

SUBJECT: THERMAL CONFIGURATION CONTROL DOCUMENT

PREPEARED BY:	S. HEYS	Date:
APPROVED BY:	J. DELDERFIELD	Date:
APPROVED BY:	B.SWINYARD	Date:

CHANGE RECORD

ISSUE	DATE	SECTION	CHANGE
D1	03-11-00	-	New Document
D2	22-11-00	All	Sections rearranged.
		Table 6.2.1	Cone support dimensions updated
		Table 6.1.3	JFET enclosures attached with 4 bolts not 8.
		Table 6.1.3	L2 straps included
		Table 6.2.1	10K to 4K harness updated
		Table 6.3.1	Detector harness changed from W/mm per wire to
			W/mm per 12ax.
		Table 6.3.3	Cu-Au-Cu on L0 straps changed to Cu-Ap-Cu.
		8.5	Constant Helium Mass Flow Rate
		Table 9.2	Mirror Drive OFF at 14:32

CONTENTS

1. 9	SCOPE	5
•		-
Z. /	APPLICABLE DOCUMENTS	5
2.1.	ESA Applicable Documents	5
2.2.	Dornier Applicable Documents	5
2.3.	KAL Applicable Documents	5
2.4.	MSSL Applicable Documents	5
2.5. 2.6	QWIW Applicable Documents	0
2.0.	IDI Applicable Documents	0
2.7.	JEL Applicable Documents Miscellaneous Applicable Documents	07
2.0.	Miscenaneous Applicable Documents	,
3. I	NTRODUCTION	8
4. I	NSTRUMENT THERMAL REQUIREMENTS	9
5. I	NSTRUMENT THERMAL DESIGN OVERVIEW	10
5.1.	Overview	10
5.2.	FPU 10K Stage	10
5.3.	FPU 4K Stage	10
5.4.	FPU 1.8K Stage	10
5.5.	FPU 300mK Assembly	11
5.5.	1. Detectors	11
5.5.	2. Cooler to Detector Thermal Straps	11
5.0.	Hellum Cooler Machaniama	11
5.7.	wechanisms	11
6 4	HEAT LOAD AND TEMPERATURE GRADIENT BUDGETS	13
61	Level 2 Stane	13
61	1 Level 2 Heat Load	13
6.1	2 Level 2 Average Power Dissination	13
6.1	3 Level 2 Heat Sink	14
6.2.	Level 1 Stage	15
6.2.	1. Level 1 Heat Load	15
6.2.	2. Level 1 Average Power Dissipation	15
6.2.	3. Level 1 Heat Sink	16
6.3.	Level 0 Stage	17
6.3.	1. Level 0 Heat Load	17
6.3.	2. Level 0 Average Power Dissipation	18
6.3.	3. Level 0 Heat Sink	18
6.4.	300mK Stage	19
6.4.	1. 300mK Heat Load	19
6.4.	2. 300mK Average Power Dissipation	19
6.4.	3. 300mK Heat Sink	20
6.5.	Cooler - Detectors Thermal Strap Temperature Gradients	21
6.5.	1. Photometer Strap	21
6.5.	2. Spectrometer Strap	22
6.6.	Sub-System Conductive Couplings	23
6.6.	1. Cooler Internal Conductive Couplings	23

111
 CLRC

Thermal Configuration Control Document

6.6.2. 6.6.3.	Detector Internal Conductive Couplings Mechanism Interface Couplings	24 24
7. CC	MPONENT POWER DISSIPATION	25
8. TH	ERMAL MATHEMATICAL MODEL	26
8.1.	NODAL BREAKDOWN	26
8.1.1.	10K Enclosures	26
8.1.2.	4K FPU Structure	26
8.1.3.	Mechanisms and Calibration Sources	26
8.1.4.	Mirrors	26
8.1.5.	1.8K Enclosures	26
8.1.6.	300mK Assembly	26
8.1.7.	Detectors	26
8.1.8	Cooler	26
8.1.9	Straps	26
8.2.	Conductive Couplings	29
821	Definitions	29
822	Thermal Conductivity	29
823	Ioint Interface Conductance	29
83	Radiative Counlings	29
84	Heat Canacities	30
841	Specific Heat Canacity	30
817	Massas	30
8.5	Masses FIRST Interface Thermal Model	30
0.3.	FIRST Interface Therman Would	55
0 11	IALYSIS CASE DEFINITIONS	34
J. AN		34
9.1.	Steady-State Cases	34
9.2.	Operational Mode Change – Spectrometer to Photometer	34
9.3.	Cooler Recycling	35
APPE	NDIX A: NODE LISTING	36
		10
APPE	NDIX B: THERMAL CONDUCTIVITIES VS TEMPERATURE	40
Referen	ces	46
		40
APPE	NUIA C. SPECIFIC REAT CAPCIFIES VS FEIMPERTURE	48
References 50		
		E A
Apeizon Grease Interfaces		
Gold Plated Interfaces		
References		

1. SCOPE

This document describes the overall SPIRE thermal mathematical model, consisting of the FPU and its components, the JFET Boxes, and the FIRST Cryostat interface model. A breakdown of all the significant input parameters and assumptions is provided. This document should be updated regularly as the instrument design iterates. Any modifications made to the SPIRE TMM should be referenced to this document.

2. APPLICABLE DOCUMENTS

2.1. ESA Applicable Documents

ID	TITLE	NUMBER
AD 2.1.1	FIRST/Planck Instrument Interface	PT-SPIRE-02124. Issue-Rev. No. 0-4
	Document Part B (IID-B) Instrument "SPIRE"	15-MAY-00
AD 2.1.2	FIRST Simplified Optical Bench Thermal Model	Fax Ref: SCI-PT/FIN-08132 24-AUG-00
AD2.1.3	FIRST /Planck Instrument Interface	SCI-PT-IIDA-04624 Issue 1/0
	Document IID-Part A	01-SEPT-00

2.1: ESA Applicable Documents

2.2. Dornier Applicable Documents

ID	TITLE	NUMBER
AD 2.2.1	FIRST Instrument I/F Study Final Report	FIRST-GR-B0000.009. Issue 1
		02-FEB-00

Table 2.2: Dornier Applicable Documents

2.3. RAL Applicable Documents

ID	TITLE	NUMBER
AD 2.3.1	SPIRE Thermal Transient Cases for	SPIRE-RAL-NOT-xxx
	Cryostat Study	(14-DEC-99)
AD 2.3.2	Change To Requirements on the Cooler and	e-mail B.Swinyard
	Thermal Strap	07-APR-00
AD 2.3.3	Conceptual Design For the 300mK Thermal	SPIRE-RAL-MOM-xxx
	Strap	25-APR-00
AD 2.3.4	SPIRE Inputs For Cryostat and Instrument	RAL
	Thermal Modeling	15-MAY-00 -update
AD 2.3.5	SPIRE FPU TMM Specification	S.Heys
		30-MAY-00
AD 2.3.6	SPIRE Radiative Heat Loads	e-mail, A.Richards,
		09-JUN-00
AD 2.3.7	Change To Requirements/Spec on the	e-mail B.Swinyard
	Cooler and Thermal Strap	04-JUL-00
AD2.3.8	Thermal Summit QMW 25/26 Sept 00	SPIRE-RAL-MOM-000516

2.4. MSSL Applicable Documents

ID	TITLE	NUMBER
AD 2.4.1	PROVISIONAL SPIRE (FIRST) Interface	A1 5264 300 Issue 5
	Drawing	21-MAR-00

I nermal Configuration Control Document	Thermal	Configuration	Control	Document
---	---------	---------------	---------	----------

AD 2.4.2	Here It Is	e-mail B.Winter
		13-JUN-00
AD 2.4.3	Structure-Optics ICD	Spire ICD 1.1/1.2 Issue 1
		B.Winter
		13-JUN-00
AD2.4.4	FIRST/SPIRE A Frame Analysis	e-mail
		B.Winter
		12-JUL-00
AD 2.4.5	Thermal Conductance SP1 Analysis and	e-mail B.Winter
	6082 Data	23-SEPT-00
AD 2.4.6	SPIRE Cold Strap Lengths	J.Coker
		02-OCT-00
AD2.4.7	Re: SPIRE - Thermal Assumptions	e-mail
		B.Winter
		11-OCT-00
AD2.4.8	Structure-Mass	Issue 0.11
		B.Winter
		14-JUN-00
AD2.4.9	Re: FPU Cone Support	e-mail
		B.Winter
		22-NOV-00

Table 2.4: SPIRE MSSL Applicable Documents

2.5. QMW Applicable Documents

ID	TITLE	NUMBER
AD 2.5.1	The SPIRE Instrument For FIRST	SPIRE Meeting Munich -vue graphs 29-MAR-00
AD 2.5.2	SPIRE A Bolometer Instrument For FIRST	Proposal Submitted to ESA FEB-98

Table 2.5: SPIRE QMW Applicable Documents

2.6. CEA Applicable Documents

ID	TITLE	NUMBER
AD 2.6.1	Preliminary Comments	e-mail L.Duband
		7-JUN-00
AD 2.6.2	Cryogenic Sorption Cooler – Detailed	TN/SBT/SC/99-04 Iss 0 Rev 0
	Design of Engineering Models – Test Plan	L.Duband
		22-JUN-00
AD 2.6.3	Cryogenic Sorption Cooler – Technical	SBT/CT/99-02
	Requirements for the Engineering Models	
	and Related Preliminary Design	
AD 2.6.4	Cryogenic Sorption Cooler ESA Contract:	Presentation
	12942/98/NL/PA	07-SEPT-00
AD 2.6.5	Straps	e-mail L.Duband
	-	27-SEPT 00
AD2.6.6	Frigio 3 He - Ensemble	QM Drawing
	-	29/04/99
AD2.6.7	A Thermal Switch For Use At Liquid	L.Duband
	Helium Temperatures In Space-Borne	Cryocoolers 8
	Cryogenic Systems	1995

 Table 2.6: SPIRE CEA Applicable Documents

2.7. JPL Applicable Documents

- 1			
	ID	TITLE	NUMBER

Thermal	Configuration	Control Document
---------	---------------	-------------------------

AD 2.7.1	Array Design	SPIRE Technology Downselect Meeting
		JPL vue graphs
		01-FEB-00
AD 2.7.2	Spire Thermal Model	e-mail T.Cafferty
		13-JUN-00
AD 2.7.3	Thermal Properties	e-mail T.Cafferty
	-	04-AUG-00
AD 2.7.4	Re:More FPU Thermal Information	e-mail T.Cafferty
		12-AUG-00
AD2.7.5	FPU Thermal Properties Summary	T.Cafferty
	· · ·	11-JUL-00
AD2.7.6	Mass.xls	Sept-00

Table 2.7: SPIRE JPL Applicable Documents

2.8. Miscellaneous Applicable Documents

ID	TITLE	NUMBER
AD 2.8.1	Properties of Aluminium and Aluminium	Touloukian Y.S.
	Alloys	
AD 2.8.2	Properties of Materials at Low	Johnson V.J.
	Temperatures (Phase A). A compendium.	Pergamon 1961
AD 2.8.3	RAL Thermal Database	
AD 2.8.4	Planck TMM	
AD2.8.5	Thermal Conductance of Gold Plated	Peter Kittel
	Metallic Contacts At Liquid Helium	
	Temperatures	
AD2.8.6	Thermal Conductance of Pressed Metallic	Salerno and Kittel
	Contacts Augmented With Indium Foil Or	
	Apeizon Grease At Liquid Helium	
	Temperatures	
AD2.8.7	Thermal Conductance of Augmented	Salerno, Kittel and Spivak
	Pressed Metallic Contacts At Liquid Helium	
	Temperatures	

Table 2.8: Miscellaneous Applicable Documents

3. INTRODUCTION

A detailed thermal mathematical model of the SPIRE instrument has been created in ESATAN v.8.4.2. Input parameters for this model originate from various sources, as referenced in Section 2. The thermal model and all input parameters are to be maintained under configuration control, with this document and the TMM updated only as any design changes or material properties modifications are approved. The primary aim of the TMM is to provide information on the thermal performance of the SPIRE FPU as follows:

- The steady-state temperatures of the various components within the FPU, when under nominal conditions for each mode of operation.
- Stabilisation time required after change of operating mode from Photometer to Spectrometer.
- The effect of transients (e.g. cooler recycling) on on the ultimate stability of the 300mK detector stage.
- The time required for the instrument parts to reach their nominal operating temperatures after launch.
- Provide input to thermal design through analysis of proposed design modifications.
- Provide information on FIRST interface temperatures and heat loads through incorporation of FIRST Cryostat reduced node model in SPIRE TMM.
- Hence demonstrate that SPIRE meets thermal interface requirements (max heat loads to L0, L1 and L2).

4. INSTRUMENT THERMAL REQUIREMENTS

The thermal requirements of the SPIRE instrument are summarised below in Table 4.1.

Parameter	Specification	Reference
FPU Bulk Temperature	~4K	-
Cooler Interface Temperature	~4K	-
Detector Module Interface Temperature	~1.8K	-
Detector temperature	T <310mK	AD 2.3.7
Detector array stability	150 nK/ \sqrt{Hz} between 0.03 and 25Hz.	-
Heat leak to FPU from FIRST Optical Bench	6mW for delta T = 11-4.2 = $6.8K$	AD 2.3.4
Conductive heat leaks down 1.8K box supports	1 mW for delta T = 4.2 - 1.7 = 2.5K	AD 2.3.4
Total heat leak down the Photometer and	1.0µW	AD 2.3.3
Spectrometer 300mK strap supports		
Parasitic heat leak on 300mK detector stage	<1.6µW per array	AD 2.3.3
	<8µW total	
Cooler heat lift	10µW	AD 2.3.7
	(at 290mK evaporator temperature)	
Temperature difference between cooler cold tip and	< 20mK	AD 2.3.7
detector arrays		
Temperature gradient along compliant links from	2mK/link	AD 2.3.7
bus bars to Cooler or detectors		

Table 4.1: SPIRE Instrument Thermal Requirements

5. INSTRUMENT THERMAL DESIGN OVERVIEW

5.1. Overview

The SPIRE FPU and JFET Boxes are mounted off the FIRST Cryostat 10K Optical Bench, surrounded by the FIRST Instrument Shield at approximately 10K. The instrument has four temperature stages at approximately 10K, 4K, 1.8K and 300mK. Each stage is cooled via direct mounting to the FIRST Optical Bench, or thermal straps to the Cryostat Vent Pipes or LHe Tank. Stringent specifications are placed on the allowable heat loads between these stages in order to maximise mission life and to guarantee the interface temperatures as shown in Table 5.1. It is anticipated that the actual interface temperatures will be significantly lower than those shown.

