FIRST/Planck Payload Review

ESTEC 23.05.2000

FIRST/Planck Payload Review

FIRST/Planck Payload Review

Welcome and Review Objectives

R.M. Bonnet ESA D/SCI

FIRST/Planck

FIRST/Planck Payload Review

- 2. Agenda
- 3. ITT Status

F. Vandenbussche ESA/Estec

FIRST/Planck Payload Review Agenda

- 09:00-09:05 1. Welcome/Introduction/Review Objectives (RMB)
- 09:05-09:10 2. Agenda (FV)
- 09:10-09:30 3. ITT Status Overview (project) (FV)
- 09:30-09:45 4. FIRST Payload (GP)
- 09:45-10:00 4.1 FIRST Telescope Status (GP)
- 10:00-10:45 4.2 HIFI Status (TdG HIFI PI, 45 min)
- 10:45-11:00 Coffee break
- 11:00-11:45 4.3 PACS Status (AP PACS PI)
- 11:45-12:30 4.4 SPIRE Status (MG SPIRE PI)
- 12:30-13:30 Lunch Break

FIRST/Planck Payload Review Agenda

- 12:30-13:30 Lunch Break
- 13:30-14:00 5. Planck Payload (JT)
- 14:00-14:15 5.1 Planck Straylight Status (PdM)
- 14:15-15:00 5.2 LFI Status (NM LFI PI)
- 15:00-15:15 Coffee Break
- 15:15-16:00 5.3 HFI Status (JLP HFI PI)
- 16:00-16:15 5.4 Planck Reflectors Status (HUNN DSRI)
- 16:15-16:30 6. Review Conclusions (RMB)

2. FIRST/Planck Invitation to Tender (ITT) status

2.1 Procurement Proposal

Following the industrial briefing which took place in December 1999, a Procurement Proposal has been prepared. The Procurement Proposal covers the definition, design, development, manufacture, integration and testing of FIRST and Planck spacecraft as well as the industrial support for their launch in early 2007.

The Industrial Policy Committee has endorsed the Procurement Proposal in the session of 7/8 March 2000.

2. FIRST/Planck Invitation to Tender (ITT) Status (cont'd)

2.2 Composition/schedule

The Invitation to Tender is being prepared by ESA. The Instrument Interface Documents (A and B) will be part of the ITT with other contractual and system support documentation.

The FIRST telescope specification and Planck Telescope and reflectors/inner baffle specifications will be part of the ITT.

A Tender Evaluation Board (TEB) has been established and will meet for a pre-TEB on 19 June 2000.

Release of ITT is planned for 1 September 2000 Industrial Proposal(s) expected 1 December 2000 Kick-off of Phase B for 1 June 2001

2.3 HIREL Part Procurements

Prior to the selection of the Prime, the procurement of Hirel-parts has been initiated by ESA via a competitive Invitation to Tender as a result of which the FIRST/Planck Parts Procurement Agent will be selected to start immediately a coordinated Hirel-parts procurement scheme which will encompass the procurement of all Hirel-parts for the FIRST/Planck mission including the parts for the individual experiments for those Principal Investigators who may wish to participate.

The selected Prime will be requested to adopt and manage the Part Procurement Agent with the first three months of Phase B. Meanwhile, the Project Office will manage the Agent.

2.4 HIREL Parts Procurement Schedule

Proposal from Industry requested for 19 June 2000 Evaluation till mid July 2000

Kick-off meeting with Procurement Agent on 27 July 2000

Introductory meeting with the Principal Investigators

Procurement Agent - ESA planned on 28 July 2000 at Procurement Agent's premises (TBC)
Mature Instruments Parts list available begin June 2000
Parts Procurement Agreement - Principal Investigators/ ESA to be signed in June 2000

2.5 Instruments

The selected Prime Contractor will be responsible for the management of the payload and spacecraft technical interfaces and individual experiment development schedules, delivery dates and margins. The selected Prime will be requested to prepare the

The selected Prime will be requested to prepare the agreement between the Prime Contractor and Instruments for the handling of the interfaces within the 3 months after Phase B kick-off.

April 2003

2.6 Instruments Delivery Dates

To support the proposed protoflight philosophy, the following models are expected to be delivered by the FIRST/Planck instruments:

- Cryogenic Qualification Model (CQM): April 2003
- Avionics Model (AVM):
- Flight Model (FM): July 2004
- Flight Spares (FS): July 2005

2.7 FIRST Telescope/Planck Reflectors delivery dates

FIRST Flight telescope model
Flight spare (to be agreed)

October 2004 January 2005

Planck QM reflectors and Inner baffleJanuary 2003Flight ModelMarch 2004Flight spare (QM refurbished)January 2005

4. FIRST Payload

G. Pilbratt - ESA/ESTEC

FIRST science and payload

'FIRST and Planck Payload Review at D/SCI level'

ESTEC, 23 May 2000

Göran L. Pilbratt

Astrophysics Division

Space Science Department of ESA

Contents (15 min):

- FIRST science (drivers)
- Science payload (overview)
- Instrument review status

FIRST major science objectives:

- To study the formation of galaxies in the early universe, and their evolution
- To study the formation of stars and the physics of the interstellar medium
- To study cometary, planetary, and satellite atmospheres

FIRST 'targets':

- Thermal radiation from black-bodies (dust grains) with T in range 5 50 K
- Spectral (molecular and atomic) lines from gases with T in range 10 few x100 K
- => the SEDs of IR galaxies (discovered by IRAS, studied by ISO) and proto-stars (discovered by mm/submm radio observations) peak in the FIRST wavelength range!

SED of 'prototype' Class 0 proto-star

Guiderdoni et al. Proc. XVIIth Moriond Astrophysics mtg, 'Extragalactic Astronomy in the Infrared' pp. 521, 1997

Adapted from: André, Ward-Thompson, Barsony, ApJ 406, 122, 1993

FIRST observation examples:

- Deep broadband extragalactic surveys in the 100-600 μm range
 - How and when did galaxies form ? Unknown population of high-z IR galaxies ? Star formation rate ?
- Follow-up spectroscopy on sub-samples
 - What powers luminous galaxies and AGNs (star-bursts vs. black holes) ? How do they evolve ?
- Interstellar medium / star formation studies in the Galaxy and in other galaxies
 - How do stars form out of the ISM ? Astrochemistry as a probe ! Nearby galaxies templates !
- Solar system science
 - What is the history of the solar system ? Comets pristine material ! Planetary / satellite atmospheres !

Unique characteristics of FIRST:

- FIRST is the first space facility to completely cover the entire far infrared and submillimetre (60 670 μ m) range
 - Low emissivity (few %), passively cooled (70-90 K), large telescope (3.5 m)
 - Total absence of atmospheric absorption full access to this poorly explored spectral range
 - Total absence of atmospheric emission low and stable background across the whole range
 - Deep photometry & full spectral coverage !
- For λ < 200 μ m FIRST has much larger and admittedly much warmer telescope than earlier cryogenic telescope missions ISO / SIRTF / Astro-F
- In the FIRST band, the SOFIA airborne facility has warmer, smaller, higher emissivity telescope, and residual atmospheric absorption and emission
- FIRST will offer a large amount of observing time: longer lifetime (specification >3 years) than ISO - roughly 1000 SOFIA flights a year !

Instrumental science requirements:

Telescope

- Size: maximize aperture size; collecting area (sensitivity) and linear (angular resolution)
- Shape and wavefront error: per design and compatible with wavelength coverage
- Background: lowest possible temperature, temperature gradients (spatially and temporally), and emissivity; straylight requirements

Instruments

- Wavelength coverage: maximise in FIRST range
- Sensitivity: should be background limited
- Field of view: maximise for imaging
- Spatial resolution: diffraction limited by telescope size
- Spectral resolution: low, moderate, and high depending on observation

Instrumental science trade-offs:

Telescope

• Size vs. temperature: maximize size, accept passive cooling (higher temperature)

Instruments

- Sensitivity: need cryogenic cooling
- Wavelength coverage: use 'radio' and 'infrared' techniques
 - direct detection (photoconductors, bolometers) driven towards longer wavelengths
 - heterodyne techniques (mixers) driven towards shorter wavelengths
 - heterodyne detection more advantageous with increasing spectral resolution
 - => FIRST payload is a mix of techniques
- Field of view: use arrays of detectors, as large as possible
- Spatial resolution: couple to telescope beam appropriately
- Spectral resolution: all instruments provide some spectroscopic capability

http://astro.estec.esa.nl/FIRST

Viewgraph 8 16/05/2000

Science instruments and Principal Investigators

HIFI - Heterodyne Instrument for FIRST (Th. de Graauw, SRON, Groningen, The Netherlands)

- very high resolution heterodyne spectroscocy covering 480 1250 GHz with five pairs of dual-pol. SIS, and one or two bands in the 1410 - 1910 range with dual-pol HEB mixers; LO by amplifier/multiplier chains, instantaneous bandwidth 4 GHz; backends providing a range of spectral resolutions
- SIS and HEB mixers operate at 2 K, provided by straps to the helium tank

PACS - Photoconductor Array Camera and Spectrometer (A. Poglitsch, MPE, Garching, Germany)

- imaging photometry simultaneously in the two 60-90/90-130 and 130 210 μm bands, covering the same 2'x3' FOV; or 5x5 pixels spectroscopy in the same bands; using two Ge:Ga 25x16 'bulk' photoconductor arrays
- bolometer arrays operate at 300 mK, provided by internal closed-cycle ³He fridge; photoconductor arrays operate at 1.7 / 2.2 K, provided by straps to the helium tank

SPIRE - Spectral and Photometric Imaging REceiver (M. Griffin, QMW, London, UK)

- imaging photometry in the three 250, 350, and 500 μm bands simultaneously, covering the same 4'x8' FOV; or low- to medium-resolution spectroscopy over approximately 2'x2' FOV; using bolometer detector arrays
- all detectors operate at 300 mK, provided by internal closed-cycle ³He fridge

Summary - instrumental capabilities

- SPIRE
 - broadband imaging of 4x8 arcmin field in 3 colours simultaneously; 250, 350, 500 μm
 - for larger fields: scanning 'on-the-fly' or mosaicing
 - spectroscopy smaller field 2.6x2.6 arcmin; 200-670 μm; R~20-100

- PACS
 - broadband imaging of 2x3 arcmin field in 2 colours simultaneously; 75/110, 170 μ m
 - for larger fields: scanning 'on-the-fly' or mosaicing
 - spectroscopy smaller field 47x47 arcsec; 60-210 μ m; R~1000
- HIFI
 - single pixel instrument, complete spectral coverage over 480-1250 GHz (625-240 μ m), plus 1 or 2 additional higher frequency (shorter wavelength) bands
 - map by moving the spacecraft: raster pointing or scanning 'on-the-fly'
 - very high resolution spectroscopy; R up to ~10⁷

Instrument review sequence:

- Instrument Science Verification Review (ISVR, end 1999/early 2000)
- Instrument Intermediate Design Review (IIDR, end 2000/early 2001)
- Instrument Baseline Design Review (IBDR, mid/end 2001)
- Instrument Hardware Design Review (IHDR, mid/end 2002)
- Instrument Critical Design Review (ICDR, mid/end 2003)
- Instrument Flight Acceptance Review (IFAR, Q3 2006)

Status of ISVRs:

- PACS: Concluded, RIDs being addressed; but now: PACS redesign (CEA detectors)
- SPIRE: Has been performed in sections, final 'wrap-up' section to come
- HIFI: To be closed by Δ -ISVR on 25 May; frequent technical meetings

FIRST: The "Fifth Great Observatory"

CGRO (Gamma Rays) INTEGRAL

ESTEC, 23 May 2000 Göran L. Pilbratt http://astro.estec.esa.nl/FIRST

4.1 FIRST Telescope Status

G. Parks - NASA/JPL

FIRST Telescope Status

FIRST/Planck Payload Review

Gary S. Parks

23 May, 2000

FIRST

Status Overview

- Team is on track with their development plan
- Based on feedback from November '99 review, details of the development plan were improved
- Testing of the 2-meter demonstrator was initially a problem
 - Limited results to 200K full aperture, 100K subaperture
- Re-testing the demonstrator has now been completed
 - Changes included a quiet environment and new IR camera for the measurement interferometer
 - Successful tests were conducted down to 70K
- Matra SiC has been reviewed as a possible backup or alternative to CFRP
 - Technical/programmatic review held on May 3-4
- Plan is to achieve technical readiness by the PDR (July)

Primary Mirror Design Approach

- Segmented Front and Back Faceskins
 - 60° Segments
 - Seams Coincident Front-to-back
- Modular Core
- Embedded Metallic Fittings
 Serve As Interface Attach Points
- Assembly Process Results in Monolithic Mirror

Major Accomplishments

- Telescope preliminary design completed (to be reviewed in June)
- Substantial improvements (3X) in material uniformity have been achieved
 - Improved material is the single biggest factor in achieving the telescope wavefront performance
- Fabricated test articles for evaluation and demonstration of technology readiness
 - 3 individual petals of a 2meter mirror (materials and processes evaluation)
 - 2meter mirror performance demonstrator
 - Full size petal facesheets to demonstrate ability to fabricate full size mirror
- Completed the development of accurate model to predict the performance of the full size telescope
 - Model/test correlation to be completed prior to PDR in July
- Completed the testing of the 2meter demonstrator
- Successfully demonstrated gold coating of mirror

2m Mirror Gold Coated

Passive Shape Correction (Telescope Performance Contingency)

- Position and shape of secondary mirror (M2) can be used to correct errors at temperature
 - Despace, decenter and tilt of M2 can be used to compensate for errors in M1
 - M2 ROC and conic can also be adjusted to compensate Primary
 - Local adjustments in M2 figure compensate for low order errors in Primary (M1)
 - M1-M2 despace used as first compensator

Results Summary From Earlier Test

FIRST

- Although a limitation in the test setup did not allow testing of the 2-meter mirror down to the operating temperature (80K), tests at 200K (full aperture) and 100K (subaperture) provided encouraging results
 - Test results at 200K (Note 3.5 μ m requirement)
 - > Total RMS Error at 200K (no correction)
 > Total RMS Error at 200K (with correction)
 2.81 μm
 1.56 μm
 - Calculated results extrapolating from measured data

		2-Meter	<u>3.5-Meter</u>
>	Total Error at 80K (no correction)	6.42 μ m	7.28 μ m
>	Total Error at 80K (with correction)	2.45 μm	2.64 μ m

- Current material capability is about twice as good as that used in the 2-meter demonstrator (suggests that numbers above can be reduced by 1/2)
- Design improvements and better material availability should have a substantial impact on improving mirror performance

