SPIRE photometric sensitivity mathematical models

Matt Griffin

SPIRE-QMW-PRJ-000559

24 November 2000

The sensitivities of the SPIRE photometer and spectrometer for point source and mapping observations have been computed in the attached MathCad worksheets, under the assumptions listed. These models are in draft form at present, and will be formally issued after review by the PI, Project Scientists, Instrument Scientist and other members of the SPIRE team.

The main assumptions made in estimating the scientific performance of the instrument are listed below. Additional assumptions are given in the worksheets.

Telescope				
Temperature	80 K			
Used diameter	3.29 m			
Effective emissivity	0.04			
FPU temperatures				
Level 0 temperature	1.8 K			
Level 1 temperature	5 K			
Detectors/feedhorns				
Temperature	300 mK			
Overall absorption efficiency of feedhorn plus detector	0.45		0.85	oal)
Coupling efficiency to point source	0.7			
Throughput for each photometer detector	$\mathrm{A} \Omega=\lambda^{2}$			
Throughput for each spectrometer detector	$\mathrm{A} \Omega=\mathrm{n} \lambda^{2}$ (where n depends on wavelength)			
Detector Detective Quantum Efficiency				
Photometer $250 \mu \mathrm{~m}$	0.55		0.66	oal)
$350 \mu \mathrm{~m}$	0.61		0.73	
$500 \mu \mathrm{~m}$	0.66		0.79	oal)
FTS SW	0.66		0.79	oal)
LW	0.61		0.73	oal)
Photometer				
Central wavelengths ($\mu \mathrm{m}$)	250	350	and	500
Beam FWHM (arcsec)	17.4	24.4	and	34.6
Field of view of each array (arcmin)	4×8	cmin		
Overall instrument transmission	30\%			
Filter widths ($\lambda / \Delta \lambda$)	3.3			
Observing efficiency (slewing, setup, calibration etc.)	90\%			

FTS

Nominal bands $\left(\mathrm{cm}^{-1}\right)$
Numbers of pixels
Field of view
Max. spectral resolution
Overall instrument transmission
33.5-50 15-33.5
$(200-300 \mu \mathrm{~m}) \quad(300-670 \mu \mathrm{~m})$
Cos^{2} signal modulation efficiency
$37 \quad 19$
2.6 arcminutes, approx circular
$0.04 \mathrm{~cm}^{-1}(\lambda / \Delta \lambda=1000$ at $250 \mu \mathrm{~m})$
Cos signal modulation efficiency 0.5
Observing efficiency 0.8
Electrical filter efficiency 0.8
Degradation in efficiency between 400 and $670 \mu \mathrm{~m} \quad$ Factor of 2

Results are calculated in the worksheets for different values of the detector DQE and detector/ feedhorn efficiency, and are summarised in the tables below.

Photometer performance estimates

Filter pass-band ($\lambda / \Delta \lambda$)	$250 \mu \mathrm{~m}$	$350 \mu \mathrm{~m}$	$500 \mu \mathrm{~m}$
Point source observation:	Min: 0.61	Min: 0.61	Min: 0.61
$1 \sigma 1$ sec limiting flux density (mJy)	Goal: 0.40	Goal: 0.41	Goal: 0.41
Mapping observation:	Min: 2.3	Min: 2.3	Min: 2.3
1σ 1sec limiting flux density ($\mathbf{m J y}$) for fully sampled map of FOV	Goal: 1.5	Goal: 1.5	Goal: 1.6

Spectrometer performance estimates

Line spectroscopy (point source observation): $1 \sigma: 1 \mathrm{hr}$ limiting line flux ($\mathrm{W} \mathrm{m}^{-2}$)	SW band: LW band:		Min: Goal:	$\begin{aligned} & 8.7 \times 10^{-18} \\ & 5.8 \times 10^{-18} \end{aligned}$
		$300 \mu \mathrm{~m}$	Min: Goal:	$\begin{aligned} & 1.0 \times 10^{-17} \\ & 6.4 \times 10^{-18} \end{aligned}$
		$400 \mu \mathrm{~m}$	Min: Goal:	$\begin{aligned} & 1.0 \times 10^{-17} \\ & 6.4 \times 10^{-18} \end{aligned}$
		$670 \mu \mathrm{~m}$	Min: Goal:	$\begin{aligned} & 2.0 \times 10^{-17} \\ & 1.3 \times 10^{-17} \\ & \hline \end{aligned}$
Line spectroscopy (mapping observation): 1σ; $\mathbf{1 ~ h r ~ l i m i t i n g ~ l i n e ~ f l u x ~}$ for fully sampled FOV map (W mis	SW band:		Min: Goal:	$\begin{aligned} & 2.3 \times 10^{-17} \\ & 1.5 \times 10^{-17} \end{aligned}$
	LW band:	$300 \mu \mathrm{~m}$	Min: Goal:	$\begin{aligned} & 2.6 \times 10^{-17} \\ & 1.7 \times 10^{-17} \end{aligned}$
		$400 \mu \mathrm{~m}$	Min: Goal:	$\begin{aligned} & 2.6 \times 10^{-17} \\ & 1.7 \times 10^{-17} \end{aligned}$
		$670 \mu \mathrm{~m}$	Min: Goal:	$\begin{aligned} & 5.2 \times 10^{-17} \\ & 3.4 \times 10^{-17} \\ & \hline \end{aligned}$
Spectrophotometry $1 \mathrm{~cm}^{-1}$ resolution (point source observation) $1 \sigma: 1 \mathrm{hr}$ limiting flux density (mJy)	SW band:		Min: Goal:	$\begin{aligned} & 29 \\ & 19 \end{aligned}$
	LW band:	$300 \mu \mathrm{~m}$	Min: Goal:	$\begin{aligned} & 32 \\ & 21 \end{aligned}$
		$400 \mu \mathrm{~m}$	Min: Goal:	$\begin{aligned} & 32 \\ & 21 \end{aligned}$
		$670 \mu \mathrm{~m}$	Min: Goal:	$\begin{aligned} & 64 \\ & 42 \\ & \hline \end{aligned}$
Spectrophotometry $1 \mathrm{~cm}^{-1}$ resolution (mapping observation) $1 \sigma ; 1 \mathrm{hr}$ limiting flux density for fully sampled FOV map (mJy)	SW band:		Min: Goal:	$\begin{aligned} & \hline 77 \\ & 51 \end{aligned}$
	LW band:	$300 \mu \mathrm{~m}$	Min: Goal:	$\begin{aligned} & 86 \\ & 57 \end{aligned}$
		$400 \mu \mathrm{~m}$	Min: Goal:	$\begin{aligned} & 86 \\ & 57 \end{aligned}$
		$670 \mu \mathrm{~m}$	Min: Goal:	$\begin{aligned} & 170 \\ & 120 \\ & \hline \end{aligned}$

