

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: 1.9

Date: 17/04/01 **Page:** Page 1 of 32

17 April 2001

Issue: Draft 9

Date:

Herschel SPIRE

Detector Subsystem Specification Document

Document Ref.: SPIRE-JPL-PRJ-000456

Issue: Version 1.9

Prepared by: James Bock

Gerald Lilienthal Bruce Swinyard

Approved by: Matt Griffin

Ken King

Detector Subsystem Specification Document **Ref.:** FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9

Date: 17/04/01 **Page:** Page 2 of 32

Distribution List:

QMW	Matt Griffin	X	Peter Hargrave	Х
ATC	Colin Cunningham	Х		
RAL	Bruce Swinyard	Х	Ken King	X
CEA-Sap	Jean-Louis Auguères	X	Christophe Cara	Х
JPL/Caltech	Jerry Lilienthal	X	Jamie Bock	Х
	Victor Hristov	X		
IFSI	Riccardo Cerulli-Irelli	Х		
MSSL	Berend Winter	Х		
CEA-SBT	Lionel Duband	Х		
LAM	Dominique Pouliquen	Х		

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9
Date: 17/04/01
Page: Page 3 of 32

1	INTR(ODUCTION	6
	1.1 Pu	RPOSE OF THE DOCUMENT	6
		RONYMS AND ABBREVIATIONS	
	1.2.1	Acronyms	
		FERENCES	
	1.3.1	Applicable Documents	
	1.3.2	Reference Documents	
		ZERVIEW OF THE DOCUMENT	
2	SUBSY	YSTEM DESCRIPTION	q
		SIGN	
	2.1.1	Bolometer Detector Array	
	2.1.2 2.1.3	JFET Amplifier ModulesRF Filter Modules	
	2.1.3 2.1.4	JFET Box Mechanical Enclosure	
	2.1.4	JFET Box Interconnect Harness	
	2.1.5	Cold Interconnect harness and connectors	
	2.1.7	Detector readout	
	2.1.7	Thermal Interconnects	
	2.1.0	Thermal Control Hardware	
	2.1.9		
		SSION PROFILE.	
		ODUCT TREE	
		FICATION	
3			
	3.1 Fu	NCTIONAL	
	3.1.1	Performance Specification	
	3.1.2	Functional specification	
	3.1.3	Technical specification	
		ERATIONAL SPECIFICATION	
	3.2.1	Operational Safety	
	3.2.2	Reliability	
		TERFACE REQUIREMENTS	25
	3.3.1	3He Cooler	
	3.3.2	Wiring Harness	
		SIGN AND MANUFACTURE SPECIFICATION	
		GISTIC REQUIREMENTS	
		VIRONMENT REQUIREMENTS	
	3.6.1	Natural environment	
	3.6.2	Operating Environment	
	3.7 VE	RIFICATION REQUIREMENTS	33
A	PPENDI	X 1: QUALIFICATION TESTS DESCRIPTION	35

Detector Subsystem Specification Document **Ref.:** FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9

Date: 17/04/01 **Page:** Page 4 of 32

Document Status Sheet:

Docume	Document Title: Herschel SPIRE Detector Subsystem Specification Document				
Issue	Revision	Date	Reason for Change		
Draft 1		16 June 2000	First draft		
Draft 2	Made into spec for all units of detector subsystem and compatible with IRD	4 July 2000	Second Draft		
Draft 3	Combine comments from Bruce and Jamie, redefine terminology.	10 July 2000	Third draft		
Draft 4	Further finessing.	17 July 2000	Fourth Draft		
Draft 5	Include CRR RFA.	2 August 2000	Fifth Draft		
Draft 6	Change wording in section 3.1.	3 August 2000	Sixth Draft		
Draft 7	Changes to DRCU specifications in response to detector meeting.	1 March 2001	Seventh Draft		
Draft 8	Change to DRCU specifications, detector specifications sections.	2 April 2001	Eighth Draft		
Draft 9	Add section 2.4	17 April 2001	Ninth Draft		

Detector Subsystem Specification Document **Ref.:** FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9 **Date:** 17/04/01

Page: Page 5 of 32

Document Change Record:

Document Title: H	Document Title: Herschel SPIRE Detector Subsystem Specification Document			
Document Referen	nce Number: FIRST-SPI-PRJ-000103			
Document Issue/R	Revision Number: Draft 8.0			
Section	Reason For Change			
3.1.1	Detailed changes to detector specifications. Inclusion of table of detector design parameters.			
3.3.2	Numerous additional specifications requiring agreement from RAL/QMW. Section also includes explicit numbers of required channels, signal flow diagram, design values for detectors, and noise budget.			
Document Title: H	Herschel SPIRE Detector Subsystem Specification Document			
Document Referen	nce Number: FIRST-SPI-PRJ-000103			
Document Issue/R	Revision Number: Draft 9.0			
Section	Reason For Change			
2.4 Rec/Dels	Includes an explicit section on receivables and deliverables			

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9
Date: 17/04/01
Page: Page 6 of 32

1 Introduction

1.1 Purpose of the document

This specification defines the requirements applied to the performance, design, qualification, and interfaces of the SPIRE detector subsystem. It is applicable to the STM, the CQM, the PFM and the FS as described in this document.

1.2 Acronyms and Abbreviations

1.2.1 Acronyms

AD Architectural Design ATP Acceptance Test Plan AVM Avionic Model

BDA Bolometric Detector Array
CPP Common parts Procurement
CQM Cryogenic Qualification Model

DCU Detector Control Unit
DDD Detailed Design Document
DQE Detective Quantum Efficiency
DRCU Detector Control and Readout Unit
EMC ElectroMagnetic Compatibility
EMI ElectroMagnetic Interference
ESA European Space Agency

FIRST Far InfraRed and Submillimeter Telescope FPS Focal Plane Structure (mechanical housing)

FPU Focal Plane Unit FS Flight Spare

IBDR Instrument Baseline Design Review

ICD Interface Control Document

ICDR Instrument Critical Design Review
IRD Instrument Requirements Document
ISVR Instrument Science Verification Review

JFET Junction Field Effect Transistor JPL Jet Propulsion Laboratory

NA Not Applicable

NEP Noise Equivalent Power LIA Lock-In Amplifier PA Product Assurance PFM Proto Flight Model

SPIRE Spectral and Photometric Imaging REceiver

STM Structural Thermal Model

TBC To Be Confirmed
TBD To Be Defined
TBW To Be Written

Detector Subsystem Specification Document **Ref.:** FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9

Date: 17/04/01 **Page:** Page 7 of 32

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9

Date: 17/04/01 **Page:** Page 8 of 32

1.3 References

1.3.1 Applicable Documents

Document	Name	Number/version/date
Reference		
AD1	SPIRE Instrument Requirements Document	SPIRE-RAL-PRJ-
		000034 Draft .31
		25 May 2000
AD2	FIRST/Planck Instrument Interface Document Part A	SPIRE-ESA-DOC-
		000178 Rev 0-3
		15 May 2000
AD3	FIRST/Planck Instrument Interface Document Part B	SPIRE-ESA-DOC-
	Instrument "SPIRE"	000275 Rev 0-4
		15 May 2000

1.3.2 Reference Documents

Document	Name	Number/version
Reference		
RD1	SPIRE A Bolometer Instrument for FIRST	SPIRE-RAL-PRJ-000020
	(The SPIRE proposal to ESA)	
	The SPIRE Consortium	
RD2	Intstrument Sensitivity Models	TBD

1.4 Overview of the document

TBW

Detector Subsystem Specification Document **Ref.:** FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9
Date: 17/04/01
Page: Page 9 of 32

2 Subsystem Description

The SPIRE instrument is designed to observe astronomical sources in the 200 to 700 μm waveband. To accomplish this it will use bolometric detector arrays based on silicon nitride "spider web" absorbers with NTD germanium thermistors. The detectors will have feedhorn focal plane optics to efficiently couple the radiation from the SPIRE optics onto the bolometers.