FIRST

FIRST

Planned Improvements

- Several changes have been identified to reduce the low order errors
 - Improved (fiber / resin) quality
 - Tooling
 - > Alternative petal lay-up mold design (thermal mass)
 - > Mirror assembly mold with vacuum assembly capability
- Several changes have been identified to reduce the mid spatial errors
 - Improved adhesive for bond-line control
 - Core cell size, skin thickness
 - Rib thickness
 - Shape of lay-up mold

Current Key Activities

 Complete the correlation between the test results and the design/performance model

FIRST

- Report will be issued prior to PDR in July
- Preparation for upcoming reviews
 - Peer (expert technical) reviews in June
 - PDR/Confirmation readiness review in July
 - JPL director reviews in August
 - NASA confirmation review in September
- Finalize plans to begin implementation (phase C/D) in October 2000

Material Quality Trends

FIRST

FIRST

Delta Figure

FIRST

• 293K to 70K Delta

Surface Map [58,M, TMD] IntelliWave Data: S5 (Ctr).esd, 05/06/00, 02:18:24 [Analysis Aper...[319, 238][497, 473] [Aperture Type...inscribed

- Full Surface

1.21 1.08 0.95

0.82 0.69 0.56 0.43

0.30

0.17 0.03 -0.10

-0.23 -0.36 -0.49 -0.62 -0.75

-0.88 -1.01 -1.14 -1.27

-1.54

FIRST

Delta Figure (Low Order Terms)

		×+ · · ·
	Piston	1.0000
	Tilt	0.0000
	Tilt	0.0000
	Focus	0.0000
	Astigmatism	-0.1476
	Astigmatism	-0.6019
	Coma	-0.0816
	Coma	-0.0726
	Spherical	-0.3565
	Coma	-0.0516
	Coma	-0.1534
	Astigmatism	0.1245
	Astigmatism	0.1671
0.681	Coma	0.0570
0.612	Coma	0.0365
0.543	Spherical	0.1997
0.473	Astigmatism	-0.1306
0.335	Astigmatism	-0.0805
0.266	Coma	-0.0341
0.197	Coma	-0.0033
0.058	Astigmatism	-0.0277
-0.011	Astigmatism	-0.0137
-0.080	Coma	-0.0707
-0.143	Coma	-0.0107
-0.288	Spherical	-0.0011
-0.357	Coma	0.0376
-0.426	Coma	0.0852
-0.564	Astigmatism	0.0877
-0.634	Astigmatism	0.0964
-0.772	Coma	-0.0410
	Coma	-0.0613
	Astigmatism	0.0413
	Astigmatism	0.0120
	Coma	0.0505
	Coma	0.0045
	Spherical	0.0315

FIRST

Delta Figure (Residual terms)

- 293K to 70K Delta
 - Residual

Surface Map (58,M, TMD) IntelliWave Data: S5 (Ctr).esd, 05/06/00, 02:18:24 [Analysis Aper...[319, 238][497, 473] [Aperture Type...inscribed

Range = 1.9530, RMS = 0.1769 Strehl = 0.2908

Delta Figure (Hysteresis)

FIRST

• 70 K Hysteresis

_

Full Surface

Υ Axis

Range = 1.9705, RMS = 0.0809 Strehl = 0.7722

1.084 0.990 0.896

0.802 0.709 0.615 0.521

0.427

0.333 0.239 0.146

0.052 -0.042 -0.136 -0.230 -0.324

-0.417 -0.511 -0.605 -0.699

-0.887

4.2 HIFI Status

T. de Graauw Groningen

Estec Newton 1 - 23 May 2000

HIFI STATUS 23-5-2000

Thijs de Graauw (thijsdg@sron.rug.nl)

Overview:

- Introduction
- Science Capabilities
- Consortium/Team Management
- Instrument Design
- Instrument Development, Deliverables, Models
- Critical Areas

Status (I)

- HIFI ready to pass Delta-ISVR: close-out meeting on 25 May
- Technical development is well underway. Most critical area (LO) funded only since January 2000!
- Detailed planning and costing almost completed
- JPL budget and HIFI schedule constraints required a de-scope:
 - Aluminum Technology for Hot Electron Bolometers in HIFI bands 6 and 7 not feasible. Too slow progress in development, although Proof of Concept.
 - Niobium Technology HEBs are now baseline (NbN as back-up)
 - Direct impact is that more LO power is required at higher frequencies
 - > No HIFI-internal cooler required anymore
 - Band 7 multipliers are not possible due to cost constraints at NASA-JPL
 - Band 7 LO was technically the most challenging
 - Loss of science capabilities identified (still compliant with the FSEC)
 - Real estate of band 7 mixer and LO assembly will be used for band 6 to ensure optimum capability in this frequency range

Status (II)

- Open procurement issues to be closed soon:
 - Canadian involvement in LO Source Unit (25 May 2000)
 - WBS-IF procurement solution identified
- NASA-JPL delivery/performance uncertainties under study:
 - NASA PDR reviews in June-September period
- Outcome may require further re-scoping HIFI to maintain science capabilities
 - Back-up solutions and close-out schedule identified (July/Sept 2000)
 - Work in progress
 - No negative impact on interfaces to satellite, schedule, and design foreseen
 - Close contact with FIRST/Planck project and project scientist on these issues exists.

Science Capabilities:

- Requirements
- Instrument Capabilities
- Main Science Drivers
- SURD table

HIFI top level requirements (new)

- Frequency coverage:
 - ▶ 480 1250 GHz (625-240 μm)
 - 1410 1910 GHz (212-157 μm)
- Near-quantum noise limit sensitivity (goal <3hv/k)
- Instantaneous IF bandwidth: 4 GHz
- Frequency Resolution 140 kHz 280 kHz 1 MHz
- Calibration Accuracy: 10% baseline; 3% goal

Science Capabilities

HIFI Instrument Capabilities

	Band					
	1	2	3	4	5	6
Frequency Range (GHz)	480-640	640-800	800-960	960-1120	1120-1250	1410-1910
Receiver Noise (DSB, Baseline) (K)	90	130	170	210	370	650
Receiver Noise (DSB, Goal) (K)	84	120	160	190	210	650
Flux Limit (5σ, 1hr, R=10 ⁴) (Jy)	1.5	2.0	2.3	2.5	2.7	4.6
Flux Limit (5σ, 1hr, R=10 ⁴) (mK)	3.4	4.4	5.1	5.6	6.0	10
Line Flux limit (5σ, 1hr, 10 ⁴) (10 ⁻¹⁸ Wm ⁻²)	0.9	1.4	2.0	2.6	3.2	7
Line scan (1σ, 24hrs, f=1MHz) (mK)	16	16	16	16	16	34
Spectral Resolution (MHz)	0.14 - 0.28 - 1.00					

SRON

Science Capabilities

HIFI: Submm Spectral Survey Machine

Science Capabilities

II. Thermal Water Spectrum

Th. de Graauw - FIRST/Planck Payload Review

Science Capabilities

Energy Level Diagram of Water

Th. de Graauw - FIRST/Planck Payload Review

III. Lifecycle of Stars, Planetary Systems and Interstellar Matter

HIFI Science Drivers (SURD)

		HIFI Bands					
		1	2	3	4	5	6
U N	Science Drivers	(480-640)	(640-800)	(800-960)	(960-1120)	(1120-1250)	(1410-1910)
Ι	(A) Water	X-H-S			X-H-S	X-S	X-S
Q U	(B) Molec. Universe	X	X	X	X	X	X
E	(C) [C II] at (high) z	X-S	X-S	X-S	X-S	X-S	X-S
+ C	(D) ISM in Galaxies	X	X	X	X	X	X
0	(E) Diffuse ISM	Х-Н		Х-Н	X		X-S
R	Star Formation	X	X	X	X	X	X
E	Death of Stars	X	X	X	X	X	X
	(F) SSO: Comets	Х-Н		Х-Н	Х-Н		
	SSO: Planets	X	X		X	X	X

Consortium/Team – Management:

- Organigramme
- Involved Institutes

Organisation follows Main Configuration Items

Th. de Graauw - FIRST/Planck Payload Review

HIFI Organigram

Th. de Graauw - FIRST/Planck Payload Review

Countries and Institutes participating in the hardware

The Netherlands:	USA:			
SRON Groningen/SRON Utrecht	Caltech and JPL, Pasadena			
DIMES, University of Delft	Univ. of Amherst			
France:	Germany:			
CESR Toulouse	KOSMA, I. Physikalisches Institut, Köln			
LRM-DEMIRM with IRAM	Max Planck Inst. Für Aeronomie, Lindau			
Observatoire de Bordeaux	Max Planck Inst für Radioastronomie Bonn			
Italy: CAISMI-CNR, Florence IFSI, Frascati	Poland: Space Research Center, Warsaw			
Spain:	Sweden:			
Centro Astronómico de Yebes/OAN	Onsala/Chalmers TH, Göteborg			
Switzerland:	Canada:			
ETH, Zürich	CSA (tbc)			
With contributions from Taiwan and MRAO in the development				

Instrument Design:

- Design Status
- FPU
- LO
- HRS
- WBS

Instrument Design

HIFI Design Completion Status

	Prototype Hardware	Conceptual Design	D/QM Design	Detailed Design
FP S/S – FPU		X	Х	
FP S/S – FCU		X	Х	
LO S/S – LOU		X		
LO S/S – LSU		X		
LO S/S – LCU		X		
WBS	X	X		
HRS	X	Χ		
ICU		X	Х	

Conceptual Design:Interfaces, BudgetsD/QM Design:Detailed ConfigurationDetailed Design:Production Drawings

Instrument Design

Focal Plane Unit Lay-out

HIFI Functional Block Diagram

SRON

Instrument Design

Common Optics Assembly Lay-Out

Instrument Design

Mixer Assembly Lay-out

Instrument Design

Mixer Assembly Boxes Mounting to Structure

Engineering model of the mixer console, mounted on liquid nitrogen cooled vibration test set-up

Th. de Graauw - FIRST/Planck Payload Review

IF pre-amplification scheme for one polarization

Instrument Design

Instrument Block Diagram

Instrument Design

Location LOU

Th. de Graauw - FIRST/Planck Payload Review
Instrument Design

LO Design

LOU with LO Assemblies

LO Assembly with two Multiplier Chains

Instrument Design

HRS diagram

Instrument Design

DM version of the WBS optics unit

ICU is Common Development with PACS and SPIRE (ICU Architecture shown below)

Instrument Development, Deliverables, Models

- Performance Critical Items Addressed Here:
 - Mixers
 - LO multipliers
 - Technology roadmaps
- Models
- Planning and Schedule

Instrument Development,

Deliverables, Models

Mixer Technology Development Issues:

	Challenge	RF	L	evice,Layer Tech	nology
		coupling,Detector			
Band			SOAP	Baseline	Goal
1	RF Bandwidt	WG,Hom	Nb SIS,Nb	Nb SIS,Nb	Nb/A1SIS,Nb
2	RF	WG,Hom	Nb SIS,Nb	Nb	Nb/A1
	Bandwidth,Sensitivity			SIS,NbTiN/A1	SIS,NbTiN
3	Sensitivity	WG,Hom	Nb SIS,A1	Nb	Nb/A1
				SIS,NbTiN/A1	SIS,NbTiN/A1
4	Sensitivity,Layer	WG,Hom	Nb SIS,A1	Nb	Nb/A1N/NbTiN
	Technology			SIS,NbTiN/A1	SIS,NbTiN/A1
5	Sensitivity,Layer	QO,Planar	Nb HEB	Nb HEB	
	Technology,Device	Antenna			
	Fabrication				
6	Sensitivity,Device	QO,Planar	Nb HEB	Nb HEB	
	Fabrication, IF	Antenna			
	Bandwidth				

Instrument Development, Deliverables, Models

Mixer Technology Road Map Bands 3 and 4

Demonstration Model

Qualification Model/Flight Model

Performance Requirements:

Bandwidth	800-962 and 960-1122
Sensitivity	200-700 K @960 GHz

800-962 and 960-1122 (flat within 1 dB) Baseline=190 K, Goal = 160 K @ 960 GHz

Fall Back	Bottom	Al	Bottom	Fgap>=1200
	Top Wire	Al	Top Wire	Low res Al
	Junction	AlOx	Junction	AlOx
	Definition	optical	Definition	optical
Baseline	Bottom	Fgap>=1200	Bottom	Fgap>=1200
	Top Wire	Low res Al	Top Wire	Low res Al Fgap>=1200
	Junction	AlOx	Junction	High Jc AlNx or AlOx
	Definition	optical	Definition	E-beam and e-beam
Goal	Bottom	Fgap>=1200	Bottom	Fgap >=1200
	Top Wire	Low res Al Fgap>=1200	Top Wire	Fgap >=1200
	Junction	High Jc AlNx or AlOx	Junction	High Jc AlNx or NbTiN/AlN/NbTiN
	Definition	E-beam and e-beam	Definition	E-beam

SRON

Instrument Development,

Deliverables, Models

Mixer Noise Temperatures: Requirements and Recent Results

Instrument Development,

Deliverables, Models

LO Multiplier Development Scheme in GHz

Power An	nplifiers	А	В	С	D
Multiplica Scheme	tion	71-79	80-92	88-99	92-106
2	x2	142-158	160-184	176-198	184-212
4	2 x2	284-316	320-352	352-396	380-420
6	2 x3		1a:480-552		1b: 552-636
8	2x2 x2		2a:640-704	2b:704-792	3a:800-840
12	2x2 x3	3b:852-948	4a:960-1056	4b:1056-1120	5:1140-1260
16	2x2x2 x2			6a:1408-1584	6c:1472-1696
24	2x2x3 x2	6b:1704-1896			

SRON

Instrument Development,

Deliverables, Models

Technology Roadmap: LO Band la

SRON

Instrument Development,

Deliverables, Models

Power Amplifier		30 -92	GHz		Need Date	
	prate	dy pe	flight c	qualified		
Reg. Power (m)()	52	200	>200		(pd	06.00
Meas. Power (nW)		•				•
Isolator WR-10					₩.	
Los ses [dB]		0.6	dB			
Req. Input Power (m/t)	52	200	53	200		
1 ⁴⁵ -stag e Daubler		160-18	4 GH z			
	dise	rele	substra	ate-less		
	E/dp/LF0		E/dp/LFx	Z/dp/LFx		
Meas . Freq. Çi(g. GHz]						
Exp. Output Power (25%)	>	50	2	30		
Means, Output Power (m/()						
		Sele	ation			
Isolator WR-5						
Losses [dB]		ca. 1	dB			
Exp. In put Power [mW]		50	υ			
2 ^{et} stage Tripler		490-55	4 GH z			
Min. Freq. Cvg.		498-54	6GHz			
Exp.Output Power [2%]		1.2	00			
Bray, Min. Power (a)(V)	0.021					
	discrete substrate-less					
	EO-4/LF2	a di seconda	E/3-4/LF2	ZO-4/LF2	LF2:08	i 10.00
Meas, Freq. Ç <u>xg</u> . [GHz]						
Meas, Output Power (µW)		•				
		Sele	ation			

