SPIRE-SBT-PRJ-000458

SPIRE & PACS Sorption Coolers Specifications

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6

DATE: 18/03/2004

PAGE: I

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

SPIRE & PACS Sorption Coolers SPECIFICATIONS

SBT internal ref: SBT/CT/2000-18

	Name & Function	Date	Signature
Prepared	L. Duband - Cooler project manager		
SBT PA Check	M. Dubois – Cooler PA manager		
SPIRE Approval			
PACS Approval			
PA Approval			
Project Approval	J.L Augueres - SAp HSO project manager	30/06/04	APPROVED by default
Project Approval	L. Duband - Cooler project manager		

Service des Basses Températures (SBT)
Département de Recherche Fondamentale sur la Matière Condensée (DRFMC)
COMMISSARIAT A L'ENERGIE ATOMIQUE - GRENOBLE (CEA-Grenoble)
17, rue des Martyrs 38054 GRENOBLE Cédex 9, France.

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6 DATE: 18/03/2004

PAGE: II

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

Document Status

for the
will be as have
ıdget
ge 10 :
slightly
R. All o cooler
Berend
4.6
e HSO- ched (&
w (H-P-
1.1)

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6

DATE: 18/03/2004

PAGE: III

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

CONTENTS

1 20	cope of the document	I
2 D	ocuments	2
2	2.1 Applicable documents	2
3 C	ooler description	3
3	.1 General design	3
3	.2 Mission profile	4
	equirements	
4	1 Functional requirements	6
	4.1.1 Thermal performance requirements	6
4	2.2 Operational requirements	6
	4.2.1 Safety	6
	4.2.2 Lifetime	6
	4.2.3 Operating modes	7
	4.2.4 Commands	
	4.2.5 Monitoring.	8
4	3. Environmental requirements	8
	4.3.1 Thermal environment	8
	4.3.2 Mechanical environment	8
	4.3.2.1 Limit loads and Launch levels	8
	4.3.2.2 Orbit.	10
	4.3.2.3 Ground	10
	4.3.3 Electrical environment	10
	4.3.4 Radiation environment	10
4	.4 Design and construction requirements	10
	4.4.1 Interchangeability	
	4.4.2 Control electronics	10
	4.4.3 Pressure	10
	4.4.3.1 Maximum operating pressure	10
	4.4.3.2 Proof pressure and Burst pressure	10
	4.4.4 Mass	10
	4.4.5 Size	10
	4.4.6 Mechanical stiffness requirement	11
	4.4.7 Design Margin	11
	4.4.7.1 Structural	11
	4.4.8 Parts, Material and Processes	11
	4.4.8.1 General	11
	4.4.8.2 Magnetic materials	11
	4.4.8.3 Fungus Nutrient materials	11
	4.4.8.4 Flammable, toxic and unstable materials	11
	4.4.8.5 Cleanliness	
	4.4.8.6 Finish	12
	4.4.8.7 Outgassing	12

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6

DATE: 18/03/2004

PAGE: IV

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

4.4.8.8 Susceptibility to stress corrosion	12
4.4.8.9 Limited lifetime materials	
4.5 Interface requirements	
4.5.1 Thermal interface to the detector.	
4.5.2 Mechanical interface to the heat sink	12
4.5.3 Thermal interface to the heat sink	12
4.5.4 Electrical interface	12
4.6 Logistic requirements	13

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6

DATE: 18/03/2004

PAGE: V

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

List of Acronyms

AD	Applicable Document		
CEA	Commissariat à l' Energie Atomique		
CDR	Critical Design Review	Revue de conception détaillée	RCD
CQM	Cryogenic Qualification Model	-	
CVCM	Collected Volatile Condensable Material		
DML	Declared Material List		
ECSS	European Cooperation for Space Standardisation		
ETF	Environmental Test Facility		
EV	Evaporator		
FS	Flight spare		
HSE	Heat Switch (on evaporator)		
HSP	Heat Switch (on sorption pump)		
MGSE	Mechanical Ground Support Equipment		
MOP	Maximum Operating Pressure		
MOS	Margin Of Safety		
MPM	Material, Processes, Mechanical Parts		
N/A	Not Applicable		
PACS	Photoconductor. Array Camera and Spectrometer		
PFM	ProtoFlight Model		
PSS	Product Assurance Specification System		
RD	Reference Document		
SCC	Stress Corrosion Cracking		
S/C	SpaceCraft		
SAp	Service d'Astrophysique		
SBT	Service des Basses Températures		
SCO	Sorption Cooler (full unit)		
SP	Sorption pump		
SPIRE	Spectral & Photometric Imaging Receiver		
SST	Support Structure		
TML	Total Mass Loss		
TS	Thermal shunt		

