SPIRE

SUBJECT: RAL Project Plan for SPIRE

PREPARED BY: K.J. King

DOCUMENT No: SPIRE-RAL-DOC-000346

ISSUE: 1.0

Date: 5th August 2005

 CHECKED BY:
 Date:

 APPROVED BY:
 Date:

 Ref:
 SPIRE-RAL-DOC-000346

 Issue:
 1.0

 Date:
 5 August 2005

 Page:
 2 of 21

Distribution

K.J. King	Project Manager
E.C. Sawyer	Instrument Development Manager
B.M. Swinyard	Instrument Scientist
D.L. Smith	AIV Facility Manager
J. Payne	EGSE Manager
J.A. Long	Project Office Manager

RAL Project Plan for SPIRE

 Ref:
 SPIRE-RAL-DOC-000346

 Issue:
 1.0

 Date:
 5 August 2005

 Page:
 3 of 21

Change Record

ISSUE

DATE

Issue 1.0 Draft 1 Issue 1.0 Draft 2 Issue 1.0 Draft 3 Issue 1.0 Draft 4 Issue 1.0 9th August 2000 15th December 2000 25th May 2001 25th May 2001 5th August 2005

First draft of document for managers to review Second Draft Third Draft to be discussed for ISO9001 Audit Updated following ISO9001 Audit First Issue

Table of Contents

1. Introduction	7
1.1 Scope	7
1.2 Documents	7
1.2.1 Applicable Documents	7
1.2.2 Reference Documents	7
2. Project Breakdown	9
2.1 Work Allocation	9
2.2 Identification of Models	10
2.2.1 Avionics Model (AVM).	10
2.2.2 Cryogenic Qualification Model (CQM) (including Structural Thermal Model (STM))	10
2.2.3 Proto-Flight Model	11
2.2.4 Flight Spare Model	11
2.3 Work Breakdown Structure	11
2.4 Function Tree	12
2.5 Product Tree	14
3. Project Organisation	15
3.1.1 General Organisation	15
3.2 Management Interfaces	16
3.3 Roles, Responsibilities and Authority	16
3.3.1 RAL Project Manager	17
3.3.2 EGSE Manager	17
3.3.3 Project Office Manager	17
3.3.4 AIV Facility Manager	18
3.3.5 ICC Software Manager	18
3.4 Generation of Organisation Documents	18
4. Project Phasing and Planning	19
4.1 Instrument Hardware	19
4.1.1 Sequence of Activities	19
4.1.1.1 Design Phase	19
4.1.1.2 Test and Qualification phase	19
4.1.1.3 Flight Model Manufacture Phase	19
4.1.2 Project Reviews	20
4.2 ICC	20
5. Configuration Management	20
5.1 Configuration Management tasks	20
5.2 Implementation of Configuration Management	20
5.3 Configuration Baseline	20
5.4 Configuration Items	20
5.5 Change Control	20
6. Information/Documentation Management	21
7. Cost and Schedule Management	21
7.1 Cost Management	21
7.2 Schedule Management	21
8. Technical Requirements	21
9. Product Assurance Requirements	21
10. Systems Engineering	21

List of Figures

Figure 3-1 RAL Project Organisation	16
Figure 4-1 SPIRE Overall Schedule	19

List of Tables

Table 2-1 SPIRE major tasks	10
Table 2-2 RAL Workpackages	12
Table 2-3 Functions to be executed at RAL	14
Table 2-4 RAL Product Tree	15

Glossary

CQM	Cryogenic Qualification Model
ESA	European Space Agency
FIRST	Far Infrared and Submillimetre Telescope
FS	Flight Spare (Model)
FTB	FET Box
HCSS	Herschel Common Science System
Herschel	Herschel Space Observatory (formerly FIRST)
ICC	Instrument Control Centre
PFM	Proto-Flight Model
PI	Principle Investigator
PIMS	Project Information Management System
PPARC	Particle Physics and Astronomy Research Council
RAL	Rutherford Appleton Laboratory
RO	Responsible Organisation
S/C	Spacecraft
SPIRE	Spectral and Photometric Imaging REceiver
SSTD	Space Science and Technology Department (of RAL)
STM	Structural Thermal Model