Instrument Development,

Deliverables, Models

Technology Roadmap: LO Band IVb (DM)

SRON

Instrument Development,

Deliverables, Models

Power Amplifier		85-99	GHz		Need Date	
	proto	dy pe	(light qualified			
Reg. Power (m)(X)	>2	20	52	200	Upd	06.00
Means, Power (m/(k)						
Isolator WR-10					353.P	
Lasses (dB)		0.6	dB			
Req. Input Power (m/k)	>2	00	>2	200		
115-stagie Doubler		176-19	8 GH z			
	disc	rele	substra	ate-less		
	E/dp/LF0	Z/2/LF1	E/dp/LFx	Z/dg/LFx		
Means, Freq. Cxg. [GHz]						
Exp.Output Power [25%]	5:	50	5	30		
Means, Output Power (m)()						
	Selection					
Isolator WR-5						
Lasses [dB]	ca.1dB					
Exp. Output Power (g)()	S40 S40					
2 ^{od} stag o Doubles	352-396 GHz					
	discrete		substrate-less			
	E/dg/LF0		E/dg/LEX	Z/2/UF1		
Means . Freq. Cycg. [GHz]						
Exp. Output Power [15%]	>	6	>6			
Means, Output Power (m)(K)						
	Selection					
3 rd stage Tripler	1056-1 188 GHz					
Min. Freq. Cvg.	1056-1113 GHz					
Exp. Output Power [1,5%]	0.090					
Begg, Min. Power [m/0]	0.020					
	substrate-less		mem	brane	LIF2:0	903.01
	E/G-4/LF2	Z/3-4/LF2		Z/S/UF1	LF2:08	š 10.00
Means . Freq. Cxg. [GHz]	· · · ·					
Means, Output Power (pW)						
		Selev	ction			

Schedule and Planning

- Top-down and bottom-up: Schedule became the Plan!
- Considered realistic (based on experience from previous space and non-space heterodyne projects)
- LO is on critical path:
 - Late start funding for LOU, with band 1-4 LO chains
 - LO Source Unit procurement decision
 - LO Chains development: performance impact

SRON

Instrument Development, Deliverables, **Models**

CI/Level	Build S	tandard			Flight I	istumer	t Configu	ration	
	E/PT	D	Q	F	DM	AVM	CQM	FM	FS
Flight Instrument					Y		Y	F	
FP S/S					Y		Y	F	
FPU					Y		Y	F	Parts,Ma's
Common Opt Assy					Y		Y	F	
Structure&Optics			Y	Y	Q		Q	F	
Mech & Cal Source	Y	Y	Y	Y	D		D	F	
е									
Mixer Assy					Y		Y	F	
 Structure&Optics 	Y	Y	Y	Y	D		Q	F	
 SpecialParts 	Y	Y	Y	Y	D		D	F	
 Mixer Ch. Comp 's 	Y	Y	Y	Y	D		D,Q	F	
FCU	Y	Y		Y	E	Sim.	D	F	Kits
LO S/S					Y		Y	F	
LOU					Y		Y	F	
 Structure 			Y	Y	Q		Q	F	
LOAssy					Y		Y	F	
 Structure&Optics 		Y	Y	Y	Q		Q	F	
 SpecialParts 	Y	Y	Y	Y	D		D	F	
♦ LOCh.Comp`s	Y	Y	Y	Y	D		D,Q	F	
LCU	Y	Y		Y	E	Sim.	D	F	Kits
LSU	Y	Y	TBD	Y	Ec	Sim.	TBD	F	Kits
WBS S/S	Y		Y	Y	E	Sim.	Q	F	Parts
HRS S/S			Y	Y		Sim	Q	F	Parts
ICU S/S		Y	Ý	Y	D	D	Q	F	Boards

Instrument Development, **Deliverables**, Models

DM Master Planning

(DM Testing Completed by Mid 2002: Input for FM Design

SRON

Instrument Development, **Deliverables**, Models

CQM/AVM Master Planning

SRON

Instrument Development, **Deliverables**, Models

FM Master Planning

Important System Design Areas:

(Affecting HIFI Performance; understood between Project and HIFI)

- Pointing accuracy
- Temperature stability and range
- Standing waves

Critical Areas for HIFI:

- LO Technical Development
- FM Schedule
- S/C contractor on-board for interface definition: CDMS and EMC areas

SUMMARY:

- Delta ISVR close-out 25 May
- Instrument design rapidly converging
- Band 7 loss affects science capabilities; still within FSEC criteria
- Definition of interfaces (int. and ext.) well advanced
- SIS Mixer development progressing well
- LO development criticality identified (performance and schedule)
- Planning shows CQM delivery on time; FM delivery late

4.3 PACS Status

A. Poglitsch - MPE Garching

FIRST Photoconductor Array Camera & Spectrometer (PACS)

Albrecht Poglitsch, MPE Garching

PACS In A Nutshell

• Imaging photometry

- two bands simultaneously (60-90 or 90-130 µm and 130-210 µm) with dichroic beam splitter
- two filled bolometer arrays (32x16 and 64x32 pixels)
- point source detection limit ~3 mJy (5o, 1h)

• Integral field line spectroscopy

- range 57 210 μ m with 5x5 pixels, image slicer, and long-slit grating spectrograph (R ~ 1500)
- two 16x25 Ge:Ga photoconductor arrays (stressed/unstressed)
- point source detection limit
 ~3x10⁻¹⁸ W/m² (5σ, 1h)

Focal Plane Footprint

FIRST/Planck Payload Review

PACS Performance

PACS Status

23 May 2000

PACS Scientific Objectives

- How and when have galaxies formed in the Universe?
 - Deep multi-band photometric surveys (together with SPIRE): search for high-z FIR-luminous galaxies; photometric redshift

Simulated photometric surveys (PACS+SPIRE) of actively star-forming galaxies and derived color-color plots. PACS observing time: 3 h (σ = 2 mJy)

PACS Scientific Objectives (cont.)

- How and when have galaxies formed in the Universe?
 - Follow-up spectroscopy: what powers sources (AGN / starburst), and how do they evolve

PACS Scientific Objectives (cont.)

- How do stars form out of the interstellar medium (Galactic/extragalactic)?
 - Photometric surveys of nearby molecular clouds (together with SPIRE): unbiased search for protostars down to 0.03 M_O

Local galaxies: star formation and ISM. Photometric and spectral line mapping for detailed studies of star formation on galactic scales (trigger mechanisms, metallicity effects)

- What has been the history of our Solar System?
 - Giant planet atmospheres: composition, profile, origin of water
 - HD line: D/H ratio in Solar System bodies probing the composition of pre-solar grains

The PACS Consortium

· PI · Co-PI	Albrecht Poglitsch Christoffel Waelkens	MPE Garching, Germany KU Leuven, Belgium
Co-I's:		
• <u>Austria</u> :	Franz Kerschbaum	UVIE Wien
· <u>Belgium</u> :	Chris van Hoof	IMEC Leuven
	Rik Huygen	KU Leuven
	Claude Jamar	CSL Liège
• <u>France</u> :	Suzanne Madden Louis Rodriguez Marc Sauvage	CEA Saclay
PACS Status	Hervé Wozniak	OAMP Marseille

FIRST/Planck Payload Review

22	May	20	nn
23	May	20	UU

• <u>Germany</u> :	Otto H. Bauer Helmut Feuchtgruber Reinhard Genzel Reinhard Katterloher Dieter Lutz Eckhard Sturm Linda Tacconi	MPE Garching
	Ulrich Klaas Dietrich Lemke	MPIA Heidelberg
	Thomas Henning	AIU Jena
· <u>Italy</u> :	Paola Andreani	OAP Padova
	Paolo Saraceno	IFSI Roma
	Gianni Tofani	OAA Arcetri
• <u>Spain</u> : PACS Status	Jordi Cepa	IAC Tenerife

PACS Management Structure

PACS Steering Committee

(1) Original Composition:

Germany	Dr. M. Otterbein, Dr. HJ. Blome	DLR
Belgium	Dr. J.W. Bernard	SSTCA
Italy	Prof. Dr. G. Tofani	OAA
Spain	Prof. Dr. J. Cepa	IAC
Austria	Prof. Dr. J. Ortner	ASA
France		

First meeting: May 20,1998: PACS funding proposal for SPC meeting

(2) New Composition:

Germany	Dr. G. Hartmann	DLR
Belgium	Dr. J.W. Bernard	SSTCA
Italy	Prof. Dr. G. Tofani	OAA
Spain	Dr. M. Serrano	CDTI
Austria	Dr. K. Pseiner	ASA
France	Dr. M. Joubert	CNES

Next meeting: end June 2000

FIRST/Planck Payload Review

23 May 2000

Instrument Units and Subsystem Responsibilities

PACS Design: Focal Plane Footprint

Definition of the FOV for the Photometer

Rayleigh-Criterium:

2 pixel per 1.2 λ /D at the diffraction limited wavelength

Detector	Pixel	FOV/Bolometer [arcmin]	FOV/Pixel [arcsec]	Diffraction Limited Wavelength [µm]
blue	32 x 64	1.75 x 3.5	3.3	77
red	16 x 32	1.75 x 3.5	6.6	174

Physical pixel size: 0.75 x 0.75 mm²

Definition of the FOV for the Spectrometer

- Pixel scale has to be a compromise
 - small number of spatial pixels limits field of view
 - diffraction introduced by image slicer does not allow full sampling
 - large wavelength range requires compromise
- Physical optics analysis shows that 9.4"/pixel gives low enough diffraction losses (15% at 175 µm) with acceptable spatial resolution/sampling
- Full spatial sampling in the long-wave band with two, slightly offset pointings

PACS Integral Field Line Spectrometer

- Optical "image slicer" rearranges 2-D field of view (5x5 pixels) along 1-D slit (1x25 pixels)
- Grating spectrograph disperses light
- Dispersed slit image is projected on 2-D detector array
- 16 spectral channels recorded simultaneously for each spatial element

23 May 2000

PACS FPU

23 May 2000

23 May 2000

PACS FPU: Side View

23 May 2000

Photometer Image Quality

Aberrations of full optical train (telescope + PACS) included

- Strehl ratio 0.99
- Distortion < 1 pixel

- Strehl ratio >0.95
- Distortion ~ 1 pixel

23 May 2000

23 May 2000

PACS Ge:Ga Photoconductor Arrays

- 16x25 pixel filled arrays
 - 25 linear modules
 - integrated cryogenic readout electronics

16 pixel stressed detector module

Feed optics: light cone array

23 May 2000

PACS Photoconductor Modules

- Ge:Ga photoconductors
 - unstressed: 40 120µm
 - stressed: 110 210µm
 - background-limited in both, photometry and spectroscopy, if amplifier noise is low enough

PACS Cryogenic Readout Electronics

- Capacitive feedback transimpedance amplifier (CTIA) for each pixel, based on AC-coupled inverter or DC-coupled differential amplifier stage in silicon CMOS technology
- 16 CTIAs multiplexed on each CRE chip for each linear detector module
- CRE chips integrated in detector modules
- <u>Amplifier noise compatible with background-</u> <u>limited performance in spectroscopy only!</u>

CT IA architectures

In

23 May 2000

CEA Bolometer Array Assembly

Bolometer Arrays: 16x16 Subarray

Bolometer Readout & Performance

23 May 2000

FIRST/Planck Payload Review

PACS Chopper

- Chopper with variable throw and arbitrary waveform used for spatial modulation and for observation of internal calibration sources
- Electromagnetic linear drive
- Monolithic CuBe flexural pivots
- Magnetoresistive position sensors
- Duty cycle > 80%

Parameters of PACS Instrument Model

optical element	efficiency		
	photometry	spectroscopy	
Lyot stop	0.9	0.9	
filters	0.4	0.4	
mirrors	0.85	0.74	
slicer diffraction	-	0.85	
grating	_	0.65	

level	Т	3	effective ti	ansmission	relative bandwidth		
	(K)		photometry	spectroscopy	photometry	spectroscopy	
telescope	80	0.04	0.31	0.15	2.5 ⁻¹ /2.2 ^{-1 (a)}	1700 ⁻¹	
baffle	65	0.01	0.34	0.16	2.5 ⁻¹ /2.2 ^{-1 (a)}	1700 ⁻¹	
``15 K " optics	15	0.05	0.34	0.16	2.5 ⁻¹ /2.2 ^{-1 (a)}	1700 ⁻¹	
"4 K" optics	5.5	0.15	760/190 ^(b)	4 ^(b)	1.5^{-1}	1.5 ⁻¹	

(a) Values for the photometry modes from 60-90 / 90-130 µm and 130-210 µm, respectively.

(b) The formal transmission of >1 takes into account the acceptance solid angle of the light cones / bolometer pixels which differs from the beam solid angle.

Background, NEP, Spectroscopic and Photometric Sensitivity

λ	R	Telescope	η _{pixel} ^(a)	Background	BLIP NEP ^(b)	Coupling ^(c)	System NEP
(µm)		efficiency		(W)	$(W Hz^{-1/2})$	correction	$(W Hz^{-1/2})$
60	1700	0.55	1	4.3×10^{-14}	4.4×10^{-17}	28	1.2×10^{-15}
90	1700	0.69	1	2.6×10^{-14}	2.8×10^{-17}	22	6.2×10^{-16}
130	1700	0.74	0.64	1.3×10^{-14}	1.6×10^{-17}	25	4.3×10^{-16}
180	1700	0.77	0.34	6.8×10^{-15}	1.0×10^{-17}	34	3.8×10^{-16}
60 - 90	2.5	0.64	0.13	7.8×10^{-12}	2.3×10^{-16}	31	7.7×10^{-15}
90 - 130	2.5	0.73	0.11	4.1×10^{-12}	1.4×10^{-16}	30	5.1×10^{-15}
130 - 210	2.2	0.77	0.19	7.5×10^{-12}	1.5×10^{-16}	22	3.9×10^{-15}

assumed detector NEPs: $5x10^{-18}$ W/Hz^{1/2} (spectroscopy); 10^{-16} W/Hz^{1/2} (photometry)

		spectr	photometry				
λ(μm)	60	90	130	180	60–90	90–130	130–210
Point source	7.8 (5.5)*	4.0 (2.8)*	2.8 (2.0)*	2.5 (1.8)*	3.1 (2.2)*	3.0 (2.1)*	3.2 (2.3)*
detection limit	$\times 10^{-18} \mathrm{Wm}^{-2}$	$\times 10^{-18} \mathrm{Wm}^{-2}$	$\times 10^{-18} \mathrm{Wm^{-2}}$	$\times 10^{-18} \mathrm{Wm}^{-2}$	mJy	mJy	mJy
(5σ, 1 hour)							

*) with on-array chopping

PACS Development Schedule

PACS Development Schedule

PACS Funding Status

- Austria: Received verbal confirmation that the proposal for the first phase(2000-2005) has been accepted by the funding ministries.
- Belgium: Funds for end 1999 and 2000 are not yet available. Belgian PRODEX projects are currently pending; approval expected mid-June. Major procurements are pending.
- France: CNES/CEA will fund extended involvement in PACS
- Germany: DLR agrees with overall funding proposal and supports new instrument concept. Funding started summer 1999.
- Italy: Funding for AVM started. Proposal for other phases in preparation.
- Spain: Funding for EM started. Proposal for other phases in preparation.