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6

DATE: 18/03/2004

PAGE: 1

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

1 Scope of the document

This document defines the technical requirements applied to the performances, the design and the qualification of the SPIRE and PACS coolers on board the HERSCHEL Satellite. It is applicable to the CQM, the PFM and the FS unless otherwise stated. The SPIRE and PACS instruments will share the same cooler design and consequently the latter will be such to be compatible with both interfaces.

The drive electronic is out of the scope of this document, and consequently all related requirements are defined in a specific document referenced "SPIRE and PACS Sorption Coolers, Drive Electronic Requirements".

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6

DATE: 18/03/2004

PAGE: 2

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

2 Documents

2.1 Applicable documents

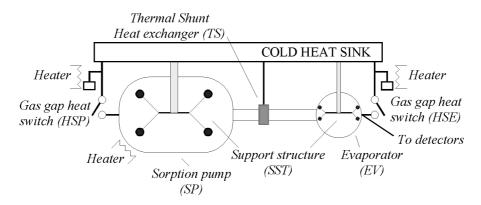
All Applicable Documents are listed in the AD chapter of the CIDL (HSO-SBT-LI-010).

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6

DATE: 18/03/2004

PAGE: 3


SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

3 Cooler description

3.1 General design

The cooling of the SPIRE and PACS detectors down to 300 mK will be effected by a helium three sorption cooler. This sub-Kelvin sorption cooler provides a wide range of heat lift capability at temperature below 400 mK. It relies on the capability of porous materials to adsorb or release a gas when cyclically cooled or heated. Using this physical process one can design a compressor/pump which by managing the gas pressure in a closed system, can condense liquid at some appropriate location and then perform an evaporative pumping on the liquid bath to reduce its temperature. Helium sorption refrigerators have no moving parts, are vibrationless and can be designed to be self contained and compact with a high duty cycle efficiency.

As shown on the figure hereafter the cooler is basically made of 6 components designated as a sorption pump SP and an evaporator EV connected via a pumping line to a thermal shunt TS comprising an heat exchanger, two gas gap heat switches HSP and HSE respectively connected to the sorption pump (SP) and evaporator (EV), and finally a support structure SST. SP, EV, TS and the pumping line are assembled to form a unique component which is the actual "heart" of the cooler. This component is held within SST, which provides firm mechanical support (launch environment) while minimising any parasitic conductive load on the cooler (low temperature environment).

Heat switches are then required for operation of the cooler. The two switches are used to control the temperature gradient; during the condensation phase they are set such that the sorption pump can be heated to release the helium gas and such that liquid condensation occurs into the evaporator EV maintained as the coldest point. The liquid is held into EV by capillary attraction inside some porous material: both the surface tension and the vapour pressure provide forces that drive and hold the liquid at the coldest point. Then the switches are set such that the sorption pump is thermally grounded to the heat sink and such that the evaporator is thermally isolated. The sorption pump provides an evaporative pumping on the liquid helium bath which temperature quickly drops to sub-Kelvin temperature.

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6

DATE: 18/03/2004

PAGE: 4

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

Cryogenic switches can be based upon different physical mechanisms. Gas gap heat switches have been selected as the preferred design for the present project.

Gas gap heat switch utilises concentric copper cylinders separated by a small gap which is filled with or emptied of He gas to achieve the switching action. The thermal separation between the two ends is achieved by a thin-walled tube which also provides the mechanical support. The presence or absence of gas is controlled by a miniature cryogenic adsorption pump that can be temperature regulated. Thus one of their main feature is the absence of any moving part, and consequently operation of the cooler is almost then fully controlled by three heaters.

For operation in a zero-G environment two aspects are addressed: the liquid confinement and the structural strength required for the launch. The confinement within the evaporator is provided by a porous material which hold the liquid by capillary attraction, and a suspension system using Kevlar wires is designed to firmly support the refrigerator during launch while minimising the parasitic heat load on the system.

3.2 Mission profile

The following table displays the successive phases of the subsystem life under SBT responsability, that is from the end of manufacturing to the delivery to RAL. The subsequent phases are indicated for informations.