SPIRE	SPIRE Components	Heat Sink	Heat Sink	Maximum	Reference
Stage			Temperature at	Average	
			SPIRE Interface	Heat Lift	
10K	JFET boxes	FIRST Optical Bench	<15K	50mW	AD2.1.3
		FIRST L2 Vent Pipes			
4K	SOB structure/	FIRST L1 Vent Pipes	<6K	25mW	AD2.1.3
	mechanisms / mirrors				
1.8K	FPU detector boxes /	FIRST L0 LHe Tank	<2K	10mW	AD2.1.3
	dichroics / mirrors				
0.3K	FPU detectors / cooler	SPIRE ³ He Sorption	<290mK	10µW	AD2.3.7
	thermal link	Cooler		•	

 Table 5.1: SPIRE Temperature Stages and Heat Sinks

5.2. FPU 10K Stage

The Photometer and Spectrometer JFET chips are located in two separate enclosures. These boxes are hard mounted to the 10K FIRST Optical Bench, which acts as a heat sink for the dissipated electronics power. In addition a thermal strap to the FIRST L2 sink is attached to each enclosure. The enclosures are linked to the FIRST Shield 1 (at \sim 35K) via a harness.

5.3. FPU 4K Stage

The SPIRE FPU 4K Structure consists of an Aluminium Alloy 6082 Optical Bench with the Spectrometer and Photometer Assemblies mounted on opposite sides. Aluminium Alloy 6082 walls surround each assembly and are hard bolted to the Optical Bench. The 4K SOB is the mechanical interface for the mirrors, mechanisms and cooler. These components are hard bolted to the SOB. The key thermal design features of the 4K stage are as follows:

- FPU mounted off the 10K FOB using three stainless steel isolating mounts.
- SOB attached to the FIRST L1Vent Line (at approximately 4K) via a copper thermal strap.
- Low conductance stainless steel harness from 10K stage JFET boxes.

5.4. FPU 1.8K Stage

The five detectors require conductive and radiative interfaces at approximately 1.8K. This is achieved by housing the detectors in enclosures mounted off the SOB and cooled to 1.8K via the L0 sink. Separate enclosures are used for the Photometer and Spectrometer detectors. The key thermal design features of these enclosures are as follows:

- Boxes mounted from the 4K SOB on three insulating stainless steel blades.
- Low conductance stainless steel harness from 4K Stage.
- Boxes cooled via a thermal strap from FIRST L0. This strap runs from the Cryostat through a light tight feed through in the FPU 4K wall to the Spectrometer 2K Box wall and then onto the Photometer 2K Box wall.
- Detectors hard mounted to enclosure walls via 1.8K flange.

5.5. FPU 300mK Assembly

5.5.1. Detectors

The detector feedhorns, bolometer arrays and filters require to be held at <310mK. The key thermal design features used to achieve this are as follows:

- 300mK stage supported off 1.8K detector flange using 3000denier Kevlar thread.
- Low conductance Kapton and Constantan harnessing between the 300mK and the 1.8K stages.
- Copper straps from detectors to cooler cold tip at 290mK.

5.5.2. Cooler to Detector Thermal Straps

The Photometer and Spectrometer 300mK detector stages are coupled via two separate thermal straps to the cooler cold finger. These straps are manufactured from high purity copper and are supported on Kevlar threads from the 1.8K enclosure walls. The straps pass through light tight feedthrus at the point where they enter the 1.8K enclosure.

5.6. Helium Cooler

- The Cooler structure is hard mounted to the FPU 4K SOB.
- Kevlar threads are used to isolate the evaporator, pump and shunt from the Cooler 4K Stage.
- The pump and evaporator are linked to the FIRST L0 sink via heat switches and copper straps.
- The pump heat switch is ON during normal operations.
- The evaporator heat switch is OFF during normal operations.
- Recycling is carried out every 48 hours and should be completed in less than 2 hours.
- During recycling the evaporator heat switch is ON and the pump heat switch is OFF. The pump is heated to 40K for approximately 1 hour before the pump heater is switched OFF and the heat switch states are reversed. The pump then cools back to 1.8K, whilst the evaporator cools to <290mK. Separate straps are therefore necessary to prevent large increases in evaporator temperature, as the hot pump is re-connected to the Cryostat after recycling.

5.7. Mechanisms

TBD

6. HEAT LOAD AND TEMPERATURE GRADIENT BUDGETS

6.1. Level 2 Stage

6.1.1. Level 2 Heat Load

From	То	Description	XSection	Length	Material	Interface	Contact	Reference	Heat
						Туре	Area		Load
									Budget
FIRST Shield 1	Photometer	Harness	6.76E-6mm2	1.2m	Brass	-	-	AD2.2.1	2mW
	JFET Box		14.25E-6mm2		Stainless				(TBC)
			171E-6mm2		PTFE				
FIRST Shield 1	Spectrometer	Harness	2.02E-6mm2	1.2m	Brass	-	-	AD2.2.1	2mW
	JFET Box		4.26E-6mm2		Stainless				(TBC)
			51.1E-6mm2		PTFE				
MAXIMUM AVERAGE HEAT LOAD TO SPIRE L2:								4mW	
									(TBC)

6.1.2. Level 2 Average Power Dissipation

Component	Reference	Heat Load Budget		
		Photometer Mode	Spectrometer Mode	
Photometer JFET Box	AD2.3.8	49.5mW	0.0mW (TBC)	
Spectrometer JFET Box	AD2.3.8	0.0mW (TBC)	14.1mW	
MAXIMUM AVERAGE POWER DISSIPATION AT SPI	49.5mW (TBC)	14.1mW (TBC)		

6.1.3. Level 2 Heat Sink

From	То	Description	XSection	Length	Material	Interface Type	Contact Area	Reference	IID-A Heat Load Budget
Photometer JFET Enclosure	FIRST Optical Bench	Bolted	-	-	-	*Al-Al	4 bolts	AD2.1.3	(TBD)
Photometer JFET Enclosure	FIRST L2 Vent Pipes	10K Strap	-	-	-	0.07W/K @10K	-	*	(TBD)
Spectrometer JFET Enclosure	FIRST Optical Bench	Bolted	-	-	-	*Al-Al	4 bolts	AD2.1.3	(TBD
Spectrometer JFET Enclosure	FIRST L2 Vent Pipes	10K Strap	-	-	-	0.07W/K @10K -	-	*	(TBD)
MAXIMUM AVERAGE HEAT LOAD BUDGET TO FIRST L2:								50mW	

*Assumed

6.2. Level 1 Stage

6.2.1. Level 1 Heat Load

From	То	Description	XSection	Length	Material	Interface Type	Contact Area	Reference	Heat Load Budget
FIRST Optical Bench	FPU 4K Stage	Cone Foot	2mmx2mm x 8 spokes = 32mm2	21mm	Stainless Steel	-	-	AD2.4.9	6mW
FIRST Optical Bench	FPU 4K Stage	2 A-Frame Feet	2 x 22.5mm2 = 45mm2	35mm	Stainless Steel	-	-	AD2.4.4	(TBC)
Photometer JFET Box	FPU 4K Stage	Harness	58-off 12-ax cables**	150mm	Stainless Steel	-	-	AD2.3.4 / AD2.3.8	0.5mW (TBC)
Spectrometer JFET Box	FPU 4K Stage	Harness	17-off 12-ax cables**	150mm	Stainless Steel	-	-	AD2.3.4 / AD2.3.8	0.5mW (TBC)
MAXIMUM AVE	MAXIMUM AVERAGE HEAT LOAD TO SPIRE L1:								7.0mW (TBC)

**Heat Flow per 12ax (W/mm) = $3.1E-06 (T_{H}^{2.19}-T_{C}^{2.19})$

6.2.2. Level 1 Average Power Dissipation

Component	Reference	Power B	udget
		Photometer Mode	Spectrometer Mode
Photometer Calibrator	AD2.3.1	1.5mW	0.0mW
Spectrometer Calibrator	AD2.3.1	0.0mW	5.0mW
Beam Steering Mechanism	AD2.3.1	2.6mW	0.0mW
Spectrometer Mirror Drive	AD2.3.1	0.0mW	2.4mW
MAXIMUM AVERAGE POWER DISSIPATION AT SPI	4.1mW	7.4mW	

6.2.3. Level 1 Heat Sink

From	То	Description	XSection	Length	Material	Interface	Contact	Reference	IID-A
						Туре	Area		Heat
									Load Budget
FPU Wall	FIRST L1 Vent	4K Strap	20mm x 1mm	300mm	'ISO' Copper	*Cu-Au-Cu	4.7x1.4 =	AD2.1.2 /	25mW
	Pipes		= 20mm2			(both ends)	6.58cm2	AD2.2.1	
MAXIMUM AVEI	RAGE HEAT LOA	D BUDGET TO	O FIRST L1:						25mW

*Assumed

6.3. Level 0 Stage

6.3.1. Level 0 Heat Load

From	То	Description	XSection	Length	Material	Interface Type	Contact Area	Reference	Heat Load Budget	
4K SOB	2K Box Strap	4K Feedthru	8 threads x 0.3mm2	20mm	Kevlar 49 Thread	-	-	AD2.4.7	0.020mW	
4K SOB	Cooler Evaporator Strap	4K Feedthru	8 threads x 0.3mm2	20mm	Kevlar 49 Thread	-	-	AD2.4.7	0.020mW	
4K SOB	Cooler Pump Strap	4K Feedthru	8 threads x 0.3mm2	20mm	Kevlar 49 Thread	-	-	AD2.4.7	0.020mW	
4K SOB	Phot. 2K Box	3 Blade Supports	$3 \ge 10 \text{mm}^2 = 30 \text{mm}^2$	30mm	Stainless Steel	-	-	AD2.3.4	0.600mW	
4K SOB	Spec. 2K Box	3 Blade Supports	$3 \times 10 \text{mm}2 = 30 \text{mm}2$	30mm	Stainless Steel	-	-	AD2.3.4	0.400mW	
4K SOB	Phot. LW Detector 1.8K	Detector Harness	**9-off 12-ax cables	80mm	Stainless Steel	-	-	AD2.7.4		
4K SOB	Phot. MW Detector 1.8K	Detector Harness	**19-off 12-ax cables	80mm	Stainless Steel	-	-	AD2.3.8 / AD2.7.4		
4K SOB	Phot. SW Detector 1.8K	Detector Harness	**30-off 12-ax cables	80mm	Stainless Steel	-	-	AD2.3.8 / AD2.7.4	0.100mW	
4K SOB	Spec. LW Detector 1.8K	Detector Harness	**7-off 12-ax cables	80mm	Stainless Steel	-	-	AD2.3.8 / AD2.7.4		
4K SOB	Spec. SW Detector 1.8K	Detector Harness	**11-off 12-ax cables	80mm	Stainless Steel	-	-	AD2.3.8 / AD2.7.4		
4K Cooler	1.8K Cooler	Cooler Heat Leaks							0.150mW (TBC)	
MAXIMUM AVERAGE HEAT LOAD TO SPIRE L0:										

**Heat Flow per 12ax (W/mm) = $3.1E-06 (T_{H}^{2.19}-T_{C}^{2.19})$

6.3.2. Level 0 Average Power Dissipation

Component	Reference	Power Budget
Cooler Heat Switch		0.2mW
Cooler Pump Heater		200 mW for $30 mins$ every $48 hours = 2.08 mW$
-		25 mW for 30 mins every 48 hours = 0.26 mW
MAXIMUM AVERAGE POWER DISSIPATION AT SPI	RE LO:	2.54mW
		(TBC)

6.3.3. Level 0 Heat Sink

From	То	Description	XSection	Length	Material	Interface Type	Contact Area	Reference	IID-A Heat Load Budget
FPU 4K Feedthru	FIRST L0	1.8K Enclosures Strap	20mm x 1mm = 20mm2	*350mm	UHP Copper	*Cu-Ap-Cu (both ends)	4.7x1.4 = 6.58cm2	AD2.2.1	5mW
FPU 4K Feedthru	FIRST L0	Cooler Pump Strap	20mm x 1mm = 20mm2	*350mm	UHP Copper	*Cu-Ap-Cu (both ends)	4.7x1.4 = 6.58cm2	AD2.2.1/ AD2.6.5	5mW
FPU 4K Feedthru	FIRST L0	Cooler Evaporator Strap	20mm x 2mm = 40mm2	*350mm	UHP Copper	*Cu-Ap-Cu (both ends)	4.7x1.4 = 6.58cm2	AD2.2.1/ AD2.6.5	
MAXIMUM AVERAGE HEAT LOAD BUDGET TO FIRST L0:									

6.4. 300mK Stage

6.4.1. 300mK Heat Load

From	То	Description	XSection	Length	Material	Interface Type	Contact Area	Reference	Heat Load Budget
1.8K Box	300mK Phot. Busbar	Busbar Support	2 threads x 0.3mm2 x 4 attachment points = 2.4mm2	20mm	Kevlar 49 Thread	-	-	AD2.4.7	0.50µW (TBC)
1.8K Box	300mK Phot. Feedthru	2K Feedthru Support	8 threads x 0.015mm2 = 1.2mm2	20mm	Kevlar 49 Thread	-	-	AD2.4.7	0.25µW (TBC)
1.8K Box	300mK Spec. Feedthru	2K Feedthru Support	8 threads x 0.015mm2 = 1.2mm2	20mm	Kevlar 49 Thread	-	-	AD2.4.7	0.25µW (TBC)
1.8K Detector	300mK Detector	5 Detector Supports	5 x 16 threads x $0.3mm2 =$ $24mm2$	25mm	Kevlar 49 Thread	-	-	AD2.7.2	4.0µW
1.8K Detectors	300mK Detectors	Harness	14mm2 0.275mm2	30mm	Kapton Constantan	-	-	AD2.7.4	4.0µW
MAXIMUM AVERAGE HEAT LOAD TO SPIRE 300mK STAGE									

6.4.2. 300mK Average Power Dissipation

Component	Reference	Power Budget
Temperature Control Heaters	*	1.0µW (TBC)
MAXIMUM AVERAGE POWER DISSIPATION AT SPI	RE 300mK STAGE	1.0 mi W (TBC)
		(IDC)

6.4.3. 300mK Heat Sink

From	То	Description	XSection	Length	Material	Interface	Contact	Reference	Heat
						Туре	Area		Load
									Budget
300mK	Cooler Cold Tip		See Tables 6.5.1 and	l 6.5.2 for brea	kdown of 300mK Th	nermal Strap C	ouplings		10µW
Assembly	_					_			•
MAXIMUM HEAT LOAD BUDGET TO SPIRE ³ HeCOOLER									10 mi W