For the photometer, these figures are comparable to the values presented in the SPIRE proposal (but with an increased field of view). In the case of the spectrometer, the performance is slightly degraded with respect to the SPIRE proposal. This is because of the compromise between wavelength coverage and sensitivity - extending the range of the spectrometer beyond the requirement of $400 \mu \mathrm{~m}$ introduces additional photon noise which affects the sensitivity across the band. The optimum scientific trade-off between spectral coverage and sensitivity will be addressed, and changes can be made to the spectrometer feedhorn and/or filtering design to reoptimise. Such changes, if they are made, will have no system-level impact.

Photometer sensitivity model
 for SPIRE feedhorn option

SPIRE_Phot_1.MCD
21 November 2000

BOLPH_01.MCD 18 Sept. 1997
Modified to compute mapping sensitivity correctly following discussion with WKG
BOLPH_02.MCD 11 Oct. 1997
Telescope focal ratio changed to f/9.59
Horn outside diameter changed to $2 F \lambda$
Hours per day changed from 20 to 22
BOLPH_03.MCD 11 Nov. 1997
Telescope focal ratio changed to $f / 8.68$
Dtel changed to 3.285 m
BOLPH_04.MCD 26 Nov. 1997
Adjusted calculation of sensitivity for frame mapping to use factors for S / N enhancement as in draft note on mapping speed by Griffin, Bock and Gear
NEPdet changed from 1E-17to 3E-1'7
Observing efficiency: 0.9 for point source ; 0.8 for field map

BOLPH_05.MCD 2 April 1999
Revised to include each optical element of photometer explicitly
$15-\mathrm{K}$ level makes significant additional contribution
Overall transmission still set at around 0.3
BOLPH_06.MCD 22 April 1999
Revised to incorporate 4×8 fov for deep surveys
Strong source power levels calculated
Internal calibrator requirements now included
BOLPH_07.MCD 16 May 1999
Detector sensitivity characterised in terms of DQE
BOLPH_07_revised.MCD 28 June 1999
New version incorporating Jamie's comments
in his e-mail of June 25. Revisions are noted in purple.

BOLPH_08.MCD

Version prepared for array selection meeting

* Bands set at 250, 350, 500 mm , the nominal values used for the array selection
* Temperature table updated to reflect current optical/thermal design
* Power and NEP now referred to what is absorbed by the detector
* Only one observing efficiency factor (0.9) used for all observations
* Full NEPph calculation implemented (makes no real difference)

BOLPH 08 JPL Spec.MCD

* QE changed to represent bolometer + horn with spec of 0.6 , goal of 0.85
* DQE wrt absorbed power now used to define overall NEP using values in JPL spec doc.

SPIRE Phot 1.MCD 21 November 2000

* Versiōn prepared for Systems Design Review and Toledo Meeting

$$
\begin{array}{clll}
\text { Constants } & \mathrm{h} \equiv 6.626 \cdot 10^{-34} \mathrm{c} \equiv 3 \cdot 10^{8} & \mathrm{~kb} \equiv 1.38 \cdot 10^{-23} & \begin{array}{l}
\text { Planck } \\
\text { function }
\end{array} \\
\mathrm{i} \equiv 1,2 . .3 & \text { origin } \equiv 1 & \mathrm{nu}, \mathrm{~T}):=\frac{2 \cdot \mathrm{~h} \cdot(\mathrm{nu})^{3}}{\mathrm{c}^{2} \cdot\left[\mathrm{e}^{\left(\frac{\mathrm{h} \cdot \mathrm{nu}}{\mathrm{~kb} \cdot \mathrm{~T}}\right)}-1\right]}
\end{array}
$$

Assumptions

Telescope

$$
\begin{array}{lllll}
\text { Temp. } & \text { Emissivity } & \text { Diameter } & \text { Area } & \text { Focal ratio } \\
\text { Ttel } \equiv 80 & \text { عtel } \equiv 0.04 & \text { Dtel } \equiv 3.285 & \text { Atel } \equiv 0.25 \cdot \pi \cdot \text { Dtel }^{2} & \text { Ftel }:=8.68
\end{array}
$$

Plate scale at telescope focus (arcsec/mm):

$$
\text { PS }:=\frac{1}{\text { Dtel } \cdot \text { Ftel }} \cdot \frac{360}{2 \cdot \pi} \cdot 3.6 \mathrm{PS}=7.23
$$

Plate scale at arrays (arcsec/mm):

$$
\text { PSA }:=\mathrm{PS} \cdot \frac{8.68}{5} \quad \text { PSA }=12.56
$$

Beamwidths (arcsec.):

$$
\mathrm{FWHM}_{\mathrm{i}}:=\frac{1.22 \cdot \lambda_{\mathrm{i}} \cdot 10^{-6}}{\text { Dtel }} \cdot \frac{360}{2 \cdot \pi} \cdot 3600 \mathrm{FWHM}_{\mathrm{i}}=
$$

Feedhorn point source coupling efficiency:

$$
\eta \text { tel } \equiv 0.7
$$

Final optics focal ratio

$$
\text { Ffin := } 5
$$

19.2
26.8
38.3

Cold stop attenuation of telescope background:

$$
\eta \mathrm{cs}:=0.8
$$

Bolometer and feedhorn properties (see BDA Subsystem Spec. Doc. SPIRE-JPL-PRJ-000456):

Overall optical efficiency of
horn + bolometer combination

DQE of horn-bolometer combination

Bolometer yield
Chopping factor
Observing efficicency (slewing, mechanism overheads, etc.):

| 0.55 |
| :--- | :--- |
| 0.61 |
| 0.66 |\quad| 0.66 |
| :--- |
| 0.73 |
| 0.79 |
| 0.6 |
| 0.7 |
| 0.7 |\quad DQE $_{i}:=$ DQE_goal $_{i}$

y_min $:=0.75$ y_goal $:=0.9 \quad$ y_nom $:=0.85$ yield $:=y _$goal
$\eta \mathrm{ch} \equiv 0.45$

$$
\eta \text { feed_min }:=0.45 \quad \eta \text { feed_goal }:=0.85 \quad \eta \text { feed_nom }:=0.7
$$

$$
\text { DQE_min }_{1}:=\text { DQE_goal }:=\text { DQE_nom }_{i}:=\quad \eta \text { feed }:=\eta \text { feed_goal }
$$