DATE:

DOC N°:

Iss/Rev:

18/03/2004

3.6

HSO-SBT-SP-001

PAGE: 5

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

Operation	Where	What	Duration	Note
Leak tightness and Proof pressure tests	SBT	Cooler heart	1 week	
Gas gap heat switch thermal check	SBT	HSP, HSE	2 weeks	The switches are filled with 3He and then thermally checked
Thermal test program	SBT	SCO	4 weeks	Verification of cooler nominal operation – test referenced as "health check"
Bake out	SBT	SCO	1 week	
Health check	SBT	SCO	2 weeks	Performance verification
Transport	From ETF to SBT	SCO	4 days	
Vibrations tests	ETF	SCO	1 week	
Transport	From SBT to ETF	SCO	4 days	
Health check	SBT	SCO	2 weeks	Performance verification
Packing	SBT	SCO	1 day	
Transport	From SBT to RAL	SCO	4 days	
Delivery	RAL for SPIRE SAp for PACS	SCO		
Project test plan	RAL	SCO	TBD	
Transport to ESA	RAL to ESA	SCO	TBD	
Delivery	ESA	SCO	TBD	
Satellite test	ESA	SCO	TBD	
Storage	ESA	SCO	TBD	
Launch	Kourou	SCO	TBD	
Operations	Orbit	SCO	4.2 years	
End of operation	Orbit	SCO	TBD	

It is possible cold vibration tests will be performed on the cooler. It will depends on the avalaibility of the test facilities and on the budget constraints. This will be decided at a later stage.

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6 DATE: 18/03/2004

PAGE: 6

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

4 Requirements

4.1 Functional requirements

- a) The sorption cooler will be mounted off a 4 K plate (level 1) and 1.7 K (level 0) thermal paths will be provided for the heat switches and thermal shunt for the operation of the cooler. The radiative environment will be 4 K.
- b) During the low temperature phase the sorption cooler should be able to operate in any orientation under 1g..
- c) During the recycling phase and only for ground tests (convective effects), some orientations are prohibited With the reference angle defined as 0 when the main sorption pump is vertically above the evaporator, the following angles can be considered:
 - from 0 to 30°: nominal recycling possible no impact on recycling efficiency
 - from 30° to 60°: recycling is possible but the efficiency is impacted.
 - from 60° to 75°: recycling still possible but the efficiency is substantially affected
 - above 75°: recycling not possible
- d) A design "plug in" type shall be favored.

4.1.1 Thermal performance requirements

- a) The recycle time shall be no more than 2 hours
- b) After recycling using an optimized pump temperature profile reaching 45 K, with an evaporator temperature at the end of the condensation phase of 2 K, the cooler <u>alone</u>* once at low temperature (≈ 300 mK) shall provide no less than 5 joules of gross energy (total amount of "cold" joules produced). *NOTE: it is understood this number can be affected by the added mass to be cooled (detectors, etc...).
- c) Inside the cooler itself the parasitic heat load to the cold tip must be minimised. As an objective it shall not exceed $14 \mu W$ under the nominal operating conditions (1.7 K / 4 K).
- d) The net heat lift at 290 mK shall be 10 μ W at a minimum under the nominal operating conditions (1.7 K heat sink / 4 K environment).
- e) The energy dissipated per cycle due to cooler operation shall be no more than 860 J. the 4K/1.7K thermal architecture calls for an additionnal contribution to the average power dissipated this contribution (not part of the 860 J) shall not be in excess of 0.6 mW

4.2 Operational requirements

4.2.1 Safety

The structural failure mode shall be leak-before-burst.

4.2.2 Lifetime

The lifetime of the sorption coolers after delivery shall be:

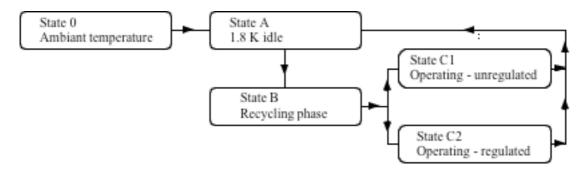
- on ground
 - o 1 year in spacecraft at room temperature
 - o 1 year in spacecraft at low temperature (helium temperature)
- Launch: 3 years in flight at L2

Iss/Rev: 3.6 DATE: 18/03/2004

HSO-SBT-SP-001

PAGE: 7

DOC N°:


SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

The number of bake out after delivery shall be limited to 4. No limit is set for the number of thermal cycles.

4.2.3 Operating modes

The table hereafter summarizes the cooler various states, as the following schematic displays the links between the different states.