1. INTRODUCTION

The Herschel Space Observatory, the fourth of ESA's Cornerstone missions, is a space-borne observatory operating in the far infrared and sub-millimetre wavelength ranges. The responsibility for the design, implementation and operation of the scientific instruments on the Herschel spacecraft is given to consortia, made up from members of research institutions and universities, under the leadership of a Principle Investigator (PI). The Rutherford Appleton Laboratory (RAL) is one of the institutes responsible for providing and operating the Spectral and Photometric Imaging REceiver (SPIRE) instrument.

Current PPARC funding covers those activities leading to the delivery and commissioning of the Flight and Flight Spare instruments and to the implementation of the SPIRE Instrument Control Centre (ICC). It does not cover the Operations Phase or Post-Operations activities, which will be a subject of a further bid to PPARC at a later date.

1.1 Scope

This document describes the management and development of those areas of the Herschel SPIRE instrument for which the RAL, and in particular the Space Science and Technology Department (SSTD), has responsibility. It is intended to show how the project will be managed to meet the ISO9001 standard as implemented in the SSTD. It is the Project Management Plan identified in the SSTD Task Allocation and Project Monitoring Procedure (AD01) and contains that information required by the Project Manager's Requirements Procedure (AD02).

As RAL is responsible for the overall management of the SPIRE project, many of the project management activities are covered by the appropriate SPIRE documentation. Where applicable this document refers to material contained these existing SPIRE project documents, or contains extracts from them.

1.2 Documents

1.2.1 Applicable Documents

AD01	ISO9: SPAP/007	Task Allocation and Project Monitoring
AD02	ISO9: SPAP/008	Project Manager's Requirements
AD03	SPIRE-RAL-PRJ-000029	SPIRE Management Plan
AD04	SPIRE-ESA-DOC-000178	FIRST/Planck Instrument Interface Document (IID)
		Part A, (SCI-PT-IIDA-04624)
AD05	SPIRE-RAL-PRJ-000031	SPIRE Work Breakdown Structure
AD06	SPIRE-RAL-PRJ-000030	SPIRE Product Tree
AD07		SSTD Management Plan (Issue 7.1)
AD08	SPIRE-ESA-DOC-000198	FIRST Science Implementation Requirements
		Document

1.2.2 Reference Documents

RD01	SPIRE-RAL-DOC-000184	SPIRE Project Office Requirements
RD02	SPIRE-RAL-PRJ-000455	SPIRE Major Milestone List
RD03	SPIRE-RAL-PRJ-000626	SPIRE Configuration Management Plan

SPIRE

RD04	SPIRE-RAL-PRJ-000032	SPIRE Document Management Plan
RD05	SPIRE-RAL-PRJ-000018	SPIRE Science Implementation Plan
RD06	SPIRE-ESA-DOC-000189	Product Assurance Requirements for
		FIRST/PLANCK Scientific Instruments
RD07	SPIRE-RAL-PRJ-000017	SPIRE Product Assurance Plan
RD08	SPIRE-RAL-PRJ-000033	SPIRE Configurable Documents Tree
RD09	SPIRE-UCF-PRJ-000064	SPIRE Scientific Requirements Document
RD10	SPIRE-RAL-PRJ-000034	SPIRE Instrument Requirements Document

2. PROJECT BREAKDOWN

2.1 Work Allocation

Table 3.1-1 (taken from AD03, but updated in the light of subsequent discussions) identifies the institutes that comprise the SPIRE consortium and the major areas of work for which they are responsible.