6.5. Cooler - Detectors Thermal Strap Temperature Gradients

6.5.1. Photometer Strap

From	То	Description	XSection	Length	Material	Interface Type	Contact Area	Reference	Max Temperature
									Drop
Cover	Feedhorn	Contact Interface	-	-	-	In-Ap-In	0.4 cm^2	AD2.7.4	3.0mK
Feedhorn	300mK Flange	Internal Strap	Diameter 1mm = 0.78mm2	60mm	UHP Copper	Cu-ap-In	2.7 cm^2	AD2.7.4	3.0mK
LW Flange MW Flange SW Flange	Busbar	Detector Strap	Diameter 2.5mm = 4.91mm2	60mm 113mm 53mm	UHP Copper	*Cu-Ap-Cu	$2\pi R \ge 0.6$ $= 0.47 cm^2$	AD2.4.5 / AD2.7.4	2.5mK
Phot. Busbar	Phot. Feedthru	Busbar	Diameter 3mm = 12.57mm2	288mm	UHP Copper	*Cu-Ap-Cu	$2\pi R \ge 0.6$ = 0.57 cm ²	AD2.4.5	3.5mK
Phot. Feedthru	Phot. Feedthru Flange	2K Box Feedthru	Diameter 5mm = 12.57mm2	50mm	UHP Copper	*Cu-Ap-Cu	*1cm2	AD2.4.5	3.0mK
Phot. Feedthru Flange	Cooler Evaporator	Cooler Strap	Diameter 2mm = 3.14mm2	130mm	UHP Copper	*Cu-Ap-Cu	*1cm2	AD2.4.5 / AD2.3.3	5.0mK
MAXIMUM TEMPERATURE DROP FROM COOLER TO DETECTOR									

6.5.2. Spectrometer Strap

From	То	Description	XSection	Length	Material	Interface Type	Contact Area	Reference	Max Temperature
									Drop
Cover	Feedhorn	Contact Interface	-	-	-	In-Ap-In	0.4 cm^2	AD2.7.4	3.0mK
Feedhorn	300mK Flange	Internal Strap	Diameter 1mm = 0.78mm2	60mm	UHP Copper	Cu-ap-In	2.7 cm^2	AD2.7.4	3.0mK
LW Flange SW Flange	Busbar	Detector Strap	Diameter 2.5mm = 4.91mm2	54mm 54mm	UHP Copper	*Cu-Ap-Cu	1 cm ²	AD2.4.5 / AD2.7.4	1.0mK
Spec. Feedthru	Spec. Feedthru Flange	2K Box Feedthru	Diameter 5mm = 12.57mm2	40mm	UHP Copper	*Cu-Ap-Cu	*1cm2	AD2.4.5	1.5mK
Spec. Feedthru Flange	Cooler Evaporator	Cooler Strap	Diameter 2mm = 3.14mm2	210mm	UHP Copper	*Cu-Ap-Cu	*1cm2	AD2.4.5 / AD2.3.3	3.5mK
MAXIMUM TEM	IPERATURE DRO	OP FROM COO	DLER TO DETECTOR						12mK

6.6. Sub-System Conductive Couplings

6.6.1. Cooler Internal Conductive Couplings

From	То	Description	XSection	Length	Material	Interface Type	Contact Area	Reference
4K Flange	Pump	Kevlar Supports	2.4mm ²	27mm	Kevlar Thread	-	-	*
4K Flange	Evaporator	Kevlar Supports	2.4mm ²	54mm	Kevlar Thread	-	-	AD2.6.2
Pump	Shunt	Pipe	OD = 10.4mm ID = 10mm	45mm	Ti6Al4V	-	-	AD2.6.2
Shunt	Evaporator	Pipe	OD = 10.4mm ID = 10mm	110mm	Ti6Al4V	-	-	AD2.6.2
4K Flange	Pump HS	HS Support	OD = 7.2mm ID = 7.0mm	50mm	Ti6Al4V	-	-	AD2.6.2
4K Flange	Evaporator HS	HS Support	OD = 7.2mm ID = 7.0mm	50mm	Ti6Al4V	-	-	AD2.6.2
Evaporator HS	Shunt	Strap	10mm^2	50mm	Cu	Cu-Ap-Cu	2cm^2	*
Evaporator	Evaporator HS	HS ON HS OFF		-	-	3mW/K 0.28µW/K	-	AD2.6.2
Pump	Pump HS	HS ON HS OFF	-	-	-	16mW/K 6µW/K	-	AD2.6.2

6.6.2. Detector Internal Conductive Couplings

From	То	Description	XSection	Length	Material	Interface	Contact	Reference
						Туре	Area	
2K Flange	Top Ring	Kevlar	8 threads x $0.3 \text{ cm}^2 =$	25mm	Kevlar 49	-	-	AD2.7.2
		Supports	2.4 mm^2		Thread			
2K Flange	Bottom Ring	Kevlar	8 threads x $0.3 \text{ cm}^2 =$	25mm	Kevlar 49	-	-	AD2.7.2
		Supports	2.4 mm^2		Thread			
Top Ring	Spacer	Spacer	33mm ²	15.25mm	Invar	In-Ap-In	0.66 cm ²	AD2.7.4
Bottom Ring	Spacer	Spacer	33mm ²	15.25mm	Invar	In-Ap-In	0.66 cm ²	AD2.7.4
Bottom Ring	Cover		-	-	-	In-Ap-In	5.7 cm^2	AD2.7.4
Feedhorn	Cover		-	-	-	In-Ap-In	0.4 cm^2	AD2.7.4
Feedhorn	Strap Flange	Internal	1mm dia	60mm	UHP Copper	Cu-Ap-In	2.7 cm^2	AD2.7.4
		Strap						
Top Ring	Strap Flange	-	-	-	-	Cu-Ap-In	1 cm^2	AD2.7.4

*Assumption

6.6.3. Mechanism Interface Couplings

From	To	Description	XSection	Length	Material	Interface	Contact	Reference
						Туре	Area	
Spectrometer	4K Optical	Mounting	-	-	-	Al-Au-Al	4 x1cm^2	*
Calibrator	Bench							
Photometer	4K Optical	Mounting	-	-	-	Al-Au-Al	4 x1cm^2	*
Calibrator	Bench							
Spectrometer	4K Optical	Mounting	-	-	-	Al-Au-Al	4 x1cm^2	*
Mechansim	Bench							
Photometer Beam	4K Optical	Mounting	-	-	-	Al-Au-Al	4 x1cm^2	*
Steering	Bench	-						
Mechanism								

7. COMPONENT POWER DISSIPATION

The power dissipations for the various components are given in Table 7.1 below.

Component	Peak Power	Mean Power	Comments	Reference
-	(mW)	(mW)		
Photometer Cold Read-Out	49.5	49.5	ON constantly in Photometer	AD2.3.8
Electronics			Mode	
Spectrometer Cold Read-	14.1	14.1	ON constantly in Spectrometer	AD2.3.8
Out Electronics			Mode	
Cooler Pump Heat Switch	0.2	0.2	On constantly when cooler ON	AD2.3.8
Cooler Heater			ON during cooler recycling:	AD2.3.8
	200	200	Omins- 30mins	
	25	25	30mins-60mins	
Photometer Calibrator	2.0*	1.5**	ON for 10 minute intervals during	*AD2.3.1
			Photometer Mode.	
Spectrometer Calibrator	5.0	5.0	ON in Spectrometer Mode	AD2.3.1
Beam Steering Mechanism	4.0*	2.6**	ON in Photometer Mode	*AD2.3.1
Spectrometer Mirror Drive	6.5	2.4	ON (cycling) during Spectrometer	AD2.3.1
-			Mode (see Figure 11)	

**Values calculated to give total steady-state powers as stated in AD2.3.4

Table 7.1: Component Power Dissipation

Figure 7.1: Spectrometer Mode Power Dissipation (5mW calibration source + mirror drive power)

8. THERMAL MATHEMATICAL MODEL

8.1. NODAL BREAKDOWN

The SPIRE thermal model consists of 138 diffuse nodes representing the SPIRE FPU, a single diffuse node for each of the two JFET Boxes, a single boundary node to represent the Cooler Cold Tip and four boundary nodes to represent the FIRST Cryostat. A full nodal breakdown of the TMM can be found in Appendix A.

8.1.1. 10K Enclosures

The two JFET boxes are each represented by single diffuse nodes, hard mounted to the FIRST Optical Bench. The harnesses between the JFET boxes and the Spacecraft are sunk to the FIRST Shield 1 temperature. Straps to the FIRST L2 sink have an assumed conductance of 0.07W/K at 10K.

8.1.2. 4K FPU Structure

The FPU structure is discretised along all axes in order to show temperature gradients through the instrument. A total of 10 nodes are used to represent the walls of the Spectrometer and Photometer and 16 nodes for the Optical Bench.

The FPU structure is mounted from the FIRST Optical Bench node on a single cone foot and two Aframe feet. Due to the non-uniform cross sectional area of the Cone Foot and the variation in conductivity across the foot with temperature, the cone is discretised into 10 nodes to improve the accuracy of the TMM. The A-Frames have a constant cross section and are therefore modelled as a simple conductive coupling between the FIRST Optical Bench and the FPU.

8.1.3. Mechanisms and Calibration Sources

The mechanisms and calibration sources are modelled very simply, due to lack of detailed information on their design. A single node is used to represent each component, with an associated power dissipation and heat capacity. The components are assumed to be hard mounted to the structure with gold coated aluminium to aluminium interfaces. The conductance across this interface is varied according to temperature.

8.1.4. Mirrors

Each mirror is modelled as a single node with an associated heat capacity. The mirrors are hard mounted to the structure via gold-coated aluminium to aluminium interfaces. The conductances across these interfaces are varied according to temperature.

8.1.5. 1.8K Enclosures

The photometer and spectrometer 1.8K enclosure walls are discretised into 3 nodes and 2 nodes respectively. Baffles and mirrors within the boxes are modelled as separate nodes, as are the detectors.

8.1.6. 300mK Assembly

The photometer and spectrometer thermal links from the cooler cold tip to the detector 300mK stages are modelled in order to show the critical temperature drops along these link. Figure 6.6 shows the nodal breakdown of the complete 300mK system.

8.1.7. Detectors

The detector model is a simplified version of the reduced node detector model provided by JPL (AD2.7.2). Each detector is discretised into 7 nodes as shown in Figure 6.6.

8.1.8. Cooler

The Cooler model is based on the nodal breakdown provided by L.Duband (AD2.6.1). A total of 6 nodes are used to represent the cooler as shown in Figure 6.6.

8.1.9. Straps

Straps to the L0,L1 and L2 sinks are modelled as shown in Figures 6.9.1 to 6.9.4.

2K box 1.K

Spectrometer

Figure 8.1.9.1: L1 Strap Node Breakdown

Figure 8.1.9.2:L0 2K Box Strap Node Breakdown

Figure 8.1.9.3: L0 Cooler Pump Strap Node Breakdown

Figure 8.1.9.4: L0 Cooler Evaporator Strap Node Breakdown

8.2. Conductive Couplings

8.2.1. Definitions

The assumptions used for the definition of all critical conductive couplings are given in Section 7.

8.2.2. Thermal Conductivity

The thermal conductivity vs temperature relationships assumed for the various materials are given in Appendix B. The integrated thermal conductivity is used in couplings linking components at different temperature stages, in order that changes in conductivity with temperature are accounted for in the analysis.

The most critical conductivity value is for copper, since changes in purity and application can significantly alter the conductivity. Two grades of copper are therefore assumed:

-'Ultra High Purity Copper' for the L0 straps, the 300mK links and the detector internals. This material exhibits a conductivity of 767W/mK at 2K. This is in close agreement with the value of 800W/mK at 2K given in AD2.2.1 for the L0 strap copper.

-A lower purity copper is assumed for the L1 straps. The material used has a conductivity of 138W/mK at 2K, which is in close agreement with the value of 140W/mK given in AD2.2.1 for the L0 strap copper.

These values will be updated following conductivity tests on the actual copper grade and configurations specified in the final design.

8.2.3. Joint Interface Conductance

All significant joint interface conductances are accounted for in the TMM. The conductance values assumed are varied with temperature and are dependant on the materials being joined and on the interface. All critical interfaces in the 300mK Assembly are assumed to have interface conductances similar to that shown in Appendix D for Apeizon Grease interfaces. This is also the assumption for the L0 Straps. All other joints are assumed to have conductances similar to those shown for gold coated surfaces.

8.3. Radiative Couplings

Radiative couplings between the SPIRE instrument's external walls and the FIRST Cryostat are calculated by hand. The assumed emissivities and view factors are given in Table 8.3 below. Internal radiative loads have been shown to be insignificant due to the low temperatures involved.

Surface	Surface	Emissivity	Emissivity	View Factor	Reference
1	J	1	J	Factor	
FPU external side walls	FIRST Instrument	0.10	0.10	*0.5	AD2.3.4
	Shield				
FPU external side walls	FIRST Optical Bench	0.10	0.10	*0.5	AD2.3.4
FPU external base	FPU external base FIRST Instrument		0.10	*0.0	AD2.3.4
	Shield				
FPU external base	FIRST Optical Bench	0.10	0.10	*1.0	AD2.3.4
JFET Boxes	FIRST Optical Bench	0.10	0.10	*0.5	AD2.3.4
JFET Boxes	FIRST Instrument	0.10	0.10	*0.5	AD2.3.4
	Shield				

*Approximation

8.4. Heat Capacities

8.4.1. Specific Heat Capacity

The assumed specific heat capacity vs temperature relationships for the various materials used within the TMM are shown in Appendix C.

8.4.2. Masses

The masses assumed for all SPIRE components are shown in Table 8.4.2. Nodes representing the FIRST ITMM have boundary nodes with zero associated thermal mass. Their rate of change of temperature is restricted within the TMM as described in Section 8.5.