Critical Areas

- Late PRODEX funding in Belgium
 - start of CSL funding ~6 months late
 - delay in critical grating/drive prototype development
 - delay of QM grating assembly delivery by ~5 months; formal recovery to original schedule possible, but with great risk (no prototype)
- Decision on optical bench implementation
 - aluminium bench instead of carbon fiber would mean substantial positive impact on FPU design
 - in order to save time & cost and reduce risk, decision is needed very soon
- Missing high-level protocol for IEEE1553B interface
 - to be used for communication between DPU and CDMS
 - definition needed for WE development within 3 months

4.4 SPIRE Status

M. Griffin QMWC London

Estec Newton 1 - 23 May 2000

- Scientific capabilities and goals
- Instrument design
- Consortium and management structure
- Instrument development plan
- Critical areas

Main Scientific Goals

SPIRE concentrates on exploiting capabilities that are unique to FIRST

- Deep photometric surveys of high-redshift galaxies
- Survey of our galaxy for protostars
- Imaging spectroscopy of the interstellar medium and nearby galaxies
- Follow-up/complementary observations with FIRST and other facilities

High-z Galaxy Survey 100 days, 100 Sq. Deg.

The Hubble Deep Field

SPIRE Star Formation and the Interstellar Medium

- Complete census of protostars in local star-forming clouds
 - Cluster formation
 - Structure and fragmentation of molecular clouds
 - Origin of the stellar
 Initial Mass Function
- Imaging spectroscopy of the interstellar medium and nearby galaxies

SPIRE Instrument Summary

- 3-band imaging photometer
 - 250, 350, 500 μm (simultaneous)
 - $\lambda/\Delta\lambda \sim 3$
 - 4 x 8 arcminute field of view
 - Diffraction limited beams (18, 25, 36")
- Imaging FTS
 - **200 670** μm
 - 2.6 arcminute field of view
 - Δσ = 0.04 cm⁻¹ (λ/Δλ ~ 20 - 1000 at 250 μm)
- Design features
 - Sensitivity limited by thermal emission from the telescope (80 K; ϵ = 4%)
 - ³He cooled detector arrays (0.3 K)
 - Feedhorn-coupled spider web NTD bolometers
 - Minimal use of mechanisms
 - Beam steering mirror; FTS mirror drive

Photometer Layout and Optics

FTS Layout and Optics

Detector Arrays (2F\lambda feedhorns)

Prototype Hardware

³He cooler

Array module

Spider-web bolometer

Mach-Zehnder FTS

ESTEC May 23 2000

10

FIRST/Planck Payload Review

Instrument Sensitivity

Photometry						
λ (μ m)	250	350)	500		
Point source Δ S (1 $_{\sigma}$, 1hr) (mJy) 0.48	0.53	3	0.59		
4' by 8' map ${}_{\Delta}$ S (1 $_{\sigma}$, 1hr) (mJy)	1.1	1.2		1.5		
Spectroscopy						
λ (μ m)		200	400	670		
Line Spectroscopy: $\Delta \sigma = 0.04 \text{ cm}^{-1}$						
∆ F (1 _☉ , 1hr) (W m ⁻² x10 ⁻¹⁸)	Point source:	5.4	6.9	14		
	2.6' map:	13	16	32		
Low-resolution spectrophotometry: $\Delta \sigma = 1 \text{ cm}^{-1}$						
∆ S (1_σ, 1hr) (mJy)	Point source:	18	23	46		
	2.6' map:	44	53	108		

Sensitivity and field of view both improved over figures in the SPIRE proposal

SPIRE Instrument Sensitivity for Deep Surveys

λ	FWHM	1- σ; 1 sec .	Confusion	Time	Field of	Time to map
		point	noise limit	needed to	view	1 sq. deg.
		source	(1 source	reach		to the
		limit	per 40	confusion		confusion
			beams)	limit at 5 σ		limit
					(sq.	
(μm)	(arcsec.)	(mJy)	(mJy)	(min.)	arcmin.)	(days)
250	18	65	23.4	3.2	32	0.27
350	25	74	24.0	4.0	32	0.34
500	36	87	17.4	10.4	32	0.89

Confusion limits are from models of M. Rowan-Robinson

Survey examples:

- 100 sq. deg. confusion-limited extragalactic survey (100 days)
- Follow-up survey of 400 sq. deg. Planck DECS (10 days)

SPIRE Hardware Responsibilities

Institute	Role
Astronomy Technology Centre,	Beam Steering Mechanism (BSM);
Edinburgh	FPU Systems Engineering
Obs. de Meudon, Paris	FTS expertise and design support
CEA, Grenoble	³ He cooler
Goddard Space Flight Center,	Internal calibrators
Maryland	
Instituto di Fisica dello Spazio	Digital Processing Unit (DPU);
Interplanetario, Rome	On-Board Software
JPL/Caltech, Pasadena	Bolometer array modules; JFET Box
Laboratoire d'Astophysique,	Optics, FTS mechanism;
Marseille	FTS/BSM electronics
Mullard Space Science Laboratory,	FPU structure
Surrey	
Queen Mary and Westfield College,	Testing and calibration of bolometer
London	arrays; filters, dichroics, beam dividers
Rutherford Appleton Laboratory,	Project management; Project office;
Oxfordshire	AIV and ground calibration
CEA, Service d'Astrophysique, Saclay	Detector Readout and Control Unit (DRCU)
University of Saskatchewan, Canada	Shutter; AIV facility hardware (TBC)
Stockholm Observatory	DRCU and instrument simulators
TBD	Instrument cold vibration

FIRST/Planck Payload Review ESTEC

May 23 2000

SPIRE ICC Responsibilities

- ICC Centres (including manpower)
 - ICC Operations Centre at RAL (sole interface with ESA)
 - DAPSAS Centres at ICSTM, London and CEA, Saclay
- Additional manpower for ICC development and operations provided by:
 - IAC, Tenerife
 - IFSI, Rome
 - Padova Observatory
 - University of Saskatchewan
 - IPAC, Pasadena
 - Stockholm Observatory

Management Structure

Model Philosophy 1

- AVM
 - Includes DPU and DRCU Simulator
 - Flight standard (DPU), no redundancy, commercial parts
 - Functionality not yet finalised need to simulate anomalies and science data?
 - Parts not from same manufacturer (TBD) as FM
- CQM
 - Flight standard subsystems, but not all redundancy
 - Two full detector arrays; others partly-filled
 - SPIRE requirements more stringent than ESA's use as QM
 - Schedule driven by Critical Design Review date and PFM programme, not QM delivery
 - Schedule includes warm vibration of Structural Model (STM) to mitigate risk
Model Philosophy 2

- PFM
 - Fully flight standard
- **FS**
 - Cold Units
 - Fully flight standard
 - May be refurbished CQM units
 - Question of need for spare FPU vs. repair
 - Warm Units
 - DPU : spare cards only
 - DRCU : spare unit or spare cards, TBD
 - WIH : spare unit

Schedule

1999	2000	2001	2002	2003	2004	2005	2006	2007
Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
	Prelim	inary Design						
PDR 🔶 🔶	•							
	Array Sele	ction						
		Detailed I	Design					
Interface	e Review 🔶							
AVM Manuf	acture							
				AVM Veri	fication			
				🔶 AVM De	livery			
CQM	Manufacture							
		Critical Des	sign Review	•				
				CQM De	livery			
		PFM	Manufacture					
			PF	M AIV/Cal				
				PFM De	ivery 🔶			
		FS Bu	Ild/Refurbish					
					FS AIV			
					FS Deli	very 🔶		
						-	Laund	h 🔶

FIRST/Planck Payload Review ESTEC May 23 2000

SPIRE Preliminary Design Review/ISVR

- July 1999: Science Requirements; Instrument Requirements; Focal Plane Unit
 - December 1999: Warm Electronics
 - Jan/Feb 2000: Detector Array Selection
- All have had ESA and independent oversight
- Review programme agreed with ESA to cover the Instrument Science Verification Review
- Last Phase: June 26/27 2000
 - Design updates
 - Clarifications following detector selection
 - Detailed assessment of schedule and development plan

Detailed Design Review/IIDR

- October 2000:
 - Formal review and freezing of:
 - All interfaces
 - Qualification status and plans
 - Subsystem Development Plans
 - Identification of long lead-time items
- October 2000 February 2001:
 - Series of specific subsystem technical reviews
 - Each of these to release the subsystems for manufacture

- Feb 02: Deliveries of AVM warm electronics units
 - AVM Verification
- Aug 02: Use for CQM verification and testing
- Feb 03: AVM acceptance testing
- Apr 03: AVM delivery to ESA

CQM Development Plan

- Mar 02: Deliveries of CQM focal plane subsystems
 - STM integration and alignment tests
 - STM vibration tests (warm)
 - Instrument integration and alignment check
- Aug 02: Test readiness review
 - Functional and performance tests
- Nov 02: Cold vibration tests
 - Functional and performance tests
 - Performance verification
- Jan 03: FPU Critical Design Review
- Mar 03: Delivery of QM WE units
 - QM Warm Electronics Qualification
- Apr 03: CQM delivery to ESA

CQM testing is carried out using the AVM warm electronics

PFM Development Plan

- Sep 03: Deliveries of PFM focal plane subsystems
 - Instrument integration and alignment check
- Jan 04: Test readiness review
 - Functional and performance tests
- Mar 04: Cold vibration tests
 - Functional and performance tests
- Apr 04: Delivery of PFM WE units
 - **PFM** warm electronics qualification
 - Calibration (6 weeks)
- Jul 04: PFM delivery to ESA

PFM testing is carried out using the QM warm electronics

FS Development Plan

- Sep 04: Deliveries of PFM focal plane subsystems
 - Instrument integration and alignment check
- Jan 05: Test readiness review
 - Functional and performance tests
- Mar 05: Cold vibration tests
 - Functional and performance tests
- Apr 05: Delivery of PFM WE cards
 - FS warm electronics verification
 - Calibration (6 weeks)
- Jul 05: FS Delivery to ESA

Some manufacturing starts with the CDR (Jan 03), some with return of the CQM (Apr 04)

FS testing is carried out using the FS cards in the QM warm electronics boxes

Funding Status

- UK:
 - Fixed funding envelope: any delay has to be accommodated within the limit
 - Some additional work taken on after array selection
 - Funding shortfall for ICC still to be addressed
- France:
 - CNES have committed to providing DRCU, FTS, ³He cooler
 - ICC funding to be clarified
- USA:
 - Funding for detector arrays secure
 - Possible contributions to FTS mechanism, internal calibrators
- Canada:
 - Support for shutter and ICC staff effort confirmed
 - Contribution to AIV facility under discussion
- Italy, Sweden, Spain: Funding is secure

SPIRE Critical Areas: Spacecraft Interfaces

- Optical bench: CFRP or Aluminium
 - Designing for *either* option is problematic
 - Significant cost/complexity implications
 - SPIRE has strong preference for Aluminium
- DPU-CDMS packet transfer protocol
 - Impact on DPU design and EGSE, which have to be frozen soon
- Use of SCOS2000 for system level tests
 - Choice of any other system by contractor will lead to extra work for SPIRE
- Qualification programme schedule
 - CQM must be build and qualified very shortly after contractor is appointed
- EMC/EMI
 - Difficult area for bolometer instruments, requiring attention to the whole system

Critical Areas: SPIRE

- Stray light
 - Potential problem with any low background bolometer instrument
- FPU mechanical/thermal engineering
 - STM programme highly desirable to verify performance and mitigate risk
- FTS mechanism
 - Challenging mechanism with stringent specifications
- Cold vibration facility
 - Assumption that ESA will arrange for its provision
- Lack of margin in schedule
 - Need to complete CQM programme before starting PFM programme

Planck Satellite

5. Planck Payload

J. Tauber ESA/ESTEC

Payload review - 23/5/2000

- **1. Scientific objectives**
- 2. Extracting science from Planck

PLANCK

- 3. Planck in a wider context
- 4. Payload overview
- 5. Review cycle and status

Key Scientific Objectives

- CMB anisotropy maps to an accuracy $\Delta T/T \sim 1 \times 10^{-6}$, on angular scales <10' $\rightarrow 180^{\circ}$
- Cosmological parameters, H_0 , Ω_0 , Ω_b , to a precision of a few percent
- Tests of inflationary models of the early Universe
- Search for non-gaussianity/topological defects
- Initial conditions for formation of large-scale structure
- Nature of dark matter
- Detection of Sunyaev-Zeldovich effect in thousands of rich clusters of galaxies
- Extragalactic sources and backgrounds
- Maps of Galaxy at frequencies $30 \rightarrow 1000 \text{ GHz}$

Main Observational Objective:

To image the whole sky at wavelengths near the peak of the spectrum of the Cosmic Microwave Background Radiation Field (CMB), with a sensitivity $\Delta T/T \sim 10^{-6}$, and angular resolution ~5 arcminutes.