	Institute	Role
ATC	Astronomy Technology	Provision of Beam Steering Mechanism (BSMm)
	Centre, Edinburgh	Systems Engineering effort
		Provision of ICC Operations Staff (TBC)
DESPA	Obs. de Meudon, Paris	Provision of FTS expertise and design support
Grenoble	CEA, Grenoble	Provision of ³ He cooler
IAC	Instituto de Astrofisica de	Provision of ICC operations staff
	Canarias, Tenerife	_
IAS	Institut d'Astrophysique	Support of ground calibration
	Spatiale, Orsay	
ICSTM	Imperial College of Science,	Provision of ICC UK DAPSAS Centre
	Technology and Medicine,	Provision of ICC operations staff (TBC)
	London	
IFSI	Instituto di Fisica dello	Provision of Digital Processing Unit (DPU)
	Spazio Interplanetario, Rome	Provision of DPU On-Board Software (OBS)
		Provision of ICC operations staff
JPL	JPL/Caltech, Pasadena	Provision of Bolometer Detector Arrays
		Provision of JFET Modules
		Provision of RF Filter Modules
LAM	Laboratoire d'Astophysique	Provision of Mirrors
	de Marseille	Provision of FTS mechanism (SMECm)
		Provision of FTS and BSM control and signal processing
		electronics
MSSL	Mullard Space Science	Provision of FPU structure
	Laboratory, Surrey	Provision of FTB enclosure
		Provision of ICC operations staff (TBC)
Padova	Padova Observatory	Provision of ICC operations staff
Cardiff	Cardiff University,	Provision of Test Cryostats and support for Detector Arrays
	Cardiff	testing
	Wales	Provision of Calibrators
		Provision of Filters, Dichroics, and Beam Dividers
		Provision of ICC operations staff (TBC)
RAL	Rutherford Appleton	SPIRE Project Management.
	Laboratory, Oxfordshire	Provision of SPIRE Project Office.
		Provision of AIV and Ground Calibration Facilities.
		Provision of EGSE
		Provision of ICC Operations Centre.
		Instrument Cold Vibration
		Systems Engineering
SAp	CEA, Service	Provision of Detector Readout and Control Unit (DRCU)

	d'Astrophysique, Saclay	Provision of ICC DAPSAS Centre (Fr).
USK	University of Saskatchewan,	Provision of AIV support staff
	Canada	Provision of ICC operations staff.
Stockholm	Stockholm Observatory	Provision of Instrument Simulator(s).
		Provision of ICC operations staff.

Table 2-1 SPIRE major tasks

2.2 Identification of Models

AD04 identifies the following models of the instrument that are to be delivered by the SPIRE Project to ESA. Each model will be tested and verified at RAL before delivery.

- Avionics Model
- Cryogenic Qualification Model
- Proto-Flight Model
- Flight Spare

2.2.1 Avionics Model (AVM).

This model is required to validate the instrument electronics and software and their interfaces with the S/C. This will include:

- verification of information exchange with the S/C computer, mass memory and attitude control systems
- verification of the instrument autonomy functions
- validation of on-board software updates
- validation of AIV procedures

At the instrument level the AVM will be used for qualification of the warm electronics subsystems. The following tests will be performed:

- EMC tests (Conduction, Emission, Susceptibility)
- Thermal Vacuum Test
- Warm Vibration

In addition the AVM DPU will be used, by ESA, during testing of the CQM (see below) and may temporarily replace the DPU during system level testing of the PFM in the event of a problem with the PFM DPU itself.

The AVM will consist of a DPU plus a DRCU Simulator. The DRCU Simulator will provide sufficient simulation of the operation of the FPU, FTB and DRCU to allow the activities given above to be carried out. The DPU will be built to flight representative standards (using extended range components) but redundancy will not be fully implemented.

2.2.2 Cryogenic Qualification Model (CQM) (including Structural Thermal Model (STM))

Initially, the STM, consisting of the CQM structure and cooler, plus mass and thermally representative models of other subsystems, will be used by the SPIRE consortium:

• To qualify the cold instrument structure design against the proposed environmental test levels and to derive the test levels for other subsystems.