Sub-System	Component	Temp (K)	No. Off	Mass (kg)	Material	Reference
		(11)	011	(8)		
4K Structure	Optical Bench	4	1	7.102	Al 6082	AD2.4.8
4K Structure	back panel	4	1	0.539	Al 6082	AD2.4.8
Photometer Cover						
	base plate	4	1	1.229	Al 6082	AD2.4.8
	front panel	4	1	0.709	Al 6082	AD2.4.8
	top cover	4	1	0.787	Al 6082	AD2.4.8
	top rear cove	4	1	0.434	Al 6082	AD2.4.8
	outer panel	4	1	3.597	Al 6082	AD2.4.8
4K Structure	back panel	4	1	0.407	Al 6082	AD2.4.8
Spectrometer						
Cover						
	base plate	4	1	1.000	Al 6082	AD2.4.8
	front panel	4	1	0.577	Al 6082	AD2.4.8
	top cover	4	1	0.638	Al 6082	AD2.4.8
	top rear cover	4	1	0.409	Al 6082	AD2.4.8
	outer panel	4	1	3.184	Al 6082	AD2.4.8
4K Structure	A-frame	4	2	0.115	Al 6082	AD2.4.4
Mounting						
	Cone	4	1	0.150	Al 6082	Assumption
4K Structure	CM3, CM5,	4	1	0.650	Al 6082	AD2.4.8
Photometer mounts	CM7 – mount					
and clamps						
	PM6, SM6 –	4	1	0.120	Al 6082	AD2.4.8
	mount					
	PM9 – mount	2	1	0.010	Al 6082	AD2.4.8
	PM10 - mount	2	1	0.010	Al 6082	AD2.4.8
	PM11-mount	2	1	0.010	Al 6082	AD2.4.8
	dichroic clamp +	2	2	0.100	Al 6082	AD2.4.8
	mount					
4K Structure	beam splitter	4	2	0.100	Al 6082	AD2.4.8
Spectrometer	mount + clamp					

