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SPIRE sensitivity to variations in the temperature distribution
over the FIRST primary mirror

Matt Griffin and Adam Woodcraft

21 April 1999

1 Background

This is an updated version of the note by Matt Griffin of 5 June 1998, Simple assessment of SPIRE
sensitivity to variations in the temperature gradient across the FIRST primary mirror.  Besides making
some minor changes to the original, we have added Section 5 on the analysis of the telescope temperature
map provided by JPL, and have updated the conclusions (Section 6).

Original Message from Göran Pilbratt

Dear Matt, Albrecht, and Thijs,

I managed to catch all three of you one way or another last week to discuss the issue of
gradients in the telescope background. I send this note to record our discussions.

During in-orbit operations the FIRST telescope will be subjected to an environment which is
neither uniform nor stationary. The front side of the primary mirror will primarily see cold
space (and the focal plane reflected by the secondary mirror), while the backside of the
primary will see the cryostat vacuum vessel, or any shielding preventing it from doing so. On
one side of the telescope there is the inside of the sunshade, on the other side cold space.

The telescope boresight is the x axis, the direction to the sun is the z axis, the y axis
completes an orthogonal cartesian system.  The spacecraft is constrained to stay within the
following solar aspect angles (SAA):

SAA x in the range 60-105 deg; i.e. the telescope optical axis may never point closer than 60
deg to the sun, and never further away than 105 deg.

SAA y in the range 85-95 deg; i.e. the z axis must never be more than 5 deg away from the
direction to the sun.

In a "nominal" steady state position where the z axis points to the sun and the x axis at right
angle from it, you expect a temperature gradient from the +z to the -z end of the telescope.
You also expect a temperature gradient through the primary from the backside to the front
side. The magnitudes of these gradients in the past were a fraction of a K across the
primary, and a few K through it. In the present more open design which offers a much colder
telescope these gradients are expected to be larger, perhaps substantially so. In addition,
when the boresight angle to the sun changes, the magnitude of the gradient across the
primary will change in time, and when/if the z axis points (slightly) away from the sun the
gradient will have a component which is no longer (fully) orthogonal to the chopping
direction of the instruments.

The acceptable telescope temperature gradients are constrained by the WFE specification;
the telescope has to perform at all times. The question which now needs to be addressed is
whether additional requirements are necessary from an acceptable (change in) instrumental
background point of view. Three sources must be considered:  (i)   spatial temperature
gradients;  (ii)  temporal temperature gradients;  (iii) non-uniformity in emissivity.
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As we discussed last week we need your input on these parameters. If the instrumental
background requirements are more stringent than the optical performance requirements it is
important that we find out now so that these requirements can be taken into account in the
telescope design.

Please, when you give your input also tell me what your assumptions are, e.g. wrt type of
observation, chopping schemes, etc. For "average" telescope temperature you can assume
70 +- 10 K. Since there is a preliminary telescope design review in June, it would be useful
(necessary I can hear some people saying) to have your (first) input before the end of this
month.

Best regards,   G"oran

2 Assumptions

1. Wavelength = 250 or 500 µm.
2. Nominal telescope temperature To = 70 K.  The telescope emission is not quite in the Rayleigh-Jeans

regime.  For a fractional change in temperature α, the change in brightness is 1.6α at 200 µm.
3. Looking at a simple 1-D case can give us a fairly accurate idea of the magnitude of the effect.
4. The primary is represented by a straight line segment representing the projection of the curved

mirror onto a plane perpendicular to the optical axis (i.e., the Y-Z plane).
5. The effects of the central obscuration and the secondary supports are neglible.
6. The temperature gradient across the primary in the chop direction (Y) is linear.
7. We are insensitive to temperature gradients in the direction orthogonal to the chop (Z).
8. The primary and secondary have equal emissivities and nominal temperatures.
9. The secondary is isothermal.
10. The illumination pattern on the secondary has a linear taper from the centre and is truncated at

the edge of the seconday (in fact the illumination profile is irrelevant, as shown below).
11. The effects of diffraction at the secondary are negligible (see Appendix 1).  Therefore, the

illumination pattern on the primary is the same as on the secondary, with a sharp truncation at
a diameter of 3.28 m.

12. The offset between the centre of the beam and the centre of the mirror is never so large that the
beam overspills the physical extent of the primary (see Appendix 2).

13. Simple two position chopping.
14. No use of pixel-pixel correlations in noise to reduce effects of temperature gradient fluctuations.

3 Calculation of power offset

Rbeam = radius at which beam is truncated
Rtel = physical radius of primary

To

T(y)
B(y)

Y-a-Rbeam Rbeam

1

-(Rtel
 + a) Rtel

 - a
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a = offset of beam centre from telescope centre  (we assume that Rbeam + a  <  Rrel )
m = telescope temperature gradient
q = gradient of beam roll-off
P(a) = power from telescope for offset between beam centre and telescope centre = a

Telescope temperature profile in chop direction:  T(y) = To + m(y + a)

Telescope brightness profile in chop direction: B(y)  =  Bo + 1.6m(y + a)

Illumination pattern on primary:  I(y)  = 1  +  qy  (-Rbeam < y < 0)
= 1  –  qy  (0 < y < Rbeam)
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This result of this integral is P(a)  =  Rbeam(2 – qRbeam)(To + 1.6ma).

