Wednesday 28th March at ESTEC.

Action Items

AI# Actionee Action Due date
CSDT#2-01 EkW Circulate ADASS ideas on scripting languages. asap
CSDT#2-02 SPIRE

PACS
HIFI

Provide inputs as to what services CUS, QLA,
IA require from the MIB ingestor.

March 2nd

CSDT#2-03 EkW Arrange IA/QLA working group kickoff
meeting.

asap

CSDT#2-04 SG Forward details of SPIRE QLA workshop to
IA/QLA working group

asap

CSDT#2-05 RH Provide diagram and glossary of terms to KG asap
CSDT#2-06 JB Respond to proposed changes to the CCM March 26th

Appendix 1 – Agenda

Start 09h00- End 15h30

09h00
Introduction - Agenda
Comments on last MoM (CSDT#1)
Review of open actions

09h45
Common development environment (JB)
- what is already in place
- what will be put in place/when as part of WP 23400

10h15
break

the following agenda items correspond to on-going HCSS WPs. WP 24414
CUS/MIB
interface is not explicitly reported as Mark Thomas cannot join the
meeting
however major issues wrt the WP are expeced to be discussed under the
BB
design point, (see below).
Issues , unless trivial, will not be solved at the meeting, however
the
meeting should help common understanding of the issues and agree on how
to
towards solutions.

10h30
CCM (WP 23200): Building Block design (JB)
- recall of TN and alternatives
- feed-back from prototyping alternatives
- issues:
 - selection of alternatives (criteria, process)

11h30
MIB ingestion (WP 24410)
- analysis and design status
- issues:
 - definition of services to be offered to client (CUS, QLA, IA)
 - handling of multiple MIB versions: outline of one proposal

12h00
lunch

13h00
IA/QLA (Ekkie)
- analysis and design status
- issues (TBD)

13h45
IA/QLA framework (WP 24310) (JJ)
- analysis and design status
- Issues (TBC with JJ)

 - design alternatives (product/process , ProductStream or ??)

14h15
TM ingestion (WP 24210) (KG)
- analysis and design status
- issues:
 - definition of I/F with instrument data frames processing engines:
proposals
 - understanding of I/F with IA/QLA framework, starting from the TN
on
data processing from TM ingestion onward and the HGSSE interface
descriptions

14h45
Conclusion:
- any reflections on the way the comment development is proceeding:
improvements
- recap of actions
- next meeting

�

Common Development Environment

Jon Brumfitt

CSDT meeting 220201

�

Overview

what is already in place?
what is planned?
current ideas

Work packages

23410 tools for manual builds & automatic test harnesses
23420 tools for auto builds + packaging / delivery mechanisms
27000 software coordination
ongoing evolution

�����������	�
���������
������

�

CVS repository

pserver mode with one no-shell account for each ICC
passwords have been issued

 setenv CVSROOT :pserver:$USER@astro.estec.esa.nl:/local/repositories/FIRST_CVS
 cvs login
 cvs checkout fcss/foo # e.g. subsystem 'foo'

Structure

model/design UML CCM
model/domain UML domain model
develop/together add-on modules for Together
develop/fcss root for Java pacakges
develop/fcss/nl/esa/first/foo package nl.esa.first.foo

������	
������������

�

fcss tree - examples

nl.esa.first evolutionary common system
nl.esa.first.foo subsystem 'foo'
nl.esa.first.foo.gui foo's 'gui' package

nl.esa.first.devel development tools
nl.esa.first.util utilities shared by subsystems
nl.esa.first.util.swing custom Java Swing components
nl.esa.first.store.iface prototype persistent store interface
nl.esa.first.store.vers prototype Versant implementation of store
nl.esa.first.ccm.iface prototype CCM interface
nl.esa.first.ccm.vers prototype Versant implementation of CCM

This will probably evolve, but we need to start somewhere!

FSC and ICC evolutionary code is all in the nl.esa.first package tree.

�����
���������
����
�

�

Prototype tree - examples

If you need package names for exploratory prototypes:

nl.esa.jbrumfit Jon's prototypes
nl.esa.kgallowa Kevin's prototypes
de.mpg.mpe.ewieprec (?) Ekki's prototypes
...
Simple prefix OK if you don't want to share it with others.