η obs $\equiv 0.9$

Bands: defined by central wavelengths (in $\mu \mathrm{m}$) and resolution of the filters

$\lambda_{\mathrm{i}} \equiv$	$\mathrm{R}_{\mathrm{i}}:=$
250 350 500	3.3 3.3

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{i}}:=\frac{\mathrm{c}}{\lambda_{\mathrm{i}} \cdot 10^{-6}} \lambda \mathrm{~L}_{\mathrm{i}}:=\lambda_{\mathrm{i}}-\frac{\lambda_{\mathrm{i}}}{2 \cdot \mathrm{R}_{\mathrm{i}}} \quad \lambda \mathrm{U}_{\mathrm{i}}:=\lambda_{\mathrm{i}}+\frac{\lambda_{\mathrm{i}}}{2 \cdot \mathrm{R}_{\mathrm{i}}} \quad \Delta \lambda_{\mathrm{i}}:=\frac{\lambda_{\mathrm{i}}}{\mathrm{R}_{\mathrm{i}}} \\
& \mathrm{~L}_{\mathrm{i}}:=\frac{\mathrm{c}}{\lambda \mathrm{U}_{\mathrm{i}} \cdot 10^{-6}} \nu \mathrm{U}_{\mathrm{i}}:=\frac{\mathrm{c}}{\lambda \mathrm{~L}_{\mathrm{i}} \cdot 10^{-6}}
\end{aligned}
$$

$$
\Delta v_{\mathrm{i}}:=\frac{v_{\mathrm{i}}}{\mathrm{R}_{\mathrm{i}}}
$$

$\mathrm{i}=$	$\lambda_{i}=$	$\lambda \mathrm{L}_{\mathrm{i}}=$	$\lambda \mathrm{U}_{\mathrm{i}}=$	$\Delta \lambda_{\mathrm{i}}=$	$\mathrm{v}_{\mathrm{i}} \cdot 10$	$\mathrm{L}_{\mathrm{i}} \cdot$	U_{i}	$\Delta v_{i} \cdot 1$
1	250	212	288	76	1200	1042	1414	364
2	350	297	403	106	857	744	1010	260
3	500	424	576	152	600	521	70	182

Transmission, emissivity and temperature of optical elements

$$
\mathrm{j} \equiv 0,1 . .1 \mathrm{k} \equiv 0,1 . .12
$$

Tdets $\equiv 0.3$

$$
\mathrm{T} 2 \equiv 2.0 \quad \mathrm{~T} 4 \equiv 5.0
$$

$$
\mathrm{T} 4=5
$$

	$\mathrm{k}=$	$\mathrm{t}_{\mathrm{k}} \equiv$	$\varepsilon_{\mathrm{k}} \equiv$	$\mathrm{T}_{\mathrm{k}} \equiv$	$\mathrm{td}_{\mathrm{j}}=$		
0 = Telescope	0	0.960	0.04	Ttel	0.301		
1 = 15-K filter	1	0.900	0.100	T4	0.334		
2 = M3	2	0.995	0.005	T4	0.336	Transmission from	12
$3=\mathrm{M} 4$	3	0.995	0.005	T4	0.338		$\mathrm{td}_{\mathrm{j}} \equiv \prod^{\mathrm{t}}$
4 = M5	4	0.995	0.005	T4	0.339		$\mathrm{k}=\mathrm{j}+1$
5 = 4-K filter	5	0.900	0.100	T4	0.377		
6 = M6	5	0.995	0.005	T4	0.377		
$7=2-K$ filter	6	0.900	0.100	T2	0.379		
$8=\mathrm{M} 7$	7	0.995	0.005	T2	0.421		
9 = Dichroic	8	0.900	0.100	T2	0.423		
10 = M8	9	0.995	0.005	T2	0.47		
11 = Bandpass filter	10	0.525	0.300	Tdets	0.473		
12 = Blocker	11	0.900	0.100	Tdets	0.9		
	12						

Array parameters

Detector Numbers

Ndets $_{\mathrm{i}}:=$
$16 \cdot 5+16 \cdot 4$
$13 \cdot 4+12 \cdot 3$
$9 \cdot 3+8 \cdot 2$

Horn aperture outside dia. (mm)

$$
\text { Dhorn }_{\mathrm{i}}:=\frac{2 \cdot \mathrm{Ffin} \cdot \lambda_{\mathrm{i}}}{1000}
$$

Array dimension cente-centre (pixels):
$\mathrm{Nmax}_{\mathrm{i}}:=\mathrm{Nmin}_{\mathrm{i}}:=$

15
12
8

Array dimensions at telescope focus centre-centre (mm):

Horn size projected onto telescope focus (mm):

$$
\text { Dpix }_{\mathrm{i}}:=\left(\text { Dhorn }_{\mathrm{i}}\right) \cdot \frac{\text { Ftel }}{\text { Ffin }}
$$

Field size (arcmin):

$$
\operatorname{Larcmin}_{\mathrm{i}}:=\frac{\mathrm{Lmm}_{\mathrm{i}} \cdot \mathrm{PS}}{60} \quad \mathrm{Warcmin}_{\mathrm{i}}:=\frac{\mathrm{Wmm}_{\mathrm{i}} \cdot \mathrm{PS}}{60}
$$

$\mathrm{Lmm}_{\mathrm{i}}=$	$\mathrm{Wmm}_{\mathrm{i}}=$	Larc	Wa	Dho	Dp
65	35	7.8	4.2	2.5	4.3
73	36	8.8	4.4	3.5	6.1
69	35	8.4	4.2	5.0	8.7

Background power levels on the detectors

Throughput:

Power contribution absorbed by detector from any element (pW)

$$
\mathrm{A} \Omega_{\mathrm{i}}:=\eta \mathrm{cs} \cdot\left(\lambda_{\mathrm{i}} \cdot 10^{-6}\right)^{2}
$$

$$
\text { Power }_{\mathrm{i}, \mathrm{j}}:=\operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot 10^{12} \cdot \eta \text { feed } \cdot \int_{\mathrm{vL}_{\mathrm{i}}}^{\mathrm{vU}} \mathrm{~B}\left(\mathrm{v}, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega_{\mathrm{i}} \mathrm{~d} \nu
$$

