

Herschel SPIRE Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 1 of 32

Herschel SPIRE

Detector Subsystem Specification Document

Document Ref.: SPIRE-JPL-PRJ-000456

Issue: <u>3.2</u>

Prepared by:

James Bock Gerald Lilienthal Bruce Swinyard Date: <u>7th January 2003</u>

Approved by:	
Bruce Swinyard, RAL, (SPIRE Instrument Scientis	st)
Signature:	Date:
Jamie Bock, JPL, (SPIRE Co-Investigator)	
Signature:	Date:
Jerry Lilienthal, JPL, (SPIRE Programme Element	Manager)
Signature:	Date:
Laurent Vigroux, SAp, (SPIRE Co-PI)	
Signature:	Date:

Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 3 of 32

Distribution List :

Cardiff	Matt Griffin	
	Peter Hargrave	
	Peter Ade	
ATC	Colin Cunningham	
RAL	Bruce Swinyard	
	Ken King	
	Eric Sawyer	
CEA-Sap	Jean-Louis Auguères	
	Christophe Cara	
JPL/Caltech	Jerry Lilienthal	
	Jamie Bock	
	Jerry Lilienthal	
	Viktor Hristov	
IFSI	Riccardo Cerulli-Irelli	
MSSL	Berend Winter	
CEA-SBT	Lionel Duband	
LAM	Dominique Pouliquen	

Ref.:SPIRE-JPL-
PRJ-000456ssue:3.2Data7.1

Detector Subsystem Specification Document

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 4 of 32

_	NTRODUCTION	7
1	PURPOSE OF THE DOCUMENT	7
1		
	2.1 Acronyms	
1	References	8
	3.1 Applicable Documents	8
	1.3.2 Reference Documents	
2	SUBSYSTEM DESCRIPTION	9
2	Design	10
-	2.1.1 Bolometer Detector Assembly	
	2.1.2 JFET Amplifier Modules	
	2.1.3 <i>RF Filter Modules</i>	
	2.1.4 JFET Box Mechanical Enclosure	
	2.1.5 JFET Box Interconnect Harness	
	2.1.6 Cold Interconnect Harness and Connectors	
	2.1.7 Detector Readout	
	2.1.8 Thermal Interconnects	
	2.1.9 Thermal Control Hardware	
	2.1.10 Cold Detector Simulator	
2	MISSION PROFILE	13
2	Product Tree	13
3	SPECIFICATION	14
		14
-		
3	FUNCTIONAL	14
3	FUNCTIONAL B.1.1 Performance Specification	14 <i>14</i>
3	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification	14 <i>14</i> <u>18</u>
_	FUNCTIONAL B.1.1 Performance Specification B.1.2 Functional Specification B.1.3 Technical Specification	14 <i>14</i> <u>18</u> <u>18</u>
	FUNCTIONAL B.1.1 Performance Specification B.1.2 Functional Specification B.1.3 Technical Specification B.1.3 Technical Specification COPERATIONAL SPECIFICATION Securit Comparison	14 <i>14</i> <u>18</u> <u>18</u> <u>19</u>
_	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 9.1.3 OPERATIONAL SPECIFICATION 8.2.1 Operational Safety	14 <i>14</i> <u>18</u> <u>18</u> <u>19</u> <u>19</u>
_	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 9.1.3 Technical Specification 9.2.1 Operational Safety 8.2.2 Reliability	14 <i>14</i> <u>18</u> <u>18</u> <u>19</u> <u>20</u>
3	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 9.1.3 Technical Specification 9.1.3 OPERATIONAL SPECIFICATION 8.2.1 Operational Safety 8.2.2 Reliability INTERFACE REQUIREMENTS	14 <i>14</i> <u>18</u> <u>18</u> <u>19</u> <u>19</u> <u>20</u> <u>20</u>
3	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 9.1.3 Technical Specification 9.1.4 Operational Specification 9.2.1 Operational Safety 8.2.2 Reliability INTERFACE REQUIREMENTS 3.1 ³ He Cooler	14 <i>14</i> <u>18</u> <u>19</u> <u>19</u> <u>20</u> <u>20</u> <u>20</u>
3	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 8.1.3 Technical Specification 9.1.4 OPERATIONAL SPECIFICATION 8.2.1 Operational Safety 8.2.2 Reliability INTERFACE REQUIREMENTS 3.1 ³ He Cooler 8.3.2 Wiring Harness	14 <i>14</i> <u>18</u> <u>19</u> <u>19</u> <u>20</u> <u>20</u> <u>21</u>
3	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 8.1.3 Technical Specification 8.1.4 Operational Specification 8.1.5 Reliability 8.2.1 Operational Safety 8.2.2 Reliability INTERFACE REQUIREMENTS 3.1 ³ He Cooler 8.3.2 Wiring Harness	14 14 <u>18</u> <u>19</u> <u>19</u> <u>20</u> <u>20</u> <u>21</u> <u>21</u>
3	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 8.1.3 Technical Specification 8.1.4 Operational Specification 8.1.5 Technical Specification 8.1.6 Operational Specification 8.2.1 Operational Safety 8.2.2 Reliability INTERFACE REQUIREMENTS 3.1 ³ He Cooler 8.3.2 Wiring Harness 8.3.3 FPU Structure Specifications	14 14 <u>18</u> <u>19</u> <u>19</u> <u>20</u> <u>20</u> <u>21</u> <u>21</u> <u>22</u>
3	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 8.1.3 Technical Specification 9.1.3 Technical Specification 9.1.4 Technical Specification 9.1.5 Technical Specification 9.1.6 Operational Safety 8.2.1 Operational Safety 8.2.2 Reliability 8.2.2 Reliability 8.2.3 FPU Structure Specifications 8.3.4 SPIRE Instrument Transmission Specification 8.3.5 SPIRE Instrument System Specifications 8.3.6 DRCU	14 14 <u>18</u> <u>19</u> <u>19</u> <u>20</u> <u>20</u> <u>21</u> <u>21</u> <u>22</u> <u>22</u> <u>23</u>
3	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 0.1.3 Technical Specification 0.1.3 Technical Specification 0.1.3 Technical Specification 0.1.3 Technical Specification 0.1.4 Technical Specification 0.1.5 Technical Specification 8.2.1 Operational Safety 8.2.2 Reliability 8.2.2 Reliability INTERFACE REQUIREMENTS 3.1 ³ He Cooler 8.3.2 Wiring Harness 8.3.3 FPU Structure Specifications 8.3.4 SPIRE Instrument Transmission Specification 8.3.5 SPIRE Instrument System Specifications 8.3.6 DRCU	14 14 <u>18</u> <u>19</u> <u>19</u> <u>20</u> <u>20</u> <u>21</u> <u>21</u> <u>22</u> <u>22</u> <u>23</u>
3	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 8.1.3 Technical Specification 9.1.3 Technical Specification 9.1.4 Technical Specification 9.1.5 Technical Specification 9.1.6 Operational Safety 8.2.1 Operational Safety 8.2.2 Reliability 8.2.2 Reliability 8.2.3 FPU Structure Specifications 8.3.4 SPIRE Instrument Transmission Specification 8.3.5 SPIRE Instrument System Specifications 8.3.6 DRCU	14 14 18 19 19 20 20 20 21 21 22 22 23 27
3	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 8.1.4 Operational Safety 8.2.7 Reliability 8.2.8 Reliability INTERFACE REQUIREMENTS Sale 8.3.1 ³ He Cooler 8.3.2 Wiring Harness 8.3.3 FPU Structure Specifications 8.3.4 SPIRE Instrument Transmission Specifications 8.3.5 SPIRE Instrument System Specifications 8.3.6 DRCU DESIGN AND MANUFACTURE SPECIFICATION 8.4.1 Feedhorn and Array Backshort Parameters 8.4.2 Array Layout	14 14 18 19 <u>19</u> <u>20</u> <u>20</u> <u>21</u> <u>21</u> <u>22</u> <u>22</u> <u>23</u> <u>30</u> <u>31</u>
	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 8.1.3 Technical Specification 9.1.3 Technical Specification 8.1.4 Technical Specification 9.1.5 Technical Specification 8.1.6 Operational Safety 8.2.7 Reliability 8.2.8 Reliability INTERFACE REQUIREMENTS Solution 8.3.1 ³ He Cooler 8.3.2 Wiring Harness 8.3.3 FPU Structure Specifications 8.3.4 SPIRE Instrument Transmission Specification 8.3.5 SPIRE Instrument System Specifications 8.3.6 DRCU DESIGN AND MANUFACTURE SPECIFICATION 8.4.1 Feedhorn and Array Backshort Parameters 8.4.2 Array Layout LOGISTIC REQUIREMENTS	14 14 18 19 19 20 20 20 20 21 21 21 22 22 23 31 31
	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 9.1.3 Technical Specification 9.1.3 Technical Specification 9.1.4 Technical Specification 9.1.5 Technical Specification 9.2.1 Operational Safety 8.2.2 Reliability 8.2.2 Reliability INTERFACE REQUIREMENTS 3.1 ³ He Cooler 8.3.2 Wiring Harness 8.3.3 FPU Structure Specifications 8.3.4 SPIRE Instrument Transmission Specification 8.3.5 SPIRE Instrument System Specifications 8.3.6 DRCU DESIGN AND MANUFACTURE SPECIFICATION 8.4.1 Feedhorn and Array Backshort Parameters 8.4.2 Array Layout LOGISTIC REQUIREMENTS ENVIRONMENT REQUIREMENTS	14 14 18 19 19 20 20 20 20 21 21 22 22 22 23 31 31 31
	FUNCTIONAL 8.1.1 Performance Specification 8.1.2 Functional Specification 8.1.3 Technical Specification 9.1.3 Technical Specification 9.1.3 Technical Specification 9.1.4 Technical Specification 9.1.5 Technical Specification 9.2.1 Operational Safety 8.2.2 Reliability 8.2.2 Reliability INTERFACE REQUIREMENTS 3.1 ³ He Cooler 8.3.2 Wiring Harness 8.3.3 FPU Structure Specifications 8.3.4 SPIRE Instrument Transmission Specification 8.3.5 SPIRE Instrument System Specifications 8.3.6 DRCU DESIGN AND MANUFACTURE SPECIFICATION 8.4.1 Feedhorn and Array Backshort Parameters 8.4.2 Array Layout LOGISTIC REQUIREMENTS ENVIRONMENT REQUIREMENTS	14 14 18 19 19 20 20 20 20 21 21 22 22 22 23 31 31 31

Herschel SPIRE Detector Subsystem

Specification Document

Document Status Sheet:

Issue	Document Title: Herschel SPIRE Detect Revision	Date Reason for Change	
1.1		16 June 2000	
1.2	Made into spec for all units of detector subsystem and compatible with IRD	4 July 2000	
1.3	Combine comments from Bruce and Jamie, redefine terminology.	10 July 2000	
1.4	Further finessing.	17 July 2000	
1.5	Include CRR RFA.	2 August 2000	
1.6	Change wording in section 3.1.	3 August 2000	
1.7	Changes to DRCU specifications in response to detector meeting.	1 March 2001	
1.8	Change to DRCU specifications, detector specifications sections.	2 April 2001	
1.9	Add section 2.4	17 April 2001	
2.0	Moved Rec/Dels (section 2.4) to BA. DRCU specs revised with CEA input. Updated ADs and RDs.	20 June 2001	
3.0	Various minor revisions and additions to requirements. Feedhorn and bolometer specifications updated. Vibration level specifications updated.	6 Sept. 2001	Comprehensive update prior to NASA CDR and start of CQM hardware manufacture.
3.1	Added reference to technical note on detector arrangements Electronics specifications reviewed by CEA/JPL/RAL at detector closeout meeting on 6 November 2001 Changes to specification as detailed in change sheet	19 Feb 2002	Tidying up sections edited at closeout meeting on 6 November 2001 This version will be issued for the IBDR
<u>3.2</u>	Updated as per HR-SP-RAL-ECR-042 and HR-SP-RAL-043	7 January 2003	See ECRs and change notice below

This document is now under configuration and change control. The following is a list of TBCs in Issue 3.0 which are to be closed out before manufacture of the relevant parts of the BDA hardware.