State	Description
0 (300 K)	cooler is at ambient temperature (300 K) – this state is only pertinent during
,	ground tests - no functions possible
A - 1.8 K idle	The cooler is in standby mode, ready for recycling. All switches are in the OFF
	position. No power is dissipated by the cooler neither any current or voltage are required.
B - Recycling	This is the most complex state of the cooler; it comprises sequences of heating and
, ,	cooling.
C - Operating	This state corresponds to the low temperature phase when the cooler
	is operating at sub Kelvin temperature. Two sub state can be defined
	(see below)
C1 - unregulated	No active control of the operating temperature is performed and the ultimate
	temperature is a function of the thermal environment (load, parasitic, etc)
C1 – regulated	The evaporator is regulated at some desired temperature. This temperature
	regulation is achieved either by adjusting the pumping speed of the sorption pump
	via a regulation of its temperature, or by direct applied power

4.2.4 Commands

The control electronics will be able to perform a full recycling of the sorption cooler, but will also be able to control the temperature of the evaporator at a desired value in a range [0.29 – 0.4 K] either by controlling the temperature of the pump (and consequently of the pumping speed), or by directly controlling the temperature of the evaporator via direct applied power. The nominal method will be selected at a later stage.

The cooler must be equipped with the relevant thermometers and heaters to enable this temperature control. However in case the selected method is via direct applied power, it is not foreseen this power will be applied directly onto the evaporator cold tip but at some further location toward the detectors. Consequently a heater on the evaporator cold tip is not necessary.

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6

DATE: 18/03/2004

PAGE: 8

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

4.2.5 Monitoring

The thermometers shall be chosen such to allow that the absolute accuracy on the measurement of respectively the evaporator and pump temperature will be better than 0.5% and 5% at the measured temperature.

4.3 Environmental requirements

4.3.1 Thermal environment

The following shall apply.

Parameter	Value
a) Ground and Launch	The sorption coolers shall be compatible with a 72 hours bake out at 80° C.
b) Storage and handling	
temperature	Continuous temperature limit : 60°C
c) Humidity	- Less than 60%
d) Test or orbit	The heat sink used to operate the cooler will be a pumped helium cryostat. The cooler will be mechanically mounted off a 4 K plate. The radiative
	environment will be 4 K.

4.3.2 Mechanical environment

4.3.2.1 Limit loads and Launch levels

Unless otherwise specificed all listed values are <u>including</u> a qualification factor of 1.5. The sorption cooler shall be designed for the following quasi-static loads.

	SPIRE			PACS		
Levels	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3
X direction	25 g	-	-	21 g	-	-
Y direction	-	14 g	-	-	16	10
Z direction	-	-	14 g	-	16	10

The sinusoidal and random vibration levels are displayed in the following tables (see HSO-SBT-PL-045).

Vibration type	Axis of application	Frequency range (Hz)	Power spectral density	Level
SPIRE : Sinusoidal sweep	X axis	25 – 60	N/A	22.5 g
vibration	Y axis	25 – 60	N/A	15 g
Qualification <u>level</u>	Z axis	25 – 60	N/A	15 g
PACS : Sinusoidal sweep	X axis	5 - 21 21 - 100	N/A	10 mm (zero-peak) 18 g
vibration	Y axis	5 – 14 14 - 100	N/A	10 mm (zero-peak) 8 g
<u>Qualification</u> <u>level</u>	Z axis	5 – 14 14 – 100	N/A	10 mm (zero-peak) 8 g

DOC N°:

Iss/Rev: 3.6 18/03/2004 DATE:

HSO-SBT-SP-001

PAGE:

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

For sinus vibrations, the sweep rate is 2 oct/mn at qualification level and 4 oct/mn at flight level.

Vibration type	Axis	Ramp up	Plateau	Ramp down	Level
SPIRE Random	X axis	+3 dB/oct 20 - 100 Hz	$0.04 \text{ g}^2/\text{Hz}$ 100 - 200 Hz	-3 dB/oct 200-2000 Hz	Overall equivalent: 5 g RMS
Qualification Level (Flight levels are a	Y axis	+3 dB/oct 20 - 100 Hz	$0.05 \text{ g}^2/\text{Hz}$ 100 - 400 Hz	-5 dB/oct 400-2000 Hz	Overall equivalent: 6 g RMS
factor 2.25 lower in PSD, which is a factor of 1.5 lower	Z axis	+3 dB/oct 20 - 100 Hz	$0.06 \text{ g}^2/\text{Hz}$ 100 - 200 Hz	-3 dB/oct 200-2000 Hz	Overall equivalent: 6 g RMS