- To verify the thermal design of the instrument
- To verify the optical alignment procedure for the instrument

Subsequently the CQM models of all subsystems will be integrated into the structure and the CQM instrument will be subjected to a series of functional and scientific performance tests. On delivery to ESA it will be used to ensure the compatibility of the Herschel payload and spacecraft by performing a series of functional tests and a set of conductive EMC tests in the ISO Flight Spare Cryostat.

The CQM units will be built to flight standards with full redundancy. The performance capabilities of the instrument may be less than the PFM - i.e. fewer pixels in the focal plane arrays, but it will mimic as exactly as possible the thermal, electrical and mechanical properties of the flight instrument and will be capable of under going the full environmental qualification programme.

This model consists of the FPU, FTB and DRCU only. It is assumed that the AVM DPU may be used for the duration of the CQM tests.

2.2.3 Proto-Flight Model

This is the instrument model that is intended for flight. It consists of all SPIRE Instrument Units. It will be built to full flight standards and will only have minor differences in thermal, electrical and mechanical properties to the CQM. It will have the same mechanical, thermal and electrical interfaces to the satellite as the CQM but, may, however, have minor internal design changes compared to the CQM. For instance the bolometer detector arrays may have many more pixels.

The PFM will undergo environmental test to qualification levels for acceptance times - this applies to both the warm electronics boxes and the cold FPU.

2.2.4 Flight Spare Model

The Flight Spare Model provides for replacement of failed, or damaged, units during system level testing.

The FS will consist of a full flight standard, calibrated, FPU and FTB, and tested spare parts (normally at board level) for the DPU and DRCU.

It is possible that the Flight Spare Units may be provided from refurbished AVM and CQM units.

2.3 Work Breakdown Structure

The SPIRE Work Breakdown Structure is provided in AD05. Table 2-2 lists the high-level workpackages assigned to RAL:

FS1	Project-level Activities	
FS10	Project Office	
FS11	Management	
FS12	Project Control	
FS13	Product Assurance	
FS1A	Parts Procurement	

FS2	Instrument Engineering
FS20	System engineering
FS22	Design Documentation
FS23	System Design
FS29	Instrument Interfaces
FS4	Instrument AIV
FS41	General AIV Tasks
FS42	Instrument Models AIV
FS4A	Satellite AIV
FSZ	Instrument GSE and Facilities
FSZW	Special Facilities
FSZX	OGSE
FSZY	EGSE
GFS1	ICC Development
GFS11	Management
GFS12	Instrument Operations
GFS12X4	Instrument Observations
GFS13	Software Development
GFS2	ICC Preparation
GFS21	Planning
GFS22	Implementation
GFS23	Integration and Test
GFS24	FINDAS Support
GFS25	Operations Planning
GFS26	Training

Table 2-2 RAL Workpackages

2.4 Function Tree

The following table breaks down the activities allocated to RAL into functions to be implemented

Project-level Activities						
Project management functions						
Project Breakdown						
Project Organisation						
Project Planning						
Configuration Management						
Information/Documentation Management						
Cost and Schedule Management						
Risk Management						
Interactions with ESA						
Provision of Project Office						
Documentation Administration						
Information Administration						
Project Support						
Financial Administration (UK only)						
Product Assurance						