Note

develop exploratory (throw-away) prototypes outside the 'first' tree
unique namespace for each developer

don't check exploratory protypes in under 'fcss' tree in repository!
proto tree can use fcss tree, but not vice versa

�����
���������
����
�

�

Hierarchy of Together projects

fcss.tpr Read-only view of whole tree
nl/esa/first/first.tpr
nl/esa/first/mps/mps.tpr Developer's view of mps subsystem
nl/ersa/first/phs/phs.tpr Developer's view of phs subsystem

Each project is 'owned' by one person

Creating a Together project
create a project for a sub-tree (e.g. nl.esa.first.foo)
project properties:

package prefix = nl.esa.first.foo
classpath - add latest build of system / other packages
for now, just include source packages in project paths, read-only

check in to CVS (recommend command line)

�������
�

��������
����
�

�

Together

compile / run OK for simple program
complex programs / projects need more, e.g:

copy resources (icons, properties) to output tree
enhance persistent classes
run code generators (e.g. javacc, jjtree)
generate documentation (e.g. javadoc, jjdoc)
support package delivery + versions / dependency
running test harnesses
generating JARs

builds shouldn't rely on using Together

Propose to have command-line build invoked from Together menu

�����	����	��

�

Makefiles

Not really appropriate for Java, except as simple scripts
Java builds much faster with "javac *.java"
javacc handles some dependencies - clashes with make
Java imports are NOT transitive (unlike C++ #includes)

There is a basic makefile in the repository, to get started
UNIX specific - will replace with a better mechanism

Simply include GNUmake.include and set some variables:

PACKAGE = nl.esa.first.foo

RESOURCES = gui/images

include ../../../../GNUmake.include

�����	����	��

�

Options

submit packages by checking them into CVS
use CVS tags to identify versions
easy to break the system (continuous integration)

submit packages as JAR files
each package has a version number and dependency info

 (c.f. RPM files)
use dependencies to build latest compatible set of packages
run reception checks and reject invalid packages
use CVS more as a backup mechanism

CVS is OK to get started

����������	���
�

�

Each deliverable package will have a test harness

where possible, these run automatically

GUIs may require some manual tests

packages must be tested before delivery

Tools
will probably use 'JUnit' (TBC) - www.junit.org

�������
������

�

Build script

run automatically each night
build / integrate complete set of delivered packages

check package versions / dependencies
compile
generate documentation
run test harnesses & report on failed packages
make available to developers

each build has a build number
regular builds, although Java is better than C++ at incremental build

Note

developers check out their own package source from CVS
include other packages via classpath from latest (or specific) build

�������������	��

�

Building Block Design

Jon Brumfitt

CSDT meeting 220201

�

Building blocks are still at the conceptual level in the CCM
We need an architectural design

The problem

Need the flexibility to add new modes / block types easily
e.g. "one-off" observing modes + ILT
This should not require new software releases
Better to represent block types as objects than as classes

Investigations carried out

TN-013 considers implementation approaches
Prototypes to explore feasibility / implications

��������

�

Possible approaches

Basic Java approach
Jython interpreter
Custom language + interpreter
Compiling Java on-the-fly

��	�
�����
���
��������

�

Each Building Block / Mode type is a new Java class

Advantages

simple to implement for a fixed set of modes / blocks

Disadvantages

blocks are defined by classes (code) rather than objects (data)
requires new software releases for new modes / blocks

need to restrict power of language

importing MIB may require changing classes

��	����������������

���	����������������

�

Interpret mode / block definitions written in Jython

Advantages

flexible + off-the-shelf language

Disadvantages

integration of Java/Jython is complex at the object level
e.g. Java proxies for Jython objects

cannot make Jython objects persistent directly
poor compile-time checking => bugs & run-time errors
block definitions are unnecessarily complex

e.g. methods for both duration & commands
implementation exposed rather than declarative definition

performance is poor
dependence on another technology

������������������

�������������������

�

Example block definition

class MyBlock(Block):

 def duration(self,x):

 return self.getChild(0).duration(x+2)

 + self.getChild(1).duration()

 def commands(self,cmds,x):

 self.getChild(0).commands(cmds,x+2)

 self.getChild(1).commands(cmds)

 def children(self):

 return ['BlockA','BlockB']

������������������

�

Write an interpreter / compiler for a custom block-definition language

Advantages

performance good (if compiled)
incremental evolution - can start simple & add features
block definitions can be cleaner and simpler

one definition + multiple interpretations
better error handling

semantic analysis (e.g. type checking)
written in Java - clean & portable

Disadvantages

implementation is complex for a complex language
but prototype shows it is not too difficult

��	��
����
��
���������������

���	��
����
��
���������������

or use the Visitor pattern to separate interpretations from AST

�

Example block definitions

command IC1(x) {
 title("My instrument command")
 output("IC1",x)
 duration(3)
}
block Blk1(x) {
 if(x > 3) { IC1(x+2) output("offset") }
 IC2("init",x)
}
mode Mode1() {
 parameter(x,float,"offset",42,min=10,max=70)
 Blk1(x + 3)
 Blk1(0)
}