The detector sub-system consists of five Bolometric Detector Arrays (BDA) – three for the SPIRE photometer channel:

PLW – Long wavelength photometer array

PMW – Medium wavelength photometer array

PSW – Short wavelength photometer array

And two for the SPIRE spectrometer channel:

SLW - Long wavelength spectrometer array

SSW – Short wavelength spectrometer array

These arrays are cooled to an operating temperature of close to 300 mK by means of thermal straps to a ³He sorption cooler. Electrical cables connect the BDAs to the JFET readout modules. As the JFET box is located outside of the 4 K structure, the cables must be routed through the 2 K and 4 K structure and out to the JFET modules. A mechanical interface defines the mounting of JFET modules into the JFET housing. The electrical outputs from the JFET modules connect to a wiring harness that leads from the optical bench to hermetic connectors at the wall of the Herschel cryostat, and then to the SPIRE warm electronics units. Electrical signals from the JFETs are amplified and conditioned by the Detector Control Unit (DCU), which is a sub-unit of the Detector Readout and Control Unit (DRCU). A block diagram of the SPIRE detector sub-system is shown in figure 2.1 and indicates those units which are the subject of this specification document. A block diagram of the SPIRE instrument is shown in figure 2.2 to indicate the relationship between the detector subsystem and the other sub-systems within the instrument.

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9

Date: 17/04/01 **Page:** Page 10 of 32

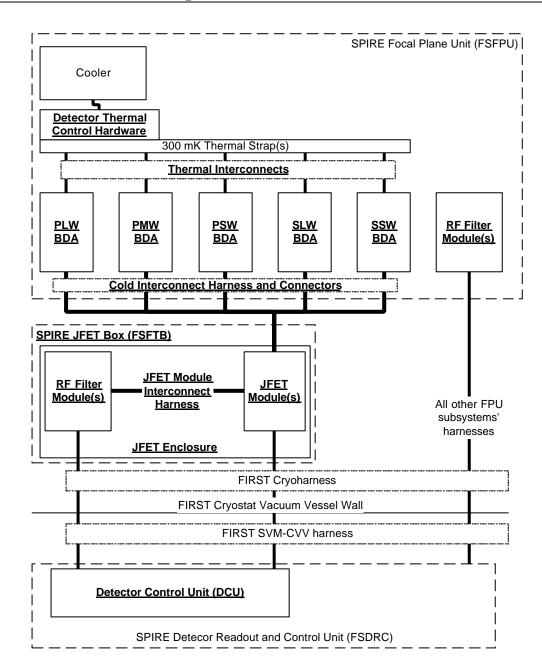


Figure 2-1: Block diagram of the SPIRE detector sub-system. The units that are indicated in underlined bold text belong to the detector subsystem and are the subject of the present specification document.

Detector Subsystem Specification Document **Ref.:** FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9
Date: 17/04/01
Page: Page 11 of 32

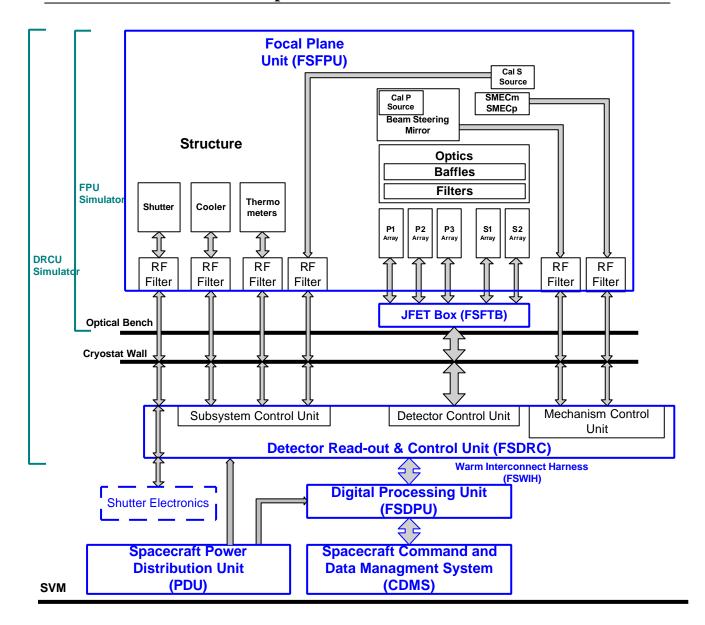


Figure 2-2: SPIRE instrument sub-system block diagram

2.1 Design

2.1.1 Bolometer Detector Array

The BDA is designed to accommodate a focal plane array of bolometric detectors operating at a temperature of close to 300 mK. The detectors couple to the cold optics of the SPIRE instrument via an array of collimating feedhorns mounted adjacent to the detector array. The feedhorns collimate sub-millimeter radiation onto the detectors, and define the detector field of view. A band-defining sub-millimeter filter is located over the feedhorn apertures at 300 mK. The focal plane array is mechanically supported and thermally isolated from the 2 K environment by a low-conductivity kevlar suspension system. The kevlar suspension must meet the tight thermal and mechanical requirements of the SPIRE instrument. The focal plane arrays are cooled to close to 300 mK by means of thermal straps to the ³He sorption cooler which attach

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9
Date: 17/04/01
Page: Page 12 of 32

to the BDA at a defined location. A flange at 2 K provides the mechanical interface for the BDA to mount onto the 2 K structure.

The bolometric detectors are addressed by cryogenic readout cables, routed from the 300 mK focal plane array to the bottom 2 K surface. The 2 K surface serves to enclose the back end of the focal plane array from straylight. Connectors will be located at the 2 K surface to allow for ready integration into the instrument.

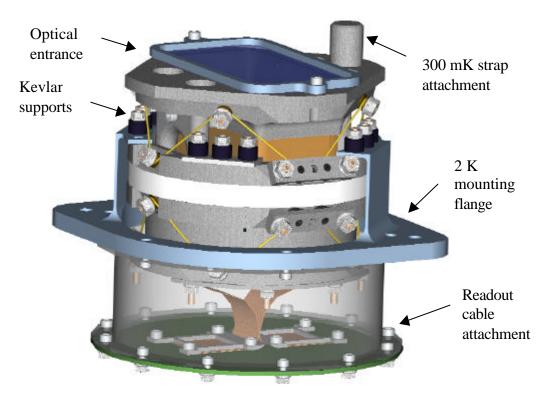


Figure 2-3: Schematic BDA Mechanical Design

2.1.2 JFET Amplifier Modules

The detector signals are power amplified by cryogenic JFET modules located at the Herschel cryostat level 2 temperature – nominally between 9 and 15 K. These modules house 24 dual JFETs that meet the tight thermal dissipation and noise specifications of the SPIRE instrument. The JFET modules are mounted into a housing at a mechanical interface defined by a mounting flange and connector interface. The JFET module is designed to attenuate thermal radiation from the 120 K JFETs by means of a light wall. Passive RF filter components located on circuit boards inside the module housing provide RF attenuation coming from the output cables. Output connectors interface to the cryogenic wiring harness going to the CVV connectors and then the warm electronics.

2.1.3 RF Filter Modules

In addition to the JFET modules there will also need to be passive RF filter modules present on all power; bias and heater lines entering the JFET Box. These will be housed in modules similar in design to the JFET modules but with only passive components. All subsystem wiring entering the FPU enclosure will also require RF filtering (see figure 2-2). These modules will be identical to those used in the JFET box and will be provided as part of the Detector Subsystem.

Detector Subsystem Specification Document Ref.: FIRS-SPI-PRJ-000103

Issue: 1.9
Date: 17/04/01
Page: Page 13 of 32

2.1.4 JFET Box Mechanical Enclosure

The JFET modules and RF filter modules will be mounted on the Herschel optical bench in a mechanical enclosure close to the SPIRE FPU structure. This enclosure will interface to directly to the Herschel cryostat level 2 temperature stage – at about 10 K – and will also provide a mechanical interface between the SPIRE FPU structure and the JFET modules through which the cold interconnect harness can be supported.

2.1.5 JFET Box Interconnect Harness

Any connections between the RF filter modules and the JFET modules in the JFET box will be made by use of a dedicated internal harness. This harness will be iso-thermal and can therefore be implemented in standard copper wire technology.

2.1.6 Cold Interconnect harness and connectors

The wiring diagram for a BDA is described in Fig. 2-6. Readout wires for each detector are fanned out at the focal plane array and wire bonded to a load resistor module located inside the BDA at 300 mK. The signal lines then connect to lithographed kapton cables which wirebond to an alumina fanout located at the 2 K surface at the bottom of the BDA. Connectors located at the 2 K surface allow for ready mounting and demounting of the BDA. Low-conductivity cables connect the outputs of the BDA to the JFET modules, and run from the 2 K structure to the 4 K structure to the JFET modules. Intervening connectors may be required (TBD) to allow for integration of the cables into the instrument. The outputs of the JFET modules pass through RF filters and connect to the wiring harness. Detector bias, JFET power, and JFET heater power pass through 2 separate, redundant RF filters and connect on a backplane connector into each JFET module. Separating these lines simplifies the wiring harness and reduces electrical cross talk.