The power offset for a beam displacement = a is therefore given by

oT
ma6.1    

)0(P
)0(P    )a(P    

)0(P
P =−=∆

Note: The offset is independent of the illumination pattern.  So, to first order, it makes no difference
whether we have a flat-topped or tapered illumination of the primary mirror.

4 Putting limits on acceptable fluctuation in temperature gradient

Let ∆T be the temperature difference between the two sides of the primary in the chopping direction.

Therefore  m = ∆T/(2Rbeam).

The offset signal corresponding to a total chop throw of 2a (±a around the central position) is

beamo
off R

a
T
T)0(P1.6  P ∆=

Note:

• For simple two-position chopping with no nodding, Poff is indistinguishable from a genuine signal.

• To first order, Poff is the same for all pixels on the array.

• If Poff never varied, it could be measured once, by observing blank sky, and subtracted from all
source observations.

• Fluctuations in Poff are equivalent to excess sky noise in the case of a ground-based telescope.  To
reduce or eliminate the effects, one must either nod the telescope faster than the variations and/or
exploit the correlation in the noise between different pixels.
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• If the array field contains “blank” sky, then Poff could be measured during the observation by using
pixels which are off-source.

In practice, the variation of the temperature gradient is much more likely to be a drift rather than in the
form of random fluctuations.  If the telescope has recently slewed to a new position, then the temperature
distribution on the primary will be settling down to some new equilibrium.  Even if the gradient were
constant for a given observation, it would probably vary from one observation to another – so taking it
out by nodding or doing something equivalent like 3-position chopping may be necessary anyway.
Assume:

• Two position chopping
• No use of correlated noise
• Change in the temperature gradient is linear in time
• Basic measurement time = τ (either the interval between nods or the total integration time if we are

not nodding)

Let’s adopt the following criterion to set a limit on the change in the temperature gradient: the maximum
change in ∆T during the interval τ should correspond to less than some fraction, say 1/β, of the noise
level to which we can integrate down in that time:

5.0
ph

off

NEP
   P

βτ
≤δ (an acceptable figure for β would be ~ 3).

Letting δ(∆T) be the maximum allowed excursion in ∆T, we have

5.0
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Plugging in some representative values:

Rbeam = 1.64 m
a = 1.33 cm for 4 arcminute chop. [= (26.6 mm)/2 – see note from Martin Caldwell, Appendix 2]
To = 70 K
β = 3
P(0) = (0.5)(7.5) = 3.8 pW (250  µm)

(0.5)(5.0) = 2.5 pW (500  µm)

Note: the factor of 0.5 accounts for the fact that primary contributes only half of the total
background on the detector)

NEPph = 12.5 x 10-17 W Hz-1/2 (250  µm)
= 7.7 x 10-17 W Hz-1/2 (500  µm)

⇒ 5.0

mK59)T(
τ

≤∆δ             (250 µm)   5.0

mK55)T(
τ

≤∆δ           (500 µm)

No nodding:  τ could be up to 1 hour ⇒ δT  =  0.9 mK on a timescale of 1 hour

Nodding with a period of, say, 2 minutes: ⇒ δT  =  5 mK on a time scale of 2 minutes
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5 Analysis of the JPL telescope temperature map

The nominal telescope temperature map provided by JPL has been used to determine the offset signals
generated by motion of the SPIRE beam across the primary when chopping.  This map is for the case of
zero roll angle about the X axis so that the solar input is symmetrical.  To simulate the effect of non-zero
roll angle, we have merely rotated this pattern.  In reality, the temperature pattern would be different (and
this will need to be calculated explicitly at some stage).

5.1 Assumptions

• Illumination pattern on the primary is a top hat (the results are not very sensitive to departures from
this assumption, which is the worst case)

• Chopping along the Y-axis
• Telescope temperature pattern is rotated by an angle θ with respect to the chop direction, with

θ  = 0 – 6o.

5.2 Results

5.2.1  Magnitude of the power offset due to chopping

The power collected by the beam, normalised to the maximum value (with the beam centred on the
telescope axis) was computed as a function of chop amplitude (in mm from the central position) for
different values of θ.

The results may be summarised as follows: 

PN  =  1 – βa

The SPIRE maximum chop (4 arcmin. on
the sky) corresponds to a  =  13.3 mm.  The
worst case is for a detector in the centre of
the field which is chopped by the full amount.

So the maximum normalised power offset is PNoff  = 13.3β.