Photon noise levels and single-detector NEFD

Photon noise
limited NEP
(full expression)

$$
\mathrm{NEPph}_{\mathrm{i}}:=\left[\frac{4 \cdot \mathrm{~A} \Omega_{\mathrm{i}} \cdot \mathrm{~h}^{2}}{\mathrm{c}^{2}} \cdot\left[\int_{\mathrm{vL}_{i}}^{\mathrm{vU} \mathrm{U}_{\mathrm{i}}} \mathrm{e}^{\left(\frac{\mathrm{h} \cdot \mathrm{nu}}{\mathrm{~kb} \cdot \mathrm{~T}_{0}}\right)}-1 \quad \frac{\varepsilon \text { tel } \cdot \mathrm{td}_{0} \cdot \eta \text { feed } \cdot n u^{4}}{\mathrm{e}^{\left(\frac{\mathrm{h} \cdot \mathrm{nu}}{\mathrm{~kb} \cdot \mathrm{~T}_{0}}\right)}-1} \cdot\left[1+\frac{\varepsilon t \mathrm{l} \cdot \mathrm{td}_{0} \cdot \eta \text { feed }}{}\right] \mathrm{dnu}\right]\right]^{0.5} \cdot 10^{17}
$$

Overall NEP
(W Hz-1/2 x 10-17)

$$
\mathrm{NEPtot}_{\mathrm{i}}:=\frac{\mathrm{NEPph}_{\mathrm{i}}}{\left(\mathrm{DQE}_{\mathrm{i}}\right)^{0.5}} \quad \text { referred to the power absorbed by the detector }
$$

Detector NEP
(W Hz-1/2 x 10-17)

NEFD (mJy Hz-1/2) for point source chopped observations

$$
\mathrm{NEPdet}_{\mathrm{i}}:=\left[\left(\mathrm{NEPtot}_{\mathrm{i}}\right)^{2}-\left(\mathrm{NEPph}_{\mathrm{i}}\right)^{2}\right]^{0.5}
$$

NEFD (mJy Hz-1/2) for chopped field mapping

$$
\text { NEFDp }_{i}:=\frac{\text { NEPtot }_{\mathrm{i}} \cdot 10^{-17} \cdot 10^{26} \cdot 1000}{\eta \mathrm{ch} \cdot \eta \text { tel } \cdot 2^{0.5} \cdot \text { Atel } \cdot \mathrm{td}_{0} \cdot \Delta \mathrm{v}_{\mathrm{i}} \cdot \mathrm{t}_{0} \cdot \eta \text { feed }}
$$

Factor of SQRT(2) from pixel-pixel chopping

$$
\text { NEFDf }_{i}:=\frac{\text { NEPtot }_{\mathrm{i}} \cdot 10^{-17} \cdot 10^{26} \cdot 1000}{\eta \mathrm{ch} \cdot \eta \text { tel } \cdot \text { Atel } \cdot \mathrm{td}_{0} \cdot \Delta v_{\mathrm{i}} \cdot \mathrm{t}_{0} \cdot \eta \text { feed }}
$$

No factor of SQRT(2)in the denominator as we are not pixel-pixel chopping

NEFD (mJy Hz-1/2) for scan map observations without chopping

NEFD $_{\mathrm{i}}:=\frac{\text { NEPtot }_{\mathrm{i}} \cdot 10^{-17} \cdot 10^{26} \cdot 1000}{\eta \text { tel } \cdot \text { Atel } \cdot \mathrm{td}_{0} \cdot \Delta v_{\mathrm{i}} \cdot \mathrm{t}_{0} \cdot \eta \text { feed }} \cdot 2^{0.5}$

Factor of SQRT(2) assumes need for background subtraction (probably pessimistic as background can be estimated by averaging a number of scan points)

$1-\sigma ; 1 \mathrm{sec}$. limiting flux densities (mJy):

S_1 $\sigma_{-} 1$ s_point $_{i}:=\frac{\text { NEFDp }_{i}}{2^{0.5}}$
S_1 $\sigma_{-} 1$ s_field $_{i}:=\frac{\text { NEFDf }_{i}}{2^{0.5}}$
S_1 $\sigma_{-} 1 \mathrm{~s}_{-}$scan $_{\mathrm{i}}:=\frac{\text { NEFDs }_{i}}{2^{0.5}}$

1- σ; 1 hr . limiting flux densities (mJy):

Deep mapping of one field for 1 hour:

Loss in S / N for point source due to need to make a map:
S/N improvement through pixel co-addition
SN_imp := 1.5
S / N reduction through decrease in
SN_red := 4 integration time/point by factor of 16

Overall reduction in S / N
factor $:=\frac{\text { SN_imp }}{\text { SN_red }} \quad$ factor $=0.375$
$1 \sigma ; 1$ hr limiting flux density for field map (mJy)
ΔS_{-}field_1hr $r_{i}:=\frac{\text { Slim_field_1 } \mathrm{hr}_{\mathrm{i}}}{\text { factor }}$

Large area deep survey (nominally 100 sq. deg; 100 days):

Area of one field (sq. arcmin) taking bolometer yield into account

Area to be surveyed (sq. deg.)
Required overlap between
fields:
Number of fields to be observed:

Time for survey:

Time for each field (hrs):
$1 \sigma ; 1$ hr limiting flux density for scan map (mJy)

Large survey 5-б
 flux density limit:

Afield $:=(4) \cdot(8) \cdot$ yield \quad Afield $=28.8$
Asurv := 100
overlap $:=1.1$
Nfields $:=\frac{\text { Asurv } \cdot 60^{2}}{\text { Afield }} \cdot$ overlap \quad Nfields $=13750$
Tdays $:=100 \quad$ Tmonths $:=$ Tdays $\cdot \frac{12}{365} \quad$ Tmonths $=3.3$
Thrs := Tdays $\cdot 21 \quad$ Thrs $=2100$

TField $:=\frac{\text { Thrs }}{\text { Nfields }} \quad$ TField $=0.153$
ΔS_{-}scan_1hr $:=\frac{\text { Slim_scan_1 }_{i} \mathrm{hr}_{\mathrm{i}}}{\text { factor }}$
$\Delta \mathrm{S} _$surv_5 $\sigma_{\mathrm{i}}:=\Delta \mathrm{S} _$scan_1hr $\mathrm{r}_{\mathrm{i}} \cdot \eta$ ch $\cdot\left(\frac{1}{\text { TField }}\right)^{0.5} \cdot 5$