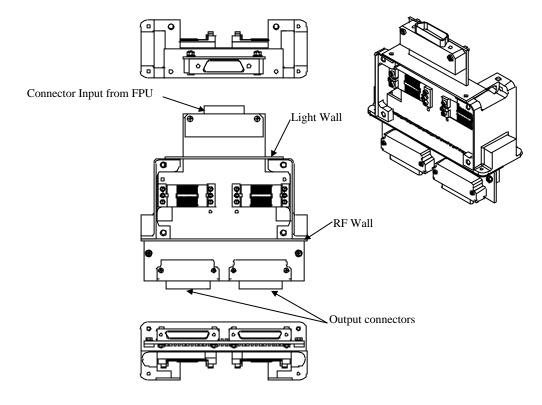


Figure 2-4: Schematic mechanical design of 2 JFET modules.

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: 1.9 **Date:** 17/04/01

Page: Page 14 of 32

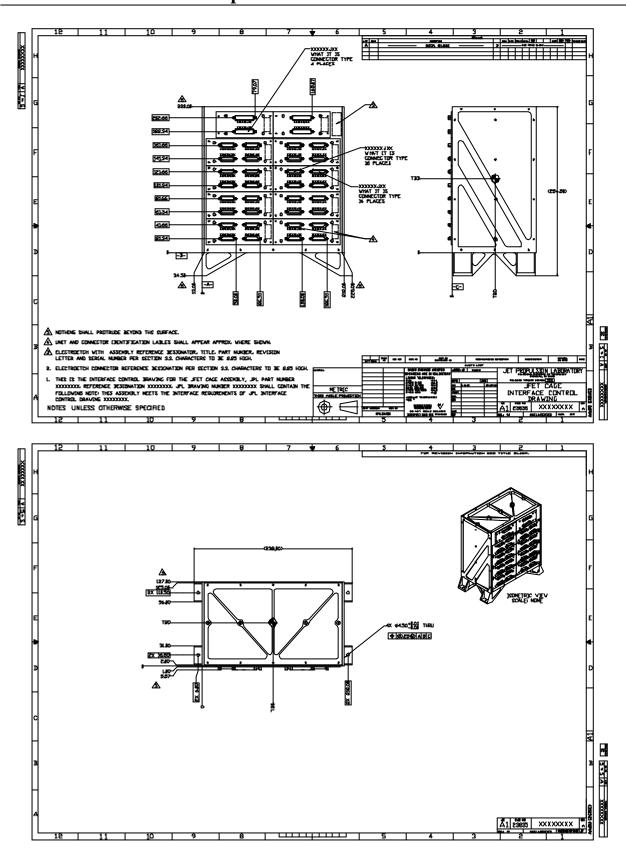


Figure 2-5: Schematic layout of the JFET box mechanical enclosure.

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: 1.9 **Date:** 17/04/01

Page: Page 15 of 32

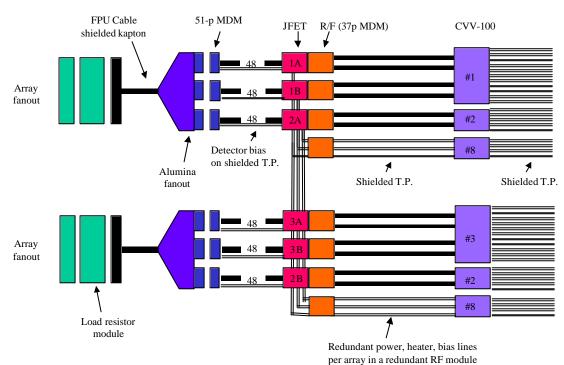


Figure 2-6: Wiring diagram for P/LW array.

2.1.7 Detector readout

The BDA arrays are readout using an AC bias and demodulation supplied by the warm DRCU (see Fig. 2-4). The AC bias modulates the signal at 100-300 Hz, above the 1/f knee of the JFET amplifiers and readout electronics. This relaxes the noise requirements on the JFETs, which could not be met at the audio frequencies of the detectors at the power dissipations allowed. Each BDA receives an independent bias. The warm electronics also supply power and heater lines for the JFET modules. Because the bias and JFET power lines represent single-point failures for many detectors, they are designed to be redundant.

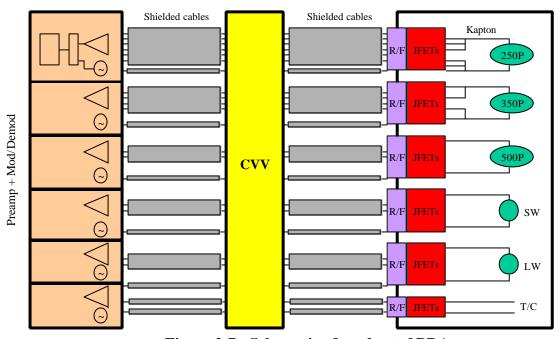


Figure 2-7: Schematic of readout of BDAs.

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9 **Date:** 17/04/01

Page: Page 16 of 32

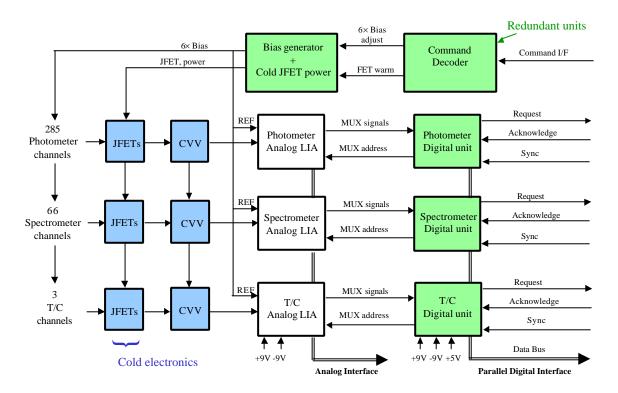


Figure 2-8: Interface between DRCU, BDA, and JFET modules.

2.1.8 Thermal Interconnects

The BDAs are mounted on the 2-K instrument structure up to 50 cm from the cold tip of the ³He cooler. This necessitates the use of thermal straps between the cooler and the BDAs. These are considered part of the SPIRE structure for the purposes of subsystem definition. However, there does need to be a connection made between the thermal straps and the BDAs. The hardware associated with this connection (e.g. a copper wire) is part of the detector sub-system.

2.1.9 Thermal Control Hardware

If the ³He cooler can meet the requirements placed on it in this document, there should be no need to have active control of the detector temperature. However, if, following the development phase of the instrument, there is a requirement for active control of the detector temperature, then the cold hardware for this will be provided as part of the detector sub-system. The cold hardware will consist of NTD germanium thermistors in a bridge arrangement and resistive heaters.

2.1.10 Cold Detector Simulator

The cryoharness to be provided by ESA for the Herschel cryostat, and the one to be provided for the AIV cryostat, will need to be tested to ensure that it is compatible with the requirements of the detector subsystem. To allow this a cold detector simulator will be built that will have the same electrical (noise; impedance etc) characteristics as the detector sub-systems as seen by the cryoharness. This will most likely consist of resistors in one or more JFET module housing(s) that will have the same noise and impedance characteristics when cold and the same interface to the cryoharness. The Structural Thermal Model of the JFET modules may be used for this unit.

Detector Subsystem Specification Document Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9
Date: 17/04/01
Page: Page 17 of 32

2.2 Mission Profile

The proto-flight model of the detector sub-system units will be designed to be used for 3 (TBC) years use on the ground, 2 (TBC) years of storage and 4.25 (TBC) years in orbit.

2.3 Product Tree

The instrument models define the functionality of the hardware delivered by JPL. The STM model of the instrument will be used to characterise the thermal and mechanical performance, and to verify the electrical properties of the cold harnesses. The hardware required must therefore be thermally and mechanically representative. In addition, a full electrical harness is required, and the BDAs and JFETs must provide electrical equivalents for verification of the cryo-harnesses. JPL will supply one suspended BDA for testing in the STM FPU.