Thermal Configuration Control Document

Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 310f 55

mounts and clamps						
•	SM7 – mount	4	1	0.115	Al 6082	AD2.4.8
	SM8/11 -mount	4	4	0.096	Al 6082	AD2.4.8
	SM9/10 – mount	4	2	0.144	Al 6082	AD2.4.8
	SM12 –mount	2	2	0.010	Al 6082	AD2.4.8
	~~~~		_			
4K Structure	M6	4	1	0.352	Al 6082	AD2.4.8
Bulkhead/mirror	bulkhead/baffle					
mounts/baffles						
	PM8	4	1	0.212	Al 6082	AD2.4.8
	bulkhead/baffle					
	intermediate	4	1	0.105	Al 6082	AD2.4.8
	bulkhead/baffle					
	lower	4	1	0.180	Al 6082	AD2.4.8
	bulkhead/baffle					
	entry baffle	4	1	0.500	Al 6082	AD2.4.8
Mirrors	CM3		1	0.183	Al 6082	AD2.4.3
Photometer						
	CM5		1	0.360	Al 6082	AD2.4.3
	PM6		1	0.027	Al 6082	AD2.4.3
	PM7		1	0.300	Al 6082	AD2.4.3
	PM8		1	0.056	Al 6082	AD2.4.3
	PM9		1	0.223	Al 6082	AD2.4.3
	PM10		1	0.065	Al 6082	AD2.4.3
	PM11		1	0.060	Al 6082	AD2.4.3
Mirrors	SM6		1	0.029	Al 6082	AD2.4.3
Spectrometer						
	SM7		1	0.044	Al 6082	AD2.4.3
	SM8		2	0.056	Al 6082	AD2.4.3
	SM9		2	0.037	Al 6082	AD2.4.3
	SM10		2	0.056	Al 6082	AD2.4.3
	SM11		2	0.097	Al 6082	AD2.4.3
	SM12		2	0.025	Al 6082	AD2.4.3
Mechanisms	Beam Steering	4	1	1.000	Aluminium	Assumed
	Spectrometer	Δ	1	0.500	Aluminium	Assumed
	Mechanism	4		0.500	Aluiillillill	Assuilleu
	internalitsiii					
Calibration	Photometer	4	1	0.100	Aluminium	Assumed
Sources	inotometer	-		0.100		7 issumed
Juico	Spectrometer	4	1	0.500	Aluminium	Assumed
	Spectrometer		1	0.500		7 issumed
2K Structure	2K Photometer	2	1	1 575	A1 6082	AD2 4 8
	Box	~	1	1.575	111 0002	1102.4.0
	2K Spectrometer	2	1	1 096	A1 6082	AD2 4 8
	Box	~	1	1.070	711 0002	1122.7.0



# **Thermal Configuration Control Document**

Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 320f 55

r	1		1			
Detectors	2K Structure	2	5	0.044	Al	AD2.7.6
Common			5	0.038	St. Steel	
			5	0.064	Invar	
			5	0.016	Silicon	
	Top Ring	0.3	5	0.049	Invar	AD2.7.6
	Spacer	0.3	5	0.0184	Invar	AD2.7.6
	Bottom Ring	0.3	5	0.029	Invar	AD2.7.6
Detectors Photometer LW	Detector Cover	0.3	1	0.031	Invar	AD2.7.6
	Detector Strap	0.3	1	0.007	Copper	AD2.7.6
	Feedhorn	0.3	1	0.314	Copper	AD2.7.6
Detectors Photometer MW	Detector Cover	0.3	1	0.058	Invar	AD2.7.6
	Detector Strap	0.3	1	0.005	Copper	AD2.7.6
	Feedhorn	0.3	1	0.247	Copper	AD2.7.6
Detectors Photometer SW	Detector Cover	0.3	1	0.058	Invar	AD2.7.6
	Detector Strap	0.3	1	0.005	Copper	AD2.7.6
	Feedhorn	0.3	1	0.190	Copper	AD2.7.6
Detectors Spectrometer LW	Detector Cover	0.3	1	0.031	Invar	AD2.7.6
	Detector Strap	0.3	1	0.007	Copper	AD2.7.6
	Feedhorn	0.3	1	0.165	Copper	AD2.7.6
Detectors Spectrometer SW	Detector Cover	0.3	1	0.058	Invar	AD2.7.6
	Detector Strap	0.3	1	0.005	Copper	AD2.7.6
	Feedhorn	0.3	1	0.118	Copper	AD2.7.6
Cooler	4K Structure	4	1	0.151	Titanium	AD2.6.6
	Pump	2	1	0.254	Titanium	AD2.6.6
	Shunt	2	1	0.0085	Stainless Steel	AD2.6.6
	Evaporator	0.3	1	0.236	Titanium	AD2.6.6
	Pump Heat Switch	2	1	0.050	Titanium	AD2.6.7
	Evaporator heat Switch	2	1	0.050	Titanium	AD2.6.7
300mK Link	Photometer Busbar	0.3	1	0.018	Copper	calculated
	Photometer 2K Feedthru	0.3	1	0.009	Copper	calculated
	Spectrometer 2K Feedthru	0.3	1	0.007	Copper	calculated



# **Thermal Configuration Control Document**

Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 33of 55

JFET Boxes	Photometer	10	1	1.250	Aluminium	AD2.1.6
	Spectrometer	10	1	1.250	Aluminium	AD2.1.6
Straps	L1	4	1	0.054	Copper	calculated
	L0 – 2K Box	2	1	0.104	Copper	calculated
	L0-Pump	2	1	0.083	Copper	calculated
	L0-Evaporator	2	1	0.187	Copper	calculated

Table 8.4.2: SPIRE - Assumed Mass Breakdown

#### 8.5. FIRST Interface Thermal Model

The FIRST interface nodes (L0, L1 and L2 sinks, FOB, FIRST Instrument Shield and FIRST Shield 1) are set as boundary nodes, whose temperatures are varied according to the SPIRE loads. The functions which are used to calculate these interface temperatures are as given in AD2.1.2.

During transient analysis the rates of change of these boundary temperatures are restricted to prevent model instability, since the FIRST ITMM itself has no inherent thermal mass. This rate restriction is achieved by maintaining a constant Helium mass flow rate (as stated in AD2.1.3) and restricting the rate of change of boundary temperatures, as shown in Table 8.5.

Parameter	Max Rate of Change
Helium Mass Flow Rate	0 mg/s
FIRST Shield 1 Temperature	0.1 K/s
L2 (Optical Bench) Temperature	0.1 K/s
L1 (Vent Pipe)Temperature	0.1 K/s
L0 (LHe Tank) Temperature	1.7K - constant
FIRST Instrument Shield	10K - constant

Table 8.5: FIRST Cryostat Parameter Rate of Change Restrictions



### 9. ANALYSIS CASE DEFINITIONS

#### 9.1. Steady-State Cases

Component	Node No.	POWER (mW)		Reference
		Photometer Operation	Spectrometer Operation	
Photometer Cold Read-Out Electronics	5000	49.5	0.0	AD2.3.8
Spectrometer Cold Read-Out Electronics	5500	0.0	14.1	AD2.3.8
TOTAL L2 (JFET) Dissipation	-	49.5	14.1	-
Cooler Pump Heat Switch (mean)	4400	0.2	0.2	AD2.3.8
Cooler Heater	4200	0.0	0.0	-
Photometer Calibrator	2090	1.5	0.0	*AD2.3.1 / AD2.3.4
Spectrometer Calibrator	3250	0.0	5.0	AD2.3.1
Beam Steering Mechanism	2100	2.6	0.0	*AD2.3.1 / AD2.3.4
Spectrometer Mirror Drive	3200	0.0	2.4	AD2.3.1
TOTAL L1 (FPU) Dissipation	-	4.3	7.6	-

Table 9.1: Steady-State Case Definition

### 9.2. Operational Mode Change – Spectrometer to Photometer

Analysis is performed to predict the time taken for the FPU temperature to stabilise after a change in the mode of operation.

Time	Sub-System	Node	Status	<b>Power Dissipation</b>
(mm:ss)		No.		( <b>mW</b> )
00:00	Ph. Cold Read-Out Electronics	5000	ON	49.5
00:01	Photometer Calibrator	2090	ON	2.0
10:00	Photometer Calibrator	2090	OFF	0.0
10:01	Ph. Cold Read-Out Electronics	5000	OFF	0.0
10:01	Sp. Cold Read Out Electronics	5500	ON	14.1
10:02	Spectrometer Calibrator	3250	ON (stabilising)	5.0
10:32	Spectrometer Calibrator	3250	ON	5.0
10:32	Mirror Drive	3200	ON(scanning)	2.4
14:32	Mirror Drive	3200	OFF	0.0
14:32	Spectrometer Calibrator	3250	ON*	5.0

Status and Powers: ref. AD2.3.1

*Spectrometer remains ON: ref. AD2.3.8

Table 9.2: Operational Mode Change Case Definition



# **Thermal Configuration Control Document**

#### 9.3. Cooler Recycling

Analysis is performed to predict the level of disturbance caused to FPU temperatures during Cooler Recycling, and the time taken to stabilise after re-cycling.

During this analysis the Cooler Cold Tip is changed from a diffuse to a boundary node as recycling starts. After 1 hour, when Cryopumping starts, the cooler is converted to a boundary node, whose temperature is reduced at a constant rate to 0.3K. The cooling rate assumed is based on cooler test results given in AD2.6.4.

Time	Sub-System	Node	Status	Power	Reference
(h:mm:ss)		No.		( <b>mW</b> )	
0:00:00	Ph. Cold Read-Out Electronics	5000	OFF	0	AD2.3.1
0:00:00	Mechanisms / Calibrators	-	OFF	0	AD2.3.1
0:00:00	Cooler	4300	OFF	0	AD2.3.1
0:00:01	Cooler Evap HS	4500	ON	0.2	AD2.3.1
	Cooler Pump HS	4400	OFF	0	
0:00:02	Cooler Heater	4200	ON	200	AD2.3.8
0:25:00	Cooler Heater	4200	ON	25	AD2.3.8
0:55:00	Cooler Heater	4200	OFF	0	AD2.3.8
0:55:01	Cooler Evap HS	4500	OFF	0	AD2.3.1
	Cooler Pump HS	4200	ON	0.2	
0:55:02 to	Cooler / Detectors	4300	Cryopumping to	0	AD2.6.4
1:30:00			290mK		
			@ constant rate		
1:30:00	Ph. Cold Read Out Electronics	5000	ON	49.5	AD2.3.1
1:40:00	Photometer Calibrator	2090	ON	2	AD2.3.1
1:42:00	Photometer Calibrator	2090	OFF	0	AD2.3.1
1:42:01	Beam Steering Mechanism	2100	ON	4	AD2.3.1
2:12:00	Beam Steering Mechanism	2100	OFF	0	AD2.3.1

Table 9.3: Cooler Recycling Case Definition



Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 36 of 55

# **APPENDIX A: NODE LISTING**

Node No.	Node Name	Node Type	Temperature Stage (K)	Material
1	spire cone foot1	D	10	Stainless Steel
2	spire cone foot2	D	0	Stainless Steel
3	spire cone foot3	D	0	Stainless Steel
4	spire cone foot4	D	0	Stainless Steel
5	spire cone foot5	D	0	Stainless Steel
6	spire_cone_foot6	D	0	Stainless Steel
7	spire cone foot7	D	0	Stainless Steel
8	spire_cone_foot8	D	0	Stainless Steel
9	spire_cone_foot9	D	0	Stainless Steel
10	spire_cone_foot10	D	4	Stainless Steel
FPU OPTI	CAL BENCH			
1000	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1010	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1020	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1030	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1100	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1110	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1120	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1130	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1200	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1210	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1220	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1230	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1300	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1310	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1320	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
1330	spire_4k_optical_bench	D	4	Aluminium Alloy 6082
FPU 4K W	ALLS			
1500	spire_4k_spect_base	D	4	Aluminium Alloy 6082
1510	spire_4k_spect_top	D	4	Aluminium Alloy 6082
1520	spire_4k_spect_+z	D	4	Aluminium Alloy 6082
1530	spire_4k_spectz	D	4	Aluminium Alloy 6082
1540	spire_4k_spect_+y	D	4	Aluminium Alloy 6082
1600	spire_4k_photo_base	D	4	Aluminium Alloy 6082
1610	spire_4k_photo_top	D	4	Aluminium Alloy 6082
1620	spire_4k_photo_+z	D	4	Aluminium Alloy 6082
1630	spire_4k_photoz	D	4	Aluminium Alloy 6082



# **Thermal Configuration Control Document**

Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 37 of 55

1640	spire_4k_photo_+y	D	4	Aluminium Alloy 6082
1700	spire_4k_connector panel	D	4	Aluminium Alloy 6082
1800	spire_4k_aperture_filter	D	4	-
	-			
рнотом	ETER 4K STAGE			
2000	photo_3_mirror_mount	D	4	Aluminium Alloy 6082
2030	photo mirror3	D	4	Aluminium Alloy 6082
2040	photo mirror4	D	4	Aluminium Alloy 6082
2050	photo mirror5	D	4	Aluminium Allov 6082
2060	photo mirror6	D	4	Aluminium Allov 6082
2070	photo mirror7	D	4	Aluminium Alloy 6082
2080	photo mirror8	D	4	Aluminium Alloy 6082
2000	photo calibrator	D	1	Aluminium Alloy 6082
2030	photo beam steering		4	Aluminium Alloy 6082
2100	mechanism	D	4	Aluminium Alloy 0082
2150	photo 4K baffle	D	4	Aluminium Allov 6082
2160	photo 4K baffle	D	4	Aluminium Alloy 6082
2170	photo 4K haffle	D	4	Aluminium Alloy 6082
2180	photo 4K haffle	D	4	Aluminium Alloy 6082
2100	photo_4rt_banic	D	<b>.</b>	
рнотом	ETER 2K STAGE			
2400	photo 2k box px	D	2	Aluminium Allov 6082
2410	photo_2k_box_px	D	2	Aluminium Alloy 6082
2420	photo_2k_box_mx	D	2	Aluminium Alloy 6082
2420	photo_2k_box_mx	D	2	Aluminium Alloy 6082
2500	photo_2k_ballic	D	2	Aluminium Alloy 6082
2500	photo_2k_dichroic1	D	2	Aluminium Alloy 6082
2510	photo_2k_dicinoic2		2	Aluminium Alloy 6082
2520	photo2kmirror10		2	Aluminium Alloy 6082
2530	photo2kmillion10	D	2	
2540	photo2kmirror11	D	Ζ	Aluminium Alloy 6082
2600	ETER U.SK COLD LINK	D	0.2	
2000			0.3	
2620	photo_spect_strap	D	0.3	
2650	photo_300mK_busbar_cold	D	0.3	
2655	photo_300mK_busbar	D	0.3	
2660	photo_300mK_busbar	D	0.3	Copper (UHP)
2665	photo_300mK_busbar	D	0.3	Copper (UHP)
2670	photo_300mK_busbar_warm	D	0.3	Copper (UHP)
<u>PHOTOM</u>	ETER DETECTORS			
2700	pnoto_detector1_2k	D	2	Aluminium Alloy 6082
2710	photo_detector1_strap	D	0.3	Copper (UHP)
2720	photo_detector1_top_ring	D	0.3	Invar
2730	photo_detector1_spacers	D	0.3	Invar
2740	photo_detector1_bot_ring	D	0.3	Invar
2750	photo_detector1_cover	D	0.3	Invar



# **Thermal Configuration Control Document**

Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 38 of 55

2800         photo_detector2_strap         D         2         Aluminium Alloy 6082           2810         photo_detector2_strap         D         0.3         Copper (UHP)           2820         photo_detector2_spacers         D         0.3         Invar           2830         photo_detector2_spacers         D         0.3         Invar           2840         photo_detector2_cover         D         0.3         Invar           2870         photo_detector3_cover         D         0.3         Copper           2900         photo_detector3_strap         D         0.3         Invar           2930         photo_detector3_spacers         D         0.3         Invar           2930         photo_detector3_spacers         D         0.3         Invar           2940         photo_detector3_cover         D         0.3         Invar           2950         photo_detector3_cover         D         0.3         Invar           2970         photo_detector3_cover         D         0.3         Invar           2970         photo_detector3_cover         D         0.3         Invar           3000         spect_input_fold_mirrorA         D         4         Aluminium Alloy 6082 </th <th>2770</th> <th>feedhorn1</th> <th>D</th> <th>0.3</th> <th>Copper</th>	2770	feedhorn1	D	0.3	Copper	
2810         photo_detector2_strap         D         0.3         Copper (UHP)           2820         photo_detector2_spacers         D         0.3         Invar           2830         photo_detector2_spacers         D         0.3         Invar           2840         photo_detector2_spacers         D         0.3         Invar           2850         photo_detector2_cover         D         0.3         Invar           2850         photo_detector3_ck         D         0.3         Copper           2800         photo_detector3_top_ring         D         0.3         Invar           2910         photo_detector3_top_ring         D         0.3         Invar           2920         photo_detector3_sop_ring         D         0.3         Invar           2930         photo_detector3_sover         D         0.3         Invar           2940         photo_detector3_cover         D         0.3         Invar           2950         photo_detector3_cover         D         0.3         Invar           2970         photo_feedhorn3         D         4         Aluminium Alloy 6082           3010         spect_collimatorA         D         4         Aluminium Alloy 6082 <t< td=""><td>2800</td><td>photo_detector2_2k</td><td>D</td><td>2</td><td>Aluminium Alloy 6082</td></t<>	2800	photo_detector2_2k	D	2	Aluminium Alloy 6082	
2820         photo_detector2_top_ring         D         0.3         Invar           2830         photo_detector2_bot_ring         D         0.3         Invar           2840         photo_detector2_bot_ring         D         0.3         Invar           2850         photo_detector2_cover         D         0.3         Invar           2870         photo_detector3_ktap         D         2         Aluminium Alloy 6082           2910         photo_detector3_strap         D         0.3         Invar           2930         photo_detector3_spacers         D         0.3         Invar           2930         photo_detector3_spacers         D         0.3         Invar           2940         photo_detector3_cover         D         0.3         Invar           2950         photo_feedhorn3         D         0.3         Copper           2970         photo_feedhorn3         D         0.3         Copper           3000         spect_input_fold_mirrorA         D         4         Aluminium Alloy 6082           3010         spect_collimatorA         D         4         Aluminium Alloy 6082           3020         spect_fold_mirror1A         D         4         Aluminium Alloy 6082	2810	photo_detector2_strap	D	0.3	Copper (UHP)	
2830         photo_detector2_spacers         D         0.3         Invar           2840         photo_detector2_bover         D         0.3         Invar           2870         photo_detector2_cover         D         0.3         Copper           2870         photo_detector3_cover         D         0.3         Copper           2900         photo_detector3_strap         D         0.3         Copper (UHP)           2920         photo_detector3_strap         D         0.3         Invar           2930         photo_detector3_stop_ring         D         0.3         Invar           2940         photo_detector3_bot_ring         D         0.3         Invar           2940         photo_detector3_bot_ring         D         0.3         Invar           2950         photo_detector3_cover         D         0.3         Aluminium Alloy 6082 <t< td=""><td>2820</td><td>photo_detector2_top_ring</td><td>D</td><td>0.3</td><td>Invar</td></t<>	2820	photo_detector2_top_ring	D	0.3	Invar	
2840         photo_detector2_cover         D         0.3         Invar           2860         photo_detector2_cover         D         0.3         Invar           2870         photo_detector3_2k         D         0.3         Copper           2900         photo_detector3_strap         D         0.3         Copper (UHP)           2920         photo_detector3_spacers         D         0.3         Invar           2930         photo_detector3_cover         D         0.3         Invar           2930         photo_detector3_cover         D         0.3         Invar           2940         photo_feedhorn3         D         0.3         Invar           2950         photo_detector3_cover         D         0.3         Invar           2970         photo_feedhorn3         D         0.3         Copper           SPECTROMETER 4K STAGE	2830	photo_detector2_spacers	D	0.3	Invar	