BDA-WIR-01	Harness definition document compatibility
BDA-STR-01	BDA interface plate movement compensation
BDA-STR-05	Maximum movement of BDA under mechanical failure
BDA-ITR-02	300-mK filter interface
Section 3.4.1	Feedhorn waveguide diameters
Section 3.4.2	Array pixel layout

Issue 3.1 closed all TBCs above.

Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 6 of 32

Document Major Change Record:

Document Title: Herschel SPIRE Detector Subsystem Specification Document			
Documen	Document Reference Number: SPIRE-JPL-PRJ-000456		
Document Issue/Revision Number: 3.1			
Section	Reason For Change		
3.3.2.6	DRCU requirements table updated to incorporate changes agreed at Nov. 2001 Detector		
	Summit meeting		
3.4.1	Detailed changes to feedhorn specifications in change request HR-SP-JPL-ECR-001		
1.3.2	Replace technical note in RD9 with controlled ICD		
3.1.1	JFET-PER-01 – Change from minimum performance of 10 to 15 nV/rt(Hz)		
3.1.3	JFET-TEC-05 - Clarification of compliance – only at noise given by JFET-PER-01 minimum		
	performance		

Documen	t Title: Herschel SPIRE Detector Subsystem Specification Document
Documen	t Reference Number: SPIRE-JPL-PRJ-000456
Documen	t Issue/Revision Number: 3.2
Section	Reason For Change
<u>3.1.1</u>	Detailed changes to noise values to reflect double side band de-modulation BDA-PER-02 and
	<u>Table 3-1-1 – see HR-SP-RAL-043</u>
<u>3.1.1</u>	Detailed changes to optical efficiency numbers (BDA-PER-03; BDA-PER-04 and BDA-
	PER-05) to reflect latest measurements see HR-SP-RAL-042
<u>3.1.2</u>	Move BDA-FUN-04 to section 3.1.1 to reflect status as performance requirement.
<u>3.1.3</u>	Add note on temperature at which JFETS will be optimised
3.2.1	BDA-SAF-06 is deleted
3.3.2.5	Temperature sensitivities in table 3-3-4 updated to reflect increased white noise as per HR-SP-
	<u>RAL-043</u>
<u>3.3.2.6</u>	Add new requirement on DC offset BDA-DRCU-27
<u>3.3.5</u>	Add two new requirements BDA-ISY-03 and 04 to reflect number of thermal cycles andneed
	for inspection on receipt of hardware
<u>3.4</u>	Note on waiver against vibration levels added
<u>3.4.1</u>	Detailed changes to backshort distances

Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 7 of 32

1 Introduction

1.1 Purpose of the document

This specification defines the requirements applied to the performance, design, qualification, and interfaces of the SPIRE detector subsystem. It is applicable to the STM, the CQM, the PFM and the FS as described in this document.

1.2 Acronyms and Abbreviations

1.2.1 Acronyms

Acronym	Meaning
AD	Architectural Design
ATP	Acceptance Test Plan
AVM	Avionic Model
BDA	Bolometric Detector Assembly
CPP	Common parts Procurement
CQM	Cryogenic Qualification Model
DCU	Detector Control Unit
DDD	Detailed Design Document
DQE	Detective Quantum Efficiency
DRCU	Detector Control and Readout Unit
EMC	ElectroMagnetic Compatibility
EMI	ElectroMagnetic Interference
ESA	European Space Agency
FIRST	Far InfraRed and Submillimeter Telescope
FPS	Focal Plane Structure (mechanical housing)
FPU	Focal Plane Unit
FS	Flight Spare
IBDR	Instrument Baseline Design Review
ICD	Interface Control Document
ICDR	Instrument Critical Design Review
IRD	Instrument Requirements Document
ISVR	Instrument Science Verification Review
JFET	Junction Field Effect Transistor
JPL	Jet Propulsion Laboratory
NA	Not Applicable
NEP	Noise Equivalent Power
LIA	Lock-In Amplifier
PA	Product Assurance
PFM	Proto Flight Model
SPIRE	Spectral and Photometric Imaging REceiver
STM	Structural Thermal Model
TBC	To Be Confirmed
TBD	To Be Defined
TBW	To Be Written

Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 8 of 32

1.3 References

1.3.1 Applicable Documents

Document Reference	Name	Number/version/date
AD1	SPIRE Instrument Requirements Document	SPIRE-RAL-PRJ-000034
		Issue 1.0, 23 Nov. 2000
AD2	ICD Structure – Mechanical I/F	SPIRE-MSS-PRJ-000617 Issue 1
		April 2001

1.3.2 Reference Documents

Document	Name	Number/version/date	
Reference			
RD1	SPIRE A Bolometer Instrument for FIRST	SPIRE-RAL-PRJ-000020	
	(The SPIRE proposal to ESA)		
	The SPIRE Consortium		
RD2	SPIRE Harness Definition Document	SPIRE-RAL-PRJ-000608	
RD3	JPL Environmental Requirements Document	JPL-D-19155	
RD4	JPL Test Plan	JPL-D-20549	
RD5	Detector Subsystem Interface Control Document	JPL-D-21995	
RD6	Herschel-SPIRE Business Agreement: Provision of	SPIRE-UCF-PRJ-000822	
	Hardware for the Detector Subsystem of Herschel-SPIRE	September 6 2001	
RD7	BDA, JFET, and RF Module Shipping, Handling and	JPL-D-**** (TBD by JPL)	
	Integration Procedures		
RD8	SPIRE Filter Specifications Document	SPIRE-CDF-PRJ-000454	
RD9	BDA Mechanical Interface Drawing	Drawing No. 10209721	

Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 9 of 32

2 Subsystem Description

The SPIRE instrument is designed to observe astronomical sources in the 200 to 670 μ m waveband. To accomplish this it will use bolometric detector arrays based on silicon nitride "spider web" absorbers with NTD germanium thermistors. The detectors will have feedhorn focal plane optics to efficiently couple the radiation from the SPIRE optics onto the bolometers.

The detector sub-system for SPIRE contains five Bolometric Detector Assemblies (BDAs) – three for the SPIRE photometer and two for the spectrometer:

- P/LW Long wavelength photometer array
- $P/MW \ Medium \ wavelength \ photometer \ array$
- P/SW Short wavelength photometer array
- $S/LW \quad \ Long \ wavelength \ spectrometer \ array$
- $S/SW \quad \ Short \ wavelength \ spectrometer \ array$

These arrays are cooled to an operating temperature of close to 300 mK by means of thermal straps to a ³He sorption cooler. Electrical cables connect the BDAs to the JFET readout modules. As the JFET box is located outside of the 4 K structure, the cables must be routed through the 2 K and 4 K structure and out to the JFET modules. A mechanical interface defines the mounting of JFET modules into the JFET housing. The electrical outputs from the JFET modules connect to a wiring harness that leads from the optical bench to hermetic connectors at the wall of the Herschel cryostat, and then to the SPIRE warm electronics units. Electrical signals from the JFETs are amplified and conditioned by the Detector Control Unit (DCU), which is a sub-unit of the Detector Readout and Control Unit (DRCU). A block diagram of the SPIRE detector sub-system is shown in Figure 2.1, indicating those units which are the subject of this specification document. A block diagram of the SPIRE instrument is shown in figure 2.2 to indicate the relationship between the detector subsystem and the other sub-systems within the instrument. A description of the detector technology may be found in Turner *et al.*, 2001, *Applied Optics*, **40**, 4291, 2001.

Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 10 of 32

Figure 2-1: Block diagram of the SPIRE detector sub-system. The units that are indicated in underlined bold text belong to the detector subsystem and are the subject of this specification document.

2.1 Design

2.1.1 Bolometer Detector Assembly

The BDA is designed to accommodate a focal plane array of bolometric detectors operating at a temperature of close to 300 mK. The detectors couple to the cold optics of the SPIRE instrument via an array of feedhorns mounted in front of the detector array. The feedhorns concentrate sub-millimeter radiation onto the detectors, and define the detector field of view. A band-defining sub-millimeter filter is located over the feedhorn apertures at 300 mK. The focal plane array is mechanically supported and

	Ref.:	SPIRE-JPL-
Herschel SPIRE		PRJ-000456
Hersener of the	Issue:	3.2
Detector Subsystem		<u>7 Jan 2003</u>
Specification Document	Page:	Page 11 of 32

thermally isolated from the 2-K environment by a low-conductivity kevlar suspension system. The kevlar suspension must meet the tight thermal and mechanical requirements of the SPIRE instrument. The focal plane arrays are cooled to close to 300 mK by means of thermal straps to the ³He sorption cooler which attach to the BDAs at a defined location. A flange at 2 K provides the mechanical interface for the BDA to mount onto the 2-K structure.

The bolometric detectors are addressed by cryogenic readout cables, routed from the 300 mK focal plane array to the bottom 2-K surface. The 2-K surface serves to enclose the back end of the focal plane array from straylight. Connectors will be located at the 2-K surface to allow for ready integration into the instrument.