The CQM instrument is used to verify the optical and electrical performance of the instrument, and to determine potential problems with interference of various sub-systems. One operational photometer BDA with associated JFETs is deemed sufficient to characterise operation of the photometer, and two spectrometer BDAs with associated JFETs are deemed sufficient to characterise operation of the spectrometer. Temperature control will not be implemented in the CQM instrument, although data collected may indicate the need to implement temperature control in the PFM and FS instruments.

The PFM and FS instruments are to be fully operational. The FS instrument will incorporate CQM hardware delivered by JPL as defined in section 2.4 below.

2.4 Receivables and Deliverables

Table 2-4-1 indicates hardware deliverables and receivables for the SPIRE instrument. Table 2-4-2 indicates hardware required for testing the cabling for compatibility with the BDAs. All hardware required for cable testing is listed, although some items are not delivered or received by JPL. Table 2-4-2 also lists hardware exchange required by the JPL and CU test programs. Table 2-4-3 indicates documentation exchange required for defining interfaces. Receivables and deliverables for the warm electronics development with CEA/SAp are documented in a separate business agreement for the warm electronics.

Table 2-2-1a. Hardware deliverables required for STM instrument

Item	Del. by	Rec. by
P/LW EM BDA ¹	JPL	RAL
P/MW STM BDA ²	JPL	RAL
P/SW STM BDA ²	JPL	RAL
S/SW STM BDA ²	JPL	RAL
S/LW STM BDA ²	JPL	RAL
15 JFET STM modules ³	JPL	RAL
5 (TBC) RF modules for FPU ⁴	JPL	RAL
3 RF modules for JFET rack ⁴	JPL	RAL
15 Harness between JFET modules and BDAs ⁵	JPL	RAL
Back harnesses for JFET racks ⁵	JPL	RAL

^{1.} EM BDA is form and fit compliant, including connectors but without savers. The EM BDA has a kevlar-suspended detector section with no active detection elements. Unit will *not* have resistors for harness checkout.

^{2.} STM BDA is form and fit compliant, including connectors but without savers. Resistors at 1.7 K allow checkout of harness. A weak thermal link will connect to 0.3 K to simulate BDA parasitic dissipation.

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9 **Date:** 17/04/01

Page: Page 18 of 32

- 3. JFET STM modules are fit and form compliant, including connectors but without savers. Includes representative electrical connections and thermal dissipation. Units will be re-used in CQM instrument.
- 4. RF modules are fully functional and will be re-used for the CQM and FS instruments.
- 5. Harnesses to be re-used for the CQM and FS instruments.

Table 2-2-1b. Hardware deliverables required for CQM instrument

Item	Del. by	Rec. by
P/LW CQM BDA ⁶	JPL	RAL
P/MW CQM BDA ⁷	JPL	RAL
P/SW CQM BDA ⁷	JPL	RAL
S/LW CQM BDA ⁶	JPL	RAL
S/SW CQM BDA ⁶ (initial delivery)	JPL	RAL
S/SW CQM BDA ⁸	JPL	RAL
2 JFET modules ⁹	JPL	RAL
1 JFET/RF module ¹⁰	JPL	RAL
P/LW BDA far-infrared filter	QMW	JPL
S/LW BDA far-infrared filter	QMW	JPL
S/SW BDA far-infrared filter	QMW	JPL

- 6. BDA is fully functional, but without connector savers. If the CQM BDAs provide reasonable functional equivalents, within a factor of 2 of the design NEP and time constant at optimal bias, to the flight units, the minimum performance values listed in section 3 do not have to be met. It is anticipated the speed of the detectors will increase by a factor of two under non-optimal bias. The array will be re-used for the FS instrument.
- 7. BDA is form and fit compliant, including connectors but without savers. The array will have a kevlar-suspended detector section with no active detection elements. Unit will *not* have resistors for harness checkout. These units to be returned to JPL for refurbishment for FS deliverables.
- 8. BDA is fully functional, but without connector savers. This unit is delivered without environmental or performance testing. The array will be returned to JPL in time for testing for the PFM instrument.
- 9. JFET modules are fully functional. If the CQM JFET modules provide reasonable functional equivalents to the flight units, in the judgement of the SPIRE instrument team, the minimum performance values listed in section 3 do not have to be met. Modules to be re-used for FS instrument.
- 10. JFET/RF module is fully functional. Module to be re-used for FS instrument.

Table 2-2-1c. Hardware deliverables required for PFM instrument

Item	Del. by	Rec. by
P/LW PFM BDA	JPL	RAL
P/MW PFM BDA	JPL	RAL
P/SW PFM BDA	JPL	RAL
S/LW PFM BDA	JPL	RAL
S/SW PFM BDA	JPL	RAL
7 JFET modules	JPL	RAL
1 JFET/RF module	JPL	RAL
5 (TBC) RF modules for FPU	JPL	RAL
3 RF modules for JFET rack	JPL	RAL
15 Harness between JFET modules and BDAs	JPL	RAL
Back harnesses for JFET racks	JPL	RAL
T/C thermometers, heaters, fixtures, and cable (TBC)	JPL	RAL
P/LW BDA far-infrared filter	QMW	JPL
P/MW BDA far-infrared filter		JPL
P/SW BDA far-infrared filter		JPL
S/LW BDA far-infrared filter	QMW	JPL

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: 1.9 **Date:** 17/04/01

Page: Page 19 of 32

S/SW BDA far-infrared filter	QN	MW	JPL	
------------------------------	----	----	-----	--

Table 2-2-1d. Hardware deliverables required for FS instrument

Item	Del. by	Rec. by
P/MW FS BDA	JPL	RAL
P/SW FS BDA	JPL	RAL
S/SW FS BDA	JPL	RAL
5 JFET modules	JPL	RAL
T/C thermometers, heaters, fixtures, and cable (TBC)	JPL	RAL
P/MW BDA far-infrared filter	QMW	JPL
P/SW BDA far-infrared filter	QMW	JPL
S/SW BDA far-infrared filter	QMW	JPL

Table 2-2-2a. Test equipment required for testing at RAL

Item	Del. by	Rec. by
JFET STM modules (listed in table 2-2-1a)	JPL	RAL
24-channel JFET cross-talk card	JPL	RAL
24-channel JFET termination card	JPL	RAL
24-channel bolometer cross-talk card	JPL	RAL
24-channel warm bolometer simulator card	JPL	RAL
STM BDAs (listed in table 2-2-1a)	JPL	RAL
24-channel DC amplifier card	JPL	RAL
AC/DC bias generator	RAL	RAL
JFET power supply	RAL	RAL
Data acquisition system for DC testing	RAL	RAL
EM DRCU electronics	CEA	RAL
RF characterisation equipment	RAL	RAL

Table 2-2-2b. Equipment required for testing at JPL and CU

Item	Del. by	Rec. by
Filter specifications for JPL test dewar	JPL	QMW
Filters for JPL test dewar	QMW	JPL
Filter specifications for CU feedhorn testing	CU	QMW
Filters for CU feedhorn testing	QMW	CU

Table 2-2-3. Documentation

Item	Del. by	Rec. by
ICD: EM BDA	JPL	RAL
ICD: STM BDA, with pinout	JPL	RAL
ICD: CQM, PFM and FS BDAs, with pinout	JPL	RAL
ICD: BDA far-infrared filter	JPL	QMW
ICD: STM JFET module, with pinout	JPL	RAL
ICD: CQM, PFM and FS JFET module, with pinout	JPL	RAL
ICD: RF filters for FPU, with pinout	JPL	RAL
ICD: RF filters for JFET rack, with pinout	JPL	RAL
ICD: T/C hardware	JPL	RAL
ICD: JFET rack	MSSL	JPL

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9 **Date:** 17/04/01

Page: Page 20 of 32

ICD: cable length and routing	MSSL	JPL
ICD: cryoharness definition	RAL	JPL
ICD: grounding network	RAL	JPL
PA plan	JPL	RAL
AIDS for all hardware	JPL	RAL
End-item acceptance package for all hardware	JPL	RAL

3 Specification

3.1 Functional

The functional requirements on the arrays are divided into three categories, minimum performance, achieved performance to date, and design value.

Minimum performance values are quoted for information, and are based on achieved or design values with margin. Performance levels that have been achieved to date are also indicated for information. The design values approach, and are generally compliant with, the performance levels defined in the Instrument Requirements Document. For this issue of the specification document there is insufficient data on whether the design values will be met in the course of the flight model build programme. A margin will be held on all mass, thermal and power budgets at the level of the instrument as a system. If any of the required performances are not met by the flight model units the consequences will be evaluated against the impact on the performance of the instrument as a whole and extra resources allocated or the instrument specification adjusted to reflect the new situation.