RAL Project Plan for SPIRE

 Ref:
 SPIRE-RAL-DOC-000346

 Issue:
 1.0

 Date:
 5 August 2005

 Page:
 13 of 21

		Documentation											
		Configuration Management Subsystem Acceptance											
		Subsystem Acceptance											
	Parts P	rocurement											
		Coordination of inputs											
Instrun	nent Eng	gineering											
	System	engineering											
	Definition of Document Tree												
	Documentation of the design												
	Management of the Design Description Document												
	System Design												
	Definition of Instrument Requirements												
		Definition of Subsystem Requirements											
		Support to Optical Design											
		Support to Thermal Design											
	Instrun	nent Interfaces											
		Management of IID Updates											
Instrun	nent AIV	1											
	Assem	bly											
		Test and Measurement of Subsystems Deliveries											
		Assembly into Instrument-Level Units											
	Integra	tion											
		Integration of FPU into cryostat											
		Integration of FTB into cryostat											
		Optical Alignment											
		Bakeout											
		Integration of Warm Electronics with EGSE											
		Integration of Warm Electronics with Cold Instrument											
	Verific	ation											
		Environment Control											
		Thermal Balance Check											
		Functional Testing											
		Performance Testing											
		Beam Profile measurement											
		Throughput Test											
		Sensitivity Measurement											
		Qualification											
		Thermal Vacuum Test											
		EMC Test (TBC)											
		Warm Electronics Vibration											
		Cold Instrument Vibration											
	Calibra	tion											
		Photometric Calibration											
		Closed Cryostat Tests											
		External Source Tests											
		Spectroscopic Calibration											
		Wavelength Calibration											

Instrument GSE and Facilities
Provision of Test Facility
Commissioning of Test Facility
Operation of Test Facility
Provision of EGSE
ICC Development
ICC Development Management
Data Processing Software Development
ICC System Testing
Ground Segment Testing
Instrument Simulator
ICC Preparation
Instrument Database
Operations Planning
Training

Table 2-3 Functions to be executed at RAL

2.5 Product Tree

Table 2-4 is a summary of the relevant major elements of the SPIRE Product tree identified in the SPIRE Product Tree (AD06) which have to be provided by RAL.

		Number	RO		
4.	AIV/G	round T	est Items		
	4.1	EMC t	est facility		RAL
			Radiative emission test facility		
			Radiative susceptibility test facility		
			Conductive emission test facility		
			Conductive susceptibility test facility		
	4.2	AIV fa	cilities		RAL
			Integration Facility		
			Clean Room		
			Clean Bench		
			Measurement Instrumentation		
			Instrument Cryostat		
			Facility electronics		
			Clean Room		
			Infrastructure	1	
			Cryolab		
			Test Control Area		
			Cryogenic facilities		
			Vacuum facilities		
			EGSE		
			CDMU Simulator	5	
			SCOS2000	2	
			TM/TC Interface	3	
			Test Control Facility	3	

 Ref:
 SPIRE-RAL-DOC-000346

 Issue:
 1.0

 Date:
 5 August 2005

 Page:
 15 of 21

			HCSS v 0.1	2				
			OBS Maintenance Facility	2				
4.3	Calibra	ation facil	lity		RAL			
		Telesco						
			Optical Bench					
			Optics					
		Calibrat	ion Sources					
			Black Body Source					
			Spectral Line Source					
		Choppe	r					
		Facility electronics						
4.4	Therm	al Vacuu	m facility		RAL			
4.6	Warm	Vibration	n facility		RAL			
4.8	Instrur	nent Bake	eout facility		RAL			

	Product	Number	RO
Ground			
	Instrument Users Manual	3	RAL
	Instrument Database	3	RAL
	Calibration Database	3	RAL
	Instrument Time Estimator		RAL

	Number	RO						
Instrument Con								
DPU O	DPU OBS Maintenance System							
DRCU	OBS Maintenance System	1	CEA					
RTA/Q	RTA/QLA Software							
Trend A	Trend Analysis Software							
Interact	tive Analysis Software		ICC					
Science	e Processing Software		ICC					
Science	e Analysis Software		ICC					
Diagno	stic Tools		ICC					
Calibra	tion Analysis Software		ICC					
Infrastr	ucture							
	ICC Operations Centre		RAL					
	DAPSAS(UK) Centre		ICSTM					
	DAPSAS(Fr) Centre		CEA					

Table 2-4 RAL Product Tree

3. PROJECT ORGANISATION

3.1.1 General Organisation

The organisation of the SPIRE project is given in AD03. Within RAL, the project is organised along the lines described in the SSTD Management Plan (AD07) as shown in Figure 3-1. This structure is based upon a core team of project staff with responsibilities for areas of work within the project with support from teams within other divisions of the Space Science and Technology Department at RAL.

Figure 3-1 RAL Project Organisation

3.2 Management Interfaces

AD03 describes the project interfaces with ESA and with the other members of the SPIRE consortium.