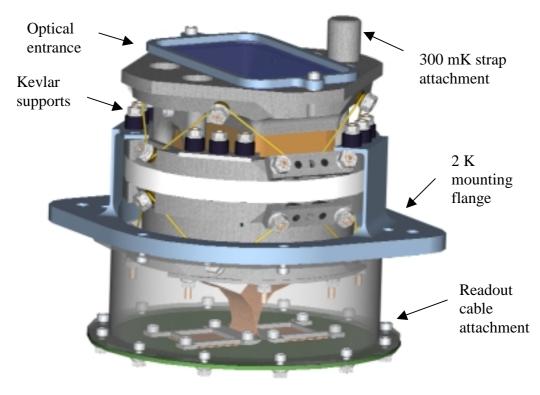


Figure 2-2: Schematic BDA Mechanical Design (Note: this diagram is somewhat out of date but representative of the essential features of the BDA.)

2.1.2 JFET Amplifier Modules

The detector signals are power amplified by cryogenic JFET modules located at the Herschel cryostat Level-2 temperature – nominally between 9 and 15 K. These modules house 24 dual JFETs that meet the tight thermal dissipation and noise specifications of the SPIRE instrument. The JFET modules are mounted into a housing at a mechanical interface defined by a mounting flange and connector interface. The JFET module is designed to attenuate thermal radiation from the 120-K JFETs by means of a light wall. Passive RF filter components located on circuit boards inside the module housing provide RF attenuation coming from the output cables. Output connectors interface to the cryogenic wiring harness going to the CVV connectors and then the warm electronics.

2.1.3 **RF Filter Modules**

In addition to the JFET modules there will also need to be passive RF filter modules present on all power; bias and heater lines entering the JFET Box. These will be housed in modules similar in design to the JFET modules but with only passive components. All subsystem wiring entering the FPU enclosure will

also require RF filtering. These modules will be identical to those used in the JFET box and will be provided as part of the Detector Subsystem.

2.1.4 JFET Box Mechanical Enclosure

The JFET modules and RF filter modules will be mounted on the Herschel optical bench in a mechanical enclosure close to the SPIRE FPU structure. This enclosure will interface to directly to the Herschel cryostat Level-2 temperature stage – at about 10 K – and will also provide a mechanical interface between the SPIRE FPU structure and the JFET modules through which the cold interconnect harness can be supported.

2.1.5 JFET Box Interconnect Harness

Any connections between the RF filter modules and the JFET modules in the JFET box will be made by use of a dedicated internal harness. This harness will be isothermal and can therefore be implemented in standard copper wire technology.

2.1.6 Cold Interconnect Harness and Connectors

Readout wires for each detector are fanned out at the focal plane array and wire bonded to a load resistor module located inside the BDA at 300 mK. The signal lines then connect to lithographed kapton cables connected to an alumina fanout located at the 2-K surface at the bottom of the BDA. Connectors located at the 2-K surface allow for ready mounting and demounting of the BDA. Low-conductivity cables connect the outputs of the BDA to the JFET modules, and run from the 2-K structure to the 4-K structure to the JFET modules. Intervening connectors are required to allow for integration of the cables into the instrument. The outputs of the JFET modules pass through RF filters and connect to the wiring harness. Detector bias, JFET power, and JFET heater power pass through separate, redundant RF filters and connect on a backplane connector into each JFET module. Separating these lines simplifies the wiring harness and reduces electrical cross talk.

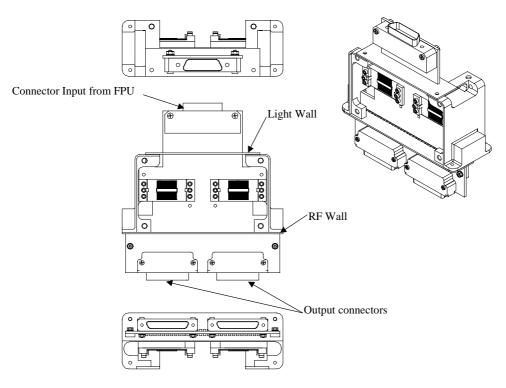


Figure 2-3: Schematic mechanical design of 2 JFET modules

Detector Subsystem Specification Document

 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 13 of 32

2.1.7 Detector Readout

The BDA arrays are read out using an AC bias and demodulation supplied by the warm DRCU (see Fig. 2-4). The AC bias modulates the signal at 50 - 300 Hz, above the 1/f knee of the JFET amplifiers and readout electronics. This relaxes the noise requirements on the JFETs, which could not be met at the audio frequencies of the detectors at the power dissipations allowed. Each BDA receives an independent bias. The warm electronics also supply power and heater lines for the JFET modules. Because the bias and JFET power lines represent single-point failures for many detectors, they are designed to be redundant.

2.1.8 Thermal Interconnects

The BDAs are mounted on the 2-K instrument structure up to 50 cm from the cold tip of the ³He cooler. This necessitates the use of thermal straps between the cooler and the BDAs. These are considered part of the SPIRE structure for the purposes of subsystem definition. However, there does need to be a connection made between the thermal straps and the BDAs. The hardware associated with this connection (a copper mounting point) is part of the detector sub-system.

2.1.9 Thermal Control Hardware

If the ³He cooler can meet the requirements placed on it in this document, there should be no need to have active control of the detector temperature. However, if, following the development phase of the instrument, there is a requirement for active control of the detector temperature, then the cold hardware for this will be provided as part of the detector sub-system. The cold hardware will consist of NTD germanium thermistors in a bridge arrangement and resistive heaters.

2.1.10 Cold Detector Simulator

The cryoharness to be provided by ESA for the Herschel cryostat, and the one to be provided for the AIV cryostat, will need to be tested to ensure that they are compatible with the requirements of the detector subsystem. To allow this, a cold detector simulator will be built that will have the same electrical (noise, impedance etc.) characteristics as the detector subsystems as seen by the cryoharness. This will most likely consist of resistors in one or more JFET module housing(s) that will have the same noise and impedance characteristics when cold and the same interface to the cryoharness. The Structural Thermal Model of the JFET modules may be used for this unit.

2.2 Mission Profile

The proto-flight model of the detector subsystem units will be designed to permit 2 years of storage on ground at room temperature in the appropriate environmental conditions (as specified in RD3), 3 years use (in vacuo, cold) on the ground, and 4.5 years in orbit.

2.3 Product Tree

The instrument models define the functionality of the hardware delivered by JPL. The STM model of the instrument will be used to characterise the thermal and mechanical performance, and to verify the electrical properties of the cold harnesses. The hardware required must therefore be thermally and mechanically representative. In addition, a full electrical harness is required, and the BDAs and JFETs must provide electrical equivalents for verification of the cryo-harnesses. JPL will supply one suspended BDA for testing in the STM FPU.

The CQM instrument is used to verify the optical and electrical performance of the instrument, and to determine potential problems with interference of various sub-systems. One operational photometer BDA with associated JFETs is deemed sufficient to characterise operation of the photometer, and two spectrometer BDAs with associated JFETs are deemed sufficient to characterise operation of the

	Ref.:	SPIRE-JPL-
Herschel SPIRE		PRJ-000456
increased of incl	Issue:	3.2
Detector Subsystem	Date:	<u>7 Jan 2003</u>
Specification Document	Page:	Page 14 of 32

spectrometer. Temperature control will not be implemented in the CQM instrument, although data collected may indicate the need to implement temperature control in the PFM and FS instruments.

The PFM and FS instruments are to be fully operational. The FS instrument will incorporate CQM hardware delivered by JPL. A full tabulation of the delivered and received hardware and documentation is found in the Business Agreement.

3 Specification

3.1 Functional

The functional requirements on the arrays are divided into three categories: minimum performance, achieved performance to date, and design value.

Minimum performance values are quoted for information, and are based on achieved or design values with margin. Performance levels that have been achieved to date are also indicated for information. The design values approach, and are generally compliant with, the performance levels defined in the Instrument Requirements Document. For this issue of the specification document there is insufficient data on whether the design values will be met in the course of the flight model build programme. A margin will be held on all mass, thermal and power budgets at the level of the instrument as a system. If any of the required performances are not met by the flight model units the consequences will be evaluated against the impact on the performance of the instrument as a whole and extra resources allocated or the instrument specification adjusted to reflect the new situation.

Specification	Description	Requirement	Minimum	Achieved	Design
ID		Reference	Performance	to Date	Value
BDA-PER-01	Maximum number of bad	IRD-DETP-R04	11 (P/LW)	10 % on	4 (P/LW)
	detectors in each BDA	IRD-DETS-R04	22 (P/MW)	array only	9 (P/MW)
			35 (P/SW)		14 (P/SW)
			5 (S/LW)		2 (S/LW)
			9 (S/SW)		4 (S/SW)
BDA-PER-02	The ratio of photon NEP due to	IRD-DETP-R01	<u>0.46 P/LW</u>	-	<u>0.55 P/LW</u>
	radiation absorbed by the		<u>0.53 P/MW</u>	0.70 (P/MW)	<u>0.63 P/MW</u>
	detector and total NEP, given as		<u>0.59 P/SW</u>	-	<u>0.70 P/SW</u>
	(NEPphoton/NEPtotal) ²		<u>0.50 S/LW</u>	-	<u>0.60 S/LW</u>
			<u>0.59 S/SW</u>	-	<u>0.71 S/SW</u>
	NEP includes all sources of				
	noise at 1 Hz, measured at 300			(10 nV/√Hz	
	mK, assuming a total readout			amplifier	
	noise of 10 nV/ \sqrt{Hz} and the			noise).	
	values in Table 3-1-2.				
BDA-PER-03	The optical efficiency of the	IRD-DETP-R01	0. <u>6</u> 5	<u>0.8±0.1</u>	0.85
	BDA horn and bolometer				
	assembly for the photometer				
	arrays at the centre of the				
	bandpass assuming λ^2				
	throughput and a beam filling				
	source				
BDA-PER-04	The optical efficiency of the	IRD-DETS-R01	-	-	0.7
	short wavelength spectrometer	IRD-DETS-R08			
	horn arrays and bolometer				
	assembly at 250 µm assuming				

3.1.1 Performance Specification

Ref.: SPIRE-JPL-PRJ-000456

Detector Subsystem Specification Document
 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 15 of 32