2850         photo_detector2_cover         D         0.3         Invar           2870         photo_detector3_2k         D         2         Aluminium Alloy 6082           2900         photo_detector3_strap         D         0.3         Copper (UHP)           2920         photo_detector3_spacers         D         0.3         Invar           2930         photo_detector3_spacers         D         0.3         Invar           2940         photo_detector3_cover         D         0.3         Invar           2950         photo_detector3_cover         D         0.3         Invar           2950         photo_detector3_cover         D         0.3         Invar           2970         photo_detector3_cover         D         0.3         Copper           3000         spect_iolimatorA         D         4         Aluminium Alloy 6082           3020         spect_collimatorA         D         4         Aluminium Alloy 6082           3030         spect_fold_mirrorA         D         4         Aluminium Alloy 6082           3030         spect_fold_mirrorA         D         4         Aluminium Alloy 6082           3040         spect_fold_mirrorA         D         4         Aluminium	2840	photo_detector2_bot_ring	D	0.3	Invar	
2870         photo_feedhorn2         D         0.3         Copper           2900         photo_detector3_2k         D         2         Alluminum Alloy 6082           2910         photo_detector3_stop_ring         D         0.3         Invar           2920         photo_detector3_spacers         D         0.3         Invar           2940         photo_detector3_sover         D         0.3         Invar           2940         photo_detector3_cover         D         0.3         Invar           2970         photo_feedhorn3         D         0.3         Copper           2970         photo_feedhorn3         D         0.3         Copper           3000         spect_fold_mirrorA         D         4         Aluminium Alloy 6082           3010         spect_collimatorB         D         4         Aluminium Alloy 6082           3030         spect_fold_mirrorA         D         4         Aluminium Alloy 6082           3040         spect_fold_mirrorA         D         4         Aluminium Alloy 6082           3050         spect_fold_mirrorB         D         4         Aluminium Alloy 6082           3060         spect_fold_mirrorB         D         4         Aluminium Alloy 60	2850	photo_detector2_cover	D	0.3	Invar	
2900         photo_detector3_2k         D         2         Aluminium Alloy 6082           2910         photo_detector3_strap         D         0.3         Copper (UHP)           2920         photo_detector3_spacers         D         0.3         Invar           2930         photo_detector3_spacers         D         0.3         Invar           2940         photo_detector3_sourcer         D         0.3         Invar           2950         photo_detector3_cover         D         0.3         Invar           2970         photo_feedhorn3         D         0.3         Copper           SPECTROMETER 4K STAGE	2870	photo_feedhorn2	D	0.3	Copper	
2910         photo_detector3_strap         D         0.3         Copper (UHP)           2920         photo_detector3_spacers         D         0.3         Invar           2930         photo_detector3_spacers         D         0.3         Invar           2940         photo_detector3_cover         D         0.3         Invar           2950         photo_detector3_cover         D         0.3         Invar           2970         photo_feedhorn3         D         0.3         Copper           SPECTROMETER 4K STAGE	2900	photo_detector3_2k	D	2	Aluminium Alloy 6082	
2920         photo_detector3_top_ring         D         0.3         Invar           2930         photo_detector3_spacers         D         0.3         Invar           2940         photo_detector3_bot_ring         D         0.3         Invar           2950         photo_detector3_cover         D         0.3         Invar           2970         photo_feedhorn3         D         0.3         Copper           2970         photo_feedhorn3         D         0.3         Copper           3000         spect_collimatorA         D         4         Aluminium Alloy 6082           3010         spect_collimatorA         D         4         Aluminium Alloy 6082           3020         spect_fold_mirror1A         D         4         Aluminium Alloy 6082           3030         spect_fold_mirror1A         D         4         Aluminium Alloy 6082           3040         spect_fold_mirror1A         D         4         Aluminium Alloy 6082           3050         spect_fold_mirror2B         D         4         Aluminium Alloy 6082           3050         spect_fold_mirrorB         D         4         Aluminium Alloy 6082           3100         spect_camera_mirrorA         D         4	2910	photo_detector3_strap	D	0.3	Copper (UHP)	
2930         photo_detector3_spacers         D         0.3         Invar           2940         photo_detector3_bot_ring         D         0.3         Invar           2950         photo_detector3_cover         D         0.3         Invar           2970         photo_feedhorn3         D         0.3         Copper           2970         photo_feedhorn3         D         0.3         Copper           3000         spect_input_fold_mirrorA         D         4         Aluminium Alloy 6082           3020         spect_collimatorA         D         4         Aluminium Alloy 6082           3030         spect_collimatorB         D         4         Aluminium Alloy 6082           3030         spect_fold_mirror1A         D         4         Aluminium Alloy 6082           3060         spect_fold_mirror2A         D         4         Aluminium Alloy 6082           3070         spect_fold_mirror3B         D         4         Aluminium Alloy 6082           3080         spect_rooftop_mirrorA         D         4         Aluminium Alloy 6082           3080         spect_rooftop_mirrorB         D         4         Aluminium Alloy 6082           3110         spect_camera_mirrorB         D         <	2920	photo_detector3_top_ring	D	0.3	Invar	
2940         photo_detector3_bot_ring         D         0.3         Invar           2950         photo_detector3_cover         D         0.3         Invar           2970         photo_feedhorn3         D         0.3         Copper           SPECTROMETER 4K STAGE	2930	photo_detector3_spacers	D	0.3	Invar	
2950         photo_detector3_cover         D         0.3         Invar           2970         photo_feedhorn3         D         0.3         Copper           SPECTROMETER 4K STAGE	2940	photo_detector3_bot_ring	D	0.3	Invar	
2970photo_feedhorn3D0.3CopperSPECTROMETER 4K STAGE	2950	photo_detector3_cover	D	0.3	Invar	
SPECTROMETER 4K STAGEAluminium Alloy 60823000spect_input_fold_mirrorAD4Aluminium Alloy 60823020spect_collimatorAD4Aluminium Alloy 60823020spect_collimatorBD4Aluminium Alloy 60823030spect_beam_divider1D4Aluminium Alloy 60823040spect_fold_mirror1AD4Aluminium Alloy 60823050spect_fold_mirror2AD4Aluminium Alloy 60823060spect_fold_mirror2BD4Aluminium Alloy 60823070spect_fold_mirror2BD4Aluminium Alloy 60823080spect_rooftop_mirrorAD4Aluminium Alloy 60823090spect_contop_mirrorAD4Aluminium Alloy 60823100spect_camera_mirrorAD4Aluminium Alloy 60823110spect_camera_mirrorAD4Aluminium Alloy 60823120spect_camera_mirrorAD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823410spect_2k_box_mxD2Aluminium Alloy 608234400spect_2k_box_mxD2Aluminium Alloy 608234400spect_2k_box_mxD2Aluminium Alloy 608234400spect_2k_box_mxD2Aluminium Alloy 608234400spect_abox_mxD2Aluminium Alloy 60823450spect_abox_mxD2Aluminium Alloy 6082 <tr<tr><td< td=""><td>2970</td><td>photo_feedhorn3</td><td>D</td><td>0.3</td><td>Copper</td></td<></tr<tr>	2970	photo_feedhorn3	D	0.3	Copper	
Sin EUN NotifierSpect_input_fold_mirrorAD4Aluminium Alloy 60823000spect_collimatorAD4Aluminium Alloy 60823020spect_collimatorBD4Aluminium Alloy 60823030spect_beam_divider1D4Aluminium Alloy 60823040spect_fold_mirror1AD4Aluminium Alloy 60823050spect_fold_mirror1AD4Aluminium Alloy 60823060spect_fold_mirror2BD4Aluminium Alloy 60823070spect_fold_mirror2BD4Aluminium Alloy 60823080spect_roottop_mirrorAD4Aluminium Alloy 60823090spect_roottop_mirrorAD4Aluminium Alloy 60823100spect_camera_mirrorBD4Aluminium Alloy 60823110spect_camera_mirrorAD4Aluminium Alloy 60823200spect_camera_mirrorAD4Aluminium Alloy 60823210spect_camera_mirrorAD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823400spect_2k_box_mxD2Aluminium Alloy 60823410spect_cak_box_mxD2Aluminium Alloy 60823450spect_2k_box_mxD2Aluminium Alloy 60823450spect_2k_box_mxD2Aluminium Alloy 60823450spect_2k_box_mxD2Aluminium Alloy 60823450spect_2k_box_mxD2 <td>SPECTRO</td> <td>METER AK STAGE</td> <td></td> <td></td> <td></td>	SPECTRO	METER AK STAGE				
3010       Spect_collimatorA       D       4       Aluminium Alloy 6082         3020       spect_collimatorA       D       4       Aluminium Alloy 6082         3030       spect_collimatorA       D       4       Aluminium Alloy 6082         3030       spect_collimatorA       D       4       Aluminium Alloy 6082         3040       spect_fold_mirror1A       D       4       Aluminium Alloy 6082         3050       spect_fold_mirror2A       D       4       Aluminium Alloy 6082         3060       spect_fold_mirror1B       D       4       Aluminium Alloy 6082         3070       spect_fold_mirror2B       D       4       Aluminium Alloy 6082         3080       spect_rooftop_mirrorB       D       4       Aluminium Alloy 6082         3090       spect_camera_mirrorA       D       4       Aluminium Alloy 6082         3110       spect_camera_mirrorA       D       4       Aluminium Alloy 6082         3120       spect_camera_mirrorA       D       4       Aluminium Alloy 6082         3210       spect_camera_mirrorB       D       4       Aluminium Alloy 6082         3220       spect_calibrator       D       4       Aluminium Alloy 6082         3400	3000	spect input fold mirrorA	D	4	Aluminium Allov 6082	
3020       Spect_collimatorB       D       4       Aluminium Alloy 6082         3030       Spect_collimatorB       D       4       Aluminium Alloy 6082         3040       Spect_fold_mirror1A       D       4       Aluminium Alloy 6082         3050       Spect_fold_mirror2A       D       4       Aluminium Alloy 6082         3060       Spect_fold_mirror2B       D       4       Aluminium Alloy 6082         3070       Spect_fold_mirror2B       D       4       Aluminium Alloy 6082         3080       Spect_rooftop_mirrorA       D       4       Aluminium Alloy 6082         3090       Spect_rooftop_mirrorA       D       4       Aluminium Alloy 6082         3090       Spect_confop_mirrorA       D       4       Aluminium Alloy 6082         3100       Spect_camera_mirrorB       D       4       Aluminium Alloy 6082         3110       Spect_camera_mirrorB       D       4       Aluminium Alloy 6082         3220       Spect_calibrator       D       4       Aluminium Alloy 6082         32300       Spect_calibrator       D       4       Aluminium Alloy 6082         3400       Spect_2k_box_px       D       2       Aluminium Alloy 6082         3410<	3010	spect_collimatorA	D	4	Aluminium Alloy 6082	
3030spect_beam_divider1D4Aluminium Alloy 60823030spect_fold_mirror1AD4Aluminium Alloy 60823050spect_fold_mirror2AD4Aluminium Alloy 60823060spect_fold_mirror2BD4Aluminium Alloy 60823070spect_fold_mirror2BD4Aluminium Alloy 60823080spect_rooftop_mirrorAD4Aluminium Alloy 60823080spect_rooftop_mirrorAD4Aluminium Alloy 60823090spect_conftop_mirrorBD4Aluminium Alloy 60823100spect_comera_mirrorAD4Aluminium Alloy 60823110spect_camera_mirrorAD4Aluminium Alloy 60823120spect_camera_mirrorBD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823400spect_2k_box_pxD2Aluminium Alloy 608234400spect_2k_box_pxD2Aluminium Alloy 608234400spect_2k_baffleD2Aluminium Alloy 60823450spect_2k_baffleD2Aluminium Alloy 60823460spect_mirror12AD2Aluminium Alloy 60823460spect_mirror12AD2Aluminium Alloy 60823470spect_mirror12AD2Aluminium Alloy 60823650spect_mirror12BD2Aluminium Alloy 60823650spect_mirror12AD2Aluminium Alloy 6	3020	spect_collimatorB	D	4	Aluminium Alloy 6082	
Spect_fold_mirror1AD4Aluminium Alloy 60823040spect_fold_mirror1AD4Aluminium Alloy 60823050spect_fold_mirror2AD4Aluminium Alloy 60823060spect_fold_mirror1BD4Aluminium Alloy 60823070spect_fold_mirror2BD4Aluminium Alloy 60823080spect_rooftop_mirrorAD4Aluminium Alloy 60823090spect_rooftop_mirrorBD4Aluminium Alloy 60823100spect_beam_divider2D4Aluminium Alloy 60823110spect_camera_mirrorAD4Aluminium Alloy 60823120spect_camera_mirrorAD4Aluminium Alloy 60823200spect_camera_mirrorBD4Aluminium Alloy 60823200spect_camera_mirrorBD4Aluminium Alloy 60823200spect_calibratorD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823400spect_2k_box_pxD2Aluminium Alloy 60823450spect_2k_box_mxD2Aluminium Alloy 60823450spect_2k_box_mxD2Aluminium Alloy 60823460spect_albert_mirror12AD2Aluminium Alloy 60823470spect_mirror12BD2Aluminium Alloy 60823650spect_aloomK_busbarD0.3Copper (UHP)3655spect_300mK_busbarD0.3Copper (UHP)<	3030	spect beam divider1	D	4	Aluminium Alloy 6082	
3050spect_fold_mirror2AD4Aluminium Alloy 60823050spect_fold_mirror2BD4Aluminium Alloy 60823070spect_fold_mirror2BD4Aluminium Alloy 60823080spect_rooftop_mirrorAD4Aluminium Alloy 60823090spect_rooftop_mirrorBD4Aluminium Alloy 60823010spect_beam_divider2D4Aluminium Alloy 60823110spect_camera_mirrorAD4Aluminium Alloy 60823120spect_camera_mirrorAD4Aluminium Alloy 60823120spect_camera_mirrorBD4Aluminium Alloy 60823200spect_camera_mirrorBD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823400spect_2k_box_pxD2Aluminium Alloy 60823410spect_2k_box_pxD2Aluminium Alloy 60823450spect_2k_box_mxD2Aluminium Alloy 60823460spect_2k_box_mxD2Aluminium Alloy 60823460spect_anirror12AD2Aluminium Alloy 60823470spect_mirror12BD2Aluminium Alloy 60823460spect_anirror12BD2Aluminium Alloy 60823460spect_anirror12BD2Aluminium Alloy 60823460spect_anirror12BD2Aluminium Alloy 60823651spect_anirror12BD0.3Copper (UHP)	3040	spect fold mirror1A	D	4	Aluminium Allov 6082	
3060spect_fold_mirror1BD4Aluminium Alloy 60823070spect_fold_mirror2BD4Aluminium Alloy 60823080spect_rooftop_mirrorAD4Aluminium Alloy 60823090spect_rooftop_mirrorBD4Aluminium Alloy 60823100spect_beam_divider2D4Aluminium Alloy 60823110spect_camera_mirrorAD4Aluminium Alloy 60823120spect_camera_mirrorAD4Aluminium Alloy 60823200spect_camera_mirrorBD4Aluminium Alloy 60823200spect_calibratorD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823400spect_2k_box_pxD2Aluminium Alloy 60823410spect_2k_box_pxD2Aluminium Alloy 60823450spect_2k_box_mxD2Aluminium Alloy 60823460spect_2k_baffleD2Aluminium Alloy 60823470spect_mirror12AD2Aluminium Alloy 60823470spect_a00mK_busbarD0.3Copper (UHP)3655spect_300mK_busbarD0.3Copper (UHP)3660spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)	3050	spect fold mirror2A	D	4	Aluminium Allov 6082	
3070spect_fold_mirror2BD4Aluminium Alloy 60823080spect_rooftop_mirrorAD4Aluminium Alloy 60823090spect_rooftop_mirrorBD4Aluminium Alloy 60823100spect_beam_divider2D4Aluminium Alloy 60823110spect_camera_mirrorAD4Aluminium Alloy 60823120spect_camera_mirrorBD4Aluminium Alloy 60823200spect_camera_mirrorBD4Aluminium Alloy 60823200spect_calibratorD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823400spect_2k_box_pxD2Aluminium Alloy 60823410spect_2k_box_mxD2Aluminium Alloy 60823450spect_2k_box_mxD2Aluminium Alloy 60823460spect_mirror12AD2Aluminium Alloy 60823470spect_mirror12BD2Aluminium Alloy 6082SPECTROMETER 0.3K COLD LINKImage: Spect_300mK_busbar_coldD0.33655spect_300mK_busbarD0.3Copper (UHP)3666spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)	3060	spect fold mirror1B	D	4	Aluminium Allov 6082	
3080spect_rooftop_mirrorAD4Aluminium Alloy 60823090spect_rooftop_mirrorBD4Aluminium Alloy 60823100spect_beam_divider2D4Aluminium Alloy 60823110spect_camera_mirrorAD4Aluminium Alloy 60823120spect_camera_mirrorBD4Aluminium Alloy 60823200spect_camera_mirrorBD4Aluminium Alloy 60823200spect_calibratorD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823400spect_2k_box_pxD2Aluminium Alloy 60823410spect_2k_box_mxD2Aluminium Alloy 60823450spect_2k_box_mxD2Aluminium Alloy 60823460spect_mirror12AD2Aluminium Alloy 60823470spect_mirror12BD2Aluminium Alloy 60823470spect_300mK_busbar_coldD0.3Copper (UHP)3655spect_300mK_busbarD0.3Copper (UHP)3666spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)	3070	spect fold mirror2B	D	4	Aluminium Allov 6082	