Observational Strategy:

- Two successive all-sky surveys
- 1.5 metre aperture telescope
- wide frequency coverage (30 Ghz 900 GHz)
- State-of-the-art detectors
- extreme attention to systematic effects

2. Extracting science from Planck

The CMB according to Planck

Main Cosmological Parameters

- Ω_0 Cosmological total density parameter
- H_o Hubble constant
- Ω_{b} Baryon density
- Ω_{c} Cold dark matter density
- A Cosmological constant
- N_s Spectral index of scalar perturbations
- Q Amplitude of fluctuation spectrum
- r Ratio of Gravitational wave to density perturbations
- τ_r Residual optical depth due to reionisation

Cosmological Parameters in the CMB

The shape of the power spectrum depends very sensitively on the value of the cosmological parameters

PLANCK

Accuracy of recovery of fundamental parameters 100 percentage error (1σ) Ω_0 10 1/3 sky coverage $\Delta T/T = 2 \times 10^{-6}/\text{pixel}$ 1.2 0.8 0.6 2 1.8 1.6 1.4 1 0.4 0.2 $\theta_{\rm FWHM}$ (degrees) Maximum likelihood estimates in an eight dimensional parameter space $(\Omega_0, h, \Omega_b, n_s^3, Q_{rms}, n_s/n_t, \Lambda, \tau_{reion})$

PLANCK

Priors

- 1st and 2nd generation CMB experiments
 - balloon-borne, e.g. BOOMERanG and a dozen others
 - ground-based, e.g. VSA, and two dozen others
 - MAP
- Large scale structure (2dF, SDSS, etc)
- SN searches
- Nucleosynthesis
- Hubble constant
- Stellar ages
- Lensing surveys
- Particle physics

The coming decade

- Progress in 2nd generation CMB experiments:
 - balloon-based experiments are already reaching their natural limits (instrument-related, backgrounds, sky coverage,...)
 - MAP will confirm and extend their results
 - interferometers are coming on line
- Progress in other areas:
 - large scale structure
 - lensing surveys
 - supernovae
 - ...
- Progress in data analysis techniques
- Narrowing down the range of cosmological models

PLANCK

Planck - the 3rd generation

- A leap forward for CMB experiments:
 - broad frequency range (x10 improvement)
 - angular resolution (x2 improvement)
 - sensitivity (x10 improvement)
 - immunity to systematics (orbit, design)
 - polarisation
- Precise and reliable cosmological parameters
 - with no other priors
 - together with other information
- An IRAS-like database to be exploited for:
 - galaxy clusters (e.g. S-Z effect)
 - galactic astrophysics

CMB experiments

	COBE/DMR	BOOMERanG	СВІ	MAP	Planck
Freq. range	30-90	90-400 GHz	26-36 GHz	22-90 GHz	30-857 GHz
No. of frequency channels	3	4	10	5	9
Angular resolution	7 ^o	10.5'-13'	4'.5-8'	12'.6-66'	5'-33'
Sky coverage	100%	3%	3%	100%	100%
10 ⁻⁶ ∆ <i>T</i> Sensitivity (10'x10')	20 (in 10 ^o x10 ^o)	~40	~15	~50	~5
Polarisation	no	Future	yes	yes	YES
Raw data size	1 Gbyte	10 Gbyte		1 Tbyte	5 Tbyte
No of pixels	6144	10 ⁵		10 ⁶	5x10 ⁶
Time to reduce data	2 yrs	2 yrs		1 yr	1 yr
Generation	1 st		2 nd	1	3 rd

PLANCK

MAP vs Planck

	MAP											
	Center Frequency (GHz)			22	30)	40	60)	90		
	Number of Detectors			4	4		8	8		16		
	Angular Resolution (')			66	38	3	32	18	3	12.6		
	ΔT Sensitivity (μ K, 18'x18')			35	35	5	35	35	5	35		
	Polarisation			yes	ye	s y	/es	ye	S	no		
Planck												
Center Frequency (GHz)	30	44	70	100	100	14	43	217	353	545	857
Number of Detectors4		6	12	34	4	1	2	12	6	8	6	
Angular Resolution (')		33	23	14	10	10.7	8.	.0	5.5	5.0	5.0	5.0
$\Delta T \text{ Sensitivity } (\mu \text{K}) \qquad 4.3 \qquad 6.5$		9.7	11.6	4.6	5.	.4	11.6	39	400	18mK		
ΔT Sensitivity (μ K, 18'x18')			~3.8	~1.5								
Polarisation		yes	yes	yes	yes	no	ye	es	yes	no	yes	no

Non-CMB Science highlights							
Sunyaev-Zeldovich effect	 Measurement of y in > 10⁴ clusters Cosmological evolution of clusters to z > 1 H_o and X-ray measurements, gas properties Bulk velocities on scales > 300 Mpc 						
Extragalactic sources	 IR and radio galaxies AGN's, QSO's, blazars Evolution of galaxy counts to z > 1 Far-IR background fluctuations 						
Galactic studies	 Dust properties Cloud and cirrus morphology Star forming regions Cold molecular clouds Maps of free-free and synchrotron emission Cosmic ray distribution Galactic magnetic field 						
Cesa	PLANCK						

Recovery of cluster S-Z profile

Summary

• 2nd generation CMB missions are starting to fulfill their promise - as expected

- Together with other priors, they will constrain a few cosmological parameters as expected
- They have natural limits which can only be overcome with a 3rd generation experiment
- They are extremely useful as a stepping stone towards Planck:
 - technical experience
 - priors
 - knowledge of foregrounds
 - data handling and analysis techniques

The scientific promise of Planck

- The 3rd generation CMB experiment that will uniquely provide:
 - reliable and precise values of the most fundamental cosmological parameters of our Universe
 - a database of scientific information that will be used in cosmology and astrophysics for decades to come

Planck Telescope

- Primary: 1.50 x 1.89 m ellipsoid (CFRP)
- Secondary: 1.02 x 1.04 m ellipsoid (CFRP)
- System:
 - 1.5 m circular projected aperture
 - Total MWFE<40 $\mu m~rms$
 - Total ε <0.01

• Reflectors will be developed by a Consortium of danish institutes led by the Danish Space Research Institute (PI: Dr. H.U. Norgaard-Nielsen)

PLANCK

Planck Instruments

Low Frequency Instrument:

- PI: Dr. N. Mandolesi, TeSRE-CNR, Bologna, Italy
- Ring array of 56 radio receivers
- Frequency coverage 30 100 GHz (10 3 mm)
- Operating temperature 20 K
- Best angular resolution ~10 arcmin
- Best per pixel sensitivity ~12 μK

High Frequency Instrument:

- PI: Dr. J.L. Puget, IAS, Paris, France
- Circular array of 48 bolometers
- Frequency coverage 100 857 GHz (3 0.3 mm)
- Operating temperature 0.1 K
- Best angular resolution ~5 arcmin
- Best per pixel sensitivity ~ 5 μK

Goal Planck instrument characteristics

Telescope	1.5 m. (projected aperture) offset; shared focal plane; system emissivity 1%										
	Viewing direction offset 80-85° from spin axis.										
Center Frequency (GHz)	30	44	70	100	100	143	217	353	545	857	
Detector Technology	HEMT radio receiver arrays Bolometer arrays										
Detector Temperature		~20) K		0.1 K						
Cooling Requirements		H ₂ sorpti	on cooler		H_2 sorption cooler + 4K J-T stage + Dilution system						
Number of Detectors	4	6	12	34	4	12	12	6	8	6	
Angular Resolution (')	33	23	14	10	10.7	8.0	5.5	5.0	5.0	5.0	
Bandwidth ($\Delta \nu / \nu$)	0.2	0.2	0.2	0.2	0.25	0.25	0.25	0.25	0.25	0.25	
$\Delta T/T$ Sensitivity per res. element (12 months, 1σ , 10 ⁻⁶ units)	1.6 (P)	2.4 (P)	3.6 (P)	4.3 (P)	1.7	2.0 (P3.7)	4.3 (P8.9)	14.4	147.0 (P208)	6670.	
Flux sensitivity (12 months, 1 σ , mJy)	9	17	23	24	8	9	11	19	38	43	
NEB $(10^{-3} \text{ MJy } \sqrt{sr})$	2	5	11	16	5	7	14	26	50	58	

Instrument reviews

- Science Verification Review (end 1999)
- Intermediate Design Review (mid/end 2000)
- Baseline Design Review (mid/end 2001)
- Hardware Design Review (mid/end 2002)
- Critical Design Review (mid/end 2003)
- Flight Acceptance Review (end 2006)

Instrument Science Verification Review

- Sorption cooler: 12/10/99
- HFI: 13-14/10/99
- LFI: 10-11/11/99
- Data Processing Centres: 1-2/12/99
- Status: satisfactory once Board recommendations are implemented

Planned Telescope Reflector Reviews

- Demonstration Programme Review (end 2000)
- Requirements Review (end 2000)
- Preliminary Design Review (beg 2001)
- Hardware Design Review (end 2001)
- Qualification Review (beg 2002)
- Acceptance Review (beg 2004)

Status: review cycle has not started

5.1 Planck Straylight Status

P. de Maagt ESA/ESTEC

Estec Newton 1 - 23 May 2000

PT - 07736

1

STRAYLIGHT EVALUATION FOR **PLANCK**

23 May, 2000

Straylight Evaluation for **PLANCK**

To evaluate compliance with the straylight requirement of Planck and to issue recommendations.

Straylight is the radiative power that reaches a detector within its RF bandwidth, and that does not originate from sources in the far-field of the antenna main beam.

Variations in the straylight are a source of noise in the detector that cannot easily be separated from intrinsic noise or variations in the sources of interest.

This leads to the concept of:

SIN (Straylight Induced Noise)

Planck Straylight Analysis

Planck Payload Module

Main Challenges

Accuracy required

•Frequency range

Complex structure

new straylight approach

needs very specific tools that are pushed to the limits

Generation of EXTERNAL SIN

==0:==+0008=#=0

TOS-EEA

Generation of INTERNAL SIN

CSA TOS-EEA

23 May, 2000

Straylight safely within specs

An external panel of eminent European and US straylight experts was convened in early 1999 to review the approach. The panel "endorsed the professionalism of the approach and results" and made further valuable recommendations.

Tasks Performed:

- Radiation pattern of antenna, alone and with baffle, analysed with GRASP8 using Physical optics and Geometrical Theory of Diffraction at 30,100 and 353 GHz.
- ✓ Straylight effect has been estimated using a 'flight simulator' at 30 and 100 GHz.
- Several detailed supporting studies performed (e.g. cracks, polarization, mutual interaction, abberations,...)

Straylight issues under investigation

dust contamination, also has an impact on integration

microcracks and edges, also have an impact on fabrication (technology).

Mutual interaction and mutual coupling at instrument level

CSA TOS-EEA

- External straylight can be controlled by simplified working requirements.
- Internal straylight needs tight control of temperature fluctuations.
 Detailed thermal analysis shows that it can be controlled.
- Experimental validation required.
 Dedicated Radio Frequency model planned Related TRP/GSTP activities on-going.
- Straylight analysis for PLANCK is a complicated task (needs specific expertise + state of the art tools) that has to be continued throughout the project.

5.2 LFI Status

N. Mandolesi TeSRE Bologna

Estec Newton 1 - 23 May 2000

Summary

- Science Capabilities
- Instrument Design & Status
- LFI Consortium Team

Planck/LFI Power Spectrum (vs. MAP)

FIRST/Planck Payload Review

N. Mandolesi

Planck/LFI Low Frequency Instrument

Goal Performances

Center Frequency (GHz)	30	44	70	100					
Detector Technology	HEMT radio receiver arrays								
Detector Temperature	~20 K								
Cooling Requirements	H ₂ sorption cooler								
Number of Detectors	4	6	12	34					
Angular Resolution (Ô)	33	23	14	10					
Bandwidth ($\Delta \nu / \nu$)	0.2	0.2	0.2	0.2					
$\Delta T/T$ Sensitivity per res. element (12 months, 1σ , 10^{-6} units)	1.6 (P)	2.4 (P)	3.6 (P)	4.3 (P)					
Flux sensitivity (12 months, 10, mJy)	9	17	23	24					
NEB (10 ⁻³ MJy \sqrt{k} sr)	2	5	11	16					

FIRST/Planck Payload Review
LFI Polarisation Power Spectrum (vs. MAP)

FIRST/Planck Payload Review

N. Mandolesi

Comparison with Boomerang and Maxima

PLANCK-LFI

FIRST/Planck Payload Review

N. Mandolesi

Some Interpretations of the Boomerang Data

Boomerang returns expeditely, by M. White et al., astro-ph/0004385, proposes a marginally closed universe...

New CMB constraints on the cosmic matter budget: trouble for Nucleosynthesis? by M. Tegmark et al., astro-ph/0004393, indicates high baryon content...

Remarks on the Boomerang results, the cosmological constant and the leptonic asymmetry, by J. Lesgourgues et al., astro-ph/0004412, suggests lepton asymmetry, no cosmological constant...

Is there evidence for topological defects in the Boomerang data?, by F.R. Bouchet et al., astro-ph/0005022, hybrid models containing both topological defects and inflationary perturbations...

Decaying neutrino and a high cosmological baryon density, by S.H. Hansen et al., astro-ph/0005114 thinks at

 τ -nutrino decaying into e-neutrino plus scalars...

Cosmic strings in the age of Boomerang, by C.R. Contaldi, astro-ph/0005115, cosmic strings and/or inflationary perturbations and/or cosmological constant...

Decaying Cold Dark Matter model and Small-Scale Power, by R. Cen, astro-ph/0005206, decaying CDM plus cosmological constant...

23 May 2000

FIRST/Planck Payload Review

Temperature and Q-Polarisation

Temperature Map

Polarisation Map

23 May 2000

FIRST/Planck Payload Review

Planck Cosmological Parameter Recovery

Target model: ACDM with $\Omega_m = 0.35, \ \Omega_\Lambda = 0.65, \ \Omega_B = 0.05, \ h = 0.65, \ T/S = 0, \ n_S = 1, \ n_T = 0, \ \tau = 0.05.$

From Eisenstein, Hu & Tegmark, 1998

Quantity	Т	Т & Р
h	1,1	0.13
Ω_m	1.2	0.14
$\Omega_m h$	0.40	0.046
Ω_Λ	0.96	0.11
Ω_K	0.26	0.030
$\ln(\Omega_m h^2)$	0.064	0.018
$\ln(\Omega_B h^2)$	0.035	0.010
$m_ u({ m eV}) \propto \Omega_ u h^2)$	0.58	0.26
Y_P	0.018	0.013
$n_S(k_{\rm fid})$	0.041	0.0008
$n_S(H_0)$	0.18	0.039
α	0.015	0.0004
$\ln P_{\Phi}(k_{\rm fid}) \equiv \ln A_S^2$	1.1	0.073
$\ln P_{\Phi}(H_0)$	1.3	0.16
T/S	0.35	0.012
τ	0.59	0.004
$\ln \sigma_8$	0.42	0.057
$\ln \sigma_{50}/sigma_8$	0.75	0.093

23 May 2000

FIRST/Planck Payload Review

Astrophysics with LFI

- LFI Surveys unique in detecting populations of rare objects with hard spectra
- LFI Surveys emphasize bright radio sources with flat or inverted spectra
- BLAZARS
 - Spectral Energy distribution
 - Variability
- GPS Sources
- Other classes of source: ADS, AGN, Galactic stars, SN remnants, etc.
- S-Z
- Galaxy

III Zw 2 Flare

N. Mandolesi

GigaHertz Peaked Spectrum Sources (GPS)

N. Mandolesi

Foregrounds vs. Frequency

N. Mandolesi

LFI Main Design Driver

- Sensitivity
- Suppression of Systematics
 - 1/f Noise
 - Thermal Effects
 - Straylight
 - Main Beam Gaussianity
- Control of Residual Systematics

Straylight Simulation (30 GHz Carrier Telescope)

23 May 2000

Radiometer Block Diagram

Differential Design Output

FIRST/Planck Payload Review

100 GHz EBB Radiometer FEM

23 May 2000

FIRST/Planck Payload Review

30 GHz EBB OMT

FIRST/Planck Payload Review

30 GHz EBB Feed Horn

23 May 2000

FIRST/Planck Payload Review

4K Reference Load

FIRST/Planck Payload Review

Focal Plane Unit and FEU/BEU

FIRST/Planck Payload Review

Planck/LFI BEU

FIRST/Planck Payload Review

Planck / LFI DAE

23 May 2000

FIRST/Planck Payload Review

Planck/LFI BEM

FIRST/Planck Payload Review

Currently Achieved LNA Noise Performances

	30 GHz	44 GHz	70 GHz	100 GHz
Goal T_Amp (K)	6.0	10.6	17.3	29.2
Achieved T_Amp (K)	9 (§)		<25 (*)	45
T_Amp in reduced power (K)	9.9		28	50
Ratio	1.7		1.6	1.6

- (§) Measured noise through the 20% band is 8.5K at 13K operating temperature, which yields about 9 K extrapolating to 20K operation.
- (*) Measured room temperature Tamp of 170K (2 dB), which scaled to operation at a physical temperature of 20K yields a noise temperature in the range 20-25 K.