	~P	ation Docume		<u>ge.</u> <u>1 age</u> 15	
	$\frac{2\lambda^2}{\text{throughputand a beam}}$				
	using an optical filter with a width of 15% of the central				
	wavelength				
BDA-PER-05	The optical efficiency of the	IRD-DETS-R01	-	<u>0.7±0.1</u>	0.7
	long wavelength spectrometer horn arrays and bolometer	IRD-DETS-R08			
	assembly at 350 μ m assuming				
	$3\lambda^2$ throughput and a beam				
	filling source and measured				
	using an optical filter with a width of 15% of the central				
	wavelength				
BDA-PER-06	The photometer detector time	IRD-DETP-R02	32 ms	(C _{300mK} =	18 ms (P/LW)
	constant (based on a maximum			1pJ/K)	13 ms (P/MW)
BDA-PER-07	modulation frequency of 2 Hz) The spectrometer detector time	IRD-DETS-R02	14 ms (S/LW)	$(C_{300mK} = 1)$	11 ms (P/SW) 4.2 ms (S/LW)
BDA-FER-0/	constant (based on a maximum	IKD-DE13-K02	8 ms (S/SW)	$(C_{300mK} - 1)$ pJ/K)	4.2 ms (S/LW) 4.2 ms (S/SW)
	signal frequency of 20 Hz).			F/	
BDA-PER-08	The uniformity of the calibrated	IRD-DETP-R03	0.99	0.99	0.99
BDA-PER-09	responsivity. Detector cross-talk.	IRD-DETS-R03 IRD-DETP-R05	< 5 % nearest	< 1 % nearest	1 % nearest
BDA-FER-09	Detector cross-tark.	IRD-DETP-R06	neighbors	neighbors	neighbors
		IRD-DETS-R05	U		-
		IRD-DETS-R06		< 0.1 % non-	0.1% non-
				nearest neighbors	nearest neighbors
BDA-PER-10	The 1/f knee frequency		0.1 Hz	0.03 Hz	0.03 Hz
	(frequency at which total noise is $\sqrt{2}$ larger than white level).				
BDA-PER-11	The detectors shall be designed	JPL			2.5 (P/LW)
	for optimal performance under				3.3 (P/MW)
	the following levels of absorbed power (pW).				4.1 (P/SW) 10.6 (S/LW)
	power (pw).				10.8 (S/SW)
BDA-PER-12	The detectors and readout				
	electronics shall be designed to				
	function under a radiation background a factor of two				
	lower or a factor of 5 higher				
	than the nominal values				
DDA DED 12	assumed in BDA-PER-11	DAI			(105.11)
BDA-PER-13	The positional repeatability of the focal plane structure shall be	RAL	=	Ξ.	<u><125 μm</u> <u>orthogonal</u>
	$\leq 125 \mu\text{m}$ orthogonal to the				$\leq 500 \mu m$
	optical axis, and $< 500 \ \mu m$				along axis
	along the optical axis. The				< <u><0.5 degree</u>
	$\frac{\text{rotational repeatability around}}{\text{the optical axis shall be } < 0.5}$				rotation
	deg.				

Specification ID	Description	Requirement Reference	Minimum Performance	Achieved To Date	Design Value
JFET-PER-01	Median noise of JFET module over $100 - 300 \text{ Hz} (\text{nV}/\sqrt{\text{Hz}})$	IRD-FTB-R01	15	7.0	7.0

Detector Subsystem Specification Document Ref.: SPIRE-JPL-PRJ-000456 Issue: 3.2

Date: <u>7 Jan 2003</u> **Page:** Page 16 of 32

JFET-PER-02	Maximum number of bad JFET	IRD-DETP-R04	11 (P/LW)	4 (P/LW)
	pairs corresponding to each	IRD-DETS-R04	`` '	9 (P/MW)
	BDA		35 (P/SW)	14 (P/SW)
			5 (S/LW)	2 (S/LW)
			9 (S/SW)	4 (S/SW)

Notes:

BDA-PER-01: A "bad detector" is here defined as one that does not achieve, at the BDA output, performance compatible with the minimum performance values for BDA-PER-2 to 10.

JFET-PER-02: A "bad JFET pair" is here defined as one that does not achieve, at the JFET output, a noise level of less than the minimum performance level.

BDA-PER-01 and JFET-PER-02: The minimum performance requirement on yield are quoted individually above for both the BDAs and JFETs. This is designed to ensure an overall yield of at least 0.75 for the system at the JFET outputs. As long as this is achieved, the JFET and BDA yield do not *both* need to be at or above their minimum performance yields.

BDA-PER-02: The bolometer performance estimation assumes the following nominal photon NEPs (W/\sqrt{Hz}) referred to power absorbed at the detector:

P/LW:	4.6 x 10 ⁻¹⁷
P/MW:	$6.3 \ge 10^{-17}$
P/SW:	8.2×10^{-17}
S/LW:	10.5 x 10 ⁻¹⁷
S/SW:	13.6 x 10 ⁻¹⁷

BDA-PER-02 and BDA-PER-11: The optical loading and photon NEP assume the following nominal optical efficiencies of the bolometer and feedhorn combinations:

 P/LW
 0.65

 P/MW
 0.65

 P/SW
 0.65

 S/LW
 0.65

 S/SW
 0.70

BDA-PER-11: The values of optical loading are based on the SPIRE instrument sensitivity models, and incorporate the following assumptions:

(i) the thermal background from the telescope corresponds to a temperature of 80 K and an emissivity of 4%;

(ii) the total power loading on the detectors is dominated by the telescope, with a negligible contribution from the instrument itself;

(iii) the spectral passbands are defined by a combination of BDA waveguide cut-off and submillimetre filters resulting in a negligible contribution to the background and the NEP from out-of band radiation.

The second two assumptions are seen as reliable, but the first is not, because of large uncertainties in the telescope background. Should the actual power levels on the detectors be different to the nominal values, the all detector specifications might not be met simultaneously (for instance, speed of response and sensitivity).

Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 17 of 32

1

Table 3-1-1	Summary	y of Detecto	or Design V	Values

			,			
Quantity	Units	P/LW	P/MW	P/SW	S/LW	S/SW
Q	pW	2.5	3.3	4.1	10.6	10.8
NEP _{blip}	E-17 W/√Hz	4.6	6.3	8.2	10.5	13.6
NEP _{tot}	E-17 W/√Hz	<u>6.2</u>	<u>7.9</u>	<u>9.8</u>	<u>13.6</u>	<u>16.1</u>
τ	ms	18	13	11	4.2	4.2
G_0	pW/K	40	53	66	170	170
V_{bol}	mV _{rms}	3.3	3.8	4.3	6.8	6.8
S_{dc}	E8 V/W	4.7	4.1	3.6	2.3	2.2

Summary of Common Detector Design Values

Quantity	Value	Units
R_0	180	Ω
Δ	41.8	K
T _{bol}	0.39	K
R _{bol}	5.8	MΩ
Z/R	0.4	

Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 18 of 32

3.1.2 Functional Specification

Specification ID	Description	Requirement Reference	Compliant
BDA-FUN-01	The photometer angular response shall be defined by a straight- walled conical feedhorn.	IRD-DETP-R07	Yes
BDA-FUN-02	The spectrometer angular response shall be defined by a multi- mode feedhorn.	IRD-DETS-R07	Yes
BDA-FUN-03	The spectral long-wavelength cutoff determined by the feedhorn output waveguide aperture will be $670 \ \mu m$.	IRD-DETP-R08 IRD-DETS-R08	Yes
BDA-FUN-04	Deleted v3.2 – moved to performance requirement BDA-PER- 13		

Specification ID	Description	Requirement Reference	Compliant
JFET-FUN-01	The JFET module will mount to the Herschel optical bench, dissipating power at the Level-2 stage of the cryostat.	IRD-FTB-R07 IRD-FTB-R05	Yes
JFET-FUN-02	The RF filters will operate without power dissipation	IRD-RFM-R03	Yes
JFET-FUN-03	The JFET modules must be capable of functioning, without necessarily meeting noise specifications, over a temperature range from 4 K to 300 K	IRD-FTB-R06	Yes
JFET-FUN-04	The JFET module and RF filters will operate from a base temperature between $4 - 20$ K.	IRD-FTB-R08	Yes

3.1.3 Technical Specification

Note: For all budgetary resource values (mass; thermal dissipation; temperature) the instrument will hold a margin against the design value – 20% unless indicated otherwise. Where the minimum performance value is below the margin (BDA-TEC-06, JFET-TEC-05), a system level analysis will be conducted to investigate the effect of increasing the resource allocations to the minimum performance values indicated here. A future release of this document will reflect updated resource allocations and minimum performance levels.

Specification ID	Description	Requirement Reference	Compliant
BDA-TEC-01	The BDA shall accommodate a defined mechanical interface to the 2 K structure.	IRD-DETS-R08 IRD-DETP-R14 IRD-STRP-R01	Yes
BDA-TEC-02	The BDA shall provide an attachment point and/or a thermal interconnect to a 300 mK thermal strap.	IRD-STRP-R01	Yes
BDA-TEC-03	The BDA mass will have a design value of 600 gm averaged over 5 detector arrays, including output connectors.	IRD-SUBS-03	Yes
BDA-TEC-04	The first resonant frequency of the BDA will be > 200 Hz, with a goal of > 250 Hz.	IRD-DETP-R15 IRD-DETS-R16	Yes
BDA-TEC-05	The mechanical envelope of the BDA will be described by the <i>Detector Subsystem Interface Control Document</i> [RD5].	IRD-DETP-R12 IRD-DETS-R13	N/A
BDA-TEC-06	The total power load on the 300 mK cooler from the BDAs will be $< 15 \ \mu$ W (minimum performance); $< 8 \ \mu$ W (design value). This assumes the focal plane mount is held at 1.7 K.	IRD-DETP-R13	Minimum Value not compliant. Design Value is compliant.

Detector Subsystem Specification Document

 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 19 of 32

BDA-TEC-07	The power allocated for temperature control of the ³ He stage is	N/A
	2 μW.	