Summary of power loading and sensitivity calculations
NEPs (W Hz-1/2 E-17) NEFDs (mJy Hz-1/2)

pW

	Point source (mJy)		Map (mJy)	
$\lambda_{i}=$	S_1	Slim	$\Delta \mathrm{S}$	S
250	23	0.40	1.5	5.6
350	23	0.41	1.5	5.6
500	23	0.41	1.6	5.7

Results for various assumptions on detector/feed performance:

DQE_min; η feed_min; yield_min					
Pdet	NEPph	Slim_point_1			
		Δ S_field_1h	Δ S_surv_5 σ		
2.5	6.5	0.61	2.3	9.2	
2.0	4.9	0.61	2.3	9.3	
1.6	3.6	0.61	2.3	9.3	

DQE_nom; η feed_nom; yield_nom						
Pdet	NEPph	Slim_point_1hr	Δ S_field_1h	Δ S_surv_5 σ		
3.9	8.1	0.47	1.8	6.6		
3.2	6.1	0.46	1.7	6.5		
2.4	4.5	0.48	1.8	6.8		

DQE_goal; η feed_goal; yield_goal				
Pdet	NEPph	Slim_point_1hr	Δ S_field_1h	Δ S_surv_5 σ
4.8	8.9	0.40	1.5	5.6
3.8	6.8	0.41	1.6	5.6
3.0	5.0	0.41	5.7	

Proposal values	Proposal values
Slim_point_1hr	Δ S_field_1hr
0.6	1.4
0.6	1.5
0.7	1.9

BOL_FTS4.MCD: 1 Dec. 1997:
Dtel changed to 3.285
Bands changed to allow for same array sizes as in photometer and to correct for previous excessively broad band 1 (was $25-38 \mathrm{~cm}-1, \lambda \Delta \lambda$ was 2.4)

BOL_FTS5.MCD: 7 Dec. 1997:
Modified to treat correctly variation of resolving power with wavelength: fixed resolution of $0.1 \mathrm{~cm}-1$ now assumed
Error in treatment of electrical filtering now corrected - flux limits now worse by sqrt(0.8)
Some other changes made to simplify computation and improve tabulation of results

BOL_FTS6.MCD: 11 Jan. 1998:
Bands changed to extend upper wavelength to $15 \mathrm{~cm}-1$ (667 um)
Cross-over put at $33.5 \mathrm{~cm}-1$ (300 um) to give equal photon noise NEP
in the two bands.
Background power from calibration source now also included in photon noise calculation.

BOL_FTS7.MCD: 29 Sept. 1998:
Revised to include full set of mirrors

BOL_FTS8.MCD: 6 April 1999:

Revised for Mach Zehnder (ADES) configuration

BOL_FTS9.MCD: 7 May 1999:

Three-band system extending to 150 um

BOL_FTS10.MCD: June 1999:

QE term taken out of denominator
Overall efficiency set at 20\%
Back to 2-band system

BOL_FTS11.MCD: 2 July 1999:
Corrected for effiency of the
intensity beam divider (to ~0.5)

SPIRE_FTS_1.MCD: 21 November 20009:

New version for Toledo meeting and System Review

* Multi-moding of both SW and LW bands now taken into account
* NEP contributions from each mode calculated separately and added in quadrature
* NEP now referred to the power absorbed by the detector
* Calculations done for the minimum and goal parameters of the detectors and feedhorns

$$
\begin{array}{cll}
\text { Constants: } & \mathrm{h} \equiv 6.626 \cdot 10^{-34} \mathrm{~kb} \equiv 1.3806 \cdot 10^{-23} & \begin{array}{l}
\text { Plank } \\
\text { function: }
\end{array} \\
\text { origin }:=1 & \mathrm{c} \equiv 2.998 \cdot 10^{8} & \mathrm{~B}(\mathrm{v}, \mathrm{~T}):=\frac{2 \cdot \mathrm{~h} \cdot \mathrm{v}^{3}}{\mathrm{c}^{2} \cdot\left[\exp \left(\left(\frac{\mathrm{~h} \cdot \mathrm{v}}{\mathrm{~kb} \cdot \mathrm{~T}}\right)\right)-1\right]} \\
\mathrm{b}:=1,2 . .2 & &
\end{array}
$$

Assumptions

Array parameters

SW Band $(243 \mu \mathrm{~m})$: 37-element hex array of 2.0F λ feedhorns:

Array side: \quad Warray $:=6 \cdot 2 \cdot \frac{250 \cdot 10^{-6}}{\text { Dtel }} \cdot \frac{360}{2 \cdot \pi} \cdot 60$
Warray $=3.1 \quad$ arcmin
LW Band (343 mm): 19-element hex array of \quad Array side: \quad Warray $:=4 \cdot 2 \cdot \frac{350 \cdot 10^{-6}}{\text { Dtel }} \cdot \frac{360}{2 \cdot \pi} \cdot 60$
2.0F λ feedhorns:
Warray $=2.9 \quad$ arcmin

Bands

Band limits (cm-1)

Band limits (mm and Hz)
SW Band: 33.5-50 cm¹

$$
\sigma \mathrm{L}_{2} \equiv 33.5 \quad \sigma \mathrm{U}_{2} \equiv 50
$$

$\sigma \mathrm{L}_{1} \equiv 15 \quad \sigma \mathrm{U}_{1} \equiv 33.5$

$$
\lambda \mathrm{L}_{\mathrm{b}}:=\frac{10^{4}}{\sigma \mathrm{U}_{\mathrm{b}}} \quad \lambda \mathrm{U}_{\mathrm{b}}:=\frac{10^{4}}{\sigma \mathrm{~L}_{\mathrm{b}}}
$$

$\nu \mathrm{L}_{\mathrm{b}}:=\mathrm{c} \cdot \sigma \mathrm{L}_{\mathrm{b}} \cdot 100 \quad \mathrm{\nu} \mathrm{U}_{\mathrm{b}}:=\mathrm{c} \cdot \sigma \mathrm{U}_{\mathrm{b}} \cdot 100$