W-Band performances: LFI vs. MAP

	Number of Feeds	Physical Temp (K)	Amp Noise Temp (K)	Nominal lifetime (months)	Sens. per 0.3° pixel (µK)(^)
MAP	4 + 4	95	100-130	24	35
Planck-LFI "Achieved"	17	20	50	14	11
Planck-LFI "Goal"	17	20	29.3	14	7

(^) Antenna Temperature

FIRST/Planck Payload Review

Power Dissipation Budget (mW)

	Requirement	Measured(*)
30 and 44 GHz	155	154-175
70 GHz	132	
100 GHz	262	245

(*) Including InP Front-end phase switches as measured by Millilab (May 2000)

Phase Switches Status (18 May 2000)

Baseline: InP PIN diode phase shifters (FEM)

- -Tested on 70 GHz prototype (Millilab, FIN)
- Power dissipation <u>now acceptable</u> (< 0.5mW)
- 20% band (as required)
- 1/f very promising (measurements running now)
- Poor insertion loss (9-12 dB)

Back-up solutions:

Fox-Trot scheme (FEM)

- Tested on 30 GHz prototype (Joderll, UK)

- FE at 20K, switches warm, 1.8 GHz bandwidth, 0.73K unbalanced system

- 1/f knee at 47 mHz, factor 8 improvement over baseline switching scheme

- Good isolation and return loss

- To be tested with HEMT switches at 20K, full bandwidth

DPDT switch (BEM)

- Tested on 100 GHz PD (JPL)
- Run in SPDT mode, Tsys =50K
- 1/f knee 50 mHz
- Easier implementation!
- Bandwidth 7% (expected 13%): to be understood
- Go to DPDT scheme

Deadline: LFI Mid-Term Review (End of June)

FIRST/Planck Payload Review

Mutual Coupling between Horns 1 / 2

Mutual Coupling between Horns 2 / 2

Planck 18K/20K Sorption Cryocoolers

FIRST/Planck Payload Review

LFI Data Rate

	30 GHz	44 GHz	70 GHz	100 GHz	Total
Raw data produced (kb/s)	13.3	19.9	39.9	113.0	186.1
Reduction factors:					
Different sampling	3.3	2.3	1.4	1	1.21
Radiometer averaging	2	2	2	2	2
Rate before compression (kb/s)	2.01	4.33	14.24	56.50	77.09
Lossless compression	3.8	3.8	3.8	3.8	3.8
Science Telemetry Data Rate (kb/s)	0.53	1.14	3.75	14.87	20.29
Housekeeping					4
Packeting overhead (percent)					7
Total Data Rate (kb/s)					25.99
Contingency					20%
Total with contingency (kb/s)					31.2

LFI Data Rate – Breakdown

A	
Assumptions	
▲ · · · · · · · · · · · · · · · · · · ·	

Scan Angle (degrees)	80
Spin Rate (rpm)	1.0
DAE Sampling rate (Hz)	8192
Oversampling per beam	3.0
Bits per word	16
Signal quantization (σ/q)	2

		2d Ave	No Ave
	Raw data produced (kb/s)	186.1	186.1
	Reduction factors:		
	Different sampling	1.21	1.21
	Radiometer averaging	2	
	Rate before compression (kb/s)	77.1	154.2
Budget	Lossless compression	3.8	3.8
	Science Telemetry Data Rate (kb/s)	20.29	40.6
	Housekeeping	4	4
	Packeting overhead (percent)	7	7
	Total Data Rate (kb/s)	25.99	45.6
	Contingency	20%	20%
	Total with contingency (kb/s)	31.2	54.7

To reach telemetry rate of 31.2 kb/sec

increased HW and SW complexity is required

23 May 2000

N. Mandolesi

FIRST/Planck Payload Review

LFI Consortium Team

Country	Name	Institute
Italy (I)	N. MANDOLESI	TESRE-CNR
	L. DANESE	SISSA
	G. DE ZOTTI	OAP
	G. TOFANI	CAISMI
	N. VITTORIO	ROMA "TOR VERGATA" UN.
	R. C. BUTLER	TESRE-CNR
	M. BERSANELLI	IFCTR-CNR
	F. PASIAN	OAT
Switzerland (CH)	T.J.L. COURVOISIER	INTEGRAL SCIENCE DATA
		CENTRE
United Kingdom (UK)	R. D. DAVIES	JODRELL BANK
	R. DAVIS	JODRELL BANK
USA	C. R. LAWRENCE	JPL
	T. GAIER	JPL
	P.M. LUBIN	UCSB
	G. SMOOT	LBL
	L. A. WADE	JPL
Germany (D)	S. WHITE	MPA
Denmark (DK)	H.U. NOORGAARD-NIELSEN	DSRI
Sweden (S)	E. KOLLBERG	CHALMERS UNIVERSITY of
		TECHNOLOGY
Spain (E)	E. MARTINEZ-GONZALES	UNI. DE CANTABRIA
	R. REBOLO	IAC
Norway (N)	PER B. LILJE	ITA, OSLO UNIVERSITY
Finland (FL)	J. TUOVINEN	MILLILAB
	K. ENKVIST	UNIVERSITY of HELSINKI
	K. BENNET	ESA-ESTEC/SSD
	K.M. GORSKI	ESO
Poland (PL) - tbc	M. DEMIANSKI - tbc	UNIVERSITY of WARSAW

Planck/LFI Low Frequency Instrument

FIRST/Planck Payload Review

Proposed Topics for Planck's Core Program

•	Planck/LFI Maps	K. Gorski	
•	Statistical Analysis of CMB Maps	G. Smoot, E. Martinez	z-Gonzalez
•	Spectral Analysis of CMB Maps	N. Vittori	0
•	CMB Polarization Fluctuations	C. Lawren	nce
•	Solar System		
•	Diffuse Galactic Emission: synchrotre	on R. Davies	•
•	Diffuse Galactic Emission: free-free	G. Smoot	
•	Diffuse Galactic Emission: dust	P. Lubin,	R. Rebolo
•	Resolved and Unresolved Galactic So	ources G. Tofani	
•	Radio Sources	G. De Zotti, R.B. I	Partridge
•	Dusty Galaxies	L. Danese	e
•	Secondary Effects on the Fluctuation	Pattern R. Sunyaev	v, S. White
•	Search for Variable Sources		

• MANAGEMENT

- INSTRUMENT DEVELOPMENT
- DELIVERABLES & MODELS
- CRITICAL AREAS

LFI Configuration Drawing (Redundant units not shown) and note that SCS is shared with HFI

23 May 2000

FIRST/Planck Payload Review

R.C. Butler

Planck/LFI Low Frequency Instrument Planck LFI

TOP LEVEL TASKS

Tasks	Institute	Nation	Comment
Management	TESRE/CNR,	Italy	+IFC-Milan
System Activities (Instrument)	Bologna		+IFC-Milan
Radiometer Array Assembly			
30/44 GHz Radiometer Chain Assembly			TBC
100 GHz Front End Modules (FEM)			
100 GHz Back End Modules (BEM)			
Data Acquisition Electronics (DAE)			
FPU Mechanical Structure			
BEU & WG Mechanical Structure			
4 K Reference Load			
30/44 GHz FEM + BEM Integration			+JPL
MGSE			+Poland (TBC)
Cryo-GSE			
Harness			
30/44/70/100 GHz Feed Horns, OMTs,	CAISMI/CNR,	Italy	
Waveguides (WG)	Firenze	-	
30/44 GHz FEMs	Univ. Of Manchester, Jodrell Bank	UK	
30/44 GHz BEMs	University of Cantabria, Santander	Spain	
70 GHz FEMs + BEMs	Millilab, Helsinki	Finland	+Chalmers UnivSweden
Radiometer Electronics Box Ass.y (REBA)	IAC, La Laguna	Spain	
Data Processing Unit (DPU)		1	
SPU			
Sorption Cooler	JPL	USA	
Sorption Cooler Electronics	IAS	France	
SCS Harness	IAS + JPL	France/USA	
EGSE	University of Oslo	Norway	+TESRE
DPC Develop. & Operations	OAT, Trieste	Italy	+SISSA
System Activities (DPC)			+TESRE
DPC Level 2			
DPC Level 1			
Simulations & Prototyping	ESO, Univ. Roma 2		
DPC Level 3	SISSA, Trieste	Italy	+OAT
DPC Level 4	MPA, Garching	Germany	

23 May 2000

FIRST/Planck Payload Review

LFI MANAGEMENT STRUCTURE

FIRST/Planck Payload Review

High Level Product Tree

23 May 2000

FIRST/Planck Payload Review

Models of LFI

The following models of LFI are foreseen:

- Prototype Demonstrators (PD's)
- Elegant Breadboard (EBB)
- Avionic Model (AVM)
- Qualification Model (QM)
- Flight Model (FM)
- Spares (FS)

LFI Development Phases

The activity has been split into 5 phases:

- Pre LFI Phase B and Breadboarding
 - Covering all activities prior to start of LFI Phase B and the Breadboard running in parallel with the LFI Phase B up to end 2000.
- LFI Phase B (Jan 2000 Sep 2000)
- LFI Phase C/D (Oct 2000 IFAR July 2006)
- LFI Phase E (IFAR Start inflight operations)
- LFI Phase F Operations (18 months)

Dates of LFI Reviews

•	Pre LFI Phase B Readiness Review (PBRR)	4-5/10/99
•	LFI Phase B Mid Term Review (MTR)	21/06/00 (*)
•	LFI Baseline Design Review (BDR)	30/09/00
•	LFI Intermediate Design Review (IDR)	29/06/01
•	LFI Unit Critical Design Review (UCDR)	30/09/02
•	LFI Critical Design Review	30/06/03

(*) MTR start with RAA review

LFI Key Dates

AVM Test Readiness Review 30/04/02
QM Test Readiness Review 30/09/02
AVM/QM Delivery 31/03/03
EGSE Delivery 31/03/03
FM Test Readiness Review 03/11/03
FM Delivery 30/06/04
FS Delivery 30/06/05

LFI Development Status

- LFI Prototyping and EBB activity is proceeding and is expected to be completed by the end of 2000 as foreseen
- LFI Phase B is proceeding in parallel and is still expected to be completed in September 2000. However the LFI MTR has been delayed (from late April - now starting in June) partly due to System level input delay, and partly due to prototype development difficulties both of which are being overcome by LFI.

FIRST/Planck Payload Review

SCS Key Dates

 Cooler Definition Review 15/06/00 • Preliminary Design Review (PDR) 18/12/00 • EBB Testing 01/02/01 - 31/01/02• **OM Test Readiness Review** 01/05/02 • **QM Delivery** 31/01/02 FM Test Readiness Review 26/12/02 • FM Delivery 26/09/03 (*) - (*) Needed by LFI at 31/01/04

Planck

Sorption Cryocooler Status Report

- Performance measurements on Planck sorption-cooler compressors made with LaNiSn hydride alloy are very encouraging
 - Compressor performance and power efficiency has been verified
 - Accelerated life testing suggests major improvement in state-of-theart lifetime (meets Planck requirement); Non-accelerated testing begun

Planck

 Confirmed real breakthrough in the ability to predict cooler performance from small samples of hydride material (major reduction in schedule risk)

			35			PLA	NCK - LF	IINSTR	UMENT	REVIEW	S	22				0	1.07		152	- 23
10	Task Operating	100 L	04 0	2000	0.1.04	200	01 04 01	2002		2003		2004	2006	20	06 153 1 154	2007	104 01	2008	200	0
1	ESA Project Approvals	1) mr		IPC	346 342		un 507 5	a 9	a. 1 a. 1 a. 1 a.	34 32 34	10. 100	100 100	101 Sec. Se	94 94	1.00	Set 1 de 1 de 1	32 37
8	ESA Spacecraft Reviews				2		(¥) 888		PDR		() COR	(¥) ar			() AR (PRR				
12	ESA Phase B + Phase C/D + Pre-Launch Activities							1 1000		-	1	113	h <u>h</u> hh	_	884 PF	aso B + Phase G	D + Pro Laura	n Activities		
τ3.	Phase E + Phase F / Operationa												Phase E + Phase I	F / Operation			-		End Plance	
14	Launch															A Lance				
95	ESA LFI Required Instrument Design Reviews		(v) isv				(T) 80	n		6) ICDR				T PAR					
22	PLANCK LFI Overall										7			_	31/67					
23	LFI Pre-Phase B Readiness Review (PBRR) Data Pack Delivery	1	17/09												•					
.24	LFI PBRR Review		LPIPER	IR Review																
25	LFI PBRR Meeting	1.2	LEIPE	RA																
25	LFI Mid-Term Review (MTR) Data Pack Delivery	1		1.	8/08															
27	LFI MTR Review				-	herview.														
28	LFI MTR Meeting		1	8597																
29	LFI Baseline Design Review (BDR) Data Pack Delivery				1 010									-						-
30	LFI BDR Review			1 1 28		BOR Review														
31	LFI BDR Meeting			19429	¥ 1	DDR														-
32	LFI Intermediate Design Review (IDR) Data Pack Delivery				1.1	-	21/06													
33	LFI IDR Review						LFI IDE Beatew													
34	LEI IDR Meeting					25434	10.00													-
35	LFI Unit Critical Design Review (UCDR) Data Pack Delivery				-				3808											
30	LFI UCDR Review								LEIUCDER	enterer	-									
37	LFI UCDR Meeting							2000	UR LODE											
38	LEI Critical Design Review (CDR) Data Pack Delivery				-															
39	LFI CDR Review									LEIGH	Bester									-
-45	LEI CDR Meeting								344		NP			_						
41	Breadboarding Activities		_	_	-	Bearlinger	e Adhibes		-											
42	LFI Pre-Phase B	-		FI Pre-Phase																-
-41	LFI Phase B				10	Phase B														
44	PLANCK LFI Phase C/D		1	0210						_				_	21/07					
45	LFI Phase C Design			0.000.00	-		LPI Phone C Desi				-				•					
45	LFI AVM / QM Units Development		-					LELAVM/O	W Units Dave	coment	-									
47	LFI AVM Integration							1.014	VM Integration											-
48	LFI QM Integration									LPI GN Interes	ation									-
49	LFLAVM / QM Delivery									3103										
50	LFI FM Hi-Rel / LLI Parts Procurement								LEIFMHIR	I LLI Parts Pri	ocurement.									-
51	LFI FM Units Development									LEIPNI	Units Develop	omaet								
62	LEI EM Integration											L D EM integration								
63	LFI FM Delivery											- 20/24								
54	LFI FS							1			LITT	3								
- 55	LFI FS Internal Delivery										+ 3101	ET T								
80	LFI FS Delivery to ESA											55 C								-
67	PFM Planck LFI AIV														PEM Pier	ALT AN				
Proi	PLANCK LEL. INSTRUMENT REVIEWS									_				-						
LFI P Date	Voject Ref.: PL-LFI-PST-SC-015 Rev. 1,1 15/05/00		Progress			Sarenar			auriti 🖌		Delive	•• •	ESA Reviews	U		Un Neviews				
1								Pagina	7								Prepa	red by: PLA	NCK LFI SYSTEM	M TEAM