Specification ID	Description	Requirement Reference	Compliant
JFET-TEC-01	The 48-channel JFET modules will have a mass less than 305 g each.	IRD-SUBS-R03	Yes
JFET-TEC-02	The mechanical envelope of the JFETs and RF filters will be described by the <i>BDA Interface Control Document</i> [RD5].	IRD-FTB-R04	N/A
JFET-TEC-03	The RF filters are to provide –40 dB attenuation from 500 MHz to 3 GHz (minimum), -60 dB attenuation from 500 MHz to 10 GHz (goal).	IRD-FTB-R02 IRD-RFM-R01	Yes
JFET-TEC-04	The first resonant frequency of a JFET module will be > 200 Hz, with a goal of > 250 Hz.	IRD-FTB-R09	Yes
JFET-TEC-05	The maximum allowed total JFET power dissipation for photometer mode (all three arrays operating) is 42 mW. The design value for JFET module dissipation is 7 mW per 48- channel module. Some JFET modules for the 250 μm array may be switched off in operation if necessary to keep within the maximum allowed power limit. The 250 μm array layout and wiring will be configured to allow contiguous portions of the array to be switched off 24 detectors at a time. Note <u>s</u> : The design of JFET rack and cryoharness are to be examined to see if base temperature of the rack can be increased above that of the optical bench, reducing the dissipation for a given JFET temperature. <u>CQM and PFM JFET units will be optimised for operation at a JFET temperature T ~ 120 K.</u> Thermal dissipation of fully functional CQM JFET units may be as large as 11 mW per module to meet minimum noise performance specification	IRD-FTB-R05	Yes at 15 nV/rt(Hz)
JFET-TEC-06	The RF filter modules will have a mass less than 165 g each.	IRD-SUBS-R03	Yes

3.2 Operational Specification

3.2.1 Operational Safety

Specification	Description	Requirement	Compliant
ID		Reference	
BDA-SAF-01	Failure of a BDA or JFET module, or one of its components, as tabulated in BDA-SAF-03 to 06, shall not affect the health of any other subsystem, the instrument, or the interface with the satellite.	IRD-SAFE-R07	Yes
BDA-SAF-02	Any on-ground failure of a component of a BDA or JFET module will result in the entire module being removed and either replaced or refurbished at JPL at module level.	IRD-SAFE-R08	Yes
BDA-SAF-03	Separate sets of 2 x 3 overlapping photometer pixels that are to		Yes

Ref.:Herschel SPIREDetector SubsystemIssue:Detector SubsystemDate:Specification DocumentPage:

 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 20 of 32

	be used for chopped point source observations shall not be served by the same 24-channel JFET membrane.		
	The particular pixel set to be designated as the redundant set will be specified by the SPIRE Project.		
BDA-SAF-04	Any in-flight failure of any component of a BDA or JFET module shall not damage any redundant or backup component designed to replace that component. The only redundant hardware related to the BDA are bias and power wiring, RF filter modules, and back-up modules for the warm electronics.		Yes
BDA-SAF-05	The power supplies to each individual JFET 24-channel membrane shall be commandable ON/OFF (see BDA-DRCU- 06)	IRD-SAFE-R07	Yes
BDA-SAF-06	<u>Deleted v3.2 – reflects removal of snubbers from design</u>		

3.2.2 Reliability

Specification	Description	Requirement	Compliant
ID		Reference	
BDA-REL-01	Failure of a BDA and a JFET module shall not lead to the total	IRD-REL-R01	Yes
	loss of instrument operations, as tabulated in BDA-SAF-03 to		
	04.		
BDA-REL-02	Observations can continue in degraded mode in the event of	IRD-REL-R02	Yes
	failure of the cold beam steering mirror.		
BDA-REL-03	Point source observations can continue in degraded mode in the	IRD-REL-R02	Yes
	event of misalignment of the photometer or spectrometer BDAs.		
BDA-REL-04	Single-point failures in the detector and JFET wiring (detector	IRD-REL-R03	Yes
	bias, JFET power) are to be duplicated. The RF filter modules		
	on these lines will also be redundant.		
BDA-REL-05	BDA temperature stabilisation shall be implemented by an	IRD-REL-R04	Yes
	interruptible software-driven control loop.	IRD-REL-R05	

3.3 Interface Requirements

3.3.1 ³He Cooler

Requirement ID	Description	Reference	Compliant
BDA-HCO-01	Design values of detector performance requires a	IRD-COOL-R01	Yes
	temperature < 290 mK at the point of contact to the	BDA-PER-02	Design compliant.
	BDA. Design value sensitivities assume 300 mK at		To be confirmed by
	the detector.		instrument-level
			testing of the CQM.
BDA-HCO-02	Design values of detector performance require	IRD-COOL-R05	Compliance to be
	temperature stability at the point of thermal control	BDA-PER-10	verified by
	(near the evaporator) of $10 \mu\text{K}/\sqrt{\text{Hz}}$ from $0.1 - 10$		instrument-level
	Hz. This assumes that the BDA acts as a 100-s		testing of the CQM.
	thermal low-pass filter.		
BDA-HCO-03	Maximum allowed thermal drift at the point of	IRD-COOL-R04	Compliance to be
	thermal control (near the evaporator) is 1 mK/hr. This	BDA-PER-10	verified by
	assumes that the BDA acts as a 100 s thermal low-	BDA-HCO-02	instrument-level
	pass filter.		testing of the CQM.

Notes:

Performance of the ³He cooler will be measured with the detectors during CQM-level testing. If the thermal performance does not satisfy BDA-PER-10, temperature control of the evaporator stage must be implemented on the PFM and FS instrument models.

3.3.2 Wiring Harness

Requirement ID	Description	Reference	Compliant
BDA-WIR-01	The wiring harnesses supplied by JPL shall meet the specifications described in the <i>SPIRE Harness Definition Document</i> (RD2).	RD2	Yes
BDA-WIR-02	The signal-wire-to-signal-wire capacitance of the cables running from the BDA to the JFET modules (including connector contribution) will be < 50 pF, after mounting.	IRD- FPHR-R01	Yes

3.3.3 FPU Structure Specifications

Requirement ID	Description	Reference	Compliant
BDA-STR-01	The structure interface shall provide compensation of the position and rotation of the BDA by up to ± 0.5 mm in x, y, and z, and ± 1 degrees	IRD-STRP-R03 IRD-STRS-R03	Yes
BDA-STR-02	The JFET modules will be housed in a JFET enclosure with a defined mechanical interface.	JPL	Yes
BDA-STR-03	The BDAs and JFETs shall be housed in an RF-tight shield. The JFET modules form part of this RF shield. All electrical, and thermal penetrations into the shield will be RF blocked or attenuated.	BDA-ISY-01	Compliance to be verified by CQM instrument- level testing.
	The instrument optical aperture shall be designed to be compatible with the inclusion of a wire mesh RF filter should it prove necessary to minimise RF disturbance at the detectors.		
	It shall be possible to electrically isolate the RF shield from the Herschel optical bench.		
	The defining point for electrical ground of the RF shield shall be at the BDAs (either at the 2-K or 300-mK level, TBD).		
BDA-STR-04	The wiring harness shall have a mechanical resonant frequency greater than 1 kHz when secured in the FPU.	JPL	Design: TBC by JPL and MSSL.
BDA-STR-05	The structure in the vicinity of the BDAs shall make allowance for possible movement of the 300-mK suspended mass under mechanical failure of the BDA as follows: 1.5 mm in any direction.	BDA-SAF-06	Yes

Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 22 of 32

3.3.4 SPIRE Instrument Transmission Specification

Requirement ID	Description	Reference	Compliant
BDA-ITR-01	The filter stack shall provide definition of the short wavelength cutoff as described in Table 3-4-1.	JPL	Yes
BDA-ITR-02	The filters incorporated into the BDAs shall conform to the mechanical envelope described in RD5.	JPL	Yes
	Filters delivered to JPL shall have been subjected to thermal cycle tests and bakeout at qualification levels.		
BDA-ITR-03	Filters in the SPIRE FPU, in combination with the waveguide filters within the BDAs, shall attenuate out-of-band radiation such that out-of-band power and photon noise are insignificant (< 10%) in comparison to in-band power and photon noise.	JPL	Yes
	Here "out-of-band" is taken to mean more than 10% outside the relevant edge (defined at 10% transmission as in RD 8).		
BDA-ITR-04	In band radiation incident on the detectors from the SPIRE instrument over the 200 - 670 μ m range shall be < 10% of that from the telescope.	JPL	Yes TBC by instrument level testing
BDA-ITR-05	The optical efficiency of the SPIRE instrument shall be consistent with the requirements defined in AD1.		Yes TBC by instrument level testing

3.3.5 SPIRE Instrument System Specifications

Requirement	Description	Reference	Compliant
ID			
BDA-ISY-01	The dissipated RF power at the detectors, arising from external	JPL	TBC by
	sources on the spacecraft that propagate to the bolometers by		instrument
	radiation (EMI) or conduction, shall contribute $< 1E-17 \text{ W/VHz}$		-level
	noise to the bolometers (< 5 nV/ $\sqrt{\text{Hz}}$ equivalent detector noise		testing
	post-demodulation).		
	EMI-induced current at the bolometers shall be < 1 pA rms		
BDA-ISY-02	The signal from microphonics (including both voltage and	JPL	TBC by
	thermal response), arising from external sources on the		instrument
	spacecraft, shall contribute $< 1E-17 \text{ W/}\sqrt{\text{Hz}}$ noise to the		-level
	bolometers (< 5 nV/ \sqrt{Hz} over a > 25-Hz band around a chosen		testing
	bias frequency within the allowed range of 50 and 300 Hz).		
	For the third and fifth harmonics of the bias frequency, the noise		
	specification is higher by factors of 3 and 5, respectively).		
	Note: a system study is to be carried out to verify the need for		
	this requirement on the harmonics.		
BDA-ISY-03	The nominal number of thermal cycles of the JPL	<u>JPL</u>	<u>TBC</u>
	hardware in the PFM instrument is 7 and the total		
	number of cycles in the PFM instrument shall not		
	exceed 15.		
BDA-ISY-04	An agreed inspection of JPL hardware shall be	JPL	Yes
	carried out upon receipt in Europe. JPL will provide		

	Herschel SPIRE	Ref.:	SPIRE-JPL- PRJ-000456
	Detector Subsystem	<u>Issue:</u> Date:	<u>3.2</u> 7 Jan 2003
	Specification Document		Page 23 of 32
this procedure			

Notes:

BDA-ISY-01 and BDA-ISY-02: These are requirements which must be met to ensure that the inherent sensitivity of the bolometers is not degraded by exrtaneous sources of noise. They apply to the <u>complete</u> <u>system</u>, including the BDA units themselves and the JPL-supplied wiring harness. It is recognised that achieving them will require joint effort by the JPL and SPIRE Project teams.

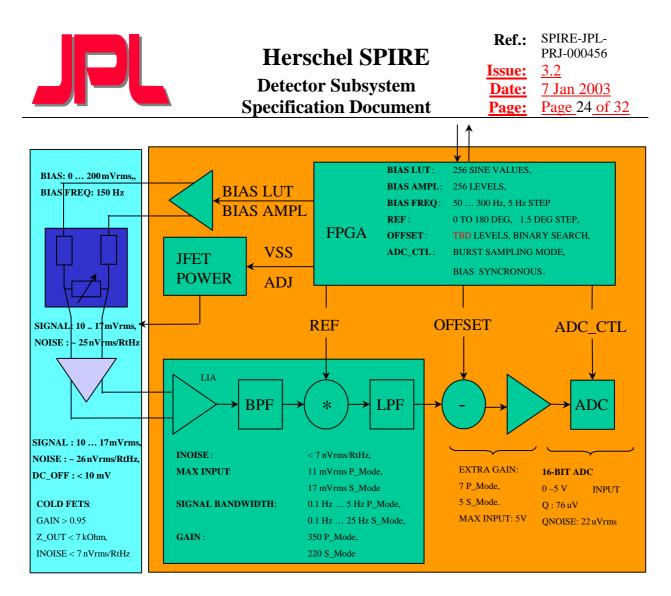
3.3.6 DRCU

3.3.2.1 Functional description

The DRCU provides amplification and digitization of the bolometer signals. Starting from the bolometer end of the signal chain, the detector is AC-biased by the DRCU in series with 2 x 10 M Ω cryogenic load resistors. The differential AC bias provides stabilization of the JFETs and amplifiers by modulating the signal above the electronics 1/f knee. The AC bias also reduces the 1/f noise requirements on the JFET amplifiers, allowing them to operate at the small power dissipation required by the Herschel cryogenic system. The differential bolometer signals pass to low-noise Si JFET amplifiers mounted on the Herschel optical bench. The JFETs provide power amplification by reducing the output impedance for ~ 5 M Ω to ~5 k Ω . Electrical power for the JFETs is provided by the DRCU, in addition to a controllable heater for JFET startup and noise optimization. The differential output signals pass through the cryo-harness to the LIA input stage of the DRCU. The LIA stage amplifies the bolometer signals and performs synchronous demodulation with the bias reference. An offset signal is removed from the output of the LIA so that the signals can be digitized with a 16-bit A/D converter, and the signals are muiltiplexed.