Band centre (mm and Hz)

$$
v 0_{\mathrm{b}}:=\frac{v \mathrm{~L}_{\mathrm{b}}+\nu \mathrm{U}_{\mathrm{b}}}{2}
$$

$$
\lambda 0_{\mathrm{b}}:=\frac{\mathrm{c} \cdot 10^{6}}{v 0_{\mathrm{b}}}
$$

Band $\lambda \Delta \lambda$

$$
\mathrm{R}_{\mathrm{b}}:=\frac{\sigma \mathrm{U}_{\mathrm{b}}+\sigma \mathrm{L}_{\mathrm{b}}}{2 \cdot\left(\sigma \mathrm{U}_{\mathrm{b}}-\sigma \mathrm{L}_{\mathrm{b}}\right)}
$$

Background power levels on the detectors

Assumptions:

1. All modes carry equal background power (per unit bandwidth) from the telescope
2. All modes couple equally well to the bolometer
3. Calibrator contributes same amount of power as the telescope

Throughput per mode $\quad \mathrm{A} \Omega(v):=\left(\frac{\mathrm{c}}{\mathrm{v}}\right)^{2} \cdot \eta \mathrm{cs}$
Coupling of higher order modes to telescope: Assume 50\%
(cf. Martin Caldwell note presented at Boulder Feedhorn meeting): $\quad \eta _$higher $:=0.5$

SW band (b=2)

Designed cut-off wavelength for TE11 mode $\quad \lambda c:=310 \quad$ vo_TE11 $2:=0.5 \cdot\left(v L_{2}+v U_{2}\right)$

Required waveguide radius ($\mu \mathrm{m}$)

$$
\text { ro }:=\frac{\lambda c \cdot 1.841}{2 \cdot \pi} \quad \text { ro }=91 \quad \frac{\text { ro }}{\lambda c}=0.3
$$

Cut-off wavelengths of higher modes (one higher mode can propagate)
λc_{-}TM01 $:=\frac{2 \cdot \pi \cdot \mathrm{ro}}{2.405} \quad \lambda c_{-}$TM01 $=237 \quad$ vc_TM01 $:=\frac{\mathrm{c} \cdot 10^{6}}{\lambda c_{-} \text {TM01 }}$ Propagated \quad vo_TM01 $2:=\frac{v c_{-} T M 01+v U_{2}}{2}$
λc_{-}TE21 $:=\frac{2 \cdot \pi \cdot \mathrm{ro}}{3.054} \quad \lambda c_{-}$TE2 $1=187 \quad v c_{-}$TE21 $:=\frac{c \cdot 10^{6}}{\lambda c_{-} \text {TE21 }} \quad$ Not propagated

TE11 power absorbed by detector from each element(pW)

$$
\begin{aligned}
& \text { P_TE11 }_{2, \mathrm{j}}:=2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta \text { feed } \cdot 10^{12} \cdot \int_{\mathrm{vL}_{2}}^{\mathrm{vU}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \mathrm{d} v \quad \begin{array}{l}
\begin{array}{l}
\text { Factor of } 2 \text { accounts } \\
\text { for same background } \\
\text { from calib. source in } \\
\text { 2nd port }
\end{array} \\
\text { Power_TE11 }:=\sum_{\mathrm{n}=0}^{9} \mathrm{P}_{-} \mathrm{TE} 11_{2, \mathrm{n}} \\
\text { Power_TE11 } 2=4.9
\end{array}
\end{aligned}
$$

TE11 NEPph contribution

$$
\text { NEPph_TE } 11_{2}:=\left(2 \cdot \text { Power_TE } 11_{2} \cdot 10^{-12} \cdot h \cdot v o _T E 11_{2}\right)^{0.5} \cdot 10^{17} \quad \text { NEPph_TE } 11_{2}=9.0
$$

TM01 power absorbed by detector from each element(pW)

P_TM01 $_{2, \mathrm{j}}:=\eta _$higher $\cdot 2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta$ feed $\cdot 10^{12} \cdot \int_{v c_{-} \text {TM01 }}^{v \mathrm{U}_{2}} B\left(v, T_{j}\right) \cdot A \Omega(v) \mathrm{d} v$ Power_TM01 $2:=\sum_{\mathrm{n}=0}^{9}$ P_TM01 $_{2, \mathrm{n}} \quad$ Power_TM01 $1_{2}=1.1$
TM01 NEPph contribution

$$
\text { NEPph_TM012 }:=\left(2 \cdot \text { Power_TM01 }_{2} \cdot 10^{-12} \cdot \mathrm{~h} \cdot \mathrm{vo}_{-} \text {TM012 }\right)^{0.5} \cdot 10^{17} \quad \text { NEPph_TM01 } 2=4.5
$$

Overall power for SW band

$$
\text { Power }_{2, \mathrm{j}}:=\mathrm{P}_{-} \mathrm{TE} 11_{2, \mathrm{j}}+\mathrm{P}_{-} \mathrm{TM} 01_{2, \mathrm{j}}
$$

Overall NEPph for SW band
$\left.\mathrm{NEPph}_{2}:=\left[\left(\mathrm{NEPph} _\mathrm{TE} 11_{2}\right)^{2}+\left(\mathrm{NEPph} _ \text {TM01 }\right)_{2}\right)^{2}\right]^{0.5}$ (W Hz-1/2 * 1E-17)

$$
\mathrm{NEPph}_{2}=10.1
$$

LW band ($b=1$)
Designed cut-off wavelength for TE11 mode

$$
\lambda c:=670
$$

Required waveguide radius \quad ro $:=\frac{\lambda c \cdot 1.841}{2 \cdot \pi} \quad$ ro $=196 \quad \frac{\text { ro }}{\lambda c}=0.3 \quad \quad$ vo_TE11 $1:=0.5 \cdot\left(\nu \mathrm{~L}_{1}+\nu \mathrm{U}_{1}\right)$
Cut-off wavelengths of higher modes (three higher modes can propagate)
λc_{-}TM01 $:=\frac{2 \cdot \pi \cdot \mathrm{ro}}{2.405} \quad \lambda c_{-}$TM01 $=513 \quad$ vc_TM01 $:=\frac{\mathrm{c} \cdot 10^{6}}{\lambda c_{-} \mathrm{TM} 01}$ Propagated $\mathrm{vo}_{-} \mathrm{TM} 01_{1}:=\frac{v c_{-} \mathrm{TM} 01+\mathrm{vU} \mathrm{U}_{1}}{2}$