��	��
����
��
���������������

�

observing_mode SPIRE01
 title "Point Source Photomery"
 parameter TotalIntegrationTime
 begin
 type double
 comment "Required integration time";
 maximum 1.0;
 minimum 0.0;
 end_parameter
begin
 instantiate_building_block(name=>"spire_init");
 instantiate_building_block(name=>"slew",dec=>dec,ra=>ra);
 instantiate_building_block(name=>"nod");
 the_start = startwavelength;
 if(the_start < min) { the_start - min; }
 steps = (endwavelength - start) / stepsize;
 foreach i in 1..noOfLines {
 foreach j in 1..noOfPoints {
 do {
 instantiate_building_block(name=>"chopStart",...);
 instantiate_tc(name=>"a123");
 } while requiredSignal < noise;
 }
 }
end observing_mode

���
�������
���

�

Component design - integrating with the CCM

interfaces and packages

separate reusable parser components

separate uplink / downlink responsibilities

blocks, parser, clients, CUS GUI, etc

persistence - robust persistent classes

visitor pattern to separate phases?

��	��
����
��
���������������

�

Invoke the Java compiler within program to dynamically add new classes.
Store class files in the database and load with custom class loader.

Advantages

flexible

Disadvantages

new classes should preferably not be persistent
access state via persistent parent
simplifies schema evolution

"messy" solution, which may reduce portability
possible conflicts with custom class loader
too powerful - security needs designing carefully

��
�����
�������� ��� ���

�

Parameters are entered for an observation / observing mode
parameter types: bool, int, float, string, etc
default value
constraint: range (min-max) or set e.g. {red,green,blue}
label (for GUI)
description (for GUI tool-tip / help)

Building blocks & instrument commands have arguments
arguments to sub-blocks may be derived (calculated)

Decouple GUI (view) from parameters (model)
separation of concerns
different users may want different (hierarchical) views
Parameter dialog is useful in several sub-systems

!���
����	

�!���
����	

�

Custom language + interpreter appears to be the best

clean design

can be developed incrementally

simpler block definitions

better error handling

written in Java

prototyping has been straightforward

Issues

Can we agree on the approach?

How complex does the language have to be?

������	���	

MIB Ingestion

Purpose:

• To ingest SCOS-2000 ASCII files
• To provide services to clients such as the CUS, IA

and QLA

Framework

CUS

IA

QLA

Data
Server

Archive

Ingest

Table

Table

Table

getCommand()

getTelemetry()

getTelemetry()

:MIBData

:TeleCommand

:Telemetry

:Telemetry

DataServer Class Diagram

Framework (with versioning)

Table CUS

Ingest IA

QLA

Data
Server

Table

Table

Archive

Version
Server

Date

:MIBData
:MIBData

:MIBData
:MIBData

:MIBData
:MIBData

Choosing a Version

Time

#2 #3

#2 #3

#1

#1

#1 #2

TableA

TableB

TableC

SepAug

• Tables will be stored in archive with initial/final validity dates.

Progress

• Prototyped initial framework.
• ERS-2 example ASCII tables parsed successfully.
• Services eg getTelecommand() prototyped.
• Need to add further services and explore versioning.
• Validation - are existing building blocks consistent?
• Optimise code

Issues

• Need inputs from clients (CUS, IA, QLA) as to what
services these subsystems need from MIB ingestion

• Which SCOS-2000 tables are appropriate for
Herschel use?

QLA/IA Framework

JJ Mathieu
22 Feb 2001

20 February, 2001 QLA/IA Framework 2
HCSS - JJM

Analysis and design status

4Prototype out (uses building block and
probably closer to SPG/QCP than QLA or
IA)

4Looking at XML and XDF (from NASA)
for exporting data in platform neutral way

4Looking at class layers (Product, NDim,
Specific)

20 February, 2001 QLA/IA Framework 3
HCSS - JJM

Do we agree?

4ProductTM: a complete measurement (ie decompressed/assembled
data seen as a bit set with a header containing PUS information and BB
information). A product TM cannot be used for any science (it has no
structure) but contains identification data (APID, type, BBID…).

4ScienceTM: (aka DataFrame?) The result of applying a structure to
the ProductTM and giving it a unit. The simplest form of data that can be
displayed by a QLA system (not made persistent by QLA)

4ProductTM is what the TM ingestor
delivers to QLA.

4ProductTM needs no BB

20 February, 2001 QLA/IA Framework 4
HCSS - JJM

Do we agree?