Vibration type	Axis	Ramp up	Plateau	Ramp down	Level
PACS Random Qualification	X axis	+6 dB/oct 20 - 150 Hz	$0.6 \text{ g}^2/\text{Hz}$ $150 - 190 \text{ Hz}$ $0.1 \text{ g}^2/\text{Hz}$ $191 - 250 \text{ Hz}$ $0.6 \text{ g}^2/\text{Hz}$ $251 - 350 \text{ Hz}$ $0.02 \text{ g}^2/\text{Hz}$ 400 Hz	-10 dB/oct 400-2000 Hz	Overall equivalent: 11.5 g RMS
Level (Flight levels are a factor 2.25 lower in PSD, which is a factor of 1.5 lower in g-rms)	Y axis	+3 dB/oct 20 - 100 Hz	$0.02 \text{ g}^2/\text{Hz}$ 100 - 150 Hz $0.1 \text{ g}^2/\text{Hz}$ 151 - 320 Hz $0.0015 \text{ g}^2/\text{Hz}$ 321 - 2000 Hz	-	Overall equivalent: 4.9 g RMS
	Z axis	+3 dB/oct 20 - 100 Hz	0.02 g ² /Hz 100 - 150 Hz 0.0125 g ² /Hz 151 - 300	-7 dB/oct 300-2000 Hz	Overall equivalent: 2.54 g RMS

Random vibrations shall be applied 2 mn per axis at qualification level and 1 mn per axis at flight level.

It is important to notice that the launch will be done with the coolers at the temperature of the cold heat sink, i.e. below 5 K, and consequently with no internal pressure. Consequently if the vibration tests are performed at room temperature, the effect of temperature on the results shall be addressed by analysis (mechanical and thermal properties of materials, support structure behavior). Yet a cold vibration test is favoured.

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6 DATE: 18/03/2004

PAGE: 10

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

4.3.2.2 Orbit.

The performances of the sorption cooler shall not change during and after attitude motion (rotation) and orbit correction (delta V).

4.3.2.3 Ground

The sorption cooler shall be compatible with normal transportation and qualification / acceptance tests of the spacecraft.

4.3.3 Electrical environment

The sorption cooler shall not remain charged or be subject to electrical discharges.

4.3.4 Radiation environment

The sorption cooler shall not be sensitive to radiations.

4.4 Design and construction requirements

4.4.1 Interchangeability

The sorption cooler is made of the "cooler heart" itself (sorption pump - pumping line – evaporator), two heat switches and a support structure. It is desirable the design shall be made such that each of these components shall be easily interchangeable.

In addition the cooler must be compatible with both instruments SPIRE and PACS and shall feature the necessary interfaces.

4.4.2 Control electronics

All related requirements are defined in a specific document referenced "SPIRE and PACS Sorption Coolers, Drive Electronic Requirements".

4.4.3 Pressure

4.4.3.1 Maximum operating pressure

The maximum operating pressure (MOP) shall be lower than 100 bars absolute (at 80°C).

4.4.3.2 Proof pressure and Burst pressure

The sorption cooler shall be able to meet all the requirements of this specification after having been subjected to an internal pressure of 1.5 times the MOP, at ambient conditions.

The sorption cooler shall be able to withstand an internal pressure of 2.0 times the MOP at ambient conditions during 2 minutes, without any rupture or failure of the components.

4.4.4 Mass

The overall mass of the cooler shall be no more than 1.8 kg.

4.4.5 Size

The maximum envelope for the cooler shall be no more than 230 x 100 x 100 mm.

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6

DATE: 18/03/2004

PAGE: 11

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

4.4.6 Mechanical stiffness requirement

The first eigenfrequency of the sorption cooler shall be larger than 120Hz.

4.4.7 Design Margin

<u>4.4.7.1 Structural</u>

All structural elements shall be designed to exhibit a positive margin of safety (MOS) with respect to yield and ultimate loads. The margin of safety is defined as the ratio of the allowable loads (or stress) to the applied load (stress when applicable):

 $MOS = \frac{\text{Allowable load (stress)}}{\text{Applied load (stress)}} - 1$

Unless otherwise stated for all other requirements in this specification a margin of at least 10% shall be taken in the design.