λc_{-}TE01 $:=\frac{2 \cdot \pi \cdot \mathrm{ro}}{3.832} \quad \lambda c_{-}$TE0 $1=322 \quad \quad \mathrm{cc}_{-} \mathrm{TE} 01:=\frac{\mathrm{c} \cdot 10^{6}}{\lambda \mathrm{c}_{-} \mathrm{TE} 01} \quad$ Propagated vo_{-}TE01 $1:=\frac{v \mathrm{c}_{-} \mathrm{TE} 01+\mathrm{vU} \mathrm{U}_{1}}{2}$
λc_{-}TE31 $:=\frac{2 \cdot \pi \cdot \mathrm{ro}}{4.201} \quad \lambda c_{-}$TE31 $=294 \quad \quad v c_{-}$TE31 $:=\frac{c \cdot 10^{6}}{\lambda c _ \text {TE31 }} \quad$ Not propagated

TE11 power absorbed by detector from each element (pW)

TE11 NEPph contribution

TM01 power absorbed by detector from each element (pW)

TM01 NEPph contribution

TE21 power absorbed by detector from each element (pW)

TE21 NEPph contribution

P_TE11 $_{1, \mathrm{j}}:=2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta$ feed $\cdot 10^{12} \cdot \int_{v \mathrm{~L}_{1}}^{v \mathrm{U}_{1}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \mathrm{d} v$
Power_TE11 $:=\sum_{\mathrm{n}=0}^{9}{\text { P_TE } 11_{1, \mathrm{n}} \quad \text { Power_TE } 11_{1}=7.0}$
NEPph_TE11 $:=\left(2 \cdot \text { Power_TE } 11_{1} \cdot 10^{-12} \cdot h \cdot v o _T E 11_{1}\right)^{0.5} \cdot 10^{17}$
NEPph_TE11 $1=8.2$
P_TM01 $_{1, \mathrm{j}}:=\eta _$higher $\cdot 2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta$ feed $\cdot 10^{12} \cdot \int_{v c_{-} \text {TM01 }}^{v \mathrm{U}_{1}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \mathrm{d} v$
Power_TM01 $:=\sum_{\mathrm{n}=0}^{9}$ P_TM01 $_{1, \mathrm{n}} \quad$ Power_TM01 $_{1}=2.5$
NEPph_TM01 $:=\left(2 \cdot \text { Power_TM01 } 1_{1} \cdot 10^{-12} \cdot \mathrm{~h} \cdot \mathrm{vo}_{1} \text { TM01 } 1_{1}\right)^{0.5} \cdot 10^{17}$
NEPph_TM01 ${ }_{1}=5.2$
P_TE2 $_{1, \mathrm{j}}:=\eta _$higher $\cdot 2 \cdot \operatorname{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta$ feed $\cdot 10^{12} \cdot \int_{v c_{-} \text {TE } 21}^{v \mathrm{U}_{1}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \mathrm{d} v$

NEPph_TE $21_{1}:=\left(2 \cdot \text { Power_TE } 21_{1} \cdot 10^{-12} \cdot h \cdot v o_{-} \text {TE } 21_{1}\right)^{0.5} \cdot 10^{17}$
NEPph_TE $21_{1}=4.2$

TE01 power absorbed by detector from each element (pW)

P_TE0 $_{1, \mathrm{j}}:=\eta _$higher $\cdot 2 \cdot \mathrm{td}_{\mathrm{j}} \cdot \varepsilon_{\mathrm{j}} \cdot \eta$ feed $\cdot 10^{12} \cdot \int_{v_{c} _ \text {TE01 }}^{v \mathrm{U}_{1}} \mathrm{~B}\left(v, \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{A} \Omega(v) \mathrm{d} v$ Power_TE $01_{1}:=\sum_{\mathrm{n}=0}^{9} \mathrm{P}_{-} \mathrm{TE} 01_{1, \mathrm{n}} \quad$ Power_TE $01_{1}=0.4$

TE01 NEPph contribution

NEPph_TE01 $1:=\left(2 \cdot \text { Power_TE01 }_{1} \cdot 10^{-12} \cdot \mathrm{~h} \cdot \mathrm{vo}_{-} \text {TE0 } 1_{1}\right)^{0.5} \cdot 10^{17}$
NEPph_TE01 ${ }_{1}=2.3$

Overall power Power $_{1, \mathrm{j}}:=$ P_TE11 $_{1, \mathrm{j}}+$ P_TM01 $_{1, \mathrm{j}}+{\text { P_TE } 21_{1, \mathrm{j}}}+$ P_TE01 $_{1, \mathrm{j}}$
or LW band

Overall NEPph NEPph $_{1}:=\left[\left(\text { NEPph_TE11 }_{1}\right)^{2}+\left(\text { NEPph_TM01 }_{1}\right)^{2}+\left(\text { NEPph_TE2 }_{1}\right)^{2}+\left(\text { NEPph_TE01 } 1_{1}\right)^{2}\right]^{0.5}$ for LW band
$\mathrm{NEPph}_{1}=10.8$

Note that total power is dominated by the telescope contribution

Power $_{1, \mathrm{j}}=$	Power $_{2, \mathrm{j}}=$
10.7	5.95
0.7	0.08
1.26-10 ${ }^{-3}$	1.05-10-5
1.3.10-3	1.09•10-5
1.35-10-3	1.13.10-5
1.4.10-3	1.17•10-5
1.45-10-3	1.21-10-5
1.5.10-3	1.25-10-5
$8.08 \cdot 10^{-3}$	6.74.10-5
$3.28 \cdot 10^{-3}$	$2.73 \cdot 10^{-5}$
$6.79 \cdot 10^{-3}$	5.66-10-5
$3.65 \cdot 10^{-3}$	3.04.10-5
0.02	1.64-10-4
$3.78 \cdot 10^{-3}$	$3.15 \cdot 10-5$
0.08	$6.53 \cdot 10^{-4}$
1.62-10-4	5.57-10-10

Photon noise levels and single-detector NEFD

Overall NEP
(W Hz-1/2 x 10-17)

Detector NEP
(W Hz-1/2 x 10-17)

NEFD (Jy Hz-1/2)

NEPtot $_{\mathrm{b}}:=\frac{\mathrm{NEPph}_{\mathrm{b}}}{\left(\mathrm{DQE}_{\mathrm{b}}\right)^{0.5}} \quad$ referred to the power absorbed by the detector
NEPdet $_{\mathrm{b}}:=\left[\left(\text { NEPtot }_{\mathrm{b}}\right)^{2}-\left(\mathrm{NEPph}_{\mathrm{b}}\right)^{2}\right]^{0.5}$
$\mathrm{NEFD}_{\mathrm{b}}:=\frac{\text { NEPtot }_{\mathrm{b}} \cdot 10^{-17} \cdot 10^{26}}{\eta \text { elec } \cdot \eta \cos q \cdot \eta \text { tel } \cdot \text { Atel } \cdot \mathrm{td}_{0} \cdot \Delta v \cdot \mathrm{t}_{0} \cdot \eta \text { feed }}$
Note: this is pessimistic in that the additional modes are assumed to couple to the telescope background but not to the source