3.1.1 Performance Specification

Specification ID	Description	Requirement Reference	Minimum Performance	Achieved to Date	Design Value
BDA-PER-01	BDA detector yield.	IRD-DETP-R04 IRD-DETS-R04	0.75	0.9	0.9
BDA-PER-02	The ratio of photon NEP due to radiation absorbed at the detector and total NEP, given as (NEPphoton/NEPtotal)^2 NEP includes all sources of noise at 1 Hz, measured at 300 mK, assuming a total readout noise of 10 nV/rtHz and an operating impedance of 5 MOhm.	IRD-DETP-R01	0.55 (P/LW) 0.61 (P/MW) 0.66 (P/SW) 0.61 (S/LW) 0.66 (S/SW)	- 0.70 (P/MW) (10 nV/rtHz amplifier noise).	0.66 (P/LW) 0.73 (P/MW) 0.79 (P/SW) 0.73 (S/LW) 0.79 (S/SW)
BDA-PER-03	The optical efficiency of the FPU horn and bolometer assembly for the photometer arrays over the optical passband.	IRD-DETP-R01	0.45	0.45 – 0.65	0.85
BDA-PER-04	The optical efficiency of the short wavelength spectrometer horn arrays and bolometer assembly over the optical	IRD-DETS-R01 IRD-DETS-R08	0.45 (TBC)	-	0.85

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9

Date: 17/04/01 **Page:** Page 21 of 32

	passband.				
BDA-PER-05	The optical efficiency of the long wavelength spectrometer horn arrays and bolometer assembly over 300-400 µm.	IRD-DETS-R01 IRD-DETS-R08	-	-	0.85
BDA-PER-06	The photometer detector time constant, assuming a maximum modulation frequency of 2 Hz.	IRD-DETP-R02	32 ms	14 ms $(C = 1 pJ/K)$	14 ms (P/LW) 11 ms (P/MW) 9 ms (P/SW)
BDA-PER-07	The spectrometer detector time constant, assuming a maximum modulation frequency of 20 Hz.	IRD-DETS-R02	14 ms (S/LW) 8 ms (S/SW)	3.4 ms 4.9 ms (C = 1 pJ/K)	3.4 ms (S/LW) 4.9 ms (S/SW)
BDA-PER-08	The uniformity of the calibrated responsivity.	IRD-DETP-R03 IRD-DETS-R03	0.99	0.99	0.99
BDA-PER-09	Detector cross-talk.	IRD-DETP-R05 IRD-DETP-R06 IRD-DETS-R05 IRD-DETS-R06	-	< 5 % n-n	1 % nearest neighbors 0.1% non- nearest neighbors
BDA-PER-10	The 1/f knee frequency (total noise is sqrt(2) larger than white level).		0.1	0.03	0.03
BDA-PER-11	The performance of the bolometers assumes a nominal optical loading absorbed by bolometer (pW).	JPL			3.0 (P/LW) 4.0 (P/MW) 5.0 (P/SW) 12.5 (S/LW) 9.0 (S/SW)
BDA-PER-12	The performance of the bolometers assumes a nominal photon NEP, referred to power absorbed at the detector (e-17 W/\sqrt{Hz}).	JPL			4.9 (P/LW) 6.7 (P/MW) 8.9 (P/SW) 11.9 (S/LW) 12.0 (S/SW)
BDA-PER-13	The optical loading and photon NEP assumes a nominal optical efficiency of the bolometer and feedhorn.	JPL			0.85 (P/LW) 0.85 (P/MW) 0.85 (P/SW) TBD (S/LW) TBD (S/SW)

Specification ID	Description	Requirement Reference	Minimum Performance	Achieved To Date	Design Value
JFET-PER-01	Median noise of JFET module over 100 – 300 Hz.	IRD-FTB-R01	8.5	7.0	7.0

Table 3-1-1 Summary of Detector Design Values

			/	 		
Quantity	Units	P/LW	P/MW	P/SW	S/LW	S/SW
Q	pW	3	4	5	12.5	9
NEP _{blip}	e-17 W/√Hz	4.9	6.7	8.9	11.9	12.0
NEP _{tot}	e-17 W/√Hz	6.0	7.9	10.0	14.0	13.4
τ	ms	14.2	11.1	8.9	3.4	4.9
G_0	pW/K	50	64	80	140	210
$V_{\rm bol}$	mV_{rms}	3.7	4.2	4.7	7.6	6.3
S_{dc}	e8 V/W	4.3	3.7	3.3	2.1	2.1

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9

Date: 17/04/01 **Page:** Page 22 of 32

Table 3-1-2 Summary of Common Detector Design Values

Quantity	Value	Units
R_0	180	Ω
Δ	41.8	K
T_{bol}	0.39	K
R_{bol}	5.8	ΜΩ
Z/R	0.4	

3.1.2 Functional specification

Specification ID	Description	Requirement Reference	Compliant
BDA-FUN-01	The photometer angular response shall be described by a single-mode feedhorn.	IRD-DETP-R07	TBD
BDA-FUN-02	The spectrometer long-wavelength angular response shall be described by a multi-mode feedhorn. The spectrometer short wavelength angular response shall be described by a single-mode feedhorn (TBC).	IRD-DETS-R07	TBD
BDA-FUN-03	The spectral long-wavelength cutoff determined by the feedhorn output waveguide aperture will be located at the appropriate edge frequency.	IRD-DETP-R08 IRD-DETS-R08	TBD
BDA-FUN-04	The positional repeatability of the focal plane structure shall be < 125 um (TBC) orthogonal to the optical axis, and < 625 um (TBC) along the optical axis. The rotational repeatability around the optical axis shall be < 0.5 degrees (TBC).	JPL	TBD

Specification ID	Description	Requirement Reference	Compliant
JFET-FUN-01	The JFET module will mount to the Herschel optical bench, dissipating power to the level 2 stage of the cryostat.	IRD-FTB-R07 IRD-FTB-R05	Yes
JFET-FUN-02	The RF filters will operate without power dissipation	IRD-RFM-R03	TBD
JFET-FUN-03	The JFET modules must be capable of functioning, without meeting noise specifications, over a temperature range from 4 K to 300 K	IRD-FTB-R06	TBD
JFET-FUN-04	The JFET module and RF filters will	IRD-FTB-R08	TBD

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9
Date: 17/04/01
Page: Page 23 of 32

operate from a base temperature	
between $4 - 20$ K.	

3.1.3 Technical specification

Note: For all budgetary resource values (mass; thermal dissipation; temperature) the instrument will hold a margin against the design value – 20% unless indicated otherwise. Where the minimum performance value is below the margin (BDA-TEC-06, JFET-TEC-05), a system level analysis will be conducted to investigate the effect of increasing the resource allocations to the minimum performance values indicated here. A future release of this document will reflect updated resource allocations and minimum performance levels.

Specification ID	Description	Requirement Reference	Compliant
BDA-TEC-01	The BDA shall accommodate a defined	IRD-DETS-R08	Yes
	mechanical interface to the 2 K	IRD-DETP-R14	
	structure.	IRD-STRP-R01	
BDA-TEC-02	The BDA shall provide an attachment	IRD-STRP-R01	TBD
	point and/or a thermal interconnect to a		
	300 mK thermal strap.		
BDA-TEC-03	The BDA mass will have a design value	IRD-SUBS-03	TBD
	of 600 g (TBC) average over 5 detector		
	arrays, including output connectors.		
BDA-TEC-04	The first resonant frequency of the BDA	IRD-DETP-R15	TBC
	will be > 200 Hz (TBC), with a goal of	IRD-DETS-R16	
	> 250 Hz.		
BDA-TEC-05	The mechanical envelope of the BDA	IRD-DETP-R12	TBD
	will be described by the ICD.	IRD-DETS-R13	
BDA-TEC-06	The total power dissipated onto the 300	IRD-DETP-R13	Minimum Value
	mK cooler will be < 15 μW (minimum		not compliant.
	performance); < 8 µW (design value).		_
	Assumes the focal plane mount is held		Design Value is
	at 1.7 K.		compliant.
BDA-TEC-07	The power allocated for temperature		TBC
	control of the 3He stage is 2 µW.		