23 May 2000

FIRST/Planck Payload Review

Planck/LFI Low Frequency Instrument

FIRST/Planck Payload Review

Planck LFI AIV Flow Diagram

23 May 2000

FIRST/Planck Payload Review

Planck/LFI Low Frequency Instrument

LFI AVM Deliverables						
LFI Front-end Unit	No					
LFI Back-end Unit	BEU + FEU Simulator					
REBA	REBA AVM main unit only (including flight					
	S/W)					
Harness	REBA to BEU+FEU Simulator					
MGSE	Transport containers only					
EGSE	Not deliverable					
All agreed doc.	Yes					
including user manual						

SCS AVM Deliverables							
Sorption Cooler	SCE AVM main unit only (including flight						
Electronics (SCE)	S/W)						
Sorption Cooler	Simulator main unit only						
Compressor assembly							
(SCC)							
Sorption Cooler Cold	No						
End (SCCE)							
Sorption Cooler Piping	No						
(SCP)							
Harness	SCE to SCC only						
MGSE	Transport containers only						
EGSE	Not deliverable						
All agreed doc.	Yes						
including user manual							

Notes:

EGSE will be made available for incoming tests, but will not remain resident with AVM.

23 May 2000

FIRST/Planck Payload Review

Planck/LFI Low Frequency Instrument

QM DELIVERABLES

LFI QM Deliverables								
RAA	QM-RAA:							
	• 4 off 100 GHz radiometers out of 17 + dummies							
	• 2 off 70 GHz radiometers out of 6 + dummies							
	• 1 off 44 GHz radiometers out of 3 + dummies							
	• 1 off 30 GHz radiometer out of 2 + dummies							
	• Full 4 K Load							
	• Full Structure							
	• Full set of Waveguides							
	• BEU at single redundancy level							
REBA	AVM REBA main unit							
Harness	Yes							
EGSE	Yes							
MGSE	MGSE							
All agreed Doc. including	Yes							
the user manual								

SCS QM Deliverables						
SCC	QM-SCC					
SCP	QM-SCP					
SCCE	QM-SCCE					
SCE	QM One unit only					
SCC	No dummy					
SCP	Dummy to simulate FM					
SCCE	Dummy to simulate FM					
Harness	Yes					
EGSE	Yes (From HFI)					
MGSE	MGSE					
All agreed Doc. including	Yes					
the user manual						

23 May 2000

FIRST/Planck Payload Review

FM DELIVERABLES

LFI FM Deliverables								
RAA	FM-RAA							
REBA	FM REBA main and redundant units							
Harness	Yes							
EGSE	Yes							
MGSE	MGSE							
All agreed Doc.	Yes							
including the user								
manual								

SCS FM Deliverables								
FM SCC + QM-SCC (as redundant unit)								
FM SCC + QM-SCP (as redundant unit)								
FM SCCE + QM-SCCE (as redundant unit)								
FM SCE including both main and redundant units								
Yes								
Yes (From HFI)								
MGSE								
Yes								

FLIGHT SPARES

• For RAA

- Philosophy is based on no de-integration possible once on the satellite.
- Thus fully tested spare parts of radiometers and spare cards for BEU available for substitution.

• For REBA

- Fully tested spare cards available.

For Sorption Cooler S/S

- No complete flight spare foreseen of a Sorption Cooler.
- Spare parts will exist (including all critical delivery parts) at JPL.
- For the Sorption Cooler electronics fully tested spare cards will be available.

Planck/LFI Low Frequency Instrument

						Mass		Allocation (IID-B)
				,,	Est.	Cont.	Total	Total
				#	[Kg]	[%]	[Kg]	[Kg]
RAA					57.21	23%	70.43	
	FEU		1		21.60	25%	26.96	27.0
		FE						
		Struct.(1)			13.10	20%	15.72	
		E = 1; (2)			2.00	200/	5.04	
		Feeds (2)	20 CU- (*)	2	3.88	30%	5.04	
			30 GHZ (*)	$\frac{2}{2}$	0.210	30%	0.273	
			44GHZ(***)	3	0.240	30%	0.512	
			/0 GHz	0	1.152	30%	1.498	
			(***)	1/	2.278	30%	2.961	
			100 GHz					
			(****)		1.00	2007	2.24	
		OM1(3)			1.80	30%	2.34	
			30 GHz (*)	2	0.460	30%	0.598	
			44GHz(**)	3	0.480	30%	0.624	
			70 GHz	6	0.300	30%	0.390	
			(***)	17	0.561	30%	0.729	
			100 GHz					
			(****)		2.01	0507	2.04	
	_	FEMs(5)			2.81	37%	3.86	
			30 GHz (*)	2	0.700	43%	1.000	
			44GHz(**)	3	0.840	43%	1.200	
			70 GHz	6	0.900	30%	1.170	
			(***)	17	0.374	30%	0.486	
			100 GHz					
			(****)					
	BEU				29.81	22%	36.26	36.3
		BE Struct.			5.00	20%	6.00	
		DAE			22.00	20%	26.40	
		BEMs(6)			2.81	37%	3.86	
			30 GHz (*)	2	0.700	43%	1.000	
			44GHz(**)	3	0.840	43%	1.200	
			70 GHz	6	0.900	30%	1.170	
			(***)	17	0.374	30%	0.486	
			100 GHz					
			(****)					
	WG				5.00	25%	6.25	6.3
	4K				0.80	20%	0.06	
	Load				0.00	2070	0.90	
REBA					13.50	10%	14.85	15.0
Harness					3.00	20%	3.60	3.6
TOTAL					73.71	20.6%	889	88.2

Planck/LFI Low Frequency Instrument

		LF]	I POW	E	R BL	JDG	ET	
					Power			Allocation (IIDB)
				#	Est.	Cont.	Total	Total
				#	[W]	[%]	[W]	[W]
RAA					28.73	44%	41.40	
	FEU				0.55	25%	0.69	
		FE Struct (1)			N/A	N/A	N/A	
		Feeds (2)			N/A	N/A	N/A	-
			30 GHz(*)	2	N/A	N/A	N/A	-
			44GHz(**)	3	N/A	N/A	N/A	
			70 GHz	6	N/A	N/A	N/A	
			(***)	17	N/A	N/A	N/A	
			100 GHz	17	11/21	10/21	14/21	
		OMT(3)	(*****)		N/A	N/A	N/A	-
		01111(0)	30 GHz (*)	2	N/A	N/A	N/A	-
			44GH ₇ (**)	3		N/Λ	N/A	
			70 GHz	6			N/A	
			(***)	17	N/A	N/Δ	N/A N/A	
				17	1N/ A	1 N/ A	11/ 7	
			(****)					
		FEMs(5)			0.55	25%	0.69	
			30 GHz (*)	2	0.077	25%	0.096	
			44GHz(**)	3	0.078	25%	0.098	
			70 GHz	6	0.132	25%	0.165	
			(***)	17	0.262	25%	0.327	
			100 GHz					
	DEU		(****)		20.10	1.40/	40.70	
	BEU		-		28.18	44%	40.72	4
		BE Struct.			IN/A	IN/A	IN/A	4
		DAE			23.00	50%	34.50	4
		BEMs(6)		<u> </u>	5.18	20%	6.22	4
			30 GHz (*)	2	0.600	20%	0.720	
			44GHz(**)	3	0.900	20%	1.080	
			70 GHz	6	0.960	20%	1.152	
			(***)	17	2.720	20%	3.264	
			100 GHz (****)					
	WG				N/A	N/A	N/A	
	4K Load				N/A	N/A	N/A	
REBA	2000				29.40	10%	32.34	32.3
TOTAL					58.13	26%	73.74	74.0

SCS MASS & POWER BUDGETS

SCS MASS BUDGET

S/S	UNIT			Mass		Allocation
		#	Est.	Cont.	Total	Total
			[Kg]	[%]	[Kg]	[Kg]
SCS						
	SCC	1	34.80	15%	40.00	40.00
	SCP	1	3.10	29%	4.00	4.00
	SCCE	1	2.00	25%	2.50	2.50
	Harness SCE to SCC	1	TBD	TBD	TBD	TBD
	Harness SCE to SCCE	1	TBD	TBD	TBD	TBD
	Harness SCC to SCCE	1	TBD	TBD	TBD	TBD
	SCE	1	5.00		5.00	5.00
TOTAL	(Harness not included)	1	44.90	15%	51.50	51.50
TOTAL	(Harness not included)	2	89.80	15%	103.0	103.00

SCS POWER BUDGET

S/S	UNIT			Power	Allocation			
		#	Est.	Cont.	Total	Total		
			[W]	[%]	[W]	[W]		
SCS								
	SCC	1	457.1	13.8%	520.0	520.0		
			TBC					
	SCE	1	55.0		55.0	55.0		
	Harness SCE to SCC	1	TBD		TBD	TBD		
TOTAL	(Harness not included)	1	512.1	12.3%	575.0	575.0		

23 May 2000

FIRST/Planck Payload Review

CRITICAL AREAS

- Capability to perform Cryo testing with SCS and HFI prior to delivery of LFI for CQM and PFM campaigns.
 - We do not have a Cryo test facility capable of taking the Sorption Cooler.
 - We believe we can work around this by separate testing for sensitivity and performance plus ambient integrated tests
- Sorption Cooler Schedule is considered critical for QM, but is compliant with agreed delivery dates.
 - QM 31 Jan 2003 (No margin)
 - FM OK available 29 Sept 2003 (no margin) against required date of 31 Jan 2004
- Stray light reduction and control
 - It is necessary to continue in all areas of the satellite to use this as a design driver

_	Pa	anck	LF	I HIS	gn L	eve		51	ER	SU	TED	UL	-					1 10			
1	Task Description ESA Project Approvals	89 H2	20 H1	H2	H1	H2 F) IPC	200 H1	H2	H1	H2	H1	004 H2	2 H1	H2	20 H1	H2 H	2007 1 H2	H1	08 H2	200 H1	9 H2
5	ESA Spacecraft Reviews	-		-		1	SRR	T P	DR	1	CD	R	T OR		AR		FRR				
2	ESA Phase B - C/D - Pre-Launch	+	-		20/06	e		<u>.</u>		1		1	φ	1		1 14 00					-
3	Launch	+									-	1	1			-					_
	ESA Bhase E . E (Operations	-			-				-		-	-	-	-	01/05		Laun	ch		1	-
	Di ANOR I Di Oussell	_		_	_						_	-	_	_	01/05		-			End	Planci
-	PLANCK LFI Overall	-												_		\$ 31/07		_		_	_
5	Breadboarding Activities	-	-		29/12	2							_		_		_				
ŗ.,	LFI Phase B Readiness Review	V	PBRR																		
8	LFI Phase B Mid Term Review	0	5/07	V MT	R																
9	LFI Phase 8 Baseline Review		29/0	• 🔻	BDR																
3	LFI Pre-Phase B		31/1:	2																	
1	LFI Phase 8	3/01	-	2	9/09																
2	ESA LFI Required Reviews	(C	ISVR		10	R (7) IBDB	6) IHD	R (1) ICDR	2			1) IFAR					
9	PLANCK LFI Phase C/D	1	02/1		Υ.						1		-			31/07	5				-
0	LFI Intermediate Design Review	-			ame T						-	-	-		-		-				-
	LEI Unit Critical Design Baukaw	-			arbe 1	i.e.		-			-	-	-		-	_		-		-	_
	151 Online Design Review	-			-		30/09	•	UCDR		-	-			-	_		-	-	-	_
	China diago renew	-	,50					3	90V06	C	aR		_					1	\square		
*	Phase C LFI Design		02	10		29/06															
*	AVM LFI Parts Procurament			1/12		29/06															
5	AVM REBA Development				62/07		29	103													
6	AVM BEU Simulators Development				02/07		29	103													
7	AVM Test Readiness Review (TRR)					30/0	• 🔻	AVM	TRR												
8	AVM Integration & Test					01/0	14	28/06									-				
9	QM LFI Parts Procurement (LLI)	1	02/	10	-	29/06					-							-			_
0	QM RCAs, DAE, Mechanical Development	1			02/07		29	103									-	-			
1	OM REBA Development	+			02107				ana		-						-	-			_
2	OM COOLING Development (TBC by JPL)	-			and a				1.00	120	-	-	-	-		_	-		-		_
3		-		01/01	-				ann	1	-	-	-		_		-	-	_	_	_
*		-			-	01004	-		•	31/03		-	-			_		_			_
9	GM FEU Integr. / BEU Integr. + Vibration	-				01/0	16	31/05	1		_	_	_				_	_	-		
5	QM RAA Integration + FEU Vibration					0	3/06	30	06								_	_			
6	QM LFI Pre-AIV (RAA+REBAavm+COOLsim)						02/05		30/10												
r	LFI QM Test Readiness Review (TRR)						30/09	▼	OM TR	tR.											
8	QM LFI Final Integr., Calibration (REBA QM)						31/	10	31/12	2											
9	CQM LFI + HFI Integration (COOLER QM)	1						1/01	3	1/03											
0	CQM LFI Delivery							31/0		AVM	OM D	eliver	y								
1	LFI/ Planck CQM AIV	+		-	-			01	04		31/5	2		-			-				-
2	PFM Hi-Rel Parts Procurement	+			0.0107	_			2000		-	1		-				-	-		-
3	PEM RCAs DAE Mechanical Development	+	-		02/07				140		-	-	-			-		+			-
4	DEM DERA Development	-		-	-		01/1	0		30/0		-		-					_		_
_	PTW REDA Development	+					01/1	0			01/12	1	_								
0	PEM COOLING Development				01/	10				-	30/	01									
6	FMLFIAIV							0	1/07	-	1.2	V 30	0/06								
7	FM FEU Integration / BEU Integration + Vibration								01/07	0	1/09										
3	FM RAA Integration + FEU Vibration								02/0	9 🚺 (06/10										
,	FM LFI Pre-AIV (RAA+REBAqm+COOLsim)								07/	10	01/12	1									
2	FM LFI Final Integration, Calibration (REBA FM)	1							0	2/12	30/	01									
1	FM LFI AIV (Cooler FM)	1								02/0	2 1 3	1/03						+			
2	PFM LFI + HFI Integration	-								01	/04	300	06	-			+	+			_
3	PFM LFI Delivery	1									Salara 1		EN Dell				-	-			
1	LEL/ Planck AlV	-								-	44107	1.	. a dea			1 34 77	-	+		-	
	ES I El Suara Parte	-		-	-		1.7227	-	_		01/07	-		-		31/07	-	+			_
	FO LET Opale Faits	-	_	-	-	_	01/1	0			31/1	2					-	+			_
	PS DFI Delivery										_	1.85	30/06	FS	Deliver	y	-	_			
5	GSE Design & Development	-								01	/07										
8	GSE Development		_							01/0	7										
9	EGSE#1					15	05 🔶	EG	1438												
)	MGSE#1 - CryeGSE						107		GSEM	Cry	GSE										
1	EGSE#2						30/09	٠	EGSE	12	1						-	T			
2	EGSE#3 - MGSE#2	1						31/0		EGSE	43 / M	GSER	2					1			
Ru	t: Planck LFI High Lavel MASTER SCHEDULE Task 2. PL-LFI-PST-SC-001 - Rev. 1.3 1595/000 Progress				1	Summar ISA Re	y view (•			U P	Fi Rev rojact	iew Event 4			D	eliverabl	les 🖊			_