$\mathrm{NEFD}_{\mathrm{b}}=$ | 2.0 |
| :---: |
| 1.7 |

Point source observation

Spectral resolution (cm-1 and Hz) $\quad \Delta \sigma \equiv 1 \quad \Delta \nu \equiv c \cdot \Delta \sigma \cdot 100$

| Limiting flux
 densities
 $(1-\sigma 1 \mathrm{hr})$ |
| :--- |$\quad \operatorname{Slim}_{\mathrm{b}}:=\frac{1000 \cdot \mathrm{NEFD}_{\mathrm{b}}}{(2 \cdot 3600 \cdot \eta \mathrm{obs})^{0.5}} \quad$| Limiting line |
| :--- |
| strengths |
| $(1-\sigma 1 \mathrm{hr})$ |$\quad \operatorname{Flim}_{\mathrm{b}}:=\left(\frac{\operatorname{Slim}_{\mathrm{b}} \cdot 10^{-26}}{1000} \cdot \Delta \mathrm{v}\right)$

Deep mapping of one field for 1 hour:

Loss in S / N for point source due to need to make a map:

S/N improvement through co-addition of pixels
S / N reduction through decrease in integration time per point by factor of 16

$$
\text { SN_imp := } 1.5
$$

$$
\text { SN_red := } 4
$$

Overall reduction in S / N

$$
\text { factor }:=\frac{\text { SN_imp }}{\text { SN_red }} \quad \text { factor }=0.375
$$

Limiting flux
density (mJy)
$\Delta \mathrm{S}_{-} 1 \mathrm{hr}_{\mathrm{b}}:=\frac{\mathrm{Slim}_{\mathrm{b}}}{\text { factor }}$
$\Delta \mathrm{F}_{-} 1 \mathrm{hr}_{\mathrm{b}}:=\frac{\mathrm{Flim}_{\mathrm{b}}}{\text { factor }}$

Band centre and edges: wavlengths and resolving powers

$$
\operatorname{ResL}_{\mathrm{b}}:=\frac{\nu \mathrm{U}_{\mathrm{b}}}{\Delta \nu} \quad \operatorname{Res} 0_{\mathrm{b}}:=\frac{\nu 0_{\mathrm{b}}}{\Delta \nu} \quad \operatorname{Res}_{\mathrm{b}}:=\frac{\nu \mathrm{L}_{\mathrm{b}}}{\Delta \nu}
$$

	$\lambda \mathrm{L}_{\mathrm{b}}=$	Res	$0_{\mathrm{b}}=$	$\operatorname{Res}^{\text {b }}=$	$\lambda \mathrm{U}_{\mathrm{b}}=$	$\operatorname{ResU}_{\mathrm{b}}$
LW	298.5	33.5	412.4	24.3	666.7	15.0
SW	200.0	50.0	239.5	41.8	298.5	33.5

Summary:	NEPs			Point source		Map	
LW SW	$\begin{aligned} & \operatorname{Pdet}_{\mathrm{b}}= \\ & 11.4 \\ & \hline 6.0 \end{aligned}$	$\begin{aligned} & \text { NEPph }_{b} \\ & \begin{array}{\|c\|} \hline 10.8 \\ \hline 10.1 \\ \hline \end{array} \end{aligned}$	$\begin{aligned} & \text { NEPtot }_{\mathrm{b}}= \\ & \hline 13.9 \\ & \hline 12.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \operatorname{Slim}_{\mathrm{b}}= \\ & 26.0 \\ & \hline 22.6 \end{aligned}$	$\begin{aligned} & \operatorname{Flim}_{\mathrm{b}} \cdot 10^{18}= \\ & \hline 7.8 \\ & \hline 6.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \Delta \mathrm{S} _1 \mathrm{hr} \\ & \hline 69.5 \\ & \hline 60.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \Delta \mathrm{F}_{-} 1 \mathrm{hr}_{\mathrm{b}} \cdot 10^{17}= \\ & \hline 2.1 \\ & \hline 1.8 \\ & \hline \end{aligned}$
	pW	W Hz-1/2		mJy	W m-2	mJy	W m-2
Goal values:	$\begin{aligned} & 13.9 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 11.9 \\ & 11.1 \end{aligned}$	$\begin{aligned} & 13.9 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 21 \\ & 19 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 57 \\ & 51 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.5 \end{aligned}$
Nominal values:	$\begin{aligned} & 11.4 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 10.8 \\ & 10.1 \end{aligned}$	$\begin{aligned} & 13.9 \\ & 12.1 \end{aligned}$	$\begin{aligned} & 26 \\ & 13 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.8 \end{aligned}$
Min values:	$\begin{aligned} & 7.3 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 8.7 \\ & 8.1 \end{aligned}$	$\begin{aligned} & 11.1 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 32 \\ & 29 \end{aligned}$	$\begin{aligned} & 10 \\ & 8.7 \end{aligned}$	$\begin{aligned} & 86 \\ & 77 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.3 \end{aligned}$
Proposal values:				$\begin{aligned} & 23-46 \\ & 25 \end{aligned}$	$\begin{aligned} & 7-14 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 57-114 \\ & 59 \end{aligned}$	$\begin{aligned} & 1.7-3.4 \\ & 1.8 \end{aligned}$

Notes:

1. Limiting flux density Slim is inversely proporotional to spectral resolution $(\Delta \sigma)$ and independent of wavelength.
2. Limiting line flux Flim is independent of spectral resolution and wavelength (for an unresolved line).
3. For wavelengths longer than $400 \mu \mathrm{~m}$, the pixel size will be increasingly mis-matched to the diffraction spot size. This will degrade the efficiency either for the feed-horn arrays or fuilled arrays options. In addition, diffraction within the FTS will result in a loss of efficiency at the longest wavelengths. The implications for sensitivity of the FTS at wavelengths longward of $400 \mu \mathrm{~m}$ must be studied in detail. At the mopment, we estimate an effective loss of efficiency of a factor of two at $670 \mu \mathrm{~m}$, and scale linearly for wavelengths between 400 and $670 \mu \mathrm{~m}$.