Within RAL, the interfaces to facility teams within other divisions shall be described in Statements of Work, agreed between the relevant SPIRE manager and the manager of the SSTD facility or by annual agreement of resource allocation.

SPIRE Managers report to the Project Manager through regular teleconferencees.

3.3 Roles, Responsibilities and Authority

Some members of the RAL team (Project Manager, Instrument Development Manager, Instrument Scientist, Systems Engineer, Product Assurance Manager, Operations Scientist and ICC Development Manager) have roles and responsibilities within the SPIRE Project as a whole. These are described in the SPIRE Management Plan (AD03).

Others (Project Director and RAL Project Manager) have roles and responsibilities within the SSTD project management structure, which are described in the SSTD Management Plan (AD07).

RAL Project Plan for SPIRE

The remainder of this section lists each of the other key posts and gives the duties and responsibilities associated with that post within RAL.

3.3.1 RAL Project Manager

The management of the activities falling under the responsibility of RAL shall be under the control of the RAL Project Manager, who will:

- (i) define the overall schedule necessary to meet the project milestones;
- (ii) monitor the project-wide deployment of resources;
- (iii) proactively manage technical and schedule risks;
- (iv) monitor progress in the development teams;
- (v) instigate project reviews, studies and assessments as necessary to resolve issues and ensure a successful project;
- (vi) represent the SPIRE project to the SPIRE Project management team.
- (vii) represent the RAL project to the PPARC SPIRE Programme Manager and the Herschel/Planck Steering Committee
- (viii) represent the RAL Project to the SSTD Management.

3.3.2 EGSE Manager

The EGSE Manager is responsible for the procurement and development of the EGSE system(s) used for testing the instrument models at RAL and at ESA. He/she will:

- 1. define the requirements on the EGSE, taking into account the need to adhere to agreements with other instruments, and ESA, with respect to common development.
- 2. define the tasks necessary, and the required resources, to provide the EGSE.
- 3. identify appropriate staff/facilities for the tasks involved and negotiate their availability.
- 4. plan the development and implementation schedule to meet the overall project delivery dates.
- 5. monitor and manage the work, and staff, during the project lifetime.
- 6. report to the RAL Project Manager on the status of the EGSE development programme.

Note: Operation of the EGSE during AIV falls under the responsibility of the AIV Facility Manager.

3.3.3 Project Office Manager

The Project Office Manager is responsible for the implementation of the facilities required in the SPIRE Project Office (defined in the SPIRE Project Office Requirements Document, RD01) and the operation of the Project Office during the lifetime of the project. He/she will:

- 1. implement the SPIRE Project Office at RAL to meet the requirements
- 2. document the procedures required to operate the Project Office efficiently and correctly
- 3. operate the SPIRE Project Office at RAL
- 4. report to the RAL Project Manager on the status of the Project Office

Note: The Project Office has an extended role over the normal RAL model and therefore, though it uses the SSTD facilities, exists independently of the SSTD project Resources section.

3.3.4 AIV Facility Manager

- 1. define the requirements on the SPIRE Test Facility at RAL
- 2. implement the SPIRE Test Facility at RAL to meet the requirements and schedule
- 3. report to the RAL Project Manager on the status of the Test Facility

- 4. manage the execution of the AIV Plan at RAL
- 5. report to the RAL Project manager and the Instrument Scientist on the progress of the AIV activities

3.3.5 ICC Software Manager

The ICC software Manager is responsible for organising the design and implementation of the ICC software used both in the ICC and in the HCSS. He will:

- 1. define the ICC software requirements in terms of Use cases and translate these into an object oriented design for the software
- 2. support the ICC Development Manager in producing the SPIRE SIP by producing workpackages for the software development activities
- 3. lead the ICC Software Development Team in implementing the ICC software.

3.4 Generation of Organisation Documents

The project documentation tree is given in RD08.