The bias generator, LIA signal outputs, and power supplies interface with a digital second stage. The digital second stage commands the amplitude and frequency of the bias, and sets the voltages for the JFET power supplies. The signals from the LIA stage are digitized by the second stage synchonously with the bias. The digitized signals then pass to the DPU for digital processing and storage for telemetry.

The design of the DRCU is modular so that the instrument may be run in photometer or spectrometer mode, operating only the spectrometer or photometer pixels. In addition, in photometer mode the DRCU is capable of amplifying 3 thermometers for thermal control of the 300 mK stage. A control signal can be generated to control the 300 mK stage temperature by means of a heater at the stage or elsewhere in the refrigerator.


3.3.2.2 DRCU channel description

The detector subsystem requires the following channels:

	Tuble 5 5 T DDA Channel Description				
Array	Opt. Pixels	Dark Pixels	Thermistors	5 MΩ Resistors	
P/LW	43	2	2	1	
P/MW	88	2	2	1	
P/SW	139	2	2	1	
S/LW	19	2	2	1	
S/SW	37	2	2	1	
T/C	0	0	3	0	

Table 3-3-1 BDA Channel Description

3.3.2.3 Signal flow diagram

The design nominal and (peak of the load curve) signals are as follows:

Detector Subsystem Specification Document

SPIRE-JPL-Ref.: PRJ-000456 Issue: 3.2 Date: 7 Jan 2003 Page 25_of 32 Page:

Table 3-3-2	BDA Nominal	Voltages (in	n mV rms)

Array	Opt. Pixels	Dark Pixels	Thermistors	Resistors	Bias Amp.				
P/LW	3.3 (4.1)	4.8 (5.0)	3.0	3.0	15				
P/MW	3.8 (4.7)	5.5 (5.8)	3.4	3.4	17				
P/SW	4.3 (5.3)	6.1 (6.4)	3.8	3.8	19				
S/LW	7.6 (9.4)	10.9 (11.4)	6.5	6.5	33				
S/SW	6.3 (7.8)	9.1 (9.5)	5.5	5.5	28				
T/C			100.0		500				

3.3.2.4 Noise budget

The design noise budget is as follows

Table 3-3-3 Nominal Noise [*] Budget (in nV/√Hz)							
	P/LW	P/MW	P/SW	S/LW	S/SW		
Photon	21	26	30	24	30		
Phonon	9	9	9	9	9		
Johnson	7	7	7	7	7		
Load resistor	2	2	2	2	2		
JFET	7	7	7	7	7		
LIA	6	6	6	6	6		
A/D	4	4	4	3	3		
Quad. Subtotal	26	30	33	28	34		
Thermal ⁺	< 6	< 6	< 7	< 11	< 11		
EMI/EMC	< 5	< 5	< 5	< 5	< 5		
Microphonic	< 5	< 5	< 5	< 5	< 5		
Bias lines	< 4	< 4	< 4	< 4	< 4		
Quad. Total	< 28	< 32	< 35	< 31	< 37		

*Referred to the detector at DC and prior to demodulation. $^{+}T_n < 300 \text{ nK}/\sqrt{\text{Hz}}$ at the detector.

3.3.2.5 Thermistor channels

The temperature sensitivity to base plate temperature of the thermistors is given by $T_n = V_n (dT/dV)$, where $dV/dT = (-\alpha V/T)^*(2R_L/(R_B+2R_L))$, and $V_n^2 = V_{n,amp}^2 + 4kTR_B(1 + R_B/2R_L)$ The equivalent temperature sensitivity of a detector is given as $T_n = NEP/G_0$, where NEP includes all noise sources.

J-J-4 1 (011111)	ai i cinperature de	month vitteo in mis
Array	Thermistor T _n	Detector T _n
P/LW	<u>510</u>	<u>1550</u>
P/MW	<u>440</u>	<u>1490</u>
P/SW	<u>400</u>	<u>1480</u>
S/LW	<u>235</u>	<u>800</u>
S/SW	275	<u>950</u>

Table 3-3-4 Nominal Temperature Sensitivities in nK Hz^{-1/2}

3.3.2.6 DRCU Requirements

Requirement	Description	Reference	Compliant
ID			
BDA-DRCU-01	The DRCU signal processing electronics shall have less than 7	JPL	Yes
	nV/\sqrt{Hz} as seen post demodulation, after digitzation. Noise is		
	referred to the input over the frequency range 0.05 to 25 Hz.		
	This performance must be accomplished with a bias input		
	signal to the DRCU of 10 mVrms AC, 5 mV DC, 1 V DC		

Ref.: SPIRE-JPL-PRJ-000456

Detector Subsystem Specification Document

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 26 of 32

	Specification Document		
	common-mode offset, with an input load of 7 k Ω . Thermal		
	requirements on bias stability are implicit in this requirement.	IDI	
BDA-DRCU-02	Requirement deleted	JPL	N7 (
BDA-DRCU-03	Input capacitance to be less than 100 pF, measured from the	JPL	Yes (may be verified
	DRCU DxMA connector pins without the harness.		by design)
BDA-DRCU-04	Input impedance to be $\geq 1 \text{ M}\Omega$ from 50 – 300 Hz.	JPL	Yes (may
DDM DRCC 04	$\frac{1}{1000} = \frac{1}{1000} = 1$	JIL	be verified
			by design)
BDA-DRCU-05	The DRCU shall provide 5 BDA bias signals, adjustable from	JPL	Yes
	0 to 200 mV _{rms} , and 1 bias signal for temperature readout,		
	adjustable from 0 to 500 mV _{rms} . The temperature readout		
	biases are to be divided from a common oscillator. Each bias		
	shall be adjustable with 8-bit precision. The frequency of		
	each bias shall be adjustable between 50 and 300 Hz, with a		
	precision of 5 Hz.		
	Voltage noise on the bias lines, within the modulated band (50		TBC by
	-300 Hz), measured at the DRCU DxMA connector, shall be		SAp
	$< 20 \text{ nV}/\sqrt{\text{Hz}}$		Brip
BDA-DRCU-06	The DRCU shall provide 15 commandable JFET source	JPL	Yes
	voltages with 256 levels. The range of Vss is from 0 V to -5		
	V.		
BDA-DRCU-07	Vdd shall be adjustable from 1.5 to 4 V.	JPL	Yes
BDA-DRCU-08	Vdd and Vss lines individually must source 1 mA to 5 mA.	JPL	Yes
	Noise on Vss < 1 μ V/ \sqrt{Hz} , and noise on Vdd < 0.3 μ V/ \sqrt{Hz}		
	within modulated band $(50 - 300 \text{ Hz})$, measured at the DRCU		
	DxMA connector.		
BDA-DRCU-09	Each of the 15 Vdd and Vss supplies must be commandable	JPL	Yes
	ON/OFF for spectrometer and photometer independently, without overshoot. Each Vdd and Vss pair are turned on and		
	off together.		
BDA-DRCU-10	The DRCU will provide 2 double-wired JFET heater lines	JPL	Yes
	with adjustable amplitude and duration. The supplies must be		
	able to provide 5 V and 25 mA (photometer), 3 V and 10 mA		
	(spectrometer). Each heater line is commandable ON/OFF,		
	with a minimum duration of 10 s.		
BDA-DRCU-11	The common-mode rejection ratio shall be better than -60 dB	JPL	Yes
DDA DDGU 10	(50 – 300 Hz).	IDI	X 7
BDA-DRCU-12	The DRCU shall provide a dynamic range at the ADC	JPL	Yes
	sufficient to maintain the noise performance of the detectors under maximal signal conditions as defined below in BDA-		
	DRCU-22.		
BDA-DRCU-13	The signal bandwidth of the photometer channels shall be 0.03	JPL	Yes
	Hz to 5 Hz. The 5 Hz cutoff should have a precision of 1 %.		
BDA-DRCU-14	The signal bandwidth of the spectrometer channels shall be	JPL	Yes
	DC to 25 Hz. The 25 Hz cutoff shall have a precision of 1 %		
	or better.		
BDA-DRCU-15	The sampling of the photometer channels shall be	JPL	Yes
	synchronised with the bias, at a rate selectable between $v_{\text{bias}}/2$		
DD 4 55 555	to $v_{\text{bias}}/256$.		
BDA-DRCU-16	The sampling of the spectrometer channels shall be	JPL	Yes
	synchronised with the bias, at a rate selectable between $v_{bias}/2$		
DDA DDOU 17	to v _{bias} /256.		TDD 1
BDA-DRCU-17	The DRCU shall provide 2 adjustable power supplies for temperature control using a heater located at the 300 mK	JPL	TBD by SAp
	stage. This supply must provide a maximum of 300 mV and		зАр
	suge. This suppry must provide a maximum of 500 m v and		

Ref.: SPIRE-JPL-PRJ-000456

Detector Subsystem Specification Document
 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 27 of 32