3090spect_rooftop_mirrorBD4Aluminium Alloy 60823100spect_beam_divider2D4Aluminium Alloy 60823110spect_camera_mirrorAD4Aluminium Alloy 60823120spect_camera_mirrorBD4Aluminium Alloy 60823200spect_roimechanismD4Aluminium Alloy 60823200spect_calibratorD4Aluminium Alloy 60823200spect_calibratorD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823250spect_2k_box_pxD2Aluminium Alloy 60823400spect_2k_box_pxD2Aluminium Alloy 60823410spect_2k_box_mxD2Aluminium Alloy 60823450spect_2k_box_mxD2Aluminium Alloy 60823460spect_mirror12AD2Aluminium Alloy 60823470spect_mirror12BD2Aluminium Alloy 6082SPECTROMETER 0.3K COLD LINKImage: Cold D0.3Copper (UHP)3655spect_300mK_busbar_coldD0.3Copper (UHP)3660spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)	3080	spect rooftop mirrorA	D	4	Aluminium Allov 6082	
3100spect_beam_divider2D4Aluminium Alloy 60823110spect_camera_mirrorAD4Aluminium Alloy 60823120spect_camera_mirrorBD4Aluminium Alloy 60823200spect_mirror_mechanismD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 6082SPECTROMETER 2K STAGE3400spect_2k_box_pxD2Aluminium Alloy 60823410spect_2k_box_mxD2Aluminium Alloy 60823450spect_2k_box_mxD2Aluminium Alloy 60823460spect_mirror12AD2Aluminium Alloy 60823470spect_mirror12BD2Aluminium Alloy 6082SPECTROMETER 0.3K COLD LINK3655spect_300mK_busbar_coldD0.3Copper (UHP)3660spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)	3090	spect_rooftop_mirrorB	D	4	Aluminium Alloy 6082	
3110spect_camera_mirrorAD4Aluminium Alloy 60823120spect_camera_mirrorBD4Aluminium Alloy 60823200spect_mirror_mechanismD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823260spect_calibratorD4Aluminium Alloy 60823250spect_leabox_pxD2Aluminium Alloy 60823400spect_leabox_pxD2Aluminium Alloy 60823410spect_leabox_pxD2Aluminium Alloy 60823450spect_leabox_mxD2Aluminium Alloy 60823460spect_mirror12AD2Aluminium Alloy 60823470spect_mirror12BD2Aluminium Alloy 6082SPECTROMETER 0.3K COLD LINKSepect_300mK_busbar_cold3655spect_300mK_busbarD0.3Copper (UHP)3660spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)	3100	spect beam divider2	D	4	Aluminium Alloy 6082	
3120       spect_camera_mirrorB       D       4       Aluminium Alloy 6082         3200       spect_mirror_mechanism       D       4       Aluminium Alloy 6082         3250       spect_calibrator       D       4       Aluminium Alloy 6082         3250       spect_calibrator       D       4       Aluminium Alloy 6082         3250       spect_calibrator       D       4       Aluminium Alloy 6082         3400       spect_2k_box_px       D       2       Aluminium Alloy 6082         3410       spect_2k_box_mx       D       2       Aluminium Alloy 6082         3450       spect_2k_baffle       D       2       Aluminium Alloy 6082         3460       spect_mirror12A       D       2       Aluminium Alloy 6082         3470       spect_mirror12B       D       2       Aluminium Alloy 6082         SPECTROMETER 0.3K COLD LINK	3110	spect camera mirrorA	D	4	Aluminium Alloy 6082	
3200spect_mirror_mechanismD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 60823250spect_calibratorD4Aluminium Alloy 6082SPECTROMETER 2K STAGED2Aluminium Alloy 60823400spect_2k_box_pxD2Aluminium Alloy 60823410spect_2k_box_mxD2Aluminium Alloy 60823450spect_2k_baffleD2Aluminium Alloy 60823460spect_mirror12AD2Aluminium Alloy 60823470spect_mirror12BD2Aluminium Alloy 6082SPECTROMETER 0.3K COLD LINKD0.3Copper (UHP)3655spect_300mK_busbar_coldD0.3Copper (UHP)3660spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)	3120	spect_camera_mirrorB	D	4	Aluminium Alloy 6082	
3250spect_calibratorD4Aluminium Alloy 6082SPECTROMETER 2K STAGE3400spect_2k_box_pxD23410spect_2k_box_mxD23450spect_2k_baffleD23460spect_mirror12AD23470spect_mirror12BD23650spect_300mK_busbar_coldD0.33655spect_300mK_busbarD0.33660spect_300mK_busbarD0.33665spect_300mK_busbarD0.33665spect_300mK_busbarD0.33665spect_300mK_busbarD0.33665spect_300mK_busbarD0.33665spect_300mK_busbarD0.33665spect_300mK_busbarD0.33665spect_300mK_busbarD3665spect_300mK_busbarD3665spect_300mK_busbarD3665spect_300mK_busbarD3665spect_300mK_busbarD3665spect_300mK_busbarD3665spect_300mK_busbarD3665spect_300mK_busbarD3665spect_300mK_busbarD3665spect_300mK_busbarD3665spect_300mK_busbarD3665spect_300mK_busbarD3665spect_300mK_busbarD3665spect_300mK_busbarD3665spect_300mK_busbar3655spect_300mK_bus	3200	spect_mirror_mechanism	D	4	Aluminium Alloy 6082	
SPECTROMETER 2K STAGED2Aluminium Alloy 60823400spect_2k_box_pxD2Aluminium Alloy 60823410spect_2k_box_mxD2Aluminium Alloy 60823450spect_2k_baffleD2Aluminium Alloy 60823460spect_mirror12AD2Aluminium Alloy 60823470spect_mirror12BD2Aluminium Alloy 60823470spect_mirror12BD2Aluminium Alloy 6082SPECTROMETER 0.3K COLD LINK3650spect_300mK_busbar_coldD0.3Copper (UHP)3655spect_300mK_busbarD0.3Copper (UHP)3660spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)	3250	spect_calibrator	D	4	Aluminium Alloy 6082	
3400spect_2k_box_pxD2Aluminium Alloy 60823410spect_2k_box_mxD2Aluminium Alloy 60823450spect_2k_baffleD2Aluminium Alloy 60823460spect_mirror12AD2Aluminium Alloy 60823470spect_mirror12BD2Aluminium Alloy 6082SPECTROMETER 0.3K COLD LINKD0.3Copper (UHP)3650spect_300mK_busbar_coldD0.3Copper (UHP)3655spect_300mK_busbarD0.3Copper (UHP)3660spect_300mK_busbarD0.3Copper (UHP)3665spect_300mK_busbarD0.3Copper (UHP)	SPECTRO	METER 2K STAGE				
3410       spect_2k_box_mx       D       2       Aluminium Alloy 6082         3450       spect_2k_baffle       D       2       Aluminium Alloy 6082         3460       spect_mirror12A       D       2       Aluminium Alloy 6082         3470       spect_mirror12B       D       2       Aluminium Alloy 6082         3650       spect_mirror12B       D       2       Aluminium Alloy 6082         SPECTROMETER 0.3K COLD LINK            3650       spect_300mK_busbar_cold       D       0.3       Copper (UHP)         3655       spect_300mK_busbar       D       0.3       Copper (UHP)         3660       spect_300mK_busbar       D       0.3       Copper (UHP)         3665       spect_300mK_busbar       D       0.3       Copper (UHP)	3400	spect 2k box px	D	2	Aluminium Allov 6082	
3450       spect_2k_baffle       D       2       Aluminium Alloy 6082         3460       spect_mirror12A       D       2       Aluminium Alloy 6082         3470       spect_mirror12B       D       2       Aluminium Alloy 6082         3470       spect_mirror12B       D       2       Aluminium Alloy 6082         SPECTROMETER 0.3K COLD LINK       D       0.3       Copper (UHP)         3650       spect_300mK_busbar_cold       D       0.3       Copper (UHP)         3655       spect_300mK_busbar       D       0.3       Copper (UHP)         3660       spect_300mK_busbar       D       0.3       Copper (UHP)         3665       spect_300mK_busbar       D       0.3       Copper (UHP)	3410	spect 2k box mx	D	2	Aluminium Alloy 6082	
3460       spect_mirror12A       D       2       Aluminium Alloy 6082         3470       spect_mirror12B       D       2       Aluminium Alloy 6082         SPECTROMETER 0.3K COLD LINK	3450	spect 2k baffle	D	2	Aluminium Allov 6082	
3470       spect_mirror12B       D       2       Aluminium Alloy 6082         SPECTROMETER 0.3K COLD LINK	3460	spect mirror12A	D	2	Aluminium Allov 6082	
SPECTROMETER 0.3K COLD LINK       Operation         3650       spect_300mK_busbar_cold       D       0.3       Copper (UHP)         3655       spect_300mK_busbar       D       0.3       Copper (UHP)         3660       spect_300mK_busbar       D       0.3       Copper (UHP)         3665       spect_300mK_busbar       D       0.3       Copper (UHP)	3470	spect mirror12B	D	2	Aluminium Allov 6082	
3650     spect_300mK_busbar_cold     D     0.3     Copper (UHP)       3655     spect_300mK_busbar     D     0.3     Copper (UHP)       3660     spect_300mK_busbar     D     0.3     Copper (UHP)       3665     spect_300mK_busbar     D     0.3     Copper (UHP)						
3655     spect_300mK_busbar     D     0.3     Copper (UHP)       3660     spect_300mK_busbar     D     0.3     Copper (UHP)       3665     spect_300mK_busbar warm     D     0.3     Copper (UHP)	3650	spect 300mK busbar cold	D	0.3	Copper (UHP)	
3660     spect_300mK_busbar     D     0.3     Copper (UHP)       3665     spect_300mK_busbar warm     D     0.3     Copper (UHP)	3655	spect 300mK busbar	D	0.3	Copper (UHP)	
3665 spect 300mK husbar warm D 0.3 Copper (JHP)	3660	spect 300mK busbar	D	0.3	Copper (UHP)	
	3665	spect 300mK busbar warm	D	0.3	Copper (UHP)	



# **Thermal Configuration Control Document**

Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 39 of 55

SPECTROMETER DETECTORS					
3700     Spect_detector1_strap     D     0     3     Copper (UHP)       3710     Spect_detector1_strap     D     0.3     Invar       3720     Spect_detector1_spacers     D     0.3     Invar       3740     Spect_detector1_spacers     D     0.3     Invar       3740     Spect_detector1_corver     D     0.3     Invar       3770     Spect_detector1_cover     D     0.3     Invar       3770     Spect_detector2_k     D     2     Aluminium Alloy 6082       3810     Spect_detector2_strap     D     0.3     Invar       3820     Spect_detector2_spacers     D     0.3     Invar       3830     spect_detector2_spacers     D     0.3     Invar       3840     Spect_detector2_cover     D     0.3     Invar       3870     spect_detector2_cover     D     1.4     Al	SPECTRO	METER DETECTORS			
3710       Spect_detector1_strap       D       0.3       Copper (UHP)         3720       spect_detector1_spacers       D       0.3       Invar         3740       spect_detector1_spacers       D       0.3       Invar         3740       spect_detector1_spacers       D       0.3       Invar         3750       spect_detector1_cover       D       0.3       Invar         3770       spect_detector2_laver       D       0.3       Invar         3800       spect_detector2_laver       D       0.3       Invar         3800       spect_detector2_strap       D       0.3       Invar         3830       spect_detector2_strap       D       0.3       Invar         3840       spect_detector2_sopers       D       0.3       Invar         3850       spect_detector2_cover       D       0.3       Invar         3850       spect_feedhorn1       D       0.3       Copper         4000       cooler_4k_structure       D       4       Aluminium Alloy 6082         4200       cooler_shunt       D       2       Ti6Al4V         4200       cooler_shunt       D       2       Ti6Al4V         4500 <t< td=""><td>3700</td><td>spect_detector1_2k</td><td>D</td><td>2</td><td>Aluminium Alloy 6082</td></t<>	3700	spect_detector1_2k	D	2	Aluminium Alloy 6082
3720       spect_detector1_top_ring       D       0.3       Invar         3730       spect_detector1_spacers       D       0.3       Invar         3740       spect_detector1_bot_ring       D       0.3       Invar         3750       spect_detector1_cover       D       0.3       Invar         3770       spect_detector2_cover       D       0.3       Invar         3770       spect_detector2_tap       D       2       Aluminium Alloy 6082         3800       spect_detector2_strap       D       0.3       Invar         3820       spect_detector2_spacers       D       0.3       Invar         3830       spect_detector2_cover       D       0.3       Invar         3840       spect_detector2_cover       D       0.3       Invar         3870       spect_feedhorn1       D       0.3       Invar         3870       spect_feedhorn1       D       0.3       Invar         3870       spect_feedhorn1       D       0.3       Invar         4000       cooler_stunt       D       2       Ti6Al4V         4200       cooler_stunt       D       2       Ti6Al4V         4300       cooler_shunt <td>3710</td> <td>spect_detector1_strap</td> <td>D</td> <td>0.3</td> <td>Copper (UHP)</td>	3710	spect_detector1_strap	D	0.3	Copper (UHP)
3730         spect_detector1_spacers         D         0.3         Invar           3740         spect_detector1_bot_ring         D         0.3         Invar           3750         spect_detector1_cover         D         0.3         Invar           3770         spect_detector2_cover         D         0.3         Copper           3800         spect_detector2_lex         D         2         Aluminium Alloy 6082           3810         spect_detector2_strap         D         0.3         Invar           3820         spect_detector2_spacers         D         0.3         Invar           3830         spect_detector2_cover         D         0.3         Invar           3840         spect_detector2_cover         D         0.3         Invar           3850         spect_detector2_cover         D         0.3         Invar           3870         spect_feedhorn1         D         0.3         Copper           COLER           4         Aluminium Alloy 6082           4200         cooler_4k_structure         D         4         Ti6Al4V           4200         cooler_2K_pump         D         4         Ti6Al4V           4400         co	3720	spect_detector1_top_ring	D	0.3	Invar
3740         spect_detector1_cover         D         0.3         Invar           3750         spect_detector1_cover         D         0.3         Invar           3770         spect_detector1_cover         D         0.3         Copper           3800         spect_detector2_lx         D         2         Aluminium Alloy 6082           3810         spect_detector2_strap         D         0.3         Invar           3820         spect_detector2_spacers         D         0.3         Invar           3830         spect_detector2_cover         D         0.3         Invar           3840         spect_detector2_cover         D         0.3         Invar           3850         spect_feedhorn1         D         0.3         Invar           3870         spect_feedhorn1         D         0.3         Invar           3870         spect_feedhorn1         D         0.3         Copper           COOLER	3730	spect_detector1_spacers	D	0.3	Invar
3750         spect_detector1_cover         D         0.3         Invar           3770         spect_detector2_2k         D         2         Aluminium Alloy 6082           3800         spect_detector2_strap         D         0.3         Copper (UHP)           3820         spect_detector2_spacers         D         0.3         Invar           3830         spect_detector2_spacers         D         0.3         Invar           3840         spect_detector2_cover         D         0.3         Invar           3850         spect_detector2_cover         D         0.3         Invar           3870         spect_feedhorn1         D         0.3         Invar           3870         spect_feedhorn1         D         0.3         Copper           COOLER	3740	spect_detector1_bot_ring	D	0.3	Invar
3770         spect_feedhorn1         D         0.3         Copper           3800         spect_detector2_2k         D         2         Aluminium Alloy 6082           3810         spect_detector2_strap         D         0.3         Copper (UHP)           3820         spect_detector2_top_ring         D         0.3         Invar           3830         spect_detector2_spacers         D         0.3         Invar           3840         spect_detector2_cover         D         0.3         Invar           3850         spect_detector2_cover         D         0.3         Invar           3870         spect_feedhorn1         D         0.3         Copper           COOLER	3750	spect_detector1_cover	D	0.3	Invar
3800         spect_detector2_2k         D         2         Aluminium Alloy 6082           3810         spect_detector2_strap         D         0.3         Copper (UHP)           3820         spect_detector2_top_ring         D         0.3         Invar           3830         spect_detector2_spacers         D         0.3         Invar           3840         spect_detector2_cover         D         0.3         Invar           3850         spect_feedhorn1         D         0.3         Copper           2000         cooler_4k_structure         D         4         Aluminium Alloy 6082           4200         cooler_2k_pump         D         4         Aluminium Alloy 6082           4200         cooler_2k_pump         D         4         Ti6Al4V           4200         cooler_alont         D         2         Ti6Al4V           4200         cooler_alontk_evap         B         0         Ti6Al4V           44000         cooler_alontk_evap         B         0         Ti6Al4V           44000         cooler_alontk_evap         B         0         Ti6Al4V           44000         cooler_alontk_evap         D         10         Aluminium Alloy 6082 <t< td=""><td>3770</td><td>spect_feedhorn1</td><td>D</td><td>0.3</td><td>Copper</td></t<>	3770	spect_feedhorn1	D	0.3	Copper