Specification	Description	Requirement	Compliant
ID		Reference	
JFET-TEC-01	The JFET modules will have a mass less than 305 g.	IRD-SUBS-R03	TBD
JFET-TEC-02	The mechanical envelope of a JFET module will be TBD mm x TBD mm x TBD mm.	IRD-FTB-R04	TBD
JFET-TEC-03	The RF filters are to provide –40 dB attenuation from 500 MHz to 3 GHz (TBC, minimum), -60 dB attenuation from 500 MHz to 10 GHz (TBC, goal).	IRD-FTB-R02 IRD-RFM-R01	TBD

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: 1.9 **Date:** 17/04/01

Page: Page 24 of 32

JFET-TEC-04	The first resonant frequency of a JFET module will be > 200 Hz (TBC), with a goal of > 250 Hz.	IRD-FTB-R09	TBD
JFET-TEC-05	The on-state power dissipation of a JFET module is to be < 11 mW (minimum performance); < 5.5 mW (TBC) (design value). This results in a photometer power dissipation < 66 (33) mW, a spectrometer power dissipation < 22 (11) mW, and an average dissipation < 44 (22) mW assuming 50 % operation of the photometer and 50 % operation of the spectrometer. NB: A 50% margin will be held on the design values to reflect the uncertainty in achieving the low thermal dissipation.	IRD-FTB-R05	Minimum Value not compliant Design Value is compliant

3.2 Operational Specification

3.2.1 Operational Safety

Specification	Description	Requirement	Compliant
ID		Reference	
BDA-SAF-01	Failure of the BDA or JFET modules, or	IRD-SAFE-R07	TBC
	one of its components, shall not affect		
	the health of any other subsystem, the		
	instrument or the interface with the		
	satellite.		
BDA-SAF-02	Failure of any component of the BDA	IRD-SAFE-R08	TBC
	or JFET modules shall not damage any		
	redundant or backup component		
	designed to replace that component in		
	the BDA or JFET modules.		

3.2.2 Reliability

Specification ID	Description	Requirement Reference	Compliant
BDA-REL-01	Failure of BDA and JFET modules shall not lead to the total loss of instrument operations.	IRD-REL-R01	TBC
BDA-REL-02	Observations can continue in degraded mode in the event of failure of the cold beam steering mirror.	IRD-REL-R02	Yes
BDA-REL-03	Point source observations can continue in degraded mode in the event of	IRD-REL-R02	Yes

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9 **Date:** 17/04/01

Page: Page 25 of 32

	misalignment of the photometer or spectrometer BDAs.		
BDA-REL-04	Single-point failures in the detector and JFET wiring (detector bias, JFET power) are to be duplicated. The RF filter module on these lines will also be redundant.	IRD-REL-R03	Yes
BDA-REL-05	BDA temperature stabilisation shall be implemented by an interruptible software-driven control loop.	IRD-REL-R04 IRD-REL-R05	Yes

3.3 Interface Requirements

3.3.1 3He Cooler

Requirement ID	Description	Reference	Subsystem
			Compliance
BDA-HCO-01	Detector performance requires a	IRD-COOL-R01	TBC
	temperature < 290 mK (goal)	BDA-PER-02	
	delivered at the point of contact to		
	the BDA. Design value sensitivities		
	assume 300 mK at the detector.		
BDA-HCO-02	Detector performance requires	IRD-COOL-R05	TBC
	temperature stability at the point of		
	thermal control (near the evaporator)		
	of 10 uK/rtHz (TBC) from 0.1 – 10		
	Hz. This assumes that the BDA acts		
	as a 100 s thermal low-pass filter.		
BDA-HCO-03	Maximum allowed thermal drift at	IRD-COOL-R04	TBC
	the point of thermal control (near the		
	evaporator) is 0.1 mK/hr (TBC).		
	This assumes that the BDA acts as a		
	100 s thermal low-pass filter.		

3.3.2 Wiring Harness

Requirement ID	Description	Reference	
BDA-WIR-01	Wiring harness shall meet the	IIDB	TBC
	specifications described in the IIDB.		
BDA-WIR-02	Wiring harness shall have a	JPL	TBC
	mechanical resonant frequency		
	greater than 1kHz.		
BDA-WIR-03	The EMC from the wiring harness	JPL	TBC
	shall be < TBD.		

3.3.2 **DRCU**

3.3.2.1 Functional description

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9
Date: 17/04/01
Page: Page 26 of

Page: Page 26 of 32

The DRCU provides amplification and digitization of the bolometer signals. Starting from the bolometer end of the signal chain, the detector is AC-biased by the DRCU in series with 2 x 10 M Ω cryogenic load resistors. The differential AC bias provides stabilization of the JFETs and amplifiers by modulating the signal above the electronics 1/f knee. The AC bias also reduces the 1/f noise requirements on the JFET amplifiers, allowing them to operate at the small power dissipation required by the Herschel cryogenic system. The differential bolometer signals pass to low-noise Si JFET amplifiers mounted on the Herschel optical bench. The JFETs provide power amplification by reducing the output impedance for ~ 5 M Ω to ~5 k Ω . Electrical power for the JFETs is provided by the DRCU, in addition to a controllable heater for JFET startup and noise optimization. The differential output signals pass through the cryo-harness to the LIA input stage of the DRCU. The LIA stage amplifies the bolometer signals and performs synchronous demodulation with the bias reference. An offset signal is removed from the output of the LIA so that the signals can be digitized with a 16-bit A/D converter, and the signals are muiltiplexed.

The bias generator, LIA signal outputs, and power supplies interface with a digital second stage. The digital second stage commands the amplitude and frequency of the bias, and sets the voltages for the JFET power supplies. The signals from the LIA stage are digitized by the second stage synchonously with the bias. The digitized signals then pass to the DPU for digital processing and storage for telemetry.

The design of the DRCU is modular so that the instrument may be run in photometer or spectrometer mode, operating only the spectrometer or photometer pixels. In addition, in photometer mode the DRCU is capable of amplifying 3 thermometers for thermal control of the 300 mK stage. A control signal can be generated to control the 300 mK stage temperature by means of a heater at the stage or elsewhere in the refrigerator.

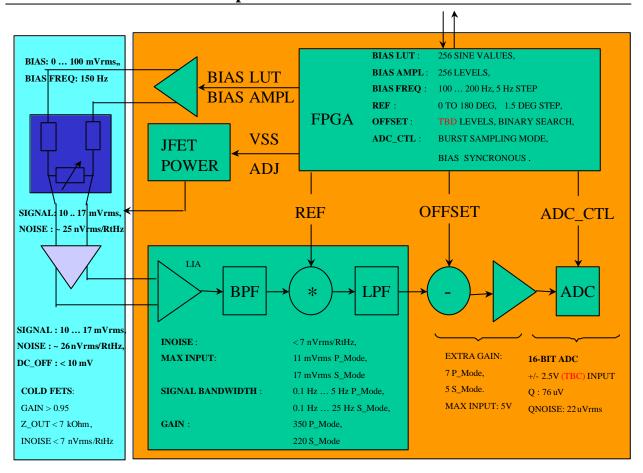
3.3.2.2 DRCU channel description

The detector subsystem requires the following channels:

Table 3-3-1 BDA Channel Description

Array	Opt. Pixels	Dark Pixels	Thermistors	5 MΩ Resistors
P/LW	43	2	2	1
P/MW	88	2	2	1
P/SW	139	2	2	1
S/LW	19	2	2	1
S/SW	37	2	2	1
T/C	0	0	3	0

3.3.2.3 Signal flow diagram



Detector Subsystem Specification Document Ref.: FIRS-SPI-PRJ-000103

Issue: 1.9

Date: 17/04/01

Page: Page 27 of 32

The design nominal and (peak of the load curve) signals are as follows:

Table 3-3-2 BDA Nominal Voltages (in mVrms)

Array	Opt. Pixels	Dark	Thermistors	Resistors	Bias Amp.
		Pixels			
P/LW	3.7 (4.6)	5.4 (5.6)	3.2	3.2	16
P/MW	4.2 (5.2)	6.1 (6.3)	3.6	3.6	18
P/SW	4.7 (5.8)	6.8 (7.1)	4.1	4.1	20
S/LW	7.6 (9.4)	10.9 (11.4)	6.5	6.5	33
S/SW	6.3 (7.8)	9.1 (9.5)	5.5	5.5	28
T/C			100.0		500

3.3.2.4 Noise budget

The design noise budget is as follows:

Table 3-3-3 Nominal Noise* Budget (in nK/ÖHz)

			0 \		,
	P/LW	P/MW	P/SW	S/LW	S/SW
Photon	21	25	29	25	29
Phonon	9	9	9	9	9
Johnson	7	7	7	7	7
Load resistor	2	2	2	2	2
JFET	7	7	7	7	7

Detector Subsystem Specification Document **Ref.:** FIRS-SPI-PRJ-000103

Issue: 1.9 **Date:** 17/04/01

Page: Page 28 of 32

LIA	6	6	6	6	6
A/D	4	4	4	3	3
Quad. Subtotal	26	29	33	29	33
Thermal ⁺	< 6	< 7	< 8	< 12	< 11
EMI/EMC	< 5	< 5	< 5	< 5	< 5
Microphonic	< 5	< 5	< 5	< 5	< 5
Quad. Total	< 27	< 31	< 35	< 32	< 35

^{*}Referred to the detector.