4. PROJECT PHASING AND PLANNING

4.1 Instrument Hardware

4.1.1 Sequence of Activities

Figure 4-1 shows the SPIRE overall hardware schedule as planned at May 2001. It is split into 4 phases:

4.1.1.1 Design Phase

During this phase the instrument and subsystem designs are completed. This phase ends with the completion of the Instrument Baseline Design Review.

4.1.1.2 Test and Qualification phase

During this phase the first models of the instrument are manufactured and tested. This phase ends with the Critical Design Review.

4.1.1.3 Flight Model Manufacture Phase

This phase covers the manufacture, test and calibration of the Flight and Flight Spare models of the instrument

	1999	2000			2000 2001					20	02		2003					20	04		20	05		2006				2007				
Q1	Q2 Q3	Q4	Q1 Q	2	Q3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1 C	22 Q	3 Q4
Pr	eliminary	Des	ian																													
			5			\mathbf{T}																										
PDI	< •	•	•	Y																												
Array	Array Selection						<u> </u>																									
				D	etailed	Des	sign																									
	Inter	face	Reviev	v																												
						AVI	M Ma	nufac	cture																							
									AVN	l Int.					AV	M Ve	erif.															
											AV	/M De	elive	y .	•																	
							STM	/CQN	/ Mai	nufa	cture)			•																	
												STN	/I AIV		QM A	IV																
						\uparrow						cc		elivery			Syst	stem Tests														
														EQN	· [
									Cı	itica	al De:	sign	Revi	iew 🔶				+														
						\vdash							PFM	Manf	r.	• 																
						\vdash										PF	-M A															
						\vdash				\vdash						DE	M D-												_			
						┢				-						PE		inver	y '	<u> </u>		<u> </u>										
																FS	Buil	d/Ref	urbi	sh												
																						FS	S AIV									
																						FS	S Del	ivery	, (
																											L	aunc	h	•		

Figure 4-1 SPIRE Overall Schedule

A detailed schedule is maintained covering the next few months of activity throughout the development phases

4.1.2 Project Reviews

The project review plan is described in AD03. The dates of the reviews are listed in RD02

4.2 ICC

The planning for the ICC is described in the Science Implementation Plan (RD05).

5. CONFIGURATION MANAGEMENT

5.1 Configuration Management tasks

The plan for configuration management and control is given in RD03.

5.2 Implementation of Configuration Management

The project documentation is held on an external site (Livelink at ESA). Procedures for change control of the project documents are given in RD04.

The classes of document that are required to be under configuration control are defined in RD04.

Product Assurance documentation is also held on the project file server and maintained by the PA Manager

5.3 Configuration Baseline

See RD03

5.4 Configuration Items

See RD03

5.5 Change Control

See RD03

6. INFORMATION/DOCUMENTATION MANAGEMENT

Documentation management is described in RD04

7. COST AND SCHEDULE MANAGEMENT

7.1 Cost Management

The project uses monthly financial information provided by the SSTD Admin Group to monitor overall project spend. FRS is used to check the status of individual payments, where necessary.

Reports on project spend are made quarterly to the SSTD Departmental Project Review Board, the Laboratory Project Review Board, PPARC and the Herschel/Planck Project Director.

7.2 Schedule Management

RD02 contains the project milestones relating to deliveries between SPIRE institutes and between SPIRE and ESA. These milestones are reviewed regularly in the management telecoms and updated in the detailed schedule.

8. TECHNICAL REQUIREMENTS

Requirements on the instrument are generated from the SPIRE scientific requirements (RD09) in the form of a set of instrument requirements (RD10). The interface to the spacecraft is documented in AD04

The ICC requirements are given in AD08

9. PRODUCT ASSURANCE REQUIREMENTS

The requirements put on the SPIRE project are defined in RD06. The SPIRE response to these is specified in the SPIRE PA Plan (RD07).

10. Systems Engineering

System engineering tasks are planned and monitored as part of the overall RAL activities by the Project Manager. Regular project meetings are used to identify specific system-related tasks and assigned to either the project System engineers or to appropriate SSTD groups.