Allowable stresses shall be derived from MIL-HDBK-5. Other sources shall be subject to the PA manager approval

4.4.8 Parts, Material and Processes

4.4.8.1 General

The workmanship and materials used shall be, or shall be shown to be compatible in any future build, of a standard consistent with flight hardware.

The number of materials, mechanical parts types, and processes shall be minimized. Materials and mechanical parts that have been successfully used in similar space applications shall be preferred. Standard processes or known processes previously used in space applications shall be preferred.

Material justification shall prove the hardware structural integrity during the design life.

4.4.8.2 Magnetic materials

The sorption cooler shall not use magnetic materials. The magnetic field measures at 50mm of the unit shall be lower than 0.1 Gauss.

4.4.8.3 Fungus Nutrient materials

Materials shall not support <u>bacterial or fungus</u> growth, and shall be sterilisable without any deterioration of their properties.

4.4.8.4 Flammable, toxic and unstable materials

Flammable, toxic and unstable materials shall not be used unless they are confined.

4.4.8.5 Cleanliness

The cooler cleanliness shall be maintained within the budget. The level required as of October 2001 is not clearly defined and is expected to be in the range 300 to 440 ppm, at delivery to SPIRE and PACS instrument.

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6 DATE: 18/03/2004

PAGE: 12

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

4.4.8.6 Finish

Surface finish shall prevent deterioration from exposure to the environment. Aluminum surfaces shall be treated for corrosion protection coating. Mechanical parts made of stainless steel shall be passivated. Copper thermal interfaces shall be gold plated.

4.4.8.7 *Outgassing*

Outgassing internal to the sorption cooler (excluding helium) and any subsequent internal vacuum bake-out, shall be compatible with the design life of the cooler.

Outgassing of the external surfaces of the cooler shall demonstrate a Total Mass Loss (TML) <1%, and a Collected Volatile Condensable Material (CVCM) < 0.1%.PSS-01-702 shall be used as a guideline.

4.4.8.8 Susceptibility to stress corrosion

Metallic materials selected shall have high resistance to Stress Corrosion Cracking (SCC) and shall be chosen from table 1 of PSS-01-736. Metallic materials and welds that are not listed in PSS-01-736 or whose SCC resistance is not known, shall be tested according to PSS-01-737.

4.4.8.9 Limited lifetime materials

All materials with <u>limited-life</u> characteristics shall be subject to lot/ batch acceptance tests, to be agreed with the PA manager, and shall have their date of manufacture and shelf-life expiration date marked on each lot/ batch.

4.5 Interface requirements

4.5.1 Thermal interface to the detector.

Gold coated copper plate with two 3.2 mm diameter through holes. See "Interface Control Document" (HSO-SBT-ICD-012).

4.5.2 Mechanical interface to the heat sink

The cooler mechanical interfaces must be compatible with both instruments SPIRE and PACS interfaces. The mechanical interfaces are with the instrument 4 K structures. For SPIRE the cooler is mounted vertically and the interface is a square 100 x 100 mm with 8 holes 5.3 mm diameter equally spaced (one per corners plus one per side). For PACS the cooler is mounted on the side via 5 holes 5.3 mm diameter. See "Interface Control Document" (HSO-SBT-ICD-012).

4.5.3 Thermal interface to the heat sink

The thermal interfaces are with the 1.8 K pumped helium bath (Herschel cryostat). The thermal interface to the heat sink is provided by two copper straps, one for the evaporator heat switch and thermal shunt, and one for the sorption pump heat switch. These strap are out of the scope of these specifications. See "Interface Control Document" (HSO-SBT-ICD-012).

4.5.4 Electrical interface

Any electrical wiring necessary for the operation of the cooler shall be designed in order to minimize any possible thermal effect on the cooler itself and on the heat sink. See "Interface Control Document" (HSO-SBT-ICD-012).

DOC N°: HSO-SBT-SP-001

Iss/Rev: 3.6

DATE: 18/03/2004

PAGE: 13

SERVICE DES BASSES TEMPERATURES [CEA/DSM/DRFMC/SBT]

4.6 Logistic requirements

The sorption cooler shall be compatible with normal transportation, i.e. car and train. It is recommended the cooler is accompanied by dedicated persons throughout the qualification program until delivery.

The coolers shall be equipped for safe handling or transportation, in accordance with adopted cleanliness philosophy.

The storage and handling temperature must never exceed 60°C (a temporary maximum of 80°C is acceptable).