23 May 2000

FIRST/Planck Payload Review

23 May 2000

FIRST/Planck Payload Review

5.3 HFI Status

J.-L. Puget IAS-Orsay

Estec Newton 1 - 23 May 2000

PT - 07736

BOOMERANG PLANCK detection of clusters by their SZ effect

HFI requirements

- Angular resolution of 5 arc minutes for CMB anisotropies
- For CMB channels (100-357 GHz) sensitivity limited by fundamental limits (photon noise)
- Three frequencies optimized for Sunyaev-Zeldovich effect (150-217-357 GHz)
- Two frequencies for the mapping of Galactic dust emission and of backgound due to infrared galaxies
- polarization measurements at 143 and 217 GHz (CMB optimal channel with no S-Z contribution) and 545 GHz for galactic dust polarised emission monitoring
- rejection of far side lobes optimised for 357 GHz (as far side lobes contribution minimum at 100 GHz and this channel is the highest frequency CMB one)

Technical requirements HFI architecture

I.A.S. / J-L. Puget

I.A.S. / J-L. Puget

Figure 2.5.1 Prototype spider bolometer CSK18. Active absorber diameter, outer spider circle, is 5.675 mm. Inset shows NTD Ge sensor at the centre with the two thicker current carrying and thermal conductance control lines running out horizontally to electrical contacts on the silicon substrate.

I.A.S. / J-L. Puget

Dilution cooler (0.1 K)

- Demonstrator has now shown that dilution and 4 K coolers work together
- Satisfactory temperature reached (<100 mK) in a configuration more difficult than Planck
- High sensitivity to vibration identified
- Cooling power of the gases measured to be
 >300 nW (for 50 nW of heat input from detectors)
 Autonomy with the baseline gas tanks around 20 months (two surveys + PV phase + 30 % margin)

Figure 2.4.1 Plot of Prototype 143 GHz Channel Spectral Response

I.A.S. / J-L. Puget

Readout Electronics

- Low noise (30% of fundamental noise):
 - Voltage noise about 5nVHz^{-1/2}
 - Current noise less than 5.10⁻¹⁶AHz^{-1/2}
- Flat noise and good transmission in the frequency range

0.016Hz-100Hz

• High dynamics (18bits)

Performances are OK. Flight design nearly Completed.

I.A.S. / J-L. Puget

Reaching the photon noise

- Once the photon noise limit is reached, the only way to increase the sensitivity is the number of detectors or the mission duration.
- For 14 months of observation, the number of detectors needed to reach the sensitivity requirement is:

Channel central frequency (V)	Ghz	100	143	217	353	545	857
Beam FWHM	(arcmin)	9.2	7.1	5	5	5	5
Number of Unpolarised&etectors		4	5	6	6	/	6
Number of polarised detectors		/	7	8	/	8	0
△T/T Channel NEDT (Intensity)	$(\mu K/K)Hz^{-1/2}$	13.1	11.2	12.7	50.8	/	24000
△T/T Channel NEDT (U and Q)	$(\mu K/K)Hz^{-1/2}$	/	21.3	29.4	/	508	/
△T/T Sensitivity (Intensity)	(µK/K)	2.0	2.2	3.5	14	/	6600
△T/T Sensitivity (U and Q) Polarised	(µK/K)	/	4.2	8.1	/	140	/

I.A.S. / J-L. Puget

I.A.S. / J-L. Puget

- Possibility/Need for high-accuracy results to achieve best scientific exploitation
 - •Tricky systematic effects (far side lobes, ...)
 - Must be well simulated before launch
 - High level of redundancy needed, iterative solutions
- Quite large data sample
 - Size = (2 To) * (Number_of_versions)
 - Computing time & memory problems
 - Development/Operations phases differences & overlap
- Multi-sites/Multi-national development
 - Management
 - Interfaces

HFI DPC RESOURCES 2000-2007 in Man-Years FTE								
	(Permanents+PostDocs+Etc)							
AVAILABLE	ALL TASKS	(1/2) IDIS	(1/2) LS	(1/2) L1	L2	L3	(1/2) L4	OTH.
FR	75	0	5	0	62	8	0	0
UK	101	0	8	0	22	68	0	3
US	20	0	0	0	20	0	0	0
(1/2) DE	33	8	7	0	3	0	6	9
(1/2) SSD	11	6	3	0	0	0	0	2
(1/2) CH	0	0	0	0	0	0	0	0
HFI AVAILABLE	240	14	23	0	107	76	6	14
HFI NEEDED	255	13	21	10	110	76	10	15
HFI DISCREPANCY	-15	1	2	-10	-3	0	-4	-1
							JFS 15/05/200	00

Consortium Team

HFI Instrument Development Milestones

End of Phase B Hirel Parts Ordering Cooling Chain End-to-end test Calibration Facility Testing

CQM Focal Plane Testing Qualified CQM Calibration start AVM-CQM Ready to deliver AVM-CQM Delivery CQM Return to PI

Flight Model Ready to deliver Flight Model Delivery Spares Delivery End 2000 Early 2001 End 2001 / Early 2002 4th Quarter 2001

Early 2002 Mid 2002 End 2002 March 2003 Early 2004

March 2004 Mid 2004 Mid 2005

High level Memoranda of Understanding are being circulated for agreement between different procuring Institutions and the PI.

HFI Instrument Development Models

HFI Instrument AVM / CQM

HFI Instrument Flight Model

HFI Instrument Spares

Critical areas (1)

Telemetry

- Science data rate in proposal 34 kbits/sec (accepted by ESA)
- Present estimate 38 kbits/sec (data compression was a bit optimistic) 11.7% increase (*not exactly outrageous*)
- Need to add HK and overheads and margins leads to 53 kbits/sec

Present situation

60 kbits total, 2/3 for HFI gives 40 kbits for HFI, total short by 24 %

- will imply some science loss
- Project to evaluate in Phase B margins in telemetry budget, at least proposal numbers need to be traded off with other costs

Important problem but not dramatic

Critical areas (2)

RAL compressors

- Doubts about MMS capability to be able to provide new ones (+ funding problems)
- Planck requirements different from FIRST / TRP program requirements: allowed leak rate of compressor setup for life time in space but does not allow ground test with compressors in the vacuum tank containing also dilution cooler
- Refurbishment by RAL satisfy news requirements
- Best (and probably only solution) need to be implemented :
 - transfer from ESA of coolers developped under TRP agreed
 - Implementation of transfer in progress

Critical areas (3)

0.1 K Cooler Vibration Susceptibility

- Microvibration/noise add to thermal load : known problem already solved on many ground/balloon experiments
- Sensitivity/problems experimented in TRP « demonstrator » solved by proper mechanical isolation of vibration sources (not fully representative of Planck design

Futures activities

- Further quantification of sensitivity of cooler to microvibration/noise by tests
- Design approach to minimise transfer of microvibration/noise to focal plane unit

Hard Point

Contracts

• Contract with Air Liquide not signed yet because of administrative difficulties

Activities with FIRST/Planck Project

• CNES and IAS work with CNRS to obtain authorization not to go through an open Annoucement of Opportunity in view of developments done with Air Liquide

Budget

Total development (up to 2007)

Estimate included operations and post-operations

94.5 MEURO 111 MEURO

5.4 Planck Reflectors Status

DK - Planck FIRST/Planck Reflectors

Planck Reflectors Status

DK - Planck FIRST/Planck Reflectors

- ESA/DSRI agreement to be signed by the parties at the next SPC meeting
- DK-PLANCK Consortium:

DSRI, Theoretical Astrophysics Center, Niels Bohr Institute for Astrophysics, Physics and Geophysics

- Steering committee: 2 members from each institute
- Financial support:

Proposal to the Danish Natural Science Research Council and Danish Committee for ESA - related Research , Autumn 1996 Proposal approved Spring 1997 (negotiating new financing plan)

DK-Planck FIRST/Planck Reflectors

• During Phase A support from Danish Ministry of Research for the production of a test mirror (~ secondary mirror)

 $\begin{array}{ll} \mbox{Main concern:} \\ \mbox{a. Surface shape error within specification} \\ \mbox{(< 1 μm rms, for scales \leq 0.8 mm} \\ \mbox{< 10 μm rms, for scales $>$ 0.8 mm)} \end{array}$

b. thermal stability of surface shape

DK - Planck FIRST/Planck Reflectors

• Picture - Test Mirror

Test of Demonstrator Model

- Mechanical measurements
- Optical measurements
- CTE measurements
- Tests of sample at ESTEC Main purpose: microcracks
- Cryogenic tests at CSL
 - agreement on test method and setup
 - preparation 6 9 months
 - 1. large scale deformations of mirror shapes
 - 2. small scale deformations of mirror shapes (core printthrough)

DK - Planck FIRST/Planck Reflectors

• Picture

Development Milestones

 Planck Reflector Technology Demonstration 	End 2000
Planck Telescope System Programme Plan	Mar. 2000
Planck Telescope Reflectors ICD freeze:	Aug. 2000
Planck Telescope Reflectors QM Delivery:	Jan. 2003
Planck Telescope Reflectors FM Delivery:	Mar. 2004
Planck Telescope Reflectors QM return to DSRI:	July 2004
 Planck Telescope Reflectors FS Delivery: 	Jan. 2005
• Planck Telescope Reflectors Requirements Review:	Sept 2000
Planck Telescope Reflectors Preliminary Design Review:	March 2001
Planck Telescope Reflectors Hardware Design Review:	Sept 2001
Planck Telescope Reflectors Critical Design Review:	March 2002
Planck Telescope Reflectors Qualification Review:	Jan 2003
Planck Telescope Reflectors Acceptance Review (FM):	March 2004
• Planck Telescope Reflectors Acceptance Review (FS):	Jan 2005

6. Conclusions

FIRST / Planck Project		ESA-ES	STEC 23 May 2000	
FI	RST / Planck	Payload Review		
	List of Pa	rticipants		
Name	Organisation	Phone	E-Mail	
Francis Vandenbussche	ESA. ESTEC	* 3473	@ estec.esa.nl	
Hubert BARRE	ESA-ESTEC	* 5032	hbarre@pestec.esa.nl.	
Bernard GUILLAUME	ESA-ESTEC	* 58 9%	sguillau @ estec.	
PETER DE MAAGT	ESA - ESTEC	* 5906	CSQ. MC. PDEMANGT & ESTEL.ESA.A	
ARTURO MARTÍN POLEGRE	ESA-ESTEC ESA-EStec	* 4081 * 3913	APOLEGRE @ ESTER ESA. MI Mv Hægen @ Ester ESA.	
John Bodswort	ESA-ESOC.	\$ 2478	solodsises esceresu	
ASTRID HESKE	ESA - ESTEC	# 5467	aheske @estec.esa.nl	
PIEARE ESTARIA	Esn-clicc	74383	mand Bipterre bo	
RENO MANDOLES.	TESRE-CNR	+33 051 6398682	1-itle tesre borch	
CHRIS BUTLER	TESRE-CNR	+390516593611	Varcence	
N. Andergg	ESA-ESTEC	3522	mondereg & cok . e	
J.L. Puger	IAS-CNRS	33-1 698586 GF	pupito ias. fr	
dr1 Lamarre	IAS-CNRS	+ 33 1 69 858577	lamarre@ias Ir	
J. CHMRRA Patri	iAS_CNRS	35.1.6985858	S Charra's ias. Fi 3 gary. s. parks@jp. nal	
CAO 4. Raile	MPE	+ 49 - 49 - 3 299 - 35	31 cholempe mp	
A. Poglitsch	MPE	+49 89 3299 3293	3 alpoy Dimperinpy-de	
M. GRIFFIN	QMW	+44-20-7882-506	B M. J. GRIFFIV@QHW.AC.UM	
K. KINS	RAL	+44 - 1235 - 446558	kj. king @ rl ac uke	
B. TAYLOR	ESA	\$ 3556	bitaylor astro. estec. e	
H. Aarts	SROW	+3130253568	Y H. Aarts@ soon. ul	
Thijs deGraana	SRON	31 50 363 4074	this dg OSRON Rug.	
Stefan Thurly	ESA	-5330	Sthuerey alestec.e	
Göran Pilbratt	ESA/SCI-SA	+3171565362	1 gpilbratt Pastro. estec	
			Page:	

FIRST / Planck	P roject	ESA-ES	STEC 23 May 2000			
FIRST / Planck Payload Review						
List of Participants						
Name	Organisation	Phone	E-Mail			
Martin Khiles Rogn. A. Bonnet	ESA/SEI-S ESA - D/Sú	3552	None Icredian Destec.esa.n.			
J. D. CRESSING	ESA ISCÌ-C	22 15769 7102	ablento la esoch			
Thurse Priss rosel	ESA / ESTEC	5962	tpassvog @ estec. esa. ul			
			Page: 2			