3.3.2.5 Thermistor channels

The temperature sensitivity to base plate temperature of the thermistors is given by $T_n = V_n$ (dT/dV), where dV/dT = $(-\alpha V/T)*(2R_L/(R_B+2R_L))$, and $V_n^2 = V_{n,amp}^2 + 4kTR_B(1+R_B/2R_L)$ The equivalent temperature sensitivity of a detector is given as $T_n = NEP/G_0$, where NEP includes all noise sources.

Table 3-3-4 Nominal Temperature Sensitivities in nK Hz^{1/2}

Array	Thermistor T _n	Detector T _n
P/LW	330	1200
P/MW	300	1200
P/SW	260	1200
S/LW	165	700
S/SW	195	900

3.3.2.6 DRCU Requirements

Requirement ID	Description	Reference	Subsystem Compliance
BDA-DRCU-01	The DRCU signal processing electronics shall have less than 7 nV/rtHz as seen post demodulation, after digitzation. Noise is referred to the input over the frequency range 0.05 to 25 Hz. This performance must be accomplished with a bias input signal to the DRCU of 10 mVrms AC, 5 mV DC, 1 V DC common-mode offset, with an input load of 7 kOhms.	JPL	TBD
BDA-DRCU-02	The input noise impedance shall be greater than 7 k Ω , post-demodulation, referred to the input over the frequency range of 0.1 to 10 Hz.	JPL	Requirement deleted
BDA-DRCU-03	Input capacitance to be less than 100 pF.	JPL	TBD

 $^{^{+}}T_{n} < 300 \text{ nK/VHz}$ at the detector.

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9

Date: 17/04/01

Page: Page 29 of 32

DD A DD CH OA		IDI	TD D
BDA-DRCU-04	Input impedance to be larger than 1	JPL	TBD
	ΜΩ.		
BDA-DRCU-05	The DRCU is to provide 5 BDA bias	JPL	TBD
	signals, adjustable from 0 to 200		
	mV _{rms} , and 1 bias signal for		
	temperature readout, adjustable from		
	$0 \text{ to } 500 \text{ mV}_{\text{rms}}$. The temperature		
	readout biases are to be divided from		
	a common oscillator. Each bias shall		
	be adjustable with 8-bit precision.		
	The frequency of each bias shall be		
	adjustable between 30 and 300 Hz,		
	with a precision of 5 Hz.		
BDA-DRCU-06	The DRCU will provide 15	JPL	TBD
BBN BREE 00	commandable JFET source voltages	31 L	TDD
	with 256 levels. The range of Vss is		
	from 0 V to –5 V.		
BDA-DRCU-07	Vdd is to be adjustable from 1.5 to 4	JPL	TBD
BDA-DRCU-07	5	Jr L	100
DDA DDCII 00	V.	IDI	TDD
BDA-DRCU-08	Vdd and Vss lines individually must	JPL	TBD
	source 1 mA to 5 mA. Noise on Vss		
	$< 1 \mu V/\sqrt{Hz}$, and noise on Vdd < 0.3		
	$\mu V/\sqrt{Hz}$ within modulated band (30		
	– 300 Hz).		
BDA-DRCU-09	Each of the 15 Vdd and Vss levels	JPL	TBD
	must be commandable ON/OFF for		
	spectrometer and photometer		
	independently, without overshoot.		
BDA-DRCU-10	The DRCU will provide 2 double-	JPL	TBD
	wired JFET heater lines with		
	adjustable amplitude and duration.		
	The supplies must be able to provide		
	5 V and 25 mA (photometer), 3 V		
	and 10 mA (spectrometer). Each		
	heater line is commandable ON/OFF.		
BDA-DRCU-11	The common-mode rejection is -60	JPL	TBD
	dB (30 – 300 Hz).	31 12	לענו
BDA-DRCU-12	The DRCU shall provide a dynamic	JPL	TBD
DDA-DRCU-12	range at the ADC sufficient to	J1 L	עמו
	maintain the noise performance of		
	the detectors under maximal signal		
	conditions. This is estimated to be		
DDA DDCII 12	16 ADC telemetry bits (TBC).	IDI	TDD.
BDA-DRCU-13	The signal bandwidth of the	JPL	TBD
	photometer channels shall be 0.03		
	Hz to 5 Hz.		
BDA-DRCU-14	The signal bandwidth of the	JPL	TBD
	spectrometer channels shall be 0.03		

Det Speci

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9

Date: 17/04/01

ntactor Subsystam	Date.	17701701
etector Subsystem	Page.	Page 30 of 32
cification Document	i age.	1 age 30 0132

	Hz to 25 Hz.		
BDA-DRCU-15	The sampling of the photometer	JPL	TBD
	channels shall be synchronised with		
	the bias, at a rate selectable between		
	v_{bias} to $v_{\text{bias}}/256$.		
BDA-DRCU-16	The sampling of the spectrometer	JPL	TBD
DDA-DRCU-10		JFL	IDD
	channels shall be synchronised with		
	the bias, at a rate selectable between		
	$v_{\rm bias}$ to $v_{\rm bias}/256$.		
BDA-DRCU-17	The DRCU shall provide 2	JPL	TBD
	adjustable power supplies for		
	temperature control using a heater		
	located at the 300 mK stage. This		
	supply must provide at least 300 mV		
	and 50 uA.		
BDA-DRCU-18	Noise performance BDA-DRCU-01	JPL	TBD
טאל-טאלרט-10	shall be maintained under bias range	J1 L	עעו
	50 – 300 Hz.		
BDA-DRCU-19		IDI	TDD
BDA-DRCU-19	DRCU noise performance (BDA-	JPL	TBD
	DRCU-01) to be maintained under a		
	warm electronics thermal drift of 1 K		
	/ hour (TBC).		
BDA-DRCU-20	Thermal requirements on bias	JPL	TBD
	stability are implicit in BDA-DRCU-		
	01.		
BDA-DRCU-21	Thermal requirement on JFET power	JPL	TBD
	is $dV/V < 500$ ppm / K for Vdd and		
	Vss.		
BDA-DRCU-22	The DRCU shall not saturate at an	JPL	TBD
DDN-DRCO-22	input voltage as large as 11 (TBC)	JI L	IDD
	mV _{rms} at input (photometer), 17		
	(TBC) mV_{rms} at input (spectrometer).		
	DRCU channels shall remain		
	functional if one input signal goes to		
	Vbias.		
BDA-DRCU-23	Specification on isolation of power	JPL	TBD
	supplies, ripple, noise, EMC TBD.		
	Specifications to flow from keeping		
	the electrical interference and		
	dissipation at the bolometer below		
	fundamental noise as in Table 3-3-3.		
BDA-DRCU-24	Bias, JFET power, and readout	JPL	TBD
DDA-DRCU-24	_	J1 L	עמו
	electronics for the spectrometer and		
	photometer arrays are to run from		
	separate dedicated power supplies,		
	with independent, isolated grounds.		
BDA-DRCU-25	The electrical cross-talk between	JPL	TBD
	channels in the DRCU shall be less		

Detector Subsystem Specification Document **Ref.:** FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9 **Date:** 17/04/01