	Specification Document	<u>I age.</u> <u>I age </u> 2	<u> </u>
	$50 \mu\text{A}$, to be adjustable with (TBD by JPL) precision, and have a stability of (TBD by JPL).		
BDA-DRCU-18	Noise performance BDA-DRCU-01 shall be maintained under bias range 100 – 300 Hz.	JPL	Yes
BDA-DRCU-19	DRCU noise performance (BDA-DRCU-01) to be maintained under a warm electronics thermal drift of 1 K/hour (TBC).	JPL	Yes
BDA-DRCU-20	This requirement has been deleted and replaced by an appropriate note in BDA-DRCU-01	N/A	N/A
BDA-DRCU-21	The requirement on JFET power supply voltage stability is $dV/V < 500$ ppm hr ⁻¹ for Vdd and Vss under a warm electronics thermal drift of 1 K hr ⁻¹ at the feet of the DCU box.	JPL BDA-DRCU-01	TBD by SAp
BDA-DRCU-22	The DRCU shall not saturate at an input voltage as large as 11 mV_{rms} at input (photometer), 17 mV_{rms} at input (spectrometer). DRCU channels shall remain functional if one input signal goes to Vbias.	JPL	Yes
BDA-DRCU-23	The conducted RF current on all lines connecting to the bolometers or JFETS, originating in the DRCU, shall be less than 0.1 nA rms (TBC by JPL/RAL/SAp) over a frequency range of 0 - 10 GHz. (This assumes an attenuation of 40 dB by the RF filters).	JPL BDA-ISY-01	To be verified by instrument test
BDA-DRCU-24	Bias, JFET power, and readout electronics for the spectrometer and photometer arrays are to run from separate dedicated power supplies, with independent, isolated grounds.	JPL	TBD by SAp/RAL
BDA-DRCU-25	The electrical cross-talk, over the detector signal frequency band, between channels in the DRCU shall be less than 0.05 %. The electrical cross-talk shall be verified by varying the input signal on one channel and measuring the response in other channels. The input signal level to each channel must be representative.	JPL	Yes
BDA-DRCU-26	Each signal input to the LIA module must be connected to ground by a diode. This provides both protection and allows the JFETs to turn on without the JFET heater.	JPL	Yes
BDA-DRCU-27	The maximum allowed JFET DC offset at operating temperature is to be 15 mV for CQM JFET modules, and 15 mV or 11 mV (TBD) for PFM and FS JFET modules. The design of the DCU shall accommodate these offsets	JPL	Yes

3.4 Design and Manufacture Specification

Specification ID	Description	Requirement Reference	Compliant
	BDA design		
BDA-DES-01	The P/SW array is to have 139 detectors operating over a band centred on 250 μ m with $\lambda/\Delta\lambda = 3$, in a close-packed array of 2F λ feedhorns.	IRD-PHOT-R02 IRD-DETP-R07	Yes
BDA-DES-02	The P/MW array is to have 88 detectors operating over a band centred on 350 μ m with $\lambda/\Delta\lambda = 3$, in a close-packed array of 2F λ feedhorns.	IRD-PHOT-R02 IRD-DETP-R07	Yes
BDA-DES-03	The P/LW array is to have 43 detectors operating over a band centred on 500 μ m with $\lambda/\Delta\lambda = 3$, in a close-packed array of 2F λ feedhorns.	IRD-PHOT-R02 IRD-DETP-R07	Yes
BDA-DES-04	The S/SW array is to have 37 detectors for FTS spectroscopy between 200 and 325 μ m in a close-packed array of feedhorns with dimensions as given in Table 3-4-1.	IRD-SPEC-R04 IRD-DETS-R07	Yes

Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 28 of 32

	Specification Document	Page: Page 2	0 <u>0132</u>
BDA-DES-05	The S/LW array is to have 19 detectors for FTS spectroscopy	IRD-SPEC-R04	Yes
	between 315 μ m and 670 μ m in a close-packed array of	IRD-DETS-R07	
	feedhorns with dimensions as given in Table 3-4-1.		
BDA-DES-06	For all sets of detectors which are designed to overlap on the sky,	RAL	Yes
	the internal relative alignment of the corresponding feedhorn		TBC by
	centres in the three photometer arrays or two spectrometer arrays		JPL
	shall be $\pm 40 \mu\text{m}$ (corresponding to a co-alignment accuracy of 10.5^{22} or the alm)		
	± 0.5 " on the sky).		
	"Internal relative alignment" here is defined as the alignment of		
	the detectors wrt each other when the respective BDAs are		
	optimally co-aligned at their mechanical interfaces in a manner		
	consistent with BDA-STR-01.		
BDA-DES-07	The BDA will accommodate cryogenic load resistors for current	JPL	Yes
	bias.		
BDA-DES-08	The BDA will provide electrical connector ports for ease of	JPL	Yes
	integration into the instrument.	IDI	
BDA-DES-09	The BDA will incorporate a differential readout scheme and	JPL	Yes
	harness design to minimize EMI/EMC and microphonic susceptibility.		
BDA-DES-10	The BDA assemblies shall be sine vibration tested at a	AD2	Yes
50A-0E3-10	temperature T < 90 K under the following qualification levels:	AD2	105
	temperature i (90 if ander the fono wing quantication ie (ets).		
	a vibration input level at the base of 60 g between 5-100 Hz, or		
	11-mm amplitude at the base, whichever is less severe, at a		
	sweep rate of 2 oct/min. Acceptance sweep rate is 4 oct/min. and		
	acceptance amplitude is lower by 1.5.		
	The BDA assemblies shall be random vibration tested at a		
	temperature $T < 90$ K under the following qualification levels:		
	The input spectrum for the BDA in any direction is: * $0.8 \text{ s}^{2}/\text{Hz}$ between 100 and 200 Hz		
	* 0.8 g ² /Hz between 100 and 300 Hz * Ramp-up between 20 and 100 Hz at +6 dB/oct		
	* Ramp-down between 300 and 2000 Hz at -6 dB/oct		
	The input to the BDA is allowed to be notched at resonance to a		
	level equal in g rms to 100 g for the suspended mass, taking into		
	account a 4-sigma variation of the measured rms signal, in order		
	not to exceed a quasi-static equivalent loading of the BDA of		
	100 g. The notch width at full depth should not exceed $1/3$		
	octave band-width, with a ramp-up and ramp down of 10 db per		
	octave.		
	If JPL experience major problems in maintaining the 100-g limit		
	while keeping within the notching scheme as defined above, then		
	the spectrum shall be revised by mutual agreement between JPL		
	and the Project Team.		
	Notes:		
	1. It is possible, but not certain, that the above levels may be		
	relaxed in the future taking into account the responses of		
	individual BDAs.		
	2. Acceptance levels are a factor of 2.25 (g^2/Hz) or 1.5 (g-rms)		
	lower than qualification levels. Accordingly, for acceptance		
	tests, the notched random vibration spectrum shall be such as not		
	to exceed a quasi-static load of $100/(1.5) = 67$ g.		

Ref.: SPIRE-JPL-PRJ-000456

Detector Subsystem Specification Document
 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 29 of 32

	Speemeuton Document	<u>1 4901</u> <u>1 490</u>	
	3. Duration of tests: 120 seconds per axis qualification; 60		
BDA-DES-11	seconds per axis acceptance. The BDA and JFET assemblies shall not exceed a temperature of 80 C and duration longer than a combined 300 total hours during	JPL	Yes TBC by
	bakeout testing at component, instrument and spacecraft level.		RAL
	Note that a change in the maximum temperature in this requirement would result in a change in the duration.		
	JFET module design		
JFET-DES-01	JFET modules shall accommodate up to 48 differential channels.	JPL	Yes
JFET-DES-02	All JFET output lines will be RF filtered.	JPL	Yes
JFET-DES-03	Each JFET input connector will provide 2 detector bias signals.	JPL	Yes
JFET-DES-04	Each JFET module will accommodate cryogenic source resistors in order to minimize microphonics susceptibility.	JPL	Yes
JFET-DES-05	The JFET unit shall incorporate a differential design to minimise	JPL	Yes
	EMI/EMC and microphonic susceptibility.	IDI	NZ
JFET-DES-06	RF modules will be incorporated into the JFET enclosures to filter detector bias, JFET power, and JFET heater lines.	JPL	Yes
JFET-DES-07	The JFET assemblies shall be sine vibration tested at a	AD2	Yes
	temperature T < 90 K under the following qualification levels:		
	X-axis: a vibration input level at the base of 20 g between 5-40		
	Hz, or 11-mm amplitude at the base, whichever is less severe, and 10 g between 40-100 Hz, at a sweep rate of 2 oct/min.		
	Acceptance sweep rate is 4 oct/min. and acceptance amplitude is		
	lower by 1.5.		
	Y and Z-axes: a vibration input level at the base of 14 g between 5-100 Hz, or 11-mm amplitude at the base, whichever is less		
	severe, at a sweep rate of 2 oct/min. Acceptance sweep rate is 4		
	oct/min. and acceptance amplitude is lower by 1.5.		
	The JFET assemblies shall be random vibration tested at a temperature $T < 90$ K under the following qualification levels:		
	The input spectrum for the JFET in any direction is: * 0.6 g ² /Hz between 200 and 600 Hz * Ramp-up between 20 and 200 Hz at +6 dB/oct		
	* Ramp-down between 600 and 2000 Hz at -6 dB/oct		
	Notes:		
	1. Acceptance levels are a factor of 2.25 (g^2/Hz) or 1.5 (g-rms) lower than qualification levels.		
	2. Duration of tests: 120 seconds qualification; 60 seconds acceptance.		
	3. Should the above specification pose major problems for the JFET module design, the spectrum and/or the JFET rack design will be revised by JPL and the SPIRE Project Team and approriate modifications devised by mutual agreement.		
	If the JFET module itself is shown to be capable of surviving the qualification input vibration levels applicable to the optical bench, then re-design of the JFET module shall not be required.		
	RF Filter module design		
RFF-DES-01	The RF filter module assemblies shall be sine vibration tested at a temperature $T < 90$ K under the following qualification levels:	AD2	Yes

Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 30 of 32

Sine vibration: the same levels as for the BDAs as specified in BDA-DES-10 above.	
Random vibration: the same levels as for the JFET modules as specified in JFET-DES-07 above.	

3.4.1 Feedhorn and Array Parameters

The tables below summarise the detailed specifications for the feedhorns and the detector backshort distances.

$\lambda_{ m o}$	=	Nominal band centre wavelength
$\lambda_{\rm b}$	=	Wavelength for which bolometer backshort distance is optimised
$\lambda_{ m U}$	=	Nominal long-wavelength edge (defined by the waveguide diameter)
$\lambda_{ m L}$	=	Nominal short-wavelength edge (defined by edge filter in front of horn)
$\lambda_{o}/\Delta\lambda$	=	Bandwidth assuming that an edge filter at exactly λ_L is in front of the horn
Defocus	=	Required position of focus with respect to the horn aperture. Note: this places a
		requirement on the position of the horn wrt the mechanical interface of the BDA, which
		is to be specified in the Interface Control Document, consistent with this table.

Tolerances quoted correspond to maximum and minimum values acceptable for any horn (not the rms of a set of horns).