4QLA needs Observation Execution (and
BB) to give a structure to ProductTM.(What are
alternatives -ie what does the framework has to support for this to happen?-)

20 February, 2001 QLA/IA Framework 5
HCSS - JJM

Observation Responsibility and
characteristics
4Receives raw data (ProductTM) and

distribute it to BB
4Has a time span
4Links to a request
4Can create high level product (SGP/QCP)

20 February, 2001 QLA/IA Framework 6
HCSS - JJM

BB responsibilities and
characteristics
4Transforms raw data into engineering

product
4Elaborate high level product (SGP)
4Assess product quality (QCP)
4Receive raw data
4Has strict configuration control

20 February, 2001 QLA/IA Framework 7
HCSS - JJM

Product characteristics

4Holds data
4Has history
4Has characteristics (unit, number of axis..)
4Can be exported into XX format
4Can be imported from YY format
4Can transform itself using a set algorithm

20 February, 2001 QLA/IA Framework 8
HCSS - JJM

Products

Spectrum

1D

Image

2D ND

Product

20 February, 2001 QLA/IA Framework 9
HCSS - JJM

Client properties
 QLA QCP/SPG ATA IA/CA OIA TA

Inside HCSS
infrastructure

? + + + + +

Outside HCSS
infrastructure

? - - + + +

Interactive - - - + + ?
Automated + + + - - ?

RT + - - - - -

Consolidated + + + + + +
TM based + - - + - -
Product based - + - + + +

BB based +? + +? + + -

20 February, 2001 QLA/IA Framework 10
HCSS - JJM

Future

4What do we do to progress?
– Products group evolving to QLA/IA group?
– Prototyping? Schedules? Priorities?
– Suggestions?

WP 24210: TM Interface: Architectural
analysis and prototyping

K. Galloway

CSDT Meeting #2, RAL, 23 February 2001

Status: On-going

TM Ingestor responsibilities/ services to be investigated/ addressed:
1. Know your instrument
2. Interface with EGSE-ILT router
3. Production of ProductTM (or DataFrames)
4. Save PUS Telemetry (TMStream) and ProductTM
5. Distribute ProductTM

Documented in a technical note which will act as:
(1) An informal ICD between myself and the developers of the

“instrument data frames processing engines”. We’ll decide on which
interface(s) we prefer and document it here.

(2) A means for everyone to review the choices of component
architectures etc.

Use case UCF-758 will be kept up to date.

WP24210: Status

 WP24210: Overview of interfaces

Inputs/ Assumptions:

1. TM Ingestor will be running independently at several sites.
2. Each instrument team will have several versions of their instrument

which they wish to test.
3. Only one instrument will be tested at any given time at a given site.

Solution:

The instrument is identified to the TM Ingestor before the test starts:
(I) HIFI/ PACS/ SPIRE
(2) Instrument version

The factory method design pattern can then be used when invoking the
other TM Ingestor services as necessary.

WP24210: Know your instrument

EGSE-ILT Router developer (Albrecht) has supplied me with:
(1) ICD
(2) A prototype router

The TM Ingestor successfully interacts with the router.

Based on TCP/IP: Java Sockets and Java I/O

Performance aspects are currently under evaluation:-

FGS-IR-4.2-50: The EGSE-ILT FCSS TM I/F shall support a data rate
equivalent to the addition of the maximum instrument on-board data
rate (400 kps) and the maximum TEIs data rate.

[The maximum TEIs data rate is TBD but is expected to be equal
to or lower than 400 kbps]

WP24210: Interface with EGSE-ILT router

1. Separate CSDT developers produce the “instrument data frames
processing engines” (from WP descriptions).

2. The PACS processing engine has the most to do.

 Proposed solution:
The TM Ingestor passes the science TM packets to the processing

engines (no collecting).
The processing engines collect the science packets together and then

produce the TMProduct.

WP24210: Production of ProductTM

Investigated interfaces:

1. FIFO (First in first out)
Simple collection/ container into which the TM Ingestor places the
TM packets.
The processing engine can then read the TM packets.
The processing engine can place the generated ProductTM on
another FIFO which the TM Ingestor can read.

2. Asynchronous event handling
The TM Ingestor send the TM packets to the processing engine as
events. The processing engine has a/ is a listener.
The reverse process can be performed for ProductTM.

Documented in TN. Developers to make a decision based on
performance and ease of use (for developers).

WP24210: Production of ProductTM (cont.)

TMStream:

All telemetry (TMStream) is stored in containers according to:
(1) Instrument model
(2) APID
(3) packet type
(4) packet subtype

All telemetry packets which contain OBSID and/ or BBID to be
associated with the observation execution and/ or building block
execution.

ProductTM:
Associated with observation execution and/ or building block execution.

Associated with a ProductTMStream

WP24210: Save TMStream and ProductTM

Is it necessary to have a direct link between TMIngestor and the
ProductTM Server?

1. In early ILT there may not be OBSID and BBID associated with the
TM stream (Products TN)

2. Client requests for near real-time connection

The ProductTM interface/ server

What questions will the clients (QLA) ask?
(1) Give me ProductTM as it arrives (near real-time connection)
(2) Give me ProductTM for specified time period
(3) Give me ProductTM associated with observation execution x
(4) Give me ProductTM associated with building block y

WP24210: Distribute ProductTM