Page: Page 31 of 32

|--|

3.3.2 Structures Specifications

Requirement ID	Description	Reference	Subsystem Compliance
BDA-STR-01	The structure interface shall provide compensation of the position and rotation of the BDA by TBD um in x and y, TBD um in z, and TBD degrees.	IRD-STRP-R03 IRD-STRS-R03	TBC
BDA-STR-02	The JFET modules will be housed in a JFET enclosure with a defined mechanical interface.	JPL	
BDA-STR-03	The BDA and JFET modules shall be housed in an RF-tight shield. All electrical, optical (TBC), and thermal penetrations into the shield will be RF blocked or attenuated. It shall be possible to electrically isolate the RF shield from the optical bench. The JFET modules form part of this RF shield. The defining point for electrical ground of the RF shield shall be at the 2 K boxes. The RF shield will attenuate radiated power by 40 dB (TBC) from 500 MHz to 10 GHz.	JPL	
BDA-STR-04	The wire-to-wire capacitance of the cables running from the BDA to the JFET modules will be < 50 pF (TBC), after mounting.	IRD-FPHR-R01	TBC
BDA-STR-05	The cables routed inside the structure shall be affixed to have a mechanical resonant frequency > 1 kHz (TBC).	IRD-FPHR-R02	TBC
BDA-STR-06	The radiated EMI onto the detectors shall be < TBD.	JPL	

3.4 Design and Manufacture Specification

Specification Description Requirement Compliant	
---	--

Detector Subsystem Specification Document **Ref.:** FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9

Date: 17/04/01 **Page:** Page 32 of 32

ID		Reference	
	BDA design		
BDA-DES-01	The P/SW array is to have 139 detectors	IRD-PHOT-R02	Yes
	operating at 250 um in a close-packed	IRD-DETP-R07	
	array of 2f\(\lambda\) feedhorns.		
BDA-DES-02	The P/MW array is to have 88 detectors	IRD-PHOT-R02	Yes
	operating at 350 um in a close-packed	IRD-DETP-R07	
	array of 2f\(\lambda\) feedhorns.		
BDA-DES-03	The P/LW array is to have 43 detectors	IRD-PHOT-R02	Yes
	operating at 500 um (TBC) in a close-	IRD-DETP-R07	
	packed array of 2fλ feedhorns.		
BDA-DES-04	The S/SW array is to have 37 (TBC)	IRD-SPEC-R04	Yes
	detectors operating between 200 and 300	IRD-DETS-R07	
	(TBC) um in a close-packed array of 2fλ		
	feedhorns at 250 um (TBC)		
BDA-DES-05	The P/LW array is to have 19 (TBC)	IRD-SPEC-R04	Yes
	detectors operating between 300 (TBC)	IRD-DETS-R07	
	um and 670 um in a close-packed array		
	of 2f\(\lambda\) feedhorns at 350 um (TBC).		
BDA-DES-06	The photometer and spectrometer arrays	JPL	
	shall be designed to accommodate		
	coincident pixels for maximum point		
	source sensitivity.		
BDA-DES-07	The BDA will accommodate cryogenic	JPL	
	load resistors for current bias.		
BDA-DES-08	The BDA will provide electrical		
	connector ports for ease of integration		
	into the instrument.		
BDA-DES-09	The BDA will incorporate a differential	JPL	
	design to minimize EMI/EMC and		
	microphonic susceptibility.		
BDA-DES-10	The BDA and JFET assemblies shall be		
	tested under a vibration level of 22 mm		
	amplitude $(5 - 24 \text{ Hz})$, 50 g amplitude		
	(24 – 100 Hz), 0.1 g amplitude (100 –		
	400 Hz) at a sweep rate of 2 oct/min. TBC.		
JFET-DES-01	JFET module design	JPL	
1LEI-DE9-01	JFET modules shall accommodate up to 24 differential channels.	JĽL	
JFET-DES-02	All JFET output lines will be RF filtered.	JPL	
JFET-DES-02 JFET-DES-03	Each JFET input connector will provide	JPL JPL	
11.51-059-03	2 detector bias signals.	JI L	
JFET-DES-04	Each JFET module will accommodate	JPL	
	cryogenic source resistors in order to	J1 12	
	minimise microphonics susceptibility.		
JFET-DES-05	The JFET unit shall incorporate a	JPL	
33	differential design to minimise		

Detector Subsystem Specification Document

Ref.: FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9 **Date:** 17/04/01

Page: Page 33 of 32

	EMI/EMC and microphonic susceptibility.		
JFET-DES-06	Two RF modules will be incorporated	JPL	
	into the JFET enclosure to filter detector		
	bias, JFET power, and JFET heater lines.		

3.5 Logistic Requirements

The bolometer arrays will be delivered in nitrogen purged boxes for storage. As the detector arrays are nearly sealed from dust and contamination by the focal plane assembly, we place no cleanliness requirement during handling and installation. We assume there will be no need to disassemble the BDA once delivered to QMW. If that need arises, members from JPL must be present. The JFET units must also not be opened, and shall be handled using standard ESD practices.

3.6 Environment Requirements

TBW.

3.6.1 Natural environment

TBW.

3.6.2 Operating Environment

TBW.

3.7 Verification Requirements

Before delivery to the SPIRE BDA; JFET modules and RF filter modules will undergo environmental and performance qualification and acceptance. Several of these tests (e.g. EMI/EMC, thermal stability and microphonics) can only provide useful information at a higher system level, and will not require component-level testing. The following table lists the environmental tests for model delivered:

Test:	CQM	PFM	FS
Vibration:	Q(TBC)	A	A
Thermal cycle:	D/Q	A	A
Vacuum cycle	D/Q	A	A
Lifetime:	D		-
Soak/cycle:	D (TBC)	-	-
Radiation tolerance:	D		-
Thermal range:	D	-	-
Thermal stability	Q (TBC)	A	A
(Instrument Level):			
Microphonics	Q	\mathbf{A}	A
(Instrument Level):			
Ionising radiation:	D	-	-
EMI (Instrument Level):	Q	A	A

Detector Subsystem Specification Document **Ref.:** FIRS-SPI-PRJ-000103

Issue: Draft 9

Issue: 1.9

Date: 17/04/01 **Page:** Page 34 of 32

EMC (Satellite Level): Q A A

Table 3-1: Test matrix for the BDA and JFET modules. Q indicates a test carried out at qualification level for qualification times; A indicates a test carried out at acceptance level; D indicates a qualification test carried out by design, including unit-level testing and engineering analysis. An X indicates that this test is carried out and is a characterisation type test or the level is irrelevant. A dash indicates that no test will be done on this model/unit.

Verification ID	Description	Reference
BDA-VER-01	To carry out the tests on the BDA QM listed in Table	IRD-VER-R01
	3-1.	IRD-VER-R03
BDA-VER-02	To carry out the tests on the BDA PFM listed in Table	IRD-VER-R01
	3-1.	IRD-VER-R04
BDA-VER-03	To carry out the tests on the BDA FS listed in Table 3-1.	IRD-VER-R01
		IRD-VER-R04

Detector Subsystem Specification Document **Ref.:** FIRS-SPI-PRJ-000103

Issue: 1.9
Date: 17/04/01
Page: Page 35 of 32

APPENDIX 1: QUALIFICATION TESTS DESCRIPTION

Vibration: The QM BDA will be vibrated at levels appropriate to its location within

the instrument, as defined in AD2.

Thermal-Vacuum

cycle: The BDA and JFET modules will undergo thermal vacuum tests.

According to standard JPL procedures, 3 times the number of lifetime thermal cycles will be imposed for qualification testing on representative units. For acceptance testing, the number of thermal cycles after delivery

from JPL will be incurred.

Lifetime: Lifetime tests to be carried out on all non-flight standard electrical

components; novel materials and novel manufacturing processes. Details

of tests to be determined on a case by case basis.

Soak/cycle: Electrical soak test to be carried out on JFET modules at operating

temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined.

Radiation tolerance: Radiation tests will be to 20 krad TID. Components may be qualifed by

analysis or independent testing.

Thermal range: Need to test to bakeout temperatures to ensure survival of the detector

subsystem units when the Herschel satellite is baked out.

Thermal stability: A test designed to ensure the verification of detector operation if the

interface temperature varies during operation. This may only be

applicable at instrument level.

Microphonics: Test to be performed at the systems level.

Ionising radiation: The effects on the detector performance of individual ionising radiation

impacts must be evaluated by modelling or tested for. This is <u>NOT</u> the same test as radiation tolerance, which only implies a total integrated dose. It is desirable that a high energy (>100 MeV) proton beam line is employed to carry out this test with a representative the detector cold and

Issue: Draft 9

active.

EMI: Test to be performed at the systems level.

EMC: Test to be performed at the systems level.

Materials conformance: All materials used in the manufacture will be approved for space use by

ESA.