3810         spect_detector2_strap         D         0.3         Copper (UHP)           3820         spect_detector2_top_ring         D         0.3         Invar           3830         spect_detector2_spacers         D         0.3         Invar           3840         spect_detector2_cover         D         0.3         Invar           3850         spect_detector2_cover         D         0.3         Invar           3870         spect_feedhorn1         D         0.3         Copper           2000         cooler_4k_structure         D         4         Aluminium Alloy 6082           4000         cooler_2K_pump         D         4         Ti6Al4V           4250         cooler_abunt         D         2         Ti6Al4V           4300         cooler_abunt_evap         B         0         Ti6Al4V           4400         cooler_pump_HS         D         4         Ti6Al4V           4500         cooler_evap_HS         D         2         Ti6Al4V           4500         photometer_JFET_box         D         10         Aluminium Alloy 6082           5500         spectrometer_JFET_box         D         10         Aluminium Alloy 6082           5500	3800	spect_detector2_2k	D	2	Aluminium Alloy 6082
3820         spect_detector2_top_ring         D         0.3         Invar           3830         spect_detector2_spacers         D         0.3         Invar           3840         spect_detector2_bot_ring         D         0.3         Invar           3850         spect_detector2_cover         D         0.3         Invar           3850         spect_detector2_cover         D         0.3         Invar           3870         spect_feedhom1         D         0.3         Copper           COOLER	3810	spect_detector2_strap	D	0.3	Copper (UHP)
3830         spect_detector2_spacers         D         0.3         Invar           3840         spect_detector2_bot_ring         D         0.3         Invar           3850         spect_detector2_cover         D         0.3         Invar           3870         spect_detector2_cover         D         0.3         Copper           CODLER           Goper          Copper           4000         cooler_2K_pump         D         4         Ti6Al4V           4250         cooler_shunt         D         2         Ti6Al4V           4400         cooler_pump_HS         D         4         Ti6Al4V           4500         cooler_or_JFET_box         D         10         Aluminium Alloy 6082           5500         spec	3820	spect_detector2_top_ring	D	0.3	Invar
3840         spect_detector2_bot_ring         D         0.3         Invar           3850         spect_detector2_cover         D         0.3         Invar           3870         spect_feedhorn1         D         0.3         Copper           COOLER           Aluminium Alloy 6082           4000         cooler_4k_structure         D         4         Aluminium Alloy 6082           4200         cooler_2K_pump         D         4         Ti6Al4V           4250         cooler_shunt         D         2         Ti6Al4V           4300         cooler_shunt         D         2         Ti6Al4V           4400         cooler_pump_HS         D         4         Ti6Al4V           4400         cooler_evap_HS         D         2         Ti6Al4V           4500         cooler_evap_HS         D         2         Ti6Al4V           4500         cooler_evap_TET_box         D         10         Aluminium Alloy 6082           5500         spectrometer_JFET_box         D         10         Aluminium Alloy 6082           5500         spectrometer_JFET_box         D         10         Aluminium Alloy 6082           5700         spectrometer_JFET_box<	3830	spect_detector2_spacers	D	0.3	Invar
3850         spect_detector2_cover         D         0.3         Invar           3870         spect_feedhorn1         D         0.3         Copper           4000         cooler_4k_structure         D         4         Aluminium Alloy 6082           4200         cooler_2K_pump         D         4         Ti6Al4V           4250         cooler_shunt         D         2         Ti6Al4V           4300         cooler_somk_evap         B         0         Ti6Al4V           4400         cooler_pump_HS         D         4         Ti6Al4V           4500         cooler_evap_HS         D         2         Ti6Al4V           4500         cooler_evap_HS         D         2         Ti6Al4V           4500         cooler_evap_HS         D         2         Ti6Al4V <i>JFET BOX</i> D         10         Aluminium Alloy 6082           5500         spectrometer_JFET_box         D         10         Aluminium Alloy 6082 <i>STRAPS TO FIRST CRYOSTAT</i> D         4         Copper (UHP)         6100         L0_strap_cooler_pump         2         Copper (UHP)           6200         L0_strap_cooler_pump         D         2         Copper (UHP)	3840	spect_detector2_bot_ring	D	0.3	Invar
3870         spect_feedhorn1         D         0.3         Copper           4000         cooler_4k_structure         D         4         Aluminium Alloy 6082           4200         cooler_2K_pump         D         4         Ti6Al4V           4250         cooler_shunt         D         2         Ti6Al4V           4300         cooler_shunt         D         2         Ti6Al4V           4400         cooler_pump_HS         D         4         Ti6Al4V           4400         cooler_pump_HS         D         4         Ti6Al4V           4500         cooler_pump_HS         D         2         Ti6Al4V           4500         cooler_pump_HS         D         2         Ti6Al4V           4500         cooler_pump_HS         D         10         Aluminium Alloy 6082           5500         spectrometer_JFET_box         D         10         Aluminium Alloy 6082           5500         spectrometer_JFET_box         D         10         Aluminium Alloy 6082           5700         spectrometer_JFET_box         D         10         Aluminium Alloy 6082           5700         spectrometer_JFET_box         D         10         Aluminium Alloy 6082           5700<	3850	spect_detector2_cover	D	0.3	Invar
COOLERD4Aluminium Alloy 60824000cooler_4k_structureD4Aluminium Alloy 60824200cooler_2K_pumpD4Ti6Al4V4250cooler_shuntD2Ti6Al4V4300cooler_shumk_evapBOTi6Al4V4400cooler_pump_HSD4Ti6Al4V4500cooler_evap_HSD2Ti6Al4V4500cooler_evap_HSD2Ti6Al4V <i>JFET BOX</i> D10Aluminium Alloy 60825000photometer_JFET_boxD10Aluminium Alloy 60825500spectrometer_JFET_boxD10Aluminium Alloy 60825500spectrometer_JFET_boxD10Aluminium Alloy 60825500spectrometer_JFET_boxD10Aluminium Alloy 60825500spectrometer_JFET_boxD10Aluminium Alloy 60825500spectrometer_JFET_boxD10Aluminium Alloy 60825000L1_strap_main_structureD4Copper (UHP)6100L0_strap_2k_boxesD2Copper (UHP)6200L0_strap_cooler_pumpD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_tooler_evapD2Copper (UHP)6300L0_strap_tooler_evap<	3870	spect_feedhorn1	D	0.3	Copper
4000cooler_4k_structureD4Aluminium Alloy 60824200cooler_2K_pumpD4Ti6Al4V4250cooler_shuntD2Ti6Al4V4300cooler_300mK_evapB0Ti6Al4V4400cooler_pump_HSD4Ti6Al4V4500cooler_evap_HSD2Ti6Al4V4500cooler_evap_HSD2Ti6Al4VJFET BOXD10Aluminium Alloy 60825000photometer_JFET_boxD10Aluminium Alloy 60825500spectrometer_JFET_boxD10Aluminium Alloy 6082STRAPS TO FIRST CRYOSTATD10Aluminium Alloy 60826000L1_strap_main_structureD4Copper (UHP)6100L0_strap_2k_boxesD2Copper (UHP)6200L0_strap_cooler_pumpD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD10 <td< td=""><td>COOLER</td><td></td><td></td><td></td><td></td></td<>	COOLER				
4200         cooler_2K_pump         D         4         Ti6Al4V           4250         cooler_shunt         D         2         Ti6Al4V           4300         cooler_300mK_evap         B         0         Ti6Al4V           4400         cooler_pump_HS         D         4         Ti6Al4V           4400         cooler_evap_HS         D         4         Ti6Al4V           4500         cooler_evap_HS         D         2         Ti6Al4V           4500         cooler_evap_HS         D         2         Ti6Al4V           4500         cooler_evap_HS         D         2         Ti6Al4V           4500         cooler_evap_HS         D         10         Aluminium Alloy 6082           5500         spectrometer_JFET_box         D         10         Aluminium Alloy 6082           5500         spectrometer_JFET_box         D         10         Aluminium Alloy 6082           STRAPS TO FIRST CRYOSTAT         D         4         Copper (UHP)         6000         L1_strap_main_structure         D         4         Copper (UHP)         6200         L0_strap_cooler_pump         D         2         Copper (UHP)         6300         L0_strap_cooler_evap         D         2         Cop	4000	cooler_4k_structure	D	4	Aluminium Alloy 6082
4250cooler_shutD2Ti6Al4V4300cooler_300mK_evapB0Ti6Al4V4400cooler_pump_HSD4Ti6Al4V4500cooler_evap_HSD2Ti6Al4VJFET BOXD10Aluminium Alloy 60825000photometer_JFET_boxD10Aluminium Alloy 60825000spectrometer_JFET_boxD10Aluminium Alloy 60825000spectrometer_JFET_boxD10Aluminium Alloy 60825000spectrometer_JFET_boxD10Aluminium Alloy 60825000spectrometer_JFET_boxD10Aluminium Alloy 60825000spectrometer_JFET_boxD10Aluminium Alloy 60825000L0_strap_table.comD2Copper (UHP)6100L0_strap_table.comD2Copper (UHP)6200L0_strap_cooler_pumpD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)FIRST CRYOSTATImage: table.comB10-10000first_10k_optical_benchB10-20000first_0_helium_tankB1.7-20000first_0_helium_tankD1120000first_0_helium_tankD120000first_0_helium_tankD120000first_0_helium_tankD120000 <td< td=""><td>4200</td><td>cooler 2K pump</td><td>D</td><td>4</td><td>Ti6Al4V</td></td<>	4200	cooler 2K pump	D	4	Ti6Al4V
4300cooler_300mK_evapB0Ti6Al4V4400cooler_pump_HSD4Ti6Al4V4500cooler_evap_HSD2Ti6Al4VJFET BOXD10Aluminium Alloy 60825000photometer_JFET_boxD10Aluminium Alloy 60825500spectrometer_JFET_boxD10Aluminium Alloy 60825500spectrometer_JFET_boxD10Aluminium Alloy 60825500spectrometer_JFET_boxD10Aluminium Alloy 60825500spectrometer_JFET_boxD10Aluminium Alloy 60825500spectrometer_JFET_boxD10Aluminium Alloy 60825500spectrometer_JFET_boxD10Aluminium Alloy 60825600L1_strap_main_structureD4Copper (UHP)6100L0_strap_2k_boxesD2Copper (UHP)6200L0_strap_cooler_pumpD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)FIRST CRYOSTATImage: State of the	4250	cooler shunt	D	2	Ti6Al4V
4400       cooler_pump_HS       D       4       Ti6Al4V         4500       cooler_evap_HS       D       2       Ti6Al4V         JFET BOX	4300	cooler 300mK evap	В	0	Ti6Al4V
4500       cooler_evap_HS       D       2       Ti6Al4V         JFET BOX       D       10       Aluminium Alloy 6082         5000       photometer_JFET_box       D       10       Aluminium Alloy 6082         5500       spectrometer_JFET_box       D       10       Aluminium Alloy 6082         5500       spectrometer_JFET_box       D       10       Aluminium Alloy 6082         STRAPS TO FIRST CRYOSTAT       -       -       -         6000       L1_strap_main_structure       D       4       Copper (UHP)         6100       L0_strap_2k_boxes       D       2       Copper (UHP)         6200       L0_strap_cooler_pump       D       2       Copper (UHP)         6300       L0_strap_cooler_evap       D       2       Copper (UHP)         FIRST CRYOSTAT       -       -       -         10000       first_10k_optical_bench       B       10       -         20000       first_L0_helium_tank       B       1.7       -         20000       first_L0_helium_tank       D       10       -	4400	cooler_pump_HS	D	4	Ti6Al4V
JFET BOX       10       Aluminium Alloy 6082         5000       photometer_JFET_box       D       10       Aluminium Alloy 6082         5500       spectrometer_JFET_box       D       10       Aluminium Alloy 6082         5500       spectrometer_JFET_box       D       10       Aluminium Alloy 6082         STRAPS TO FIRST CRYOSTAT       -       -       -         6000       L1_strap_main_structure       D       4       Copper (UHP)         6100       L0_strap_2k_boxes       D       2       Copper (UHP)         6200       L0_strap_cooler_pump       D       2       Copper (UHP)         6300       L0_strap_cooler_evap       D       2       Copper (UHP)         FIRST CRYOSTAT       -       -       -         10000       first_10k_optical_bench       B       10       -         20000       first_L0_helium_tank       B       1.7       -	4500	cooler_evap_HS	D	2	Ti6Al4V
5000photometer_JFET_boxD10Aluminium Alloy 60825500spectrometer_JFET_boxD10Aluminium Alloy 6082STRAPS TO FIRST CRYOSTATImage: Comparison of the second	JFET BO>	(			
5500spectrometer_JFET_boxD10Aluminium Alloy 6082STRAPS TO FIRST CRYOSTAT6000L1_strap_main_structureD4Copper (UHP)6100L0_strap_2k_boxesD2Copper (UHP)6200L0_strap_cooler_pumpD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)710000first_10k_optical_benchB1020000first_L0_helium_tankB1.7-	5000	photometer_JFET_box	D	10	Aluminium Alloy 6082
STRAPS TO FIRST CRYOSTATD4Copper (UHP)6000L1_strap_main_structureD4Copper (UHP)6100L0_strap_2k_boxesD2Copper (UHP)6200L0_strap_cooler_pumpD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)FIRST CRYOSTATImage: Constraint of the state of	5500	spectrometer_JFET_box	D	10	Aluminium Alloy 6082
6000L1_strap_main_structureD4Copper (UHP)6100L0_strap_2k_boxesD2Copper (UHP)6200L0_strap_cooler_pumpD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300I0_strap_cooler_evapD2Copper (UHP)6300I0_strap_cooler_evapD2Copper (UHP)6300I0_strap_cooler_evapD2Copper (UHP)6300I0_strap_cooler_evapD2Copper (UHP)6300Inst_10k_optical_benchB10-20000first_L0_helium_tankB1.7-	STRAPS	TO FIRST CRYOSTAT			
6100L0_strap_2k_boxesD2Copper (UHP)6200L0_strap_cooler_pumpD2Copper (UHP)6300L0_strap_cooler_evapD2Copper (UHP)6300I0_strap_cooler_evapD2Copper (UHP)FIRST CRYOSTAT10000first_10k_optical_benchB1020000first_L0_helium_tankB1.7-	6000	L1_strap_main_structure	D	4	Copper (UHP)
6200       L0_strap_cooler_pump       D       2       Copper (UHP)         6300       L0_strap_cooler_evap       D       2       Copper (UHP)         6300       L0_strap_cooler_evap       D       2       Copper (UHP) <i>FIRST CRYOSTAT</i> -       -       -         10000       first_10k_optical_bench       B       10       -         20000       first_L0_helium_tank       B       1.7       -	6100	L0_strap_2k_boxes	D	2	Copper (UHP)
6300     L0_strap_cooler_evap     D     2     Copper (UHP)       FIRST CRYOSTAT     -     -     -       10000     first_10k_optical_bench     B     10     -       20000     first_L0_helium_tank     B     1.7     -	6200	L0 strap cooler pump	D	2	Copper (UHP)
FIRST CRYOSTAT     Interference       10000     first_10k_optical_bench     B     10       20000     first_L0_helium_tank     B     1.7	6300	L0 strap cooler evap	D	2	Copper (UHP)
10000     first_10k_optical_bench     B     10     -       20000     first_L0_helium_tank     B     1.7     -	FIRST CR				
20000     first_L0_helium_tank     B     1.7	10000	first 10k optical bench	В	10	-
	20000	first L0 helium tank	B	1.7	-
ZIUUU ITIIST LI COOLINA DIDES I BI 4 I-	21000	first L1 cooling pipes	B	4	-
22000 first instrument shield B 10 -	22000	first instrument shield	B	10	-
23000 first shield1 B 34 -	23000	first shield1	B	34	-



# APPENDIX B: THERMAL CONDUCTIVITIES VS TEMPERATURE







# **Thermal Configuration Control Document**

Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 41 of 55







**Thermal Configuration Control Document** 

Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 42 of 55







Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 43 of 55







**Thermal Configuration Control Document** 

Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 44 of 55













Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 46 of 55



#### References

Material Name	Reference
Aluminium Alloy 6082	AD2.4.5
UHP Copper	AD2.7.5
Copper	AD2.8.4
Kevlar 49 Thread	AD2.7.2 / AD2.7.5
Invar	AD2.7.5
Kapton	AD2.7.5
Constantan	AD2.7.5
Manganin	AD2.8.4
Brass	AD2.8.4
Stainless Steel 304	AD2.8.4
Titanium Alloy Ti6Al4V	AD2.8.3
PTFE	AD2.8.4

Table B.1: Thermal Conductivity References



Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 47 of 55



Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 48 of 55

## APPENDIX C: SPECIFIC HEAT CAPCITIES VS TEMPERTURE







Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 49 of 55







Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 50 of 55



### References

Material Name	Reference
Aluminium	AD2.8.1
Copper	AD2.7.5
Invar	AD2.7.5
Titanium	AD2.8.2
Stainless Steel	AD2.8.2

Table C1: Specific Heat Capacity References



Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 51 of 55

## APPENDIX D: JOINT CONTACT CONDUCTANCE

#### **Apeizon Grease Interfaces**







Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 52 of 55







Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 53 of 55

### **Gold Plated Interfaces**







Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 54 of 55







Doc Nu: SPIRE-RAL-PRJ-000560 Issue: D2 Date: 22-Nov-00 Page 55 of 55



#### References

Interface	Description	Assumed	Reference
Name		<b>Contact Force</b>	
Cu-Ap-Cu	Uncoated Copper - Apeizon - Uncoated Copper	670N	AD2.8.6
Cu-Ap-In	Uncoated Copper – Apeizon - Uncoated Invar	670N	*AD2.8.6
In-Ap-In	Uncoated Indium – Apeizon - Uncoated Invar	670N	*AD2.8.6
Al-Ap-Al	Uncoated Aluminium – Apeizon - Uncoated Aluminium	670N	AD2.8.6
Cu-Au-Cu	Gold Plated Copper - Gold Plated Copper	670N	AD2.8.5
Al-Au-Al	Gold Plated Aluminium – Gold Plated Aluminium	670N	AD2.8.5
Al-Al	Aluminium-Aluminium	670N	AD2.8.5

*Assumed that Invar behaves as Stainless Steel.

Table C1: Joint Interface Conductances