Offset in terms of detector NEP (500 µm): P(0)  = 2.5 x 10-12 W   
NEPph = 7.1 x 10-17 W Hz-1/2

Poff  =    13.3β(2.5 x 10-12)  =  (3.3 x 10-11)β

The table below summarises the offset due to chopping for various values of θ:

Angle θ Deg. 1 2 3 4 5 6
β mm-1 4.80E-07 8.00E-07 1.28E-06 1.56E-06 2.00E-06 2.20E-06

Normalised
offset

PNoff 6.38E-06 1.06E-05 1.70E-05 2.08E-05 2.66E-05 2.93E-05

Absolute offset
at 500 um

Poff W 1.60E-17 2.66E-17 4.26E-17 5.19E-17 6.65E-17 7.32E-17

Offset as
fraction of NEP

0.23 0.38 0.60 0.73 0.94 1.03

1.0

Normalised
Power
(PN)

Chop Amplitude, a, (mm)

4 arcmin.

Slope = β
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5.2.2   Constraints on the thermal time constant of the telescope

In the simple analysis presented above, a limit of 2.5 mK/minute was placed on the temperature
difference across the primary in the Y direction.  The diagram below shows polynomial fits to
temperature cuts along the Y direction for different values of the roll angle θ (note that the hole in
the primary is ignored).

We can place a preliminary requirement on the time constant as follows:

• Assume as a worst case that θ undergoes a step change from 0 to 5o.

• Let the equilibrium temperature difference along the Y axis  = ∆Tmax  ≈  0.7 K (it’s not a linear
gradient, but this is OK as a rough number)

• Let τ be the thermal time constant describing the relaxation of this temperature difference.

• Let R be the maximum allowed rate of change of temperature  =  2.5 mK/minute

• Then  R  =  ∆Tmax/τ   gives  τ  ≥  280 minutes  (4.7 hours)
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6. Conclusions and comments

1. If we nod with a period of about 2 minutes, the required stability of the temperature gradient along
the Y-direction is about 2.5 mK per minute.   It would be preferable to nod less frequently than this
(or not at all).

2. Even for the extreme 5o roll angle, the offset introduced by chopping is very small - comparable to
the overall NEP.  The impact on dynamic range is therefore negligible.  This conclusion will apply
to any similar temperature distribution.

3. In principle, the temperature discontinuities at the gaps between the petals do not produce any
undesirable effects.

4. Variability in the offset over the timescale of an observation is what is important, as this dictates how
often we have to nod.  A very preliminary estimate of the thermal time constant of the telescope gives
a figure of about 5 hours.  This will need to be confirmed by analysis of a more realistic thermal
model.

5. To update the constraint on the time variability of the temperature distribution we would need to have
the equilibrium telescope temperature maps for θ  =  0 and θ  =  5o  (and intermediate values if
possible) for the segmented telescope.

6. It would be useful to have any information that becomes available on the thermal time constant
associated with a step change in θ.
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Appendix 1:   Estimate of beam broadening due to diffraction at the secondary

Assume the beam is truncated sharply at the secondary.  Diffraction at the secondary will create a wing
on the primary illumination pattern with the increase in radius in the y-direction, ∆R, approximately
given by

)27cos(
1

D2
D     R o

sec
s-p

λ≈∆

where 

Dp-s  =  Distance between secondary
and primary

Dsec =  Diameter of secondary

Taking λ  =  500 µm  gives   ∆R  =  1.1 mm.

This is small in comparison with the amount by which the primary is oversized – a radius increment of
(3500-3280)/2  = 110 mm.  We therefore assume that overspill past the edge of the primary can be
neglected.

Appendix 2:   Estimate of beam motion on the primary due to chopping

From Martin.Caldwell@rl.ac.uk Thu May 21 14:56:06 1998
Date: Thu, 21 May 1998 14:46:30 +0100
From: Martin E Caldwell <Martin.Caldwell@rl.ac.uk>
To: M.J.Griffin@qmw.ac.uk
Cc: E.Atad@roe.ac.uk, agr@rl.ac.uk, bms87@ssdnt01.bnsc.rl.ac.uk, p.gray@rl.ac.uk
Subject: FIRST telescope, chopped beam motion on M1

Hello Matt,

I said I'd work out the motion of SPIRE's beam across FIRST's M1 due to the chopping.

The ray-trace model I'm using is Eli's CodeV model of 7/11/97. (There is a newer version but I've
checked that the telescope & field angles are the same.)

The FOV in the model X-direction (that in which the chopping motion occurs), is +/- 18.22 mm at the
telescope focal plane. The chopping is by an amount +/- 22mm at this plane (Eli's e-mail of 3-12-97), so
each point in the FOV moves by 44 mm in this plane. From the ray-trace, the corresponding motion of
the geometric beam across M1 is by 26.6 mm.

Note that this is the motion in the X-direction,  perpendicular to the telescope axis. The large curvature on
mirror M1 means that at its edge the angle-of-incidence is approx 27 degrees, so the beam motion
measured along the mirror surface would be 1/sin(90-27) = 1.12 times larger than that above.

Regards,

Martin

Dsec = 0.278 m

Dp-s = 1.068 m

 θ

Rused = 1.64 m

X

Y