 Table 3-4-1
 Feedhorn and filter specifications for the photometer

λ _b	μm	250		363		517				
Design λο/Δλ			3.00		3.18		3.00			
λ_L (50% points)	μm	208.3	+/-	2.1	306.0	+/-	3.1	430.8	+/-	4.3
λ_{U}	μm	291.7	+/-	8.5	420.0	+/-	12.3	603.2	+/-	17.6
λ/Δλ		3.00	+/-	0.39	3.18	+/-	0.45	3.00	+/-	0.39
Horn length	μm	2368	+/-	200	3275	+/-	200	4636	+/-	200
Horn centre-centre distance	μm	2500	+/-	20	3330	+/-	20	5000	+/-	20
Horn internal aperture	μm	2400	+/-	5	3230	+/-	7	4900	+/-	10
Waveguide length	μm	500	to	550	700	to	750	1000	to	1050
Waveguide diameter	μm	171	+/-	5	246	+/-	7	353	+/-	10
Defocus	μm	1600	+/-	500	2500	+/-	500	4000	+/-	500
Backshort length	μm	62.5	+/-	6.3	90.8	+/-	9.1	129.3	+/-	12.9
Frontshort length	<u>µm</u>	<u>88</u>	<u>+/-</u>	<u>60</u>	<u>127</u>	<u>+/-</u>	<u>44</u>	<u>180</u>	<u>+/-</u>	<u>60</u>

Herschel SPIRE Detector Subsystem Specification Document

 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 31 of 32

Number of horns			37			19	
λο	μm		258			487	
λ _b	μm		275			450	
λ_L (50% points)	μm	190	+/-	2	300	+/-	3
λ_L (90% trans. points)	μm	200	+/-	2	315	+/-	3
λ_{U}	μm	321	to	329	666	to	683
$\lambda/\Delta\lambda$ (50% points)		1.83	to	1.99	1.27	to	1.34
Horn length	μm	2368	+/-	200	4636	+/-	200
Horn centre-centre distance	μm	2250	+/-	20	3900	+/-	20
Horn internal aperture	μm	2150	+/-	5	3800	+/-	9
Waveguide length	μm	550	to	600	900	to	950
Waveguide diameter	μm	188	to	193	390	to	400
Defocus	μm	0	+/-	500	0	+/-	500
Backshort length	μm	69	+/-	7	113	+/-	11
Frontshort length	μm	<u>96</u>	<u>+/-</u>	<u>33</u>	<u>158</u>	<u>+/-</u>	<u>54</u>

3.4.2 Array Layout

See RD9

3.5 Logistic Requirements

The bolometer arrays will be delivered in suitable containers, compatible with the requirements specified in RD3 and RD7, for transportation and storage. Handling, cleanliness, and ESD procedures during installation of all JPL hardware will be specified in an Integration Procedures document to be supplied by JPL and agreed to by RAL (RD7). It is required that there be no need to disassemble any hardware once delivered to RAL, or that any necessary disassembly be carried out by JPL staff at RAL.

3.6 Environment Requirements

Environmental requirements are described in the JPL Environmental Requirements Document (RD3), and implemented in the JPL Test Plan (RD4).

3.7 Verification Requirements

Before delivery to RAL, the BDA, JFET modules and RF filter modules will undergo environmental and performance qualification and acceptance. Several of these tests (e.g. EMI/EMC, thermal stability and microphonics) can only provide useful information at a higher system level, and will not require component-level testing. The following table lists the environmental tests for model delivered. Verification implementation is described in the JPL Test Plan (RD4).

Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 32 of 32

Test	CQM	PFM	FS
Vibration:	Q	Α	Α
Thermal cycle:	D/Q	Α	Α
Vacuum cycle	D/Q	Α	Α
Lifetime:	D	-	-
Soak/cycle:	D	-	-
Radiation tolerance:	D	-	-
Thermal range:	D	-	-
Thermal stability (Instrument Level):	Q	Α	Α
Microphonics (Instrument Level):	Q	Α	Α
Ionising radiation:	D	-	-
EMI (Instrument Level):	Q	Α	Α
EMC (Satellite Level):	Q	Α	Α

Table 3-7-1: Test matrix for the BDA and JFET modules. Q indicates a test carried out at qualification level for qualification times; A indicates a test carried out at acceptance level; D indicates a qualification test carried out by design, including unit-level testing and engineering analysis. An X indicates that this test is carried out and is a characterisation type test or the level is irrelevant. A dash indicates that no test will be done on this model/unit.

Verification ID	Description	Reference
BDA-VER-01	To carry out the tests on the BDA QM listed in <u>Table 3-7-1</u> .	IRD-VER-R01
		IRD-VER-R03
BDA-VER-02	To carry out the tests on the BDA PFM listed in Table 3-7-1.	IRD-VER-R01
		IRD-VER-R04
BDA-VER-03	To carry out the tests on the BDA FS listed in <u>Table 3-7-1</u> .	IRD-VER-R01
		IRD-VER-R04

Detector Subsystem Specification Document
 Ref.:
 SPIRE-JPL-PRJ-000456

 Issue:
 3.2

 Date:
 7 Jan 2003

 Page:
 Page 33 of 32

APPENDIX 1: QUALIFICATION TESTS DESCRIPTION

tests to be determined on a case by case basis. Soak/cycle: Electrical soak test to be carried out on JFET modules at operating temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined. Radiation tolerance: Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.		
Document.Thermal-Vacuum cycle:The BDA and JFET modules will undergo thermal vacuum tests. According to standard JPL procedures, 3 times the number of lifetime thermal cycles will be imposed for qualification testing on representative units. For acceptance testing, the number of thermal cycles after delivery from JPL will be incurred.Lifetime:Lifetime tests to be carried out on all non-flight standard electrical components; novel materials and novel manufacturing processes. Details of tests to be determined on a case by case basis.Soak/cycle:Electrical soak test to be carried out on JFET modules at operating temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined.Radiation tolerance:Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.	Vibration:	The QM BDA will be vibrated at levels appropriate to its location within
Thermal-Vacuum cycle:The BDA and JFET modules will undergo thermal vacuum tests. According to standard JPL procedures, 3 times the number of lifetime thermal cycles will be imposed for qualification testing on representative units. For acceptance testing, the number of thermal cycles after delivery from JPL will be incurred.Lifetime:Lifetime tests to be carried out on all non-flight standard electrical components; novel materials and novel manufacturing processes. Details of tests to be determined on a case by case basis.Soak/cycle:Electrical soak test to be carried out on JFET modules at operating temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined.Radiation tolerance:Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.		the instrument, as defined in the Detector Subsystem Specification
According to standard JPL procedures, 3 times the number of lifetime thermal cycles will be imposed for qualification testing on representative units. For acceptance testing, the number of thermal cycles after delivery from JPL will be incurred.Lifetime:Lifetime tests to be carried out on all non-flight standard electrical components; novel materials and novel manufacturing processes. Details of tests to be determined on a case by case basis.Soak/cycle:Electrical soak test to be carried out on JFET modules at operating temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined.Radiation tolerance:Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.		Document.
According to standard JPL procedures, 3 times the number of lifetime thermal cycles will be imposed for qualification testing on representative units. For acceptance testing, the number of thermal cycles after delivery from JPL will be incurred.Lifetime:Lifetime tests to be carried out on all non-flight standard electrical components; novel materials and novel manufacturing processes. Details of tests to be determined on a case by case basis.Soak/cycle:Electrical soak test to be carried out on JFET modules at operating temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined.Radiation tolerance:Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.	Thermal-Vacuum cycle:	The BDA and JFET modules will undergo thermal vacuum tests.
units. For acceptance testing, the number of thermal cycles after delivery from JPL will be incurred.Lifetime:Lifetime tests to be carried out on all non-flight standard electrical components; novel materials and novel manufacturing processes. Details of tests to be determined on a case by case basis.Soak/cycle:Electrical soak test to be carried out on JFET modules at operating temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined.Radiation tolerance:Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.		
from JPL will be incurred. Lifetime: Lifetime tests to be carried out on all non-flight standard electrical components; novel materials and novel manufacturing processes. Details of tests to be determined on a case by case basis. Soak/cycle: Electrical soak test to be carried out on JFET modules at operating temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined. Radiation tolerance: Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.		thermal cycles will be imposed for qualification testing on representative
Lifetime:Lifetime tests to be carried out on all non-flight standard electrical components; novel materials and novel manufacturing processes. Details of tests to be determined on a case by case basis.Soak/cycle:Electrical soak test to be carried out on JFET modules at operating temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined.Radiation tolerance:Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.		units. For acceptance testing, the number of thermal cycles after delivery
components; novel materials and novel manufacturing processes. Details of tests to be determined on a case by case basis.Soak/cycle:Electrical soak test to be carried out on JFET modules at operating temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined.Radiation tolerance:Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.		from JPL will be incurred.
tests to be determined on a case by case basis. Soak/cycle: Electrical soak test to be carried out on JFET modules at operating temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined. Radiation tolerance: Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.	Lifetime:	Lifetime tests to be carried out on all non-flight standard electrical
Soak/cycle:Electrical soak test to be carried out on JFET modules at operating temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined.Radiation tolerance:Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.		components; novel materials and novel manufacturing processes. Details of
temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined.Radiation tolerance:Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.		tests to be determined on a case by case basis.
temperature followed by cycle to ambient temperature followed by soak test. Number of cycles and details of applied voltages etc to be defined.Radiation tolerance:Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.	Soak/cycle:	Electrical soak test to be carried out on JFET modules at operating
Radiation tolerance:Radiation tests will be to 20 krad TID. Components may be qualified by analysis or independent testing.	-	
analysis or independent testing.		test. Number of cycles and details of applied voltages etc to be defined.
analysis or independent testing.	Radiation tolerance:	
I hermal range: Need to test to bakeout temperatures to ensure survival of the detector	Thermal range:	Need to test to bakeout temperatures to ensure survival of the detector
subsystem units when the Herschel satellite is baked out.		subsystem units when the Herschel satellite is baked out.
Thermal stability: A test designed to ensure the verification of detector operation if the	Thermal stability:	
interface temperature varies during operation. This may only be applicable		interface temperature varies during operation. This may only be applicable
at instrument level.		at instrument level.
Microphonics: Test to be performed at the systems level.	Microphonics:	Test to be performed at the systems level.
Ionising radiation: The effects on the detector performance of individual ionising radiation	Ionising radiation:	The effects on the detector performance of individual ionising radiation
impacts must be evaluated by modelling or tested for. This is <u>NOT</u> the		impacts must be evaluated by modelling or tested for. This is <u>NOT</u> the
		same test as radiation tolerance, which only implies a total integrated dose.
It is desirable that a high energy (>100 MeV) proton beam line is employed		It is desirable that a high energy (>100 MeV) proton beam line is employed
to carry out this test with a representative the detector cold and active.		
EMI: Test to be performed at the systems level.		
EMC: Test to be performed at the systems level.		
Materials conformance: All materials used in the manufacture will be approved for space use by	Materials conformance:	
ESA.